JP7364217B2 - polishing equipment - Google Patents

polishing equipment Download PDF

Info

Publication number
JP7364217B2
JP7364217B2 JP2019200854A JP2019200854A JP7364217B2 JP 7364217 B2 JP7364217 B2 JP 7364217B2 JP 2019200854 A JP2019200854 A JP 2019200854A JP 2019200854 A JP2019200854 A JP 2019200854A JP 7364217 B2 JP7364217 B2 JP 7364217B2
Authority
JP
Japan
Prior art keywords
workpiece
light
resistivity
polishing
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019200854A
Other languages
Japanese (ja)
Other versions
JP2021074794A (en
Inventor
秀明 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SpeedFam Co Ltd
Original Assignee
SpeedFam Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SpeedFam Co Ltd filed Critical SpeedFam Co Ltd
Priority to JP2019200854A priority Critical patent/JP7364217B2/en
Priority to KR1020200139226A priority patent/KR20210054455A/en
Priority to CN202011155543.2A priority patent/CN112775821A/en
Priority to TW109137166A priority patent/TW202118584A/en
Publication of JP2021074794A publication Critical patent/JP2021074794A/en
Application granted granted Critical
Publication of JP7364217B2 publication Critical patent/JP7364217B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/005Control means for lapping machines or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/07Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool
    • B24B37/08Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for double side lapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/34Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/12Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving optical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

本発明は、研磨装置に関する発明である。 The present invention relates to a polishing device.

従来から、上定盤と下定盤の間に挟み込んだシリコンウェーハ、表面に酸化膜等が成膜されたウェーハ、SOIウェーハ、SiCウェーハ、その他半導体ウェーハ、ガラスウェーハ、石英ガラスウェーハ、水晶ウェーハ、サファイアウェーハ、セラミックウェーハ等のワークの表面を研磨する研磨装置が知られている(例えば、特許文献1参照)。この研磨装置は、上定盤を貫通した穴を介して研磨中のワークの形状をリアルタイムで測定する厚み計測器を有している。この厚み計測器では、研磨中のワークに測定光を照射し、ワークの表裏面で反射した反射光に基づいてワークの形状を測定する。 Conventionally, silicon wafers sandwiched between the upper and lower surface plates, wafers with oxide films formed on the surface, SOI wafers, SiC wafers, other semiconductor wafers, glass wafers, quartz glass wafers, crystal wafers, sapphire 2. Description of the Related Art Polishing apparatuses for polishing the surfaces of workpieces such as wafers and ceramic wafers are known (for example, see Patent Document 1). This polishing apparatus has a thickness measuring device that measures the shape of the workpiece being polished in real time through a hole that passes through the upper surface plate. This thickness measuring device irradiates a workpiece being polished with measurement light and measures the shape of the workpiece based on the reflected light reflected from the front and back surfaces of the workpiece.

特開2015-47656号公報Japanese Patent Application Publication No. 2015-47656

ところで、従来の研磨装置の形状測定器では、ワーク形状の測定時にワークに照射する直前の測定光である照射光の光量が一定に設定されている。一方、ワークの材質は、上述のとおりさまざまであり、また、不純物濃度もワークごとに異なっている。そのため、ワークの材質又は不純物濃度等によっては、ワーク形状の測定に適切な反射光を得ることができず、ワーク形状を適切に測定できないことがある。 By the way, in the shape measuring device of the conventional polishing apparatus, the light intensity of the irradiation light, which is the measurement light immediately before being irradiated onto the workpiece, is set to be constant when measuring the shape of the workpiece. On the other hand, the materials of the workpieces vary as described above, and the impurity concentrations also differ from workpiece to workpiece. Therefore, depending on the material of the workpiece, impurity concentration, etc., it may not be possible to obtain reflected light suitable for measuring the shape of the workpiece, and the shape of the workpiece may not be measured appropriately.

本発明は、上記問題に着目してなされたもので、ワークの材質又は不純物濃度等に関わらずワーク形状の測定を適切に実施することができる研磨装置を提供することを課題としている。 The present invention has been made in view of the above problem, and an object of the present invention is to provide a polishing apparatus that can appropriately measure the shape of a workpiece regardless of the material, impurity concentration, etc. of the workpiece.

上記目的を達成するため、本発明の研磨装置は、ワークと定盤とを相対的に回転させて、定盤に取り付けた研磨パッドによってワークを研磨する。そして、ワークを研磨する研磨機本体と、ワークに照射した測定光がワークの表裏面で反射して得られる反射光をもとにワークの形状を測定する形状測定器と、を備えている。さらに、形状測定器は、測定光を出射するレーザ光源と、ワークの表面で反射して得られる第1反射光と、ワークの裏面で反射して得られる第2反射光との干渉信号を検出する測定部と、干渉信号の強度である反射強度とワークの抵抗率とを紐づけたデータベースを有し、測定部から入力される反射強度の情報とデータベースとを照合することで、ワークの抵抗率を認識する抵抗率認識部と、抵抗率認識部が認識した抵抗率に基づいてワークに照射する直前の測定光である照射光の光量を制御する光量制御部と、を有している。 In order to achieve the above object, the polishing apparatus of the present invention rotates the workpiece and the surface plate relative to each other, and polishes the workpiece with a polishing pad attached to the surface plate. It includes a polishing machine body that polishes a workpiece, and a shape measuring device that measures the shape of the workpiece based on reflected light obtained by reflecting measurement light irradiated onto the workpiece from the front and back surfaces of the workpiece. Furthermore, the shape measuring instrument detects interference signals between the laser light source that emits the measurement light, the first reflected light obtained by reflecting off the surface of the workpiece, and the second reflected light obtained by reflecting off the back surface of the workpiece. It has a measuring part that links the reflected intensity, which is the strength of the interference signal, and the resistivity of the workpiece, and by comparing the reflected strength information input from the measuring part with the database, the resistance of the workpiece can be determined. The resistivity recognition unit includes a resistivity recognition unit that recognizes the resistivity, and a light amount control unit that controls the amount of irradiation light that is the measurement light immediately before irradiating the workpiece based on the resistivity recognized by the resistivity recognition unit. .

本発明の研磨装置が備えた形状測定器では、ワークに照射する直前の測定光である照射光の光量をワークの抵抗率に基づいて制御する。ここで、ワークの抵抗率は、ワークの材質又は不純物濃度等によって異なっている。そのため、照射光の光量をワークの抵抗率に基づいて制御することで、この照射光の光量をワークの材質又は不純物濃度等に応じて切り替えることができる。よって、ワークの材質又は不純物濃度等に関わらずワーク形状の測定を適切に実施することができる。 The shape measuring device included in the polishing apparatus of the present invention controls the amount of irradiation light, which is measurement light immediately before irradiating the workpiece, based on the resistivity of the workpiece. Here, the resistivity of the workpiece differs depending on the material of the workpiece, impurity concentration, etc. Therefore, by controlling the amount of irradiation light based on the resistivity of the workpiece, the amount of irradiation light can be switched depending on the material, impurity concentration, etc. of the workpiece. Therefore, the shape of the workpiece can be appropriately measured regardless of the material, impurity concentration, etc. of the workpiece.

実施例1の研磨装置を概略的に示す全体構成図である。1 is an overall configuration diagram schematically showing a polishing apparatus of Example 1. FIG. 実施例1のサンギヤとインターナルギヤとキャリアプレートの位置関係を示す説明図である。FIG. 3 is an explanatory diagram showing the positional relationship between a sun gear, an internal gear, and a carrier plate in Example 1. FIG. 実施例1の形状測定器の構成を示すブロック図である。1 is a block diagram showing the configuration of a shape measuring instrument according to a first embodiment. FIG. 実施例1の形状測定器にて描画される断面形状線の例を示す説明図である。FIG. 2 is an explanatory diagram showing an example of a cross-sectional shape line drawn by the shape measuring device of Example 1. FIG. 実施例1の研磨機における光量制御部への印加電圧と、測定光の光透過量と、減衰量と、照射光の光量との関係を示す表である。2 is a table showing the relationship among the voltage applied to the light amount control unit, the amount of light transmission of measurement light, the amount of attenuation, and the amount of irradiation light in the polishing machine of Example 1. 実施例1の研磨装置1において実行されるワーク形状測定処理の流れを示すフローチャートである。5 is a flowchart showing the flow of workpiece shape measurement processing executed in the polishing apparatus 1 of the first embodiment. 高抵抗ワークに測定光を照射したときに検出される反射強度の一例を示す説明図である。FIG. 3 is an explanatory diagram showing an example of reflection intensity detected when a high resistance workpiece is irradiated with measurement light. 低抵抗ワークに測定光を照射したときに検出される反射強度の一例を示す説明図である。FIG. 3 is an explanatory diagram showing an example of reflection intensity detected when a low resistance workpiece is irradiated with measurement light. 光出力性能が低下したレーザ光源からの測定光を高抵抗ワークに照射したときに検出される反射強度の一例を示す説明図である。FIG. 3 is an explanatory diagram showing an example of reflection intensity detected when a high resistance workpiece is irradiated with measurement light from a laser light source with degraded optical output performance. 光量が多い照射光を高抵抗のワークに照射したときに描画されるワークの厚み情報の一例を示す図である。FIG. 7 is a diagram showing an example of workpiece thickness information drawn when a high-resistance workpiece is irradiated with irradiation light with a large amount of light. 光量が多い照射光を低抵抗のワークに照射したときに描画されるワークの厚み情報の一例を示す図である。FIG. 7 is a diagram showing an example of thickness information of a workpiece drawn when a low-resistance workpiece is irradiated with irradiation light having a large amount of light; 光量が少ない照射光を高抵抗のワークに照射したときに描画されるワークの厚み情報の一例を示す図である。FIG. 7 is a diagram showing an example of workpiece thickness information drawn when a high-resistance workpiece is irradiated with light with a small amount of light. 光量が少ない照射光を低抵抗のワークに照射したときに描画されるワークの厚み情報の一例を示す図である。FIG. 7 is a diagram illustrating an example of workpiece thickness information drawn when a low-resistance workpiece is irradiated with irradiation light with a small amount of light.

以下、本発明の研磨装置を実施するための形態を、図面に示す実施例1に基づいて説明する。 EMBODIMENT OF THE INVENTION Hereinafter, the form for implementing the polishing apparatus of this invention is demonstrated based on Example 1 shown in drawing.

(実施例1)
以下、実施例1の研磨装置1の全体構成を、図1及び図2に基づいて説明する。
(Example 1)
Hereinafter, the overall configuration of the polishing apparatus 1 of Example 1 will be described based on FIGS. 1 and 2.

実施例1の研磨装置1は、シリコンウェーハ、表面に酸化膜等が成膜されたウェーハ、SOIウェーハ、SiCウェーハ、その他半導体ウェーハ、ガラスウェーハ、石英ガラスウェーハ、水晶ウェーハ、サファイアウェーハ、セラミックウェーハ等の薄板状のワークWの表裏両面を研磨する両面研磨装置である。研磨装置1は、図1に示すように、研磨機本体10と、形状測定器20と、メモリ30と、表示器40と、研磨制御部50と、を備えている。 The polishing apparatus 1 of Example 1 can be used to polish silicon wafers, wafers with an oxide film formed on the surface, SOI wafers, SiC wafers, other semiconductor wafers, glass wafers, quartz glass wafers, crystal wafers, sapphire wafers, ceramic wafers, etc. This is a double-sided polishing device for polishing both the front and back surfaces of a thin plate-shaped workpiece W. As shown in FIG. 1, the polishing apparatus 1 includes a polishing machine main body 10, a shape measuring device 20, a memory 30, a display 40, and a polishing control section 50.

研磨機本体10は、図1に示すように、軸線L1を中心にして同心上に配置された下定盤11と、上定盤12と、下定盤11の中央に配置されたサンギヤ13と、下定盤11の外周を取り囲むように配置されたインターナルギヤ14と、を有している。下定盤11と、サンギヤ13と、インターナルギヤ14とは、それぞれ駆動軸17a、17b、17cを介して図示しない駆動源に連結され、回転駆動される。 As shown in FIG. 1, the polishing machine main body 10 includes a lower surface plate 11, an upper surface plate 12, a sun gear 13 located at the center of the lower surface plate 11, and a lower surface plate 11 arranged concentrically about an axis L1. It has an internal gear 14 arranged so as to surround the outer periphery of the board 11. The lower surface plate 11, the sun gear 13, and the internal gear 14 are connected to a drive source (not shown) via drive shafts 17a, 17b, and 17c, respectively, and are rotationally driven.

上定盤12は、上面に取り付けられた支持スタッド16a及び取付部材16bを介して、ロッド16に固定され、ロッド16が伸縮することで上下に昇降する。研磨機本体10の中央には、軸線L1に沿って起立し、上端部にドライバ18が設けられた駆動軸17dが配置されている。ドライバ18の外周面には、上定盤12に設けたフック12bが係合する溝部(不図示)が形成されている。上定盤12は、図示しない駆動源によって駆動軸17dが回転駆動されることで、ドライバ18と一体になって回転する。 The upper surface plate 12 is fixed to a rod 16 via a support stud 16a and a mounting member 16b attached to the upper surface, and moves up and down as the rod 16 expands and contracts. At the center of the polishing machine body 10, a drive shaft 17d is arranged that stands up along the axis L1 and has a driver 18 at its upper end. A groove (not shown) is formed on the outer peripheral surface of the driver 18, with which a hook 12b provided on the upper surface plate 12 engages. The upper surface plate 12 rotates integrally with the driver 18 as the drive shaft 17d is rotationally driven by a drive source (not shown).

キャリアプレート15は、下定盤11及び上定盤12の間に配置され、図2に示すように、サンギヤ13及びインターナルギヤ14に噛み合う。そして、キャリアプレート15は、サンギヤ13及びインターナルギヤ14が回転することで自転しながら軸線L1の周囲を回転(公転)する。 The carrier plate 15 is arranged between the lower surface plate 11 and the upper surface plate 12, and meshes with the sun gear 13 and the internal gear 14, as shown in FIG. The carrier plate 15 rotates (revolutions) around the axis L1 while rotating due to the rotation of the sun gear 13 and the internal gear 14.

ワークWは、キャリアプレート15のワーク保持穴15a内に配置される。そして、回転する下定盤11に貼付された研磨パッド11aと回転する上定盤12に貼付された研磨パッド12aに挟まれた状態でキャリアプレート15が自転及び公転し、ワークWは研磨パッド11a及び研磨パッド12aにより研磨加工される。 The work W is placed in the work holding hole 15a of the carrier plate 15. Then, the carrier plate 15 rotates and revolves while being sandwiched between the polishing pad 11a attached to the rotating lower surface plate 11 and the polishing pad 12a attached to the rotating upper surface plate 12, and the work W is held between the polishing pad 11a and the polishing pad 12a attached to the rotating upper surface plate 12. Polishing is performed using the polishing pad 12a.

さらに、上定盤12には、測定孔19が形成されている。この測定孔19は、上定盤12及び研磨パッド12aを貫通し、形状測定器20から出射された測定光Xを透過する窓部材19aが装着されている(図3参照)。 Furthermore, a measurement hole 19 is formed in the upper surface plate 12 . This measurement hole 19 is fitted with a window member 19a that passes through the upper surface plate 12 and the polishing pad 12a and transmits the measurement light X emitted from the shape measuring device 20 (see FIG. 3).

形状測定器20は、後述する分光干渉方式によってワークWの形状を測定するレーザ測定器である。この形状測定器20は、プローブ22が上定盤12に取り付けられており、上定盤12と一体となって回転する。 The shape measuring device 20 is a laser measuring device that measures the shape of the workpiece W using a spectral interference method, which will be described later. In this shape measuring instrument 20, a probe 22 is attached to the upper surface plate 12, and rotates together with the upper surface plate 12.

メモリ30は、形状測定器20及び研磨制御部50からデータの読み書きが可能な記憶装置である。メモリ30は、例えば、HDD、EEPROM、FeRAM、及び、フラッシュメモリ等からなる。このメモリ30には、形状測定器20によって測定されたワークWの形状情報等が記憶される。 The memory 30 is a storage device in which data can be read and written by the shape measuring device 20 and the polishing control section 50. The memory 30 includes, for example, an HDD, an EEPROM, an FeRAM, a flash memory, and the like. This memory 30 stores information on the shape of the workpiece W measured by the shape measuring device 20, and the like.

表示器40は、研磨制御部50からの表示指令に基づき、現在研磨中のワークWの形状情報や、ワークWの研磨停止判定をしたこと等を表示する。表示器40は、例えばCRT(Cathode Ray Tube)ディスプレイや液晶ディスプレイ、有機EL(electro-luminescence)ディスプレイ等からなり、例えば研磨機本体10に取り付けられている。この表示器40は、研磨機本体10のオペレータが目視可能な画面(不図示)を有している。 Based on a display command from the polishing control unit 50, the display 40 displays information on the shape of the workpiece W currently being polished, the fact that polishing of the workpiece W has been determined to be stopped, and the like. The display 40 includes, for example, a CRT (Cathode Ray Tube) display, a liquid crystal display, an organic EL (electro-luminescence) display, etc., and is attached to the polishing machine main body 10, for example. This display 40 has a screen (not shown) that can be viewed by the operator of the polishing machine main body 10.

研磨制御部50は、CPU(Central Processing Unit)等からなる制御演算部51と、サブメモリ52と、入力装置53と、等を備えている。研磨制御部50は、サブメモリ52に記憶されたプログラムや、入力装置53を介して研磨機本体10のオペレータによって入力されたワークWの加工目標や研磨条件、研磨環境情報等に基づき、制御演算部51から制御指令を出力する。これにより、研磨機本体10は、各種の動作が制御される。また、制御演算部51では、形状測定器20によって測定された研磨中のワークWの形状の情報に基づいてワーク形状の推移を予測し、この予測結果に応じてワークWの研磨条件の変更タイミングや研磨終了タイミングを演算する。 The polishing control section 50 includes a control calculation section 51 including a CPU (Central Processing Unit), a sub-memory 52, an input device 53, and the like. The polishing control unit 50 performs control calculations based on the program stored in the sub-memory 52 and the processing target of the workpiece W, polishing conditions, polishing environment information, etc. input by the operator of the polishing machine body 10 via the input device 53. A control command is output from the section 51. Thereby, various operations of the polishing machine main body 10 are controlled. In addition, the control calculation unit 51 predicts the transition of the workpiece shape based on the information on the shape of the workpiece W being polished measured by the shape measuring device 20, and changes the timing of polishing conditions of the workpiece W according to the prediction result. and the polishing end timing.

以下、実施例1の形状測定器20の詳細構成を、図3~図5に基づいて説明する。 Hereinafter, the detailed configuration of the shape measuring device 20 of the first embodiment will be explained based on FIGS. 3 to 5.

形状測定器20は、図3に示すように、レーザ光源21と、プローブ22と、測定部23と、光量制御部24と、抵抗率認識部25と、を有し、分光干渉方式によってワークWの表面形状を測定する。分光干渉方式では、まず、レーザ光源21から出射した測定光X(図3参照)を、プローブ22及び上定盤12の測定孔19の窓部材19aを介してワークWに照射する。そして、この測定光XがワークWの表面Wαで反射して得られる第1反射光Y(図3参照)と、この測定光XがワークWの裏面Wβで反射して得られる第2反射光Z(図3参照)とをプローブ22にて受光する。プローブ22は、受光した光を電気信号に変換して測定部23に入力する。続いて、測定部23によって第1反射光Yと第2反射光Zとの干渉現象で生じる干渉信号を検出し、検出した干渉信号の周波数からワークWの厚みを演算する。さらに、この測定部23では、このワークWの厚みに基づいてワークWの断面の形状を演算し、測定結果とする。 As shown in FIG. 3, the shape measuring device 20 includes a laser light source 21, a probe 22, a measuring section 23, a light amount control section 24, and a resistivity recognition section 25, and measures the workpiece W using a spectral interference method. Measure the surface shape of In the spectral interference method, first, measurement light X (see FIG. 3) emitted from the laser light source 21 is irradiated onto the workpiece W through the probe 22 and the window member 19a of the measurement hole 19 of the upper surface plate 12. Then, a first reflected light Y (see FIG. 3) obtained by reflecting this measurement light X on the front surface Wα of the workpiece W, and a second reflected light Y obtained by reflecting this measurement light X on the back surface Wβ of the workpiece W. Z (see FIG. 3) is received by the probe 22. The probe 22 converts the received light into an electrical signal and inputs it to the measuring section 23 . Subsequently, the measurement unit 23 detects an interference signal generated by an interference phenomenon between the first reflected light Y and the second reflected light Z, and calculates the thickness of the workpiece W from the frequency of the detected interference signal. Furthermore, the measuring section 23 calculates the cross-sectional shape of the workpiece W based on the thickness of the workpiece W, and uses the result as a measurement result.

ここで、レーザ光源21は、電流を流すことでレーザを発振する素子である半導体レーザを有しており、この半導体レーザから測定光Xを出射する。レーザ光源21から出力された測定光Xは、光ファイバケーブル21aを介してプローブ22に導かれる。なお、レーザ光源21は、使用期間や使用条件、機器への不適切な取り付け等の影響で経年変化や機能不良が生じると、光出力が変化する。 Here, the laser light source 21 has a semiconductor laser which is an element that oscillates a laser by passing a current, and emits the measurement light X from this semiconductor laser. Measurement light X output from the laser light source 21 is guided to the probe 22 via the optical fiber cable 21a. Note that the light output of the laser light source 21 changes as it deteriorates over time or malfunctions due to the period of use, conditions of use, improper attachment to equipment, or the like.

プローブ22は、レーザ光源21から出射された測定光Xを平行光に調整して照射するコリメータ機能を有し、光ファイバケーブル21aの先端に取り付けられている。さらに、プローブ22は、受光した光を内蔵した光電変換素子によって干渉信号に変換する。プローブ22で変換された干渉信号は、無線通信等によって測定部23に入力される。ここで、プローブ22は、測定光XがワークWの表面Wαで反射して得られる第1反射光Yと、この測定光XがワークWの裏面Wβで反射して得られる第2反射光Zとをそれぞれ受光する。 The probe 22 has a collimator function that adjusts the measurement light X emitted from the laser light source 21 into parallel light and irradiates it, and is attached to the tip of the optical fiber cable 21a. Further, the probe 22 converts the received light into an interference signal using a built-in photoelectric conversion element. The interference signal converted by the probe 22 is input to the measurement unit 23 via wireless communication or the like. Here, the probe 22 has a first reflected light Y obtained by reflecting the measuring light X on the front surface Wα of the work W, and a second reflected light Z obtained by reflecting the measuring light X on the back surface Wβ of the work W. and receive light respectively.

測定部23は、第1反射光Yと第2反射光Zが干渉して生じる信号の周波数に基づいてワークWの断面形状を測定し、測定結果を示すワークWの形状描画を表示器40に表示させる。この測定部23は、形状測定部23aと、描画生成部23bと、を有している。 The measuring unit 23 measures the cross-sectional shape of the workpiece W based on the frequency of the signal generated by interference between the first reflected light Y and the second reflected light Z, and displays a drawing of the shape of the workpiece W indicating the measurement result on the display 40. Display. The measurement section 23 includes a shape measurement section 23a and a drawing generation section 23b.

形状測定部23aは、プローブ22から送信された第1反射光Y及び第2反射光Zの電気信号に基づき、これらの干渉現象によって生じる干渉信号を検出する。そして、形状測定部23aでは、検出した干渉信号の周波数をフーリエ変換等によって解析して周波数信号を取得し、ワークWの厚みをこの周波数信号の周波数から演算する。なお、一般的には、周波数が高いほど厚みが厚くなる。ワークWの厚み情報は、描画生成部23bに入力される。 The shape measurement unit 23a detects an interference signal generated by the interference phenomenon based on the electrical signals of the first reflected light Y and the second reflected light Z transmitted from the probe 22. Then, in the shape measurement section 23a, the frequency of the detected interference signal is analyzed by Fourier transform or the like to obtain a frequency signal, and the thickness of the workpiece W is calculated from the frequency of this frequency signal. Note that generally, the higher the frequency, the thicker the thickness. The thickness information of the workpiece W is input to the drawing generation section 23b.

描画生成部23bは、形状測定部23aから入力したワークWの厚み情報に基づいてワークWの断面形状を演算する。そして、この描画生成部23bでは、ワークWの断面形状の演算結果から図4に示すような断面形状線T1を求める。この断面形状線T1は、ワークWの断面形状を示す形状描画であり、ワークWの断面形状を演算するごとに求められる。これにより、同一のワークWについて求められた断面形状線T1を時系列で並べることで、当該ワークWの形状変化の推移が示される。また、当該ワークWの研磨終了時の断面形状線T1により、ワークWの最終ワーク形状である加工結果情報が示される。 The drawing generation section 23b calculates the cross-sectional shape of the workpiece W based on the thickness information of the workpiece W input from the shape measurement section 23a. Then, the drawing generation unit 23b obtains a cross-sectional shape line T1 as shown in FIG. 4 from the calculation result of the cross-sectional shape of the workpiece W. This cross-sectional shape line T1 is a shape drawing showing the cross-sectional shape of the workpiece W, and is obtained every time the cross-sectional shape of the workpiece W is calculated. Thereby, by arranging the cross-sectional shape lines T1 obtained for the same workpiece W in chronological order, the transition of the shape change of the workpiece W can be shown. Further, the cross-sectional shape line T1 at the end of polishing of the workpiece W indicates machining result information that is the final workpiece shape of the workpiece W.

さらに、描画生成部23bからは、表示器40に断面形状線T1を表示させる制御指令が出力され、断面形状線T1は、表示器40に表示される。これにより、研磨機本体10のオペレータは、表示器40の表示内容を確認することで、研磨中のワークWの断面形状を把握することが可能となる。ここで、ワークWの断面形状の演算精度は、ワークWの厚み情報の演算精度が高いほど高くなる。 Further, the drawing generation unit 23b outputs a control command to display the cross-sectional shape line T1 on the display 40, and the cross-sectional shape line T1 is displayed on the display 40. Thereby, the operator of the polishing machine main body 10 can grasp the cross-sectional shape of the workpiece W being polished by checking the display content on the display 40. Here, the calculation accuracy of the cross-sectional shape of the workpiece W increases as the calculation accuracy of the thickness information of the workpiece W increases.

光量制御部24は、レーザ光源21から出力されてワークWに照射される直前の測定光Xである照射光X´の光量を、波長を維持した状態で制御する機構である。実施例1の光量制御部24は、光ファイバケーブル21aの途中に介装された可変光減衰器24aと、この可変光減衰器24aに印加するアナログ出力の電圧を制御する電圧制御部24bと、を有している。可変光減衰器24aは、光ファイバケーブル21aを伝送される測定光Xの強さ(光パワー)を可変減衰して調整する装置である。また、電圧制御部24bは、抵抗率認識部25から入力されるワークWの抵抗率に応じて可変光減衰器24aに印加するアナログ出力の電圧を制御する。そして、この光量制御部24では、電圧制御部24bで制御された電圧を可変光減衰器24aに印加することで、測定光Xの透過量(減衰量)を制御する。ここで、可変光減衰器24aは、高い電圧が印加されるほど測定光Xの透過量を少なくし、測定光Xの減衰量を多くする。また、測定光Xの透過量(減衰量)が変化することで、照射光X´の光量が変化する。そのため、測定光Xの減衰量(透過量)を調整することは、照射光X´の光量を制御することと同義となる。なお、測定光Xの透過量が少ないほど減衰量が多くなり、照射光X´の光量が少なくなる。 The light amount control unit 24 is a mechanism that controls the light amount of the irradiation light X′, which is the measurement light X outputted from the laser light source 21 and immediately before being irradiated onto the workpiece W, while maintaining the wavelength. The light amount control unit 24 of the first embodiment includes a variable optical attenuator 24a interposed in the middle of the optical fiber cable 21a, a voltage control unit 24b that controls the analog output voltage applied to the variable optical attenuator 24a, have. The variable optical attenuator 24a is a device that variably attenuates and adjusts the intensity (optical power) of the measurement light X transmitted through the optical fiber cable 21a. Further, the voltage control section 24b controls the analog output voltage applied to the variable optical attenuator 24a according to the resistivity of the workpiece W input from the resistivity recognition section 25. The light amount control section 24 controls the transmission amount (attenuation amount) of the measurement light X by applying the voltage controlled by the voltage control section 24b to the variable optical attenuator 24a. Here, the variable optical attenuator 24a reduces the amount of transmission of the measurement light X and increases the amount of attenuation of the measurement light X as a higher voltage is applied. Further, as the transmission amount (attenuation amount) of the measurement light X changes, the light amount of the irradiation light X' changes. Therefore, adjusting the attenuation amount (transmission amount) of the measurement light X is synonymous with controlling the light amount of the irradiation light X'. Note that the smaller the amount of transmitted measurement light X, the greater the amount of attenuation, and the smaller the amount of irradiation light X'.

そして、電圧制御部24bでは、ワークWの抵抗率が高いほど可変光減衰器24aに印加する電圧を高くする。すなわち、光量制御部24は、ワークWの抵抗率が高い場合に光透過量を少なくし、照射光X´の光量を少なくする。一方、電圧制御部24bは、ワークWの抵抗率が低いほど可変光減衰器24aへの印加電圧を低くする。このため、光量制御部24は、ワークWの抵抗率が低い場合に光透過量を多くし、照射光X´の光量を多くする。このように、光量制御部24は、ワークWの抵抗率に基づいて照射光X´の光量を変更する。なお、可変光減衰器24aへの印加電圧と、測定光Xの光透過量、減衰量及び照射光X´の光量との関係は、図5に示す通りである。 The voltage control unit 24b increases the voltage applied to the variable optical attenuator 24a as the resistivity of the work W increases. That is, when the resistivity of the workpiece W is high, the light amount control unit 24 reduces the amount of light transmitted and reduces the amount of irradiation light X'. On the other hand, the voltage control unit 24b lowers the voltage applied to the variable optical attenuator 24a as the resistivity of the workpiece W decreases. For this reason, the light amount control unit 24 increases the amount of light transmission and increases the amount of irradiation light X' when the resistivity of the workpiece W is low. In this way, the light amount control unit 24 changes the light amount of the irradiation light X' based on the resistivity of the workpiece W. The relationship between the voltage applied to the variable optical attenuator 24a, the amount of light transmission and attenuation of the measurement light X, and the amount of the irradiation light X' is as shown in FIG.

抵抗率認識部25は、形状測定対象のワークWの抵抗率を認識し、認識したワークWの抵抗率を光量制御部24に出力する。ここで、抵抗率認識部25では、ワークWの抵抗率を、測定部23によって検出した第1反射光Y及び第2反射光Zの干渉信号の強度(反射強度)のピーク強度に基づいて認識する。すなわち、この抵抗率認識部25は、予め作成された反射強度のピーク強度の検出パターンと抵抗率とを紐づけたデータベースを有している。そして、測定部23から入力される反射強度の情報と、当該データベースとを照合することでワークWの抵抗率を推定して認識する。なお、ワークWの研磨前に、ワークWの材質や不純物濃度等が判明している場合には、研磨機本体10のオペレータが、研磨制御部50の入力装置53を介して判明しているワークWの材質等の情報を抵抗率認識部25に入力する。抵抗率認識部25は、入力装置53を介して入力された情報からワークWの抵抗率を認識してもよい。 The resistivity recognition unit 25 recognizes the resistivity of the workpiece W to be subjected to shape measurement, and outputs the recognized resistivity of the workpiece W to the light amount control unit 24 . Here, the resistivity recognizing unit 25 recognizes the resistivity of the workpiece W based on the peak intensity of the interference signal intensity (reflection intensity) of the first reflected light Y and the second reflected light Z detected by the measuring unit 23. do. That is, the resistivity recognition unit 25 has a database in which the detection pattern of the peak intensity of the reflection intensity created in advance is linked to the resistivity. Then, the resistivity of the workpiece W is estimated and recognized by comparing the information on the reflection intensity inputted from the measurement unit 23 with the database. Note that if the material, impurity concentration, etc. of the workpiece W are known before polishing the workpiece W, the operator of the polishing machine main body 10 uses the input device 53 of the polishing control unit 50 to select the known workpiece. Information such as the material of W is input to the resistivity recognition section 25. The resistivity recognition unit 25 may recognize the resistivity of the workpiece W from information input via the input device 53.

さらに、抵抗率認識部25は、測定部23によって検出した反射強度をモニタリングすることで、レーザ光源21の経時変化や機能不良等によって変化する光出力性能を検知する光源性能検知部25aを有する。光源性能検知部25aでは、例えば、初期強度値とモニタリング値、又は、初期強度値とモニタリング値の移動平均値等を比較し、レーザ光源21の光出力性能を検知する。モニタリングする反射光は、第1反射光Y、第2反射光Z、又は、第1反射光Yと第2反射光Zの干渉信号のいずれであってもよい。また、光出力性能を検知する場合、ピーク強度の強弱に加え、ノイズフロアの平滑度合いをモニタリングすることで、レーザ光源21の光出力性能の検知精度を向上させることができる。なお、「ノイズフロア」とは、検出した反射強度の検出値のうち、ピーク波形以外のノイズレベルの値のことである。そして、抵抗率認識部25は、光源性能検知部25aにて検知したレーザ光源21の光出力性能を光量制御部24に出力する。光量制御部24では、光源性能検知部25aにて検知したレーザ光源21の光出力性能に基づいて、可変光減衰器24aに印加する電圧を補正してもよい。また、光源性能検知部25aでは、反射強度の代わりに、レーザ発振後に分光等を行って得られた信号をモニタリングすることで、レーザ光源21の光出力性能の検知を行うこともできる。 Furthermore, the resistivity recognition unit 25 includes a light source performance detection unit 25a that monitors the reflection intensity detected by the measurement unit 23 to detect light output performance that changes due to aging, malfunction, etc. of the laser light source 21. The light source performance detection unit 25a detects the light output performance of the laser light source 21 by comparing, for example, the initial intensity value and the monitoring value, or the moving average value of the initial intensity value and the monitoring value. The reflected light to be monitored may be any of the first reflected light Y, the second reflected light Z, or the interference signal of the first reflected light Y and the second reflected light Z. Furthermore, when detecting the optical output performance, the detection accuracy of the optical output performance of the laser light source 21 can be improved by monitoring the degree of smoothness of the noise floor in addition to the strength of the peak intensity. Note that the "noise floor" refers to the value of the noise level other than the peak waveform among the detected values of the detected reflection intensity. Then, the resistivity recognition section 25 outputs the light output performance of the laser light source 21 detected by the light source performance detection section 25a to the light amount control section 24. The light amount controller 24 may correct the voltage applied to the variable optical attenuator 24a based on the optical output performance of the laser light source 21 detected by the light source performance detector 25a. Further, the light source performance detection unit 25a can also detect the light output performance of the laser light source 21 by monitoring a signal obtained by performing spectroscopy or the like after laser oscillation instead of the reflection intensity.

以下、実施例1の研磨装置1にて実行されるワーク形状測定処理の各ステップを、図6に示すフローチャートに基づいて説明する。 Hereinafter, each step of the workpiece shape measurement process executed in the polishing apparatus 1 of the first embodiment will be explained based on the flowchart shown in FIG. 6.

ステップS1では、レーザ光源21に電流を流し、半導体レーザからレーザを発振させて測定光Xを出射し、ステップS2へ進む。このとき、予め研磨機本体10には研磨対象のワークWをセットしておく。 In step S1, a current is applied to the laser light source 21 to cause the semiconductor laser to oscillate a laser to emit measurement light X, and the process proceeds to step S2. At this time, the workpiece W to be polished is set in the polishing machine main body 10 in advance.

ステップS2では、ステップS1での測定光Xの出射に続き、プローブ22を介して測定光XをワークWに照射し、ステップS3へ進む。ここで、プローブ22から出射した測定光Xは、測定孔19に取り付けられた窓部材19aを介して照射される。なお、このとき、光量制御部24では可変光減衰器24aに電圧を印加しない。そのため、光量制御部24の影響を受けていない測定光XがワークWに照射される。 In step S2, following the emission of the measurement light X in step S1, the workpiece W is irradiated with the measurement light X via the probe 22, and the process proceeds to step S3. Here, the measurement light X emitted from the probe 22 is irradiated through the window member 19a attached to the measurement hole 19. Note that at this time, the light amount control section 24 does not apply a voltage to the variable optical attenuator 24a. Therefore, the workpiece W is irradiated with the measurement light X that is not affected by the light amount control section 24.

ステップS3では、ステップS2での測定光Xの照射に続き、この測定光XがワークWの表面Wαで反射して得られる第1反射光Yと、測定光XがワークWの裏面Wβで反射して得られる第2反射光Zとをプローブ22にて受光し、ステップS4へ進む。ここで、プローブ22は、受光した反射光信号を測定部23に送信する。 In step S3, following the irradiation of the measurement light X in step S2, first reflected light Y obtained by reflecting the measurement light X on the front surface Wα of the workpiece W and measurement light The second reflected light Z thus obtained is received by the probe 22, and the process proceeds to step S4. Here, the probe 22 transmits the received reflected light signal to the measuring section 23.

ステップS4では、ステップS3での第1、第2反射光Y、Zの受光に続き、測定部23にて、第1反射光Yと第2反射光Zの干渉信号の強度(反射強度)を検出し、ステップS5へ進む。ここで、測定部23は、検出した反射強度の情報を抵抗率認識部25へ入力する。 In step S4, following the reception of the first and second reflected lights Y and Z in step S3, the measurement unit 23 measures the intensity (reflection intensity) of the interference signal of the first reflected light Y and second reflected light Z. It is detected and the process proceeds to step S5. Here, the measurement unit 23 inputs information on the detected reflection intensity to the resistivity recognition unit 25.

ステップS5では、ステップS4での反射強度の検出に続き、抵抗率認識部25にて、入力された反射強度のピーク強度に基づいてワークWの抵抗率を自動的に認識し、ステップS6へ進む。ここで、ワークWの抵抗率の認識は、反射強度の検出パターンと、予め作成された反射強度と抵抗率とを紐づけたデータベースとを照合して行う。また、認識されたワークWの抵抗率は、光量制御部24に入力される。 In step S5, following the detection of the reflection intensity in step S4, the resistivity recognition unit 25 automatically recognizes the resistivity of the workpiece W based on the input peak intensity of the reflection intensity, and proceeds to step S6. . Here, the resistivity of the workpiece W is recognized by comparing the detection pattern of the reflection intensity with a database created in advance that links the reflection intensity and the resistivity. Further, the recognized resistivity of the workpiece W is input to the light amount control section 24.

すなわち、抵抗率が高い高抵抗のワークWに測定光Xを照射した場合、図7Aにおいて一点鎖線Aで囲んで示すように、比較的高いピーク強度が検出される。一方、抵抗率が低い低抵抗のワークWに測定光Xを照射した場合では、図7Bにおいて一点鎖線Bで囲んで示すように、比較的低いピーク強度が検出される。このように、ワークWの抵抗率の違い(高低)によって検出される反射強度のピーク強度が異なる。そのため、抵抗率認識部25は、測定部23にて検知した反射強度のピーク強度の高さに基づいてワークWの抵抗率を認識することができる。なお、反射強度のピーク強度の高低を判定する際の指標は、例えばS/N比(信号対雑音比)や、S/B比(信号対バックグラウンド比)を用いることができる。また、その他の方法によってピーク強度の高低を判定してもよい。 That is, when a high-resistance work W having a high resistivity is irradiated with the measurement light X, a relatively high peak intensity is detected as shown surrounded by a dashed line A in FIG. 7A. On the other hand, when the measurement light X is irradiated onto a low-resistance workpiece W having a low resistivity, a relatively low peak intensity is detected, as shown surrounded by a dashed-dotted line B in FIG. 7B. In this way, the peak intensity of the detected reflection intensity differs depending on the resistivity (high or low) of the workpiece W. Therefore, the resistivity recognition unit 25 can recognize the resistivity of the workpiece W based on the height of the peak intensity of the reflection intensity detected by the measurement unit 23. Note that, for example, an S/N ratio (signal-to-noise ratio) or an S/B ratio (signal-to-background ratio) can be used as an index for determining the level of the peak intensity of the reflection intensity. Moreover, the height of the peak intensity may be determined by other methods.

さらに、このステップS5では、光源性能検知部25aにて、ステップS4で検出した反射強度をモニタリングし、レーザ光源21の光出力性能を検知する。ここで、経時変化等の影響によりレーザ光源21の光出力性能が低くなった場合には、同じ抵抗率のワークWに出力設定値が同じ測定光Xを照射した場合であっても、初期強度値と比べてピーク強度が低下すると共にノイズフロアαが平滑になる。例えば、図7Cには、高抵抗のワークWに光出力性能が低いレーザ光源21から測定光Xを照射したときの反射強度を示す。この場合、図7Aに示す初期強度値と比べ、ピーク強度が低下すると共にノイズフロアαが平滑になる。 Further, in this step S5, the light source performance detection section 25a monitors the reflection intensity detected in step S4, and detects the light output performance of the laser light source 21. Here, if the optical output performance of the laser light source 21 becomes low due to the influence of aging, etc., even if the workpiece W with the same resistivity is irradiated with the measurement light X with the same output setting value, the initial intensity The peak intensity decreases and the noise floor α becomes smoother compared to the value. For example, FIG. 7C shows the reflection intensity when a high-resistance work W is irradiated with the measurement light X from the laser light source 21 with low optical output performance. In this case, the peak intensity decreases and the noise floor α becomes smoother compared to the initial intensity value shown in FIG. 7A.

ステップS6では、ステップS5での抵抗率の認識に続き、光量制御部24にてワークWの抵抗率に応じて照射光X´の光量を制御し、ステップS7へ進む。すなわち、光量制御部24は、抵抗率認識部25から入力されたワークWの抵抗率に応じた電圧を可変光減衰器24aに印加する。これにより、光量制御部24によって、光ファイバケーブル21aを通過する測定光Xの透過量が制御され、照射光X´の光量をワークWの抵抗率に応じて制御することになる。ここで、例えばワークWの抵抗率が高い(高抵抗)場合には、比較的高い電圧を可変光減衰器24aに印加することで、測定光Xの透過量が少なくし、照射光X´の光量を少なくする。また、ワークWの抵抗率が低い(低抵抗)場合には、比較的低い電圧を可変光減衰器24aに印加することで、測定光Xの透過量を多くし、照射光X´の光量も多くする。 In step S6, following the recognition of the resistivity in step S5, the light amount control unit 24 controls the amount of irradiation light X' according to the resistivity of the workpiece W, and the process proceeds to step S7. That is, the light amount control section 24 applies a voltage corresponding to the resistivity of the workpiece W input from the resistivity recognition section 25 to the variable optical attenuator 24a. Thereby, the light amount control unit 24 controls the amount of transmission of the measurement light X passing through the optical fiber cable 21a, and the light amount of the irradiation light X' is controlled according to the resistivity of the workpiece W. Here, for example, when the resistivity of the workpiece W is high (high resistance), by applying a relatively high voltage to the variable optical attenuator 24a, the amount of transmission of the measurement light X is reduced, and the irradiation light X' is Reduce the amount of light. Furthermore, when the resistivity of the workpiece W is low (low resistance), by applying a relatively low voltage to the variable optical attenuator 24a, the amount of transmitted measurement light X is increased, and the amount of irradiation light X' is also reduced. Do more.

ステップS7では、ステップS6での照射光X´の光量制御に続き、ワークWの形状測定を実行し、エンドへ進む。これにより、ワークWの形状測定の実行時には、ワークWの抵抗率に応じて光量が制御された照射光X´がワークWに照射される。 In step S7, following the light intensity control of the irradiation light X' in step S6, the shape measurement of the workpiece W is performed, and the process proceeds to the end. Thereby, when measuring the shape of the workpiece W, the workpiece W is irradiated with the irradiation light X' whose light amount is controlled according to the resistivity of the workpiece W.

以下、実施例1の研磨装置1のワーク形状の測定作用を説明する。 Hereinafter, the workpiece shape measurement function of the polishing apparatus 1 of Example 1 will be explained.

実施例1の研磨装置1において、研磨機本体10で研磨中のワークWの断面形状を形状測定器20によって測定する場合、図6に示すフローチャートのステップS1、ステップS2、ステップS3、ステップS4、ステップS5の処理を順に行う。すなわち、研磨機本体10にワークWをセットしたら、まず、レーザ光源21から測定光Xを出射させ、プローブ22及び窓部材19aを介してワークWに測定光Xを照射する。そして、プローブ22によって第1反射光Yと第2反射光Zとを受光し、測定部23へと送信する。測定部23では、第1反射光Yと第2反射光Zの干渉信号の強度(反射強度)を検出し、検出した反射強度の情報を抵抗率認識部25へ入力する。そして、抵抗率認識部25は、入力された反射強度の検出パターンと、予め作成された反射強度と抵抗率とを紐づけたデータベースとを照合し、ワークWの抵抗率を自動的に認識する。 In the polishing apparatus 1 of the first embodiment, when the cross-sectional shape of the workpiece W being polished by the polishing machine main body 10 is measured by the shape measuring device 20, steps S1, S2, S3, S4, and S4 of the flowchart shown in FIG. The process of step S5 is performed in order. That is, when the workpiece W is set in the polishing machine main body 10, first, the laser light source 21 emits the measurement light X, and the workpiece W is irradiated with the measurement light X through the probe 22 and the window member 19a. Then, the first reflected light Y and the second reflected light Z are received by the probe 22 and transmitted to the measuring section 23 . The measurement unit 23 detects the intensity (reflection intensity) of the interference signal between the first reflected light Y and the second reflected light Z, and inputs information on the detected reflection intensity to the resistivity recognition unit 25 . Then, the resistivity recognition unit 25 automatically recognizes the resistivity of the workpiece W by comparing the input reflection intensity detection pattern with a database created in advance that links the reflection intensity and resistivity. .

続いて、図6のフローチャートにおけるステップS6の処理を行い、ワークWの抵抗率に応じて照射光X´の光量を制御する。つまり、光量制御部24は、抵抗率認識部25によって認識されたワークWの抵抗率に応じた電圧を可変光減衰器24aに印加する。可変光減衰器24aでは、印加される電圧に応じて測定光Xの透過量を制御し、この結果、光量制御部24は、照射光X´の光量を制御することができる。このとき、光量制御部24は、光源性能検知部25aにて検知したレーザ光源21の光出力性能に基づいて、可変光減衰器24aに印加する電圧を補正してもよい。そして、ステップS7へと進み、ワークWの形状測定を実行する。 Subsequently, the process of step S6 in the flowchart of FIG. 6 is performed, and the light amount of the irradiation light X' is controlled according to the resistivity of the workpiece W. That is, the light amount control section 24 applies a voltage corresponding to the resistivity of the workpiece W recognized by the resistivity recognition section 25 to the variable optical attenuator 24a. The variable optical attenuator 24a controls the amount of transmitted measurement light X according to the applied voltage, and as a result, the light amount control section 24 can control the amount of irradiation light X'. At this time, the light amount controller 24 may correct the voltage applied to the variable optical attenuator 24a based on the optical output performance of the laser light source 21 detected by the light source performance detector 25a. Then, the process advances to step S7, and the shape measurement of the workpiece W is performed.

ここで、ワークWの形状測定の精度は、ワークWに照射される測定光(照射光X´)の光量と、ワークWの抵抗率に応じて決まる。すなわち、光量が多い照射光X´を高抵抗のワークWに照射した場合では、図8Aに示すように、ワークWの厚み情報のばらつきΔWが大きくなり、精度の良い断面形状線T1を求めることが難しい。しかし、光量が多い照射光X´を低抵抗のワークWに照射した場合では、図8Bに示すようにワークWの厚み情報のばらつきΔWを抑制することができ、精度の良い断面形状線T1を求めることができる。 Here, the accuracy of shape measurement of the workpiece W is determined depending on the amount of measurement light (irradiation light X') irradiated onto the workpiece W and the resistivity of the workpiece W. That is, when the workpiece W having a high resistance is irradiated with the irradiation light X' having a large amount of light, as shown in FIG. 8A, the variation ΔW in the thickness information of the workpiece W becomes large, and it is difficult to obtain a highly accurate cross-sectional shape line T1. is difficult. However, when the workpiece W with a low resistance is irradiated with the irradiation light X' with a large amount of light, the variation ΔW in the thickness information of the workpiece W can be suppressed as shown in FIG. 8B, and the highly accurate cross-sectional shape line T1 can be You can ask for it.

一方、高抵抗のワークWであっても、少ない光量の照射光X´を照射する場合では、図8Cに示すように、ワークWの厚み情報のばらつきΔWを抑制することができ、このときには断面形状線T1の描画精度を良好にすることができる。しかしながら、低抵抗のワークWに光量の少ない照射光X´を照射した場合では、図8Dに示すように、ワークWの厚み情報のばらつきΔWが大きくなり、精度の良い断面形状線T1を求めることが難しくなる。なお、ワークWの厚み情報のばらつきΔWが大きい場合には、精度の良い断面形状線T1を求めることができないだけでなく、断面形状線T1を描画できなかったり、不正な断面形状線T1となったりすることもある。 On the other hand, when irradiating a workpiece W with a high resistance with a small amount of irradiation light X', the variation ΔW in the thickness information of the workpiece W can be suppressed, as shown in FIG. The drawing accuracy of the shape line T1 can be improved. However, when a low-resistance workpiece W is irradiated with the irradiation light X' with a small amount of light, as shown in FIG. 8D, the variation ΔW in the thickness information of the workpiece W increases, making it difficult to obtain a highly accurate cross-sectional shape line T1. becomes difficult. Note that if the variation ΔW in the thickness information of the workpiece W is large, not only will it be impossible to obtain the cross-sectional shape line T1 with good accuracy, but also the cross-sectional shape line T1 may not be drawn or the cross-sectional shape line T1 may be incorrect. Sometimes it happens.

これに対し、実施例1の研磨装置1では、上述のようにワークWの抵抗率に応じて測定光Xが伝送される光ファイバケーブル21aの途中に設けられた光量制御部24において、ワークWの抵抗率に応じた電圧を可変光減衰器24aに印加する。そして、これにより測定光Xの透過量が制御されて、照射光X´の光量が制御される。この結果、ワークWの抵抗率に応じた光量の照射光X´をワークWに照射することができるため、例えば、高抵抗のワークWには光量を抑えた照射光X´を照射してワーク形状の測定を行ったり、低抵抗のワークWには光量の多い照射光X´を照射してワーク形状を測定したりすることができる。 On the other hand, in the polishing apparatus 1 of the first embodiment, the light amount control unit 24 provided in the middle of the optical fiber cable 21a through which the measurement light X is transmitted according to the resistivity of the workpiece W, as described above, A voltage corresponding to the resistivity of is applied to the variable optical attenuator 24a. Accordingly, the amount of transmission of the measurement light X is controlled, and the amount of the irradiation light X' is controlled. As a result, the workpiece W can be irradiated with the irradiation light X' with an amount of light corresponding to the resistivity of the workpiece W. For example, a high-resistance workpiece W can be irradiated with the irradiation light X' with a reduced amount of light. The shape of the workpiece can be measured, or the shape of the workpiece can be measured by irradiating the low-resistance workpiece W with the irradiation light X' having a large amount of light.

すなわち、ワークWの材質又は不純物濃度等(抵抗率)ごとに、プローブ22によって受信する信号が最適信号状態となるように照射光X´の光量が適切に調整される。これにより、測定結果の精度を向上させ、ワーク形状の測定を適切に実施することができる。そして、ワーク形状の測定を適切に実施することで、ワークWの研磨加工精度を向上し、ワークWの研磨加工の歩留まりを向上させることができたり、ワークWの形状修正に必要な加工レシピを的確に選択したりすることができる。さらに、ワークWの研磨加工中に精度よくワーク形状を測定することで、研磨加工後のワーク形状の測定を省略することが可能となり、生産性の向上を図ることが可能となる。 That is, the light amount of the irradiation light X' is appropriately adjusted for each material, impurity concentration, etc. (resistivity) of the workpiece W so that the signal received by the probe 22 is in an optimal signal state. Thereby, the accuracy of the measurement results can be improved and the shape of the workpiece can be measured appropriately. By appropriately measuring the workpiece shape, it is possible to improve the polishing accuracy of the workpiece W, improve the yield of polishing the workpiece W, and improve the processing recipe necessary for modifying the shape of the workpiece W. You can choose accurately. Furthermore, by accurately measuring the shape of the workpiece W during the polishing process, it becomes possible to omit measurement of the workpiece shape after the polishing process, and it becomes possible to improve productivity.

なお、実施例1の研磨装置1の形状測定器20は、単一のレーザ光源21の波長を維持した状態で、ワークWの抵抗率に従って照射光X´の光量を調整するものである。そのため、例えば複数の光源を有し、これらの光源をワークWの表面に形成される膜種に従って切り替えるものとは全く異なる。 Note that the shape measuring device 20 of the polishing apparatus 1 of the first embodiment adjusts the light amount of the irradiation light X' according to the resistivity of the workpiece W while maintaining the wavelength of the single laser light source 21. Therefore, it is completely different from, for example, a method that includes a plurality of light sources and switches these light sources according to the type of film formed on the surface of the workpiece W.

そして、実施例1では、図5に示すように、ワークWの抵抗率が高抵抗の場合には比較的高い電圧が可変光減衰器24aに印加され、ワークWの抵抗率が低抵抗の場合には比較的低い電圧が可変光減衰器24aに印加される。そのため、光量制御部24では、ワークWの抵抗率が高い方が、ワークWの抵抗率が低いときよりも照射光X´の光量を少なくすることになる。 In the first embodiment, as shown in FIG. 5, when the resistivity of the workpiece W is high, a relatively high voltage is applied to the variable optical attenuator 24a, and when the resistivity of the workpiece W is low, a relatively high voltage is applied to the variable optical attenuator 24a. A relatively low voltage is applied to the variable optical attenuator 24a. Therefore, in the light amount control unit 24, when the resistivity of the workpiece W is high, the light amount of the irradiation light X' is made smaller than when the resistivity of the workpiece W is low.

これにより、照射光X´の光量を、ワークWの抵抗率に応じてワーク形状を適切に測定可能な光量に制御することができる。よって、ワーク形状の測定を的確に行うことができ、形状測定が実施できないワークWや、測定エラーが発生することを防止できる。 Thereby, the light intensity of the irradiation light X' can be controlled to a light intensity that allows the shape of the workpiece to be appropriately measured according to the resistivity of the workpiece W. Therefore, the shape of the workpiece can be accurately measured, and it is possible to prevent the occurrence of a measurement error or a workpiece W whose shape cannot be measured.

また、この実施例1では、抵抗率認識部25は、第1反射光Yと第2反射光Zの干渉信号の強度(反射強度)に基づいてワークWの抵抗率を認識し、認識したワークWの抵抗率を光量制御部24に出力する。そして、光量制御部24では、抵抗率認識部25から出力されたワークWの抵抗率に応じて可変光減衰器24aに印加する電圧の大きさを変更する。 Further, in the first embodiment, the resistivity recognition unit 25 recognizes the resistivity of the workpiece W based on the intensity (reflection intensity) of the interference signal of the first reflected light Y and the second reflected light Z, and The resistivity of W is output to the light amount control section 24. Then, the light amount control section 24 changes the magnitude of the voltage applied to the variable optical attenuator 24a according to the resistivity of the workpiece W output from the resistivity recognition section 25.

これにより、ワークWの抵抗率を自動的に測定し、ワークWの抵抗率に応じた照射光X´の光量の変更制御をスムーズに行うことができる。このため、ワーク形状の測定不備が生じにくく、ワーク形状をさらに適切に測定することができる。 Thereby, the resistivity of the workpiece W can be automatically measured, and the amount of irradiation light X' can be smoothly controlled in accordance with the resistivity of the workpiece W. Therefore, errors in measuring the shape of the workpiece are less likely to occur, and the shape of the workpiece can be measured more appropriately.

また、実施例1では、光源性能検知部25aによって、反射強度に基づいてレーザ光源21の光出力性能を検知する。この場合、光量制御部24においてワークWの抵抗率に応じた照射光X´の光量を制御する際、レーザ光源21の光出力性能に応じて補正することが可能となり、ワーク形状の測定精度をさらに向上させることができる。 Further, in the first embodiment, the light output performance of the laser light source 21 is detected by the light source performance detection unit 25a based on the reflection intensity. In this case, when controlling the light intensity of the irradiation light X' according to the resistivity of the workpiece W in the light intensity control section 24, it is possible to correct it according to the light output performance of the laser light source 21, thereby improving the measurement accuracy of the workpiece shape. Further improvements can be made.

さらに、この実施例1の研磨装置1では、測定光XがワークWの表面Wαで反射して得られる第1反射光Yと、測定光XがワークWの裏面Wβで反射して得られる第2反射光Zとの干渉現象によって生じる干渉信号の周波数からワークWの厚みを求め、この求めたワークWの厚みに基づいてワークWの形状を測定する測定部23を備えている。すなわち、形状測定器20は、いわゆる分光干渉方式によってワークWの表面形状を測定する。 Furthermore, in the polishing apparatus 1 of Example 1, the first reflected light Y obtained by reflecting the measuring light X on the front surface Wα of the workpiece W, and the first reflected light Y obtained by reflecting the measuring light X on the back surface Wβ of the workpiece W. 2. The measuring section 23 determines the thickness of the workpiece W from the frequency of the interference signal generated by the interference phenomenon with the reflected light Z, and measures the shape of the workpiece W based on the determined thickness of the workpiece W. That is, the shape measuring device 20 measures the surface shape of the workpiece W using a so-called spectral interference method.

これにより、例えば、測定光を出射する光源としてランプを用い、このランプからの測定光がワークで反射した反射光のスペクトルを解析することでワーク形状を測定する場合とは異なり、測定光Xのコヒーレント性を高くし、信号の検出精度を向上させることができる。 As a result, unlike the case where, for example, a lamp is used as a light source that emits the measurement light and the shape of the workpiece is measured by analyzing the spectrum of the reflected light when the measurement light from the lamp is reflected by the workpiece, the measurement light It is possible to increase coherence and improve signal detection accuracy.

以上、本発明の研磨装置を実施例1に基づいて説明してきたが、具体的な構成については、この実施例に限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。 Although the polishing apparatus of the present invention has been described above based on Example 1, the specific configuration is not limited to this example. Changes and additions to the design are permitted as long as they do not deviate.

実施例1の形状測定器20では、光量制御部24が、可変光減衰器24aと電圧制御部24bを有する例を示した。しかしながら、光量制御部24はこれに限らず、ワークWに照射する直前の測定光Xである照射光X´の光量を制御することができればよい。そのため、例えば、光量制御部24は、それぞれ制御部を有する光ファイバケーブル21aの途中に介装されたND(Neutral Density)フィルタや、偏波調整器によって構成されてもよいし、レーザ光源21の出力を切り替えられるスイッチ等によって光量制御部24を構成してもよい。ここで、NDフィルタは、通過する光を均等に吸収することで光量のみを少なくするフィルタである。また、偏波調整器は、例えば光ファイバケーブル21aに対して外部から応力を与えること等により、光ファイバケーブル21a内を伝送される測定光Xの偏光状態を調整する装置である。また、例えば可変光減衰器とNDフィルタ等の複数の機構を組み合わせて光量制御部24としてもよい。 In the shape measuring device 20 of the first embodiment, an example is shown in which the light amount control section 24 includes the variable optical attenuator 24a and the voltage control section 24b. However, the light amount control section 24 is not limited to this, and may be capable of controlling the light amount of the irradiation light X', which is the measurement light X immediately before being irradiated onto the workpiece W. Therefore, for example, the light amount control unit 24 may be configured by an ND (Neutral Density) filter or a polarization adjuster interposed in the middle of the optical fiber cable 21a, each having a control unit, or by a polarization adjuster. The light amount control unit 24 may be configured by a switch or the like that can change the output. Here, the ND filter is a filter that reduces only the amount of light by uniformly absorbing the light that passes through it. Further, the polarization adjuster is a device that adjusts the polarization state of the measurement light X transmitted within the optical fiber cable 21a, for example by applying stress to the optical fiber cable 21a from the outside. Alternatively, the light amount control section 24 may be formed by combining a plurality of mechanisms such as a variable optical attenuator and an ND filter.

そして、実施例1では、形状測定器20のプローブ22が上定盤12に取り付けられた例を示したが、これに限らない。例えば、上定盤12の上方に設置された光学ヘッドから測定光Xを照射してもよい。この場合では、上定盤12の周方向に沿って複数の測定孔を形成し、上定盤12の回転によって測定孔が光学ヘッドの真下にくるごとに測定光Xが照射される。なお、下定盤11に測定孔を設けて、下定盤11の下方からワークWの下面に測定光Xを照射してワーク形状を測定するようにしてもよい。 In the first embodiment, an example was shown in which the probe 22 of the shape measuring device 20 was attached to the upper surface plate 12, but the present invention is not limited to this. For example, the measurement light X may be emitted from an optical head installed above the upper surface plate 12. In this case, a plurality of measurement holes are formed along the circumferential direction of the upper surface plate 12, and the measurement light X is irradiated each time the measurement hole comes directly below the optical head as the upper surface plate 12 rotates. Note that the lower surface plate 11 may be provided with a measurement hole, and the measurement light X may be irradiated onto the lower surface of the workpiece W from below the lower surface plate 11 to measure the shape of the workpiece.

また、実施例1では、抵抗率認識部25によって、測定部23で検出した反射強度のピーク強度や、入力装置53を介して入力されたワークWの材質等の情報に基づいてワークWの抵抗率を自動で認識する例を示した。しかしながら、これに限らず、ワークWの研磨前に予めワークWの抵抗率が判明している場合には、研磨制御部50の入力装置53等を介してすでに判明しているワークWの抵抗率を光量制御部24に直接入力してもよい。また、この場合であっても、光源性能検知部25aによって、反射強度のピーク強度の変化に基づいてレーザ光源21の光出力性能の変化を検知する。そして、レーザ光源21の光出力性能に基づいて、可変光減衰器24aに印加する電圧を補正してもよい。 In the first embodiment, the resistance of the workpiece W is determined by the resistivity recognition unit 25 based on the peak intensity of the reflection intensity detected by the measurement unit 23 and information such as the material of the workpiece W inputted via the input device 53. An example of automatically recognizing the rate was shown. However, the present invention is not limited to this, and if the resistivity of the workpiece W is known in advance before polishing the workpiece W, the resistivity of the workpiece W that has already been determined via the input device 53 of the polishing control unit 50, etc. may be input directly to the light amount control section 24. Further, even in this case, the light source performance detection unit 25a detects a change in the light output performance of the laser light source 21 based on a change in the peak intensity of the reflection intensity. Then, the voltage applied to the variable optical attenuator 24a may be corrected based on the optical output performance of the laser light source 21.

すなわち、抵抗率認識部25と光源性能検知部25aとは、独立して設けられていてもよい。そして、研磨装置は、抵抗率認識部25と光源性能検知部25aのどちらか一方のみを備えるものであったり、抵抗率認識部25と光源性能検知部25aの双方を有さずにオペレータによって入力されたワーク抵抗値に基づいて照射光の光量を制御するものであってもよい。 That is, the resistivity recognition section 25 and the light source performance detection section 25a may be provided independently. The polishing apparatus may include only one of the resistivity recognition section 25 and the light source performance detection section 25a, or it may not have both the resistivity recognition section 25 and the light source performance detection section 25a, and the polishing apparatus may have an input by an operator. The amount of irradiation light may be controlled based on the determined workpiece resistance value.

また、実施例1では、レーザ光源21が、赤外レーザ光を出力可能な素子の例を示したが、これに限らない。例えば、レーザ光源21として、白色光を出力するものを用いてもよい。 Further, in the first embodiment, the laser light source 21 is an example of an element capable of outputting infrared laser light, but the present invention is not limited to this. For example, as the laser light source 21, one that outputs white light may be used.

また、実施例1では、ワークWの形状を測定する方法として、反射光を干渉信号に変換し、その干渉信号の強度より得られる周波数信号をフーリエ変換等の周波数解析によって解析し、得られた周波数解析結果から研磨中のワークWの形状を測定する例を示したが、これに限らない。例えば、光学定数解析、色解析、フィッティング解析等を用いたり、またそれらを複合して用いてワークWの形状を測定したりしてもよい。 In addition, in Example 1, as a method of measuring the shape of the workpiece W, the reflected light is converted into an interference signal, and the frequency signal obtained from the intensity of the interference signal is analyzed by frequency analysis such as Fourier transform. Although an example has been shown in which the shape of the workpiece W being polished is measured from the frequency analysis results, the present invention is not limited thereto. For example, the shape of the workpiece W may be measured using optical constant analysis, color analysis, fitting analysis, etc., or a combination of these methods.

また、実施例1の研磨装置1は、下定盤11と上定盤12を有し、ワークWの両面を同時に研磨可能な両面研磨装置とする例を示したがこれに限らない。例えば、ワークWの片面のみを研磨する片面研磨装置であっても、本発明を適用することができる。 Moreover, although the polishing apparatus 1 of the first embodiment has the lower surface plate 11 and the upper surface plate 12 and is a double-sided polishing apparatus capable of simultaneously polishing both surfaces of the workpiece W, the present invention is not limited thereto. For example, the present invention can be applied to a single-sided polishing apparatus that polishes only one side of the workpiece W.

さらに、実施例1の研磨装置1にて研磨するワークWは、シリコンウェーハや、表面に酸化膜等が成膜されたウェーハ等に限らず、測定光となるレーザ光を透過する材質によって形成されたものであればよい。すなわち、レーザ光を透過することができれば、例えば塩化ビニルやPET等の樹脂によって形成されたワーク等であってもよい。 Furthermore, the work W to be polished by the polishing apparatus 1 of Example 1 is not limited to a silicon wafer or a wafer with an oxide film formed on the surface, but may be made of a material that transmits the laser light that serves as the measurement light. It is fine as long as it is. That is, the work may be made of a resin such as vinyl chloride or PET, as long as it can transmit laser light.

そして、実施例1の研磨装置1では、形状測定器20が、レーザ光源21と、プローブ22と、測定部23と、光量制御部24と、抵抗率認識部25と、を有する例を示した。ここで、プローブ22は、上定盤12に取り付けられているが、レーザ光源21、測定部23、光量制御部24、抵抗率認識部25については、研磨機本体10に搭載してもよいし、研磨機本体10とは別に設置するようにしてもよい。また、研磨制御部50、形状測定器20、又は、抵抗率認識部25を、コンピュータネットワークを介して遠隔管理するようにしてもよい。この場合では、複数の研磨機本体10のそれぞれに対応する研磨制御部50、形状測定器20、又は、抵抗率認識部25を一元的に管理することができるため、生産ラインの安定稼働に貢献することができる。 In the polishing apparatus 1 of the first embodiment, an example is shown in which the shape measuring device 20 includes a laser light source 21, a probe 22, a measuring section 23, a light amount control section 24, and a resistivity recognition section 25. . Here, the probe 22 is attached to the upper surface plate 12, but the laser light source 21, measurement section 23, light amount control section 24, and resistivity recognition section 25 may be mounted on the polishing machine main body 10. , it may be installed separately from the polishing machine main body 10. Further, the polishing control section 50, the shape measuring device 20, or the resistivity recognition section 25 may be managed remotely via a computer network. In this case, the polishing control section 50, shape measuring device 20, or resistivity recognition section 25 corresponding to each of the plurality of polishing machine bodies 10 can be centrally managed, contributing to stable operation of the production line. can do.

1 研磨装置
10 研磨機本体
11 下定盤
12 上定盤
19 測定孔
20 形状測定器
21 レーザ光源
22 プローブ
23 測定部
23a 形状測定部
23b 描画生成部
24 光量制御部
24a 可変光減衰器
24b 電圧制御部
25 抵抗率認識部
25a 光源性能検知部
1 Polishing device 10 Polishing machine main body 11 Lower surface plate 12 Upper surface plate 19 Measuring hole 20 Shape measuring device 21 Laser light source 22 Probe 23 Measuring section 23a Shape measuring section 23b Drawing generation section 24 Light amount control section 24a Variable optical attenuator 24b Voltage control section 25 Resistivity recognition unit 25a Light source performance detection unit

Claims (4)

ワークと定盤とを相対的に回転させ、前記定盤に取り付けた研磨パッドによって前記ワークを研磨する研磨装置において、
前記ワークを研磨する研磨機本体と、前記ワークに測定光を照射し、この測定光が前記ワークの表裏面で反射して得られる反射光をもとに前記ワークの形状を測定する形状測定器と、を備え、
前記形状測定器は、前記測定光を出射するレーザ光源と、
前記ワークの表面で反射して得られる第1反射光と、前記ワークの裏面で反射して得られる第2反射光との干渉信号を検出する測定部と、
前記干渉信号の強度である反射強度と前記ワークの抵抗率とを紐づけたデータベースを有し、前記測定部から入力される反射強度の情報と前記データベースとを照合することで、前記ワークの抵抗率を認識する抵抗率認識部と、
前記抵抗率認識部が認識した前記抵抗率に基づいて前記ワークに照射する直前の測定光である照射光の光量を制御する光量制御部と、
を有することを特徴する研磨装置。
A polishing device that rotates a workpiece and a surface plate relative to each other and polishes the workpiece with a polishing pad attached to the surface plate,
A polishing machine body for polishing the workpiece, and a shape measuring device for measuring the shape of the workpiece based on reflected light obtained by irradiating the workpiece with measurement light and reflecting the measurement light from the front and back surfaces of the workpiece. and,
The shape measuring device includes a laser light source that emits the measurement light;
a measurement unit that detects an interference signal between a first reflected light obtained by reflecting on the front surface of the workpiece and a second reflected light obtained by reflecting on the back surface of the workpiece;
It has a database that links the reflection intensity, which is the intensity of the interference signal, and the resistivity of the workpiece, and by comparing the reflection intensity information input from the measurement unit with the database, the resistance of the workpiece can be determined. a resistivity recognition unit that recognizes the resistivity;
a light amount control section that controls the amount of irradiation light that is measurement light immediately before irradiating the workpiece based on the resistivity recognized by the resistivity recognition section ;
A polishing device characterized by having:
請求項1に記載された研磨装置において、
前記光量制御部は、前記ワークの抵抗率が高い方が、前記ワークの抵抗率が低いときよりも前記照射光の光量を少なくする
ことを特徴とする研磨装置。
The polishing device according to claim 1,
The polishing apparatus is characterized in that the light amount control unit reduces the amount of the irradiation light when the resistivity of the workpiece is high than when the resistivity of the workpiece is low.
請求項1又は請求項2に記載された研磨装置において、
前記形状測定器は、前記反射強度に基づいて前記レーザ光源の光出力性能を検知する光源性能検知部を有する
ことを特徴とする研磨装置。
In the polishing apparatus according to claim 1 or 2,
The shape measuring device includes a light source performance detection section that detects light output performance of the laser light source based on the reflection intensity.
A polishing device characterized by:
請求項1から請求項3のいずれか一項に記載された研磨装置において、
前記光量制御部は、波長毎に光の強さを調整する可変光減衰器と、通過する光を均等に吸収するNDフィルタと、光の偏光状態を調整する偏波調整器と、のうちの少なくとも一つを有する
ことを特徴とする研磨装置。
The polishing apparatus according to any one of claims 1 to 3,
The light amount control unit includes a variable optical attenuator that adjusts the intensity of light for each wavelength, an ND filter that evenly absorbs the passing light, and a polarization adjuster that adjusts the polarization state of the light. have at least one
A polishing device characterized by:
JP2019200854A 2019-11-05 2019-11-05 polishing equipment Active JP7364217B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019200854A JP7364217B2 (en) 2019-11-05 2019-11-05 polishing equipment
KR1020200139226A KR20210054455A (en) 2019-11-05 2020-10-26 Polishing apparatus
CN202011155543.2A CN112775821A (en) 2019-11-05 2020-10-26 Grinding device
TW109137166A TW202118584A (en) 2019-11-05 2020-10-27 Polishing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019200854A JP7364217B2 (en) 2019-11-05 2019-11-05 polishing equipment

Publications (2)

Publication Number Publication Date
JP2021074794A JP2021074794A (en) 2021-05-20
JP7364217B2 true JP7364217B2 (en) 2023-10-18

Family

ID=75750767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019200854A Active JP7364217B2 (en) 2019-11-05 2019-11-05 polishing equipment

Country Status (4)

Country Link
JP (1) JP7364217B2 (en)
KR (1) KR20210054455A (en)
CN (1) CN112775821A (en)
TW (1) TW202118584A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002107640A (en) 2000-09-27 2002-04-10 Nikon Corp Light quantity adjusting device, light source device, measuring instrument, polishing state monitoring device, and polishing device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3958445A (en) * 1973-08-30 1976-05-25 The Bendix Corporation Proportional brake lining wear sensor
JP2000241126A (en) * 1999-02-25 2000-09-08 Nikon Corp Measuring device and method
JP6146213B2 (en) 2013-08-30 2017-06-14 株式会社Sumco Double-side polishing apparatus and double-side polishing method for work
JP6222171B2 (en) * 2015-06-22 2017-11-01 信越半導体株式会社 Sizing device, polishing device, and polishing method
JP6622117B2 (en) * 2016-03-08 2019-12-18 スピードファム株式会社 Planar polishing apparatus and carrier
CN110178208B (en) * 2017-01-13 2023-06-06 应用材料公司 Adjusting in-situ monitored measurements based on resistivity
KR102334718B1 (en) * 2017-02-17 2021-12-06 후루카와 덴키 고교 가부시키가이샤 Copper alloy material for resistance material, manufacturing method thereof, and resistor
JP7068831B2 (en) * 2018-01-18 2022-05-17 株式会社荏原製作所 Polishing equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002107640A (en) 2000-09-27 2002-04-10 Nikon Corp Light quantity adjusting device, light source device, measuring instrument, polishing state monitoring device, and polishing device

Also Published As

Publication number Publication date
KR20210054455A (en) 2021-05-13
JP2021074794A (en) 2021-05-20
CN112775821A (en) 2021-05-11
TW202118584A (en) 2021-05-16

Similar Documents

Publication Publication Date Title
US20040075836A1 (en) Apparatus for measuring film thickness formed on object, apparatus and method of measuring spectral reflectance of object, and apparatus and method of inspecting foreign material on object
KR102283692B1 (en) Film thickness measuring method, film thickness measuring apparatus, polishing method and polishing apparatus
KR102246521B1 (en) Polishing apparatus
KR102260929B1 (en) Apparatus for detecting spot shape
KR20170117878A (en) Surface polishing apparatus
US11648643B2 (en) Method, apparatus, and system for determining optimum operation recipe for optical film-thickness measuring device
JP7364217B2 (en) polishing equipment
KR20200068785A (en) Apparatus and metheod for monitoring of chemical mechanical polishing
US20180045507A1 (en) Method And System For Real-Time In-Process Measurement Of Coating Thickness
TW202339900A (en) Double-sided polishing device and double-sided polishing method which can accurately evaluate the thickness (shape) of the peripheral portion of a wafer during polishing and perform reliable thickness measurement
US7019845B1 (en) Measuring elastic moduli of dielectric thin films using an optical metrology system
KR20140097745A (en) A wafer thickness measure equipment of the plasma process chamber have
JP5903135B2 (en) Polishing end point detection device and polishing end point detection method
KR20230069017A (en) Polishing apparatus and polishing method
US20160231176A1 (en) Light irradiation device having polarization measuring mechanism
KR102522882B1 (en) Polishing apparatus and polishing method
JP2003168667A (en) Method and apparatus for detecting polishing end point of wafer-polishing apparatus
TWI750444B (en) Polishing apparatus
JP2021032840A (en) Workpiece shape measuring method
CN115575356B (en) Optical rotation crystal transmittance measuring device and measuring method
JP2002107640A (en) Light quantity adjusting device, light source device, measuring instrument, polishing state monitoring device, and polishing device
KR20180038976A (en) Surface polishing apparatus
US20240208002A1 (en) Polishing apparatus and polishing method
JP2024092954A (en) Polishing apparatus and polishing method
KR20190057178A (en) Apparatus and method for removing laser crystallization protrusion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230928

R150 Certificate of patent or registration of utility model

Ref document number: 7364217

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150