JP7364163B2 - MEMS element and its manufacturing method - Google Patents

MEMS element and its manufacturing method Download PDF

Info

Publication number
JP7364163B2
JP7364163B2 JP2018233353A JP2018233353A JP7364163B2 JP 7364163 B2 JP7364163 B2 JP 7364163B2 JP 2018233353 A JP2018233353 A JP 2018233353A JP 2018233353 A JP2018233353 A JP 2018233353A JP 7364163 B2 JP7364163 B2 JP 7364163B2
Authority
JP
Japan
Prior art keywords
sacrificial layer
fixed electrode
polycrystalline silicon
movable electrode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018233353A
Other languages
Japanese (ja)
Other versions
JP2020093347A (en
Inventor
新一 荒木
孝英 臼井
潔 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshinbo Micro Devices Inc
Original Assignee
Nisshinbo Micro Devices Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshinbo Micro Devices Inc filed Critical Nisshinbo Micro Devices Inc
Priority to JP2018233353A priority Critical patent/JP7364163B2/en
Publication of JP2020093347A publication Critical patent/JP2020093347A/en
Application granted granted Critical
Publication of JP7364163B2 publication Critical patent/JP7364163B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、MEMS素子およびその製造方法に関し、特にマイクロフォン、各種センサ、スイッチ等として用いられる容量型のMEMS素子およびその製造方法に関する。 The present invention relates to a MEMS element and a method for manufacturing the same, and more particularly to a capacitive MEMS element used as a microphone, various sensors, switches, etc., and a method for manufacturing the same.

従来、半導体プロセスを用いたMEMS(Micro Electro Mechanical Systems)素子では、固定電極と、この固定電極にエアーギャップを介して対向するように配置された可動電極とを備える構造の容量型MEMS素子が広く知られている。この種のMEMS素子は、犠牲層と呼ばれる中間膜を挟んで固定電極と可動電極を形成した後、犠牲層の一部をエッチング除去することによって、エアーギャップを形成している。 Conventionally, in MEMS (Micro Electro Mechanical Systems) devices using semiconductor processes, capacitive MEMS devices have been widely used, which have a structure that includes a fixed electrode and a movable electrode arranged to face the fixed electrode with an air gap interposed therebetween. Are known. In this type of MEMS element, a fixed electrode and a movable electrode are formed with an intermediate film called a sacrificial layer sandwiched therebetween, and then a part of the sacrificial layer is removed by etching to form an air gap.

一般的に、犠牲層を除去する方法は、犠牲層を選択的にエッチングする溶液を用いたウエットエッチング法か、エッチング種のガスを用いたドライエッチング法が用いられる。これらの方法のうち安価なMEMS素子を形成するためには、製造コストの安いウエットエッチング法を選択するのが好ましい。 Generally, the sacrificial layer is removed by wet etching using a solution that selectively etches the sacrificial layer, or by dry etching using an etching gas. Among these methods, in order to form an inexpensive MEMS element, it is preferable to select the wet etching method, which has a low manufacturing cost.

しかしウエットエッチング法では、犠牲層をエッチングする際、固定電極を含む固定電極膜と可動電極を含む可動電極膜が固着するという問題が発生してしまう。そこでこの問題を解決するため、固定電極膜と可動電極膜とが対向する面に、小さな突起を形成する方法が採用されている。 However, in the wet etching method, when etching the sacrificial layer, a problem arises in that the fixed electrode film including the fixed electrode and the movable electrode film including the movable electrode stick together. In order to solve this problem, a method has been adopted in which small protrusions are formed on opposing surfaces of the fixed electrode film and the movable electrode film.

図3は、本願出願人が先に提案した突起を形成する製造方法の説明図である(特許文献1)。まず図3(a)に示すように、シリコン基板からなる基板1上に熱酸化膜2を形成し、熱酸化膜2上に導電性の多結晶シリコン(ポリシリコン)からなる可動電極3を形成する。さらに可動電極3上にUSG(Undoped Silicate Glass)膜からなる犠牲層4を積層形成し、この犠牲層4上に、導電性の多結晶シリコンから固定電極5を積層形成する。 FIG. 3 is an explanatory diagram of a manufacturing method for forming protrusions previously proposed by the applicant of the present invention (Patent Document 1). First, as shown in FIG. 3(a), a thermal oxide film 2 is formed on a substrate 1 made of a silicon substrate, and a movable electrode 3 made of conductive polycrystalline silicon (polysilicon) is formed on the thermal oxide film 2. do. Further, a sacrificial layer 4 made of a USG (Undoped Silicate Glass) film is laminated on the movable electrode 3, and a fixed electrode 5 made of conductive polycrystalline silicon is laminated on this sacrificial layer 4.

固定電極5に貫通孔6を形成し、この貫通孔6内に露出する犠牲層4の表面をエッチングする。その後、全面に窒化膜7を形成する。この窒化膜7は、後述する突起となるため、犠牲層4の表面をエッチングした深さだけ固定電極5の裏面側より突出する構造とする(図3b)。 A through hole 6 is formed in the fixed electrode 5, and the surface of the sacrificial layer 4 exposed inside the through hole 6 is etched. Thereafter, a nitride film 7 is formed over the entire surface. Since this nitride film 7 becomes a protrusion to be described later, it has a structure in which it protrudes from the back side of the fixed electrode 5 by the depth of etching the surface of the sacrificial layer 4 (FIG. 3b).

突起を形成するため、少なくとも固定電極5の貫通孔6の側壁部につながる窒化膜7の一部を突起8として残し、貫通孔6の底部の窒化膜7をエッチングする(図3c)。 To form the protrusion, at least a portion of the nitride film 7 connected to the side wall of the through hole 6 of the fixed electrode 5 is left as a protrusion 8, and the nitride film 7 at the bottom of the through hole 6 is etched (FIG. 3c).

以下、一般的な容量型MEMS素子の製造工程に従い、可動電極3、固定電極5にそれぞれ接続する引出電極9を形成する。その後、基板1の裏面側から熱酸化膜2が露出するまで基板1の一部を除去し、バックチャンバー10を形成する。さらに固定電極5に形成された貫通孔6を通して犠牲層4の一部を除去することで、可動電極3と固定電極5の間にエアーギャップ11を形成する。犠牲層4を除去する際、窒化膜7はエッチングされずに残るため図3(d)に示すように、固定電極5のエアーギャップ11側の表面に可動電極3側に突出する突起8を形成することができる。 Thereafter, the extraction electrodes 9 connected to the movable electrode 3 and the fixed electrode 5, respectively, are formed according to a general manufacturing process of a capacitive MEMS element. Thereafter, a part of the substrate 1 is removed from the back side of the substrate 1 until the thermal oxide film 2 is exposed, thereby forming a back chamber 10. Further, by removing a portion of the sacrificial layer 4 through the through hole 6 formed in the fixed electrode 5, an air gap 11 is formed between the movable electrode 3 and the fixed electrode 5. When the sacrificial layer 4 is removed, the nitride film 7 remains without being etched, so a protrusion 8 is formed on the surface of the fixed electrode 5 on the air gap 11 side to protrude toward the movable electrode 3 side, as shown in FIG. 3(d). can do.

特許登録6151541号公報Patent registration No. 6151541

本願出願人が先に提案した突起8は、貫通孔6内の窒化膜7を加工して形成する。そのため従来のMEMS素子の製造方法と比較し、窒化膜7を加工する工程、即ち、通常のフォトリソグラフ法に従い、窒化膜7上にフォトレジストを塗布、パターニングする工程、窒化膜をエッチング除去する工程、その後フォトレジストを除去する工程を追加する必要があり、製造コストの増加を招いてしまう。本発明は、このような追加工程を少なくしながら固定電極と可動電極の固着を防止する突起を形成できるMEMS素子およびその製造方法を提供することを目的とする。 The protrusion 8 previously proposed by the applicant of the present application is formed by processing the nitride film 7 within the through hole 6. Therefore, compared to the conventional manufacturing method of MEMS elements, the process of processing the nitride film 7, that is, the process of applying and patterning a photoresist on the nitride film 7 according to the usual photolithography method, and the process of etching and removing the nitride film. , it is necessary to add a step of removing the photoresist after that, resulting in an increase in manufacturing costs. An object of the present invention is to provide a MEMS element and a manufacturing method thereof that can form protrusions that prevent fixed electrodes and movable electrodes from sticking together while reducing such additional steps.

上記目的を達成するため本願請求項1に係る発明は、スペーサーによりエアーギャップを形成して配置された固定電極と可動電極とを備えたMEMS素子において、前記固定電極および前記可動電極の少なくともいずれか一方の前記エアーギャップ側の表面に、対向する前記可動電極あるいは前記固定電極側に突出する突起を備え、前記スペーサーが多結晶二酸化シリコンからなり、前記固定電極および前記可動電極が多結晶シリコンからなり、前記突起が前記多結晶シリコン中のシリコンと前記多結晶二酸化シリコン中の酸素とが結合してなるシリコンリッチな化合物からなることを特徴とする。 In order to achieve the above object, the invention according to claim 1 of the present application provides a MEMS device including a fixed electrode and a movable electrode arranged with an air gap formed by a spacer, in which at least one of the fixed electrode and the movable electrode is provided. A projection protruding toward the opposing movable electrode or the fixed electrode is provided on one surface on the air gap side, the spacer is made of polycrystalline silicon dioxide, and the fixed electrode and the movable electrode are made of polycrystalline silicon. , the protrusion is made of a silicon-rich compound formed by bonding silicon in the polycrystalline silicon and oxygen in the polycrystalline silicon dioxide .

本願請求項2に係る発明は、スペーサーによりエアーギャップを形成して配置された固定電極と可動電極とを備えたMEMS素子の製造方法であって、多結晶シリコンからなる前記固定電極、犠牲層および多結晶シリコンからなる前記可動電極の積層膜を形成する工程と、前記積層膜を加熱し、前記固定電極および前記可動電極の前記犠牲層に接するそれぞれの表面に、対向する前記犠牲層側に突出し、前記固定電極および前記可動電極を構成する物質と前記犠牲層を構成する物質とが結合した絶縁性の化合物からなる突起を成長させる工程と、前記突起を残し前記固定電極と前記可動電極の間の前記犠牲層の一部をエッチング除去し、エッチングされずに残る前記犠牲層の一部からなるスペーサーによりエアーギャップを形成して前記固定電極と前記可動電極を対向配置させる工程と、を含むMEMS素子の製造方法において、前記犠牲層として、テトラエトキシシランと酸素を含むガスを原料ガスとして使用する減圧プラズマCVD法により多結晶二酸化シリコンを形成する工程と、前記絶縁性の突起として前記多結晶シリコン中のシリコンと前記多結晶二酸化シリコン中の酸素とが結合したシリコンリッチな化合物からなる突起を成長させる工程と、を含むことを特徴とする。 The invention according to claim 2 of the present application is a method for manufacturing a MEMS device comprising a fixed electrode and a movable electrode arranged with an air gap formed by a spacer, the fixed electrode made of polycrystalline silicon, a sacrificial layer, and a movable electrode. a step of forming a laminated film of the movable electrode made of polycrystalline silicon, heating the laminated film, and protruding toward the opposing sacrificial layer side on each surface of the fixed electrode and the movable electrode in contact with the sacrificial layer; , a step of growing a protrusion made of an insulating compound in which a substance constituting the fixed electrode and the movable electrode is combined with a substance constituting the sacrificial layer; and a step of growing a protrusion made of an insulating compound in which the substance constituting the fixed electrode and the movable electrode is combined with the substance constituting the sacrificial layer, and the protrusion is left between the fixed electrode and the movable electrode. etching away a part of the sacrificial layer, forming an air gap with a spacer made of a part of the sacrificial layer that remains unetched, and arranging the fixed electrode and the movable electrode facing each other. In the method for manufacturing an element, the step of forming polycrystalline silicon dioxide as the sacrificial layer by a low pressure plasma CVD method using a gas containing tetraethoxysilane and oxygen as a raw material gas, and forming the polycrystalline silicon dioxide as the insulating protrusion. The method is characterized by including the step of growing a protrusion made of a silicon-rich compound in which silicon in the polycrystalline silicon dioxide and oxygen in the polycrystalline silicon dioxide are bonded.

本発明の製造方法に従い突起を形成する工程は、固定電極、犠牲層および可動電極の積層膜を形成した後に、これらの積層膜を加熱する工程を付加するだけで良いので、突起を形成するための追加の工程を大幅に少なくすることができ、製造コストの低減を図ることができる。 The step of forming a protrusion according to the manufacturing method of the present invention requires only adding a step of heating these laminated films after forming a laminated film of a fixed electrode, a sacrificial layer, and a movable electrode. The number of additional steps can be significantly reduced, and manufacturing costs can be reduced.

本発明の製造方法に従い突起を形成するため、従来例の製造方法とは異なる材料からなる犠牲層を用いることになるが、使用する材料は半導体装置の製造工程において通常使用されている材料で、制御性良く簡便に形成することができる。 In order to form protrusions according to the manufacturing method of the present invention, a sacrificial layer made of a different material from that of the conventional manufacturing method is used, but the materials used are those commonly used in the manufacturing process of semiconductor devices. It can be easily formed with good controllability.

本発明の製造方法により形成されるMEMS素子は、加熱条件を適宜変更することで、制御性良く所望の大きさの絶縁性の化合物からなる突起を備える構成とすることができ、その製造工程で犠牲層のエッチングを行う際に固定電極と可動電極が固着することを確実に防止することができるほか、使用時における固着も確実に防止することができる。 By appropriately changing the heating conditions, the MEMS element formed by the manufacturing method of the present invention can be configured to have protrusions made of an insulating compound of a desired size with good controllability. It is possible to reliably prevent the fixed electrode and the movable electrode from sticking together when etching the sacrificial layer, and it is also possible to reliably prevent them from sticking together during use.

本発明の第1の実施例のMEMS素子の製造方法を説明する図である。1 is a diagram illustrating a method for manufacturing a MEMS device according to a first embodiment of the present invention; FIG. 本発明の第2の実施例のMEMS素子の製造方法を説明する図である。It is a figure explaining the manufacturing method of the MEMS element of 2nd Example of this invention. 従来のMEMS素子の製造方法を説明する図である。It is a figure explaining the manufacturing method of the conventional MEMS element.

本発明は、犠牲層と、この犠牲層に接触するように積層した固定電極と可動電極を加熱処理することで、犠牲層と接する固定電極と可動電極の表面に犠牲層を構成する物質と電極を構成する物質との化合物を成長させて突起とする構成としている。以下、本発明の実施例について詳細に説明する。 The present invention heat-treats a sacrificial layer, and a fixed electrode and a movable electrode laminated in contact with the sacrificial layer, so that the material constituting the sacrificial layer and the electrode The protrusion is formed by growing a compound with the substance that constitutes the protrusion. Examples of the present invention will be described in detail below.

以下、第1の実施例に係る本発明のMEMS素子について、その製造工程に従い説明する。まず、シリコン基板からなる基板1を用意し、基板1表面に熱酸化膜2を形成する。その後、熱酸化膜2上に導電性の多結晶シリコンからなる可動電極3を積層形成する。 Hereinafter, the MEMS device of the present invention according to the first embodiment will be explained according to its manufacturing process. First, a substrate 1 made of a silicon substrate is prepared, and a thermal oxide film 2 is formed on the surface of the substrate 1. Thereafter, a movable electrode 3 made of conductive polycrystalline silicon is laminated on the thermal oxide film 2.

次に可動電極3上に犠牲層4aを形成する。ここで犠牲層4aとして、TEOS(テトラエトキシシラン)と酸素、オゾン、亜酸化窒素等の酸素を含むガスをを原料ガスとして減圧プラズマCVD法により多結晶二酸化シリコンを形成する。さらに犠牲層4a上に導電性の多結晶シリコンからなる固定電極5を積層形成する。固定電極膜5上には全面に窒化膜7が形成される。 Next, a sacrificial layer 4a is formed on the movable electrode 3. Here, as the sacrificial layer 4a, polycrystalline silicon dioxide is formed by a low pressure plasma CVD method using TEOS (tetraethoxysilane) and a gas containing oxygen such as oxygen, ozone, or nitrous oxide as raw material gases. Further, a fixed electrode 5 made of conductive polycrystalline silicon is laminated on the sacrificial layer 4a. A nitride film 7 is formed on the entire surface of the fixed electrode film 5.

このように可動電極3上に犠牲層4aが積層し、犠牲層4a上に固定電極5が積層した状態、換言すれば、可動電極3と固定電極5が犠牲層4aに接触した状態で、加熱処理を行う。この加熱処理は、例えば、窒素雰囲気で800℃以上の条件とする。この加熱処理により、多結晶シリコンからなる可動電極3と固定電極5の犠牲層4aと接触している表面にそれぞれ、多結晶シリコン中のシリコンと、多結晶二酸化シリコン中の酸素が結合したシリコンリッチな化合物(シリコンと酸素の化合物)が形成される(図1a)。この化合物は、多結晶シリコンの結晶粒界で成長し、後述するスペーサーを形成する工程で固定電極5と可動電極3が固着することを防止する突起12を構成する。ここで突起12の形成は、熱処理温度と時間を制御することでその大きさを制御することができる。また多結晶シリコンの膜質を制御することで突起の発生場所(結晶粒界)も制御することができる。そのため、通常の半導体装置の製造方法を採用すれば、制御性の良い製造方法となる。 In this manner, the sacrificial layer 4a is laminated on the movable electrode 3 and the fixed electrode 5 is laminated on the sacrificial layer 4a, in other words, the movable electrode 3 and the fixed electrode 5 are in contact with the sacrificial layer 4a, and then heated. Perform processing. This heat treatment is performed, for example, at a temperature of 800° C. or higher in a nitrogen atmosphere. Through this heat treatment, the surfaces of the movable electrode 3 and the fixed electrode 5 made of polycrystalline silicon that are in contact with the sacrificial layer 4a are made rich in silicon, in which silicon in the polycrystalline silicon and oxygen in the polycrystalline silicon dioxide are combined. A chemical compound (a compound of silicon and oxygen) is formed (Fig. 1a). This compound grows at the grain boundaries of polycrystalline silicon, and forms protrusions 12 that prevent fixed electrode 5 and movable electrode 3 from sticking together in the process of forming a spacer, which will be described later. Here, the size of the protrusion 12 can be controlled by controlling the heat treatment temperature and time. Furthermore, by controlling the film quality of polycrystalline silicon, the location where protrusions occur (crystal grain boundaries) can also be controlled. Therefore, if a normal semiconductor device manufacturing method is adopted, it will be a manufacturing method with good controllability.

以下、一般的な容量型MEMS素子の製造工程に従い、窒化膜7および固定電極5に貫通孔6を形成し、貫通孔6内に犠牲層4aを露出させる(図1b)。 Thereafter, a through hole 6 is formed in the nitride film 7 and the fixed electrode 5, and the sacrificial layer 4a is exposed within the through hole 6 (FIG. 1b), according to a general manufacturing process of a capacitive MEMS element.

可動電極3、固定電極5にそれぞれ接続する引出電極9を形成した後、基板1の裏面側から熱酸化膜2が露出するまで基板1の一部を除去し、バックチャンバー10を形成する。さらに固定電極5に形成された貫通孔6を通して犠牲層4aの一部を除去することで、可動電極3と固定電極5の間にエアーギャップ11を形成する。犠牲層4aを除去する際、突起12はシリコンリッチな化合物のため通常の多結晶二酸化シリコンよりエッチングレートが遅くなり、突起12を残して犠牲層4aを選択除去することが可能となる。その結果図1(c)に示すように、可動電極3のエアーギャップ11側の表面と、固定電極5のエアーギャップ11側の表面に、それぞれエアーギャップ11側に突出する突起12を形成することができる。 After forming extraction electrodes 9 connected to the movable electrode 3 and the fixed electrode 5, a part of the substrate 1 is removed from the back side of the substrate 1 until the thermal oxide film 2 is exposed, and a back chamber 10 is formed. Further, by removing a portion of the sacrificial layer 4a through the through hole 6 formed in the fixed electrode 5, an air gap 11 is formed between the movable electrode 3 and the fixed electrode 5. When removing the sacrificial layer 4a, since the protrusions 12 are made of a silicon-rich compound, the etching rate is slower than that of normal polycrystalline silicon dioxide, making it possible to selectively remove the sacrificial layer 4a while leaving the protrusions 12. As a result, as shown in FIG. 1(c), protrusions 12 protruding toward the air gap 11 are formed on the surface of the movable electrode 3 on the air gap 11 side and on the surface of the fixed electrode 5 on the air gap 11 side, respectively. Can be done.

以上説明したように本実施例の製造方法によれば、突起12の形成は、多結晶シリコンからなる可動電極3あるいは固定電極5を多結晶二酸化シリコンからなる犠牲層4aに接するように形成し加熱処理するのみとなる。この加熱処理は、従来方法で説明したフォトリソグラフ法のような枚様式の処理を必要とせず、しかも例えば加熱炉内に載置しておけばよいので、非常に簡便な方法となる。 As explained above, according to the manufacturing method of this embodiment, the protrusion 12 is formed by forming the movable electrode 3 or the fixed electrode 5 made of polycrystalline silicon so as to be in contact with the sacrificial layer 4a made of polycrystalline silicon dioxide, and heating it. It will only be processed. This heat treatment does not require sheet-based treatment like the photolithography method described in the conventional method, and is a very simple method because it can be placed in a heating furnace, for example.

次に第2の実施例に係るMEMS素子について、その製造工程に従い説明する。上記第1の実施例では、可動電極3と固定電極5の両方に突起12を形成する方法について説明した。しかしながら本願発明は、可動電極3上、あるいは固定電極5上のいずれか一方のみに突起12を形成することが可能である。以下、可動電極3上に突起12を形成する方法について説明する。 Next, a MEMS element according to a second embodiment will be explained according to its manufacturing process. In the first embodiment, the method of forming the protrusions 12 on both the movable electrode 3 and the fixed electrode 5 was described. However, in the present invention, it is possible to form the protrusion 12 only on either the movable electrode 3 or the fixed electrode 5. Hereinafter, a method for forming the protrusion 12 on the movable electrode 3 will be explained.

上記実施例同様、まず、シリコン基板からなる基板1を用意し、基板1表面に熱酸化膜2を形成する。その後、熱酸化膜2上に導電性の多結晶シリコンからなる可動電極3を積層形成する。 As in the above embodiment, first, a substrate 1 made of a silicon substrate is prepared, and a thermal oxide film 2 is formed on the surface of the substrate 1. Thereafter, a movable electrode 3 made of conductive polycrystalline silicon is laminated on the thermal oxide film 2.

次に可動電極3上に犠牲層4aを形成する。ここで犠牲層4aとして、TEOS(テトラエトキシシラン)と酸素、オゾン、亜酸化窒素等の酸素を含むガスを原料ガスとして減圧プラズマCVD法により多結晶二酸化シリコンを形成する。 Next, a sacrificial layer 4a is formed on the movable electrode 3. Here, polycrystalline silicon dioxide is formed as the sacrificial layer 4a by a low pressure plasma CVD method using TEOS (tetraethoxysilane) and a gas containing oxygen such as oxygen, ozone, or nitrous oxide as raw material gases.

次に本実施例では、犠牲層4a上に薄い窒化膜7aを形成し、この窒化膜7a上に導電性の多結晶シリコンからなる固定電極5を形成し、全面に窒化膜7を形成する。 Next, in this embodiment, a thin nitride film 7a is formed on the sacrificial layer 4a, a fixed electrode 5 made of conductive polycrystalline silicon is formed on this nitride film 7a, and a nitride film 7 is formed on the entire surface.

このように可動電極3上に犠牲層4aが積層し、犠牲層4a上に窒化膜7aを挟んで固定電極5が積層した状態、換言すれば、可動電極3が犠牲層4aに接触し、固定電極5は犠牲層4aに接触しない状態で、加熱処理を行う。この加熱処理は、例えば、窒素雰囲気で800℃以上の条件とする。この加熱処理により、多結晶シリコンからなる可動電極3の犠牲層4aと接触している表面に、多結晶シリコン中のシリコンと、二酸化シリコン中の酸素が結合したシリコンリッチな化合物(シリコンと酸素の化合物)が形成される(図2a)。この化合物は、多結晶シリコンの結晶粒界で成長し、後述するスペーサーを形成する工程で固定電極5と可動電極3が固着することを防止する突起12を構成する。ここで突起12の形成は、熱処理温度と時間を制御することでその大きさを制御することができる。また多結晶シリコンの膜質を制御することで突起の発生場所(結晶粒界)も制御することができる。そのため、通常の半導体装置の製造工程を採用すれば、制御性の良い製造方法となる。本実施例では、固定電極5は犠牲層4aと接触していないため、固定電極5には突起12は形成されていない。 In this way, the sacrificial layer 4a is laminated on the movable electrode 3, and the fixed electrode 5 is laminated on the sacrificial layer 4a with the nitride film 7a in between, in other words, the movable electrode 3 is in contact with the sacrificial layer 4a, and is fixed. The heat treatment is performed while the electrode 5 is not in contact with the sacrificial layer 4a. This heat treatment is performed, for example, at a temperature of 800° C. or higher in a nitrogen atmosphere. By this heat treatment, a silicon-rich compound (a combination of silicon and oxygen) in which silicon in polycrystalline silicon and oxygen in silicon dioxide are combined is formed on the surface of movable electrode 3 made of polycrystalline silicon that is in contact with sacrificial layer 4a. compound) is formed (Fig. 2a). This compound grows at the grain boundaries of polycrystalline silicon, and forms protrusions 12 that prevent fixed electrode 5 and movable electrode 3 from sticking together in the process of forming a spacer, which will be described later. Here, the size of the protrusion 12 can be controlled by controlling the heat treatment temperature and time. Furthermore, by controlling the film quality of polycrystalline silicon, the location where protrusions occur (crystal grain boundaries) can also be controlled. Therefore, if a normal semiconductor device manufacturing process is adopted, a manufacturing method with good controllability can be obtained. In this embodiment, the fixed electrode 5 is not in contact with the sacrificial layer 4a, so no protrusion 12 is formed on the fixed electrode 5.

以下、一般的な容量型MEMS素子の製造工程に従い、窒化膜7、固定電極5および窒化膜7aに貫通孔6を形成し、貫通孔6内に犠牲層4aを露出させる(図2b)。 Thereafter, a through hole 6 is formed in the nitride film 7, the fixed electrode 5, and the nitride film 7a, and the sacrificial layer 4a is exposed in the through hole 6 (FIG. 2b) according to a general manufacturing process of a capacitive MEMS element.

可動電極3、固定電極5にそれぞれ接続する引出電極9を形成した後、基板1の裏面側から熱酸化膜2が露出するまで基板1の一部を除去し、バックチャンバー10を形成する。さらに固定電極5に形成された貫通孔6を通して犠牲層4aの一部を除去することで、可動電極3と固定電極5の間にエアーギャップ11を形成する。犠牲層4aを除去する際、突起12はシリコンリッチな化合物のため通常の多結晶二酸化シリコンよりエッチングレートが遅くなり、突起12を残して犠牲層4aを選択除去することが可能となる。その結果図2(c)に示すように、可動電極3のエアーギャップ11側の表面に、エアーギャップ11側に突出する突起12を形成することができる。 After forming extraction electrodes 9 connected to the movable electrode 3 and the fixed electrode 5, a part of the substrate 1 is removed from the back side of the substrate 1 until the thermal oxide film 2 is exposed, and a back chamber 10 is formed. Further, by removing a portion of the sacrificial layer 4a through the through hole 6 formed in the fixed electrode 5, an air gap 11 is formed between the movable electrode 3 and the fixed electrode 5. When removing the sacrificial layer 4a, since the protrusions 12 are made of a silicon-rich compound, the etching rate is slower than that of normal polycrystalline silicon dioxide, making it possible to selectively remove the sacrificial layer 4a while leaving the protrusions 12. As a result, as shown in FIG. 2(c), a protrusion 12 protruding toward the air gap 11 can be formed on the surface of the movable electrode 3 on the air gap 11 side.

以上説明したように本実施例の製造方法によれば、突起12の形成は、多結晶シリコンからなる可動電極3を多結晶二酸化シリコンからなる犠牲層4aに接するように形成し、加熱処理するのみとなる。この加熱処理は、従来方法で説明したフォトリソグラフ法のような枚様式の処理を必要とせず、しかも例えば加熱炉内に載置しておけばよいので、非常に簡便な方法となる。また突起12の形成が不要の場合は、多結晶シリコンと多結晶二酸化シリコンが直接接しないように窒化膜を形成すれば良く、非常に簡便な方法となる。 As explained above, according to the manufacturing method of this embodiment, the protrusion 12 is formed by simply forming the movable electrode 3 made of polycrystalline silicon so as to be in contact with the sacrificial layer 4a made of polycrystalline silicon dioxide, and then heat-treating the movable electrode 3 made of polycrystalline silicon. becomes. This heat treatment does not require sheet-based treatment like the photolithography method described in the conventional method, and is a very simple method because it can be placed in a heating furnace, for example. Furthermore, if the formation of the protrusion 12 is not necessary, it is sufficient to form a nitride film so that polycrystalline silicon and polycrystalline silicon dioxide do not come into direct contact with each other, which is a very simple method.

次に第3の実施例に係るMEMS素子について説明する。上記第2の実施例では、可動電極3表面に突起12を形成する方法について説明した。しかしながら本願発明は、可動電極3上の代わりに固定電極5上に突起12を形成することも可能である。 Next, a MEMS element according to a third example will be explained. In the second embodiment, the method of forming the protrusions 12 on the surface of the movable electrode 3 has been described. However, in the present invention, it is also possible to form the protrusion 12 on the fixed electrode 5 instead of on the movable electrode 3.

上記第2の実施例と相違し、可動電極3上に窒化膜7aを挟んで犠牲層4aが積層し、犠牲層4a上に固定電極5が積層した状態、換言すれば、可動電極3は犠牲層4aに接触せず、固定電極5が犠牲層4aに接触する状態で、加熱処理を行う。この加熱処理は、上記実施例同様例えば、窒素雰囲気で800℃以上の条件とする。この加熱処理により、多結晶シリコンからなる固定電極5の犠牲層4aと接触している表面に、多結晶シリコン中のシリコンと、二酸化シリコン中の酸素が結合したシリコンリッチな化合物(シリコンと酸素の化合物)が形成される。この化合物は、多結晶シリコンの結晶粒界で成長し、スペーサーを形成する工程で固定電極5と可動電極3が固着することを防止する突起12を構成する。ここで突起12の形成は、熱処理温度と時間を制御することでその大きさを制御することができる。また多結晶シリコンの膜質を制御することで突起の発生場所(結晶粒界)も制御することができる。そのため、通常の半導体装置の製造工程を採用すれば、制御性の良い製造方法となる。本実施例では、可動電極3は犠牲層4aと接触していないため、可動電極3には突起12は形成されていない。 Unlike the second embodiment described above, a sacrificial layer 4a is laminated on the movable electrode 3 with a nitride film 7a interposed therebetween, and a fixed electrode 5 is laminated on the sacrificial layer 4a. Heat treatment is performed with the fixed electrode 5 in contact with the sacrificial layer 4a without contacting the layer 4a. This heat treatment is carried out under conditions of, for example, 800° C. or higher in a nitrogen atmosphere, as in the above embodiments. By this heat treatment, a silicon-rich compound (a combination of silicon and oxygen) in which silicon in polycrystalline silicon and oxygen in silicon dioxide are combined is formed on the surface of fixed electrode 5 made of polycrystalline silicon that is in contact with sacrificial layer 4a. compound) is formed. This compound grows at the grain boundaries of polycrystalline silicon and forms protrusions 12 that prevent fixed electrode 5 and movable electrode 3 from sticking together in the process of forming a spacer. Here, the size of the protrusion 12 can be controlled by controlling the heat treatment temperature and time. Furthermore, by controlling the film quality of polycrystalline silicon, the location where protrusions occur (crystal grain boundaries) can also be controlled. Therefore, if a normal semiconductor device manufacturing process is adopted, a manufacturing method with good controllability can be obtained. In this embodiment, the movable electrode 3 is not in contact with the sacrificial layer 4a, so no protrusion 12 is formed on the movable electrode 3.

上記製造工程を除けば、上記第1の実施例と同様の製造方法により本実施例のMEMS素子を形成することができる。 The MEMS element of this example can be formed by the same manufacturing method as the first example above, except for the above manufacturing process.

以上説明したように本実施例の製造方法によれば、突起12の形成は、可動電極3上に多結晶二酸化シリコンを形成し、さらに固定電極5を形成し、加熱処理するのみとなる。この加熱処理は、従来方法で説明したフォトリソグラフ法のような枚様式の処理を必要とせず、しかも例えば加熱炉内に載置しておけばよいので、非常に簡便な方法となる。 As explained above, according to the manufacturing method of this embodiment, the protrusion 12 is formed by simply forming polycrystalline silicon dioxide on the movable electrode 3, further forming the fixed electrode 5, and performing heat treatment. This heat treatment does not require sheet-based treatment like the photolithography method described in the conventional method, and is a very simple method because it can be placed in a heating furnace, for example.

なお、本発明は上記実施例に限定されるものでないことは言うまでもない。例えば、可動電極3および固定電極5上に形成される突起は、所望の材料の組み合わせて可動電極3および固定電極5上に犠牲層と選択エッチング可能な絶縁性の物質を析出、成長等させることができれば、シリコンリッチなシリコンと酸素の化合物に限定されるものではない。 It goes without saying that the present invention is not limited to the above embodiments. For example, the protrusions formed on the movable electrode 3 and the fixed electrode 5 can be formed by depositing, growing, etc. a sacrificial layer and an insulating substance that can be selectively etched on the movable electrode 3 and the fixed electrode 5 using a desired combination of materials. If possible, it is not limited to silicon-rich compounds of silicon and oxygen.

1: 基板、2:熱酸化膜、3:可動電極、4、4a:犠牲層、5:固定電極、6:貫通孔、7、7a:窒化膜、8:突起、9:引出電極、10:バックチャンバー、11:エアーギャップ、12:突起 1: Substrate, 2: Thermal oxide film, 3: Movable electrode, 4, 4a: Sacrificial layer, 5: Fixed electrode, 6: Through hole, 7, 7a: Nitride film, 8: Protrusion, 9: Extracting electrode, 10: Back chamber, 11: Air gap, 12: Protrusion

Claims (2)

スペーサーによりエアーギャップを形成して配置された固定電極と可動電極とを備えたMEMS素子において、
前記固定電極および前記可動電極の少なくともいずれか一方の前記エアーギャップ側の表面に、対向する前記可動電極あるいは前記固定電極側に突出する突起を備え、
前記スペーサーが多結晶二酸化シリコンからなり、
前記固定電極および前記可動電極が多結晶シリコンからなり、
前記突起が前記多結晶シリコン中のシリコンと前記多結晶二酸化シリコン中の酸素とが結合してなるシリコンリッチな化合物からなることを特徴とするMEMS素子。
In a MEMS element including a fixed electrode and a movable electrode arranged with an air gap formed by a spacer,
A projection protruding toward the opposing movable electrode or the fixed electrode is provided on the air gap side surface of at least one of the fixed electrode and the movable electrode,
the spacer is made of polycrystalline silicon dioxide;
The fixed electrode and the movable electrode are made of polycrystalline silicon,
A MEMS device characterized in that the protrusion is made of a silicon-rich compound formed by bonding silicon in the polycrystalline silicon and oxygen in the polycrystalline silicon dioxide.
スペーサーによりエアーギャップを形成して配置された固定電極と可動電極とを備えたMEMS素子の製造方法であって、A method for manufacturing a MEMS device comprising a fixed electrode and a movable electrode arranged with an air gap formed by a spacer, the method comprising:
多結晶シリコンからなる前記固定電極、犠牲層および多結晶シリコンからなる前記可動電極の積層膜を形成する工程と、forming a laminated film of the fixed electrode made of polycrystalline silicon, a sacrificial layer, and the movable electrode made of polycrystalline silicon;
前記積層膜を加熱し、前記固定電極および前記可動電極の前記犠牲層に接するそれぞれの表面に、対向する前記犠牲層側に突出し、前記固定電極および前記可動電極を構成する物質と前記犠牲層を構成する物質とが結合した絶縁性の化合物からなる突起を成長させる工程と、The laminated film is heated, and a material constituting the fixed electrode and the movable electrode and the sacrificial layer are added to the surfaces of the fixed electrode and the movable electrode in contact with the sacrificial layer, protruding toward the opposing sacrificial layer side. A process of growing protrusions made of an insulating compound combined with constituent substances;
前記突起を残し前記固定電極と前記可動電極の間の前記犠牲層の一部をエッチング除去し、エッチングされずに残る前記犠牲層の一部からなるスペーサーによりエアーギャップを形成して前記固定電極と前記可動電極を対向配置させる工程と、を含むMEMS素子の製造方法において、A part of the sacrificial layer between the fixed electrode and the movable electrode is removed by etching, leaving the protrusion, and an air gap is formed by a spacer made of a part of the sacrificial layer that remains unetched, and the part of the sacrificial layer is removed between the fixed electrode and the fixed electrode. In a method for manufacturing a MEMS device, the method includes the step of arranging the movable electrodes to face each other,
前記犠牲層として、テトラエトキシシランと酸素を含むガスを原料ガスとして使用する減圧プラズマCVD法により多結晶二酸化シリコンを形成する工程と、forming polycrystalline silicon dioxide as the sacrificial layer by a low pressure plasma CVD method using a gas containing tetraethoxysilane and oxygen as a source gas;
前記絶縁性の突起として前記多結晶シリコン中のシリコンと前記多結晶二酸化シリコン中の酸素とが結合したシリコンリッチな化合物からなる突起を成長させる工程と、を含むことを特徴とするMEMS素子の製造方法。Manufacturing a MEMS device, comprising the step of growing a protrusion made of a silicon-rich compound in which silicon in the polycrystalline silicon and oxygen in the polycrystalline silicon dioxide are combined as the insulating protrusion. Method.
JP2018233353A 2018-12-13 2018-12-13 MEMS element and its manufacturing method Active JP7364163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018233353A JP7364163B2 (en) 2018-12-13 2018-12-13 MEMS element and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018233353A JP7364163B2 (en) 2018-12-13 2018-12-13 MEMS element and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2020093347A JP2020093347A (en) 2020-06-18
JP7364163B2 true JP7364163B2 (en) 2023-10-18

Family

ID=71084362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018233353A Active JP7364163B2 (en) 2018-12-13 2018-12-13 MEMS element and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7364163B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140167188A1 (en) 2012-12-18 2014-06-19 Ruben B. Montez Reducing mems stiction by introduction of a carbon barrier
JP2014180702A (en) 2013-03-18 2014-09-29 New Japan Radio Co Ltd Mems element and method of manufacturing the same
JP2018058150A (en) 2016-10-04 2018-04-12 新日本無線株式会社 Mems element and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10290036A (en) * 1997-04-11 1998-10-27 Nissan Motor Co Ltd Manufacture of surface micromachine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140167188A1 (en) 2012-12-18 2014-06-19 Ruben B. Montez Reducing mems stiction by introduction of a carbon barrier
JP2014180702A (en) 2013-03-18 2014-09-29 New Japan Radio Co Ltd Mems element and method of manufacturing the same
JP2018058150A (en) 2016-10-04 2018-04-12 新日本無線株式会社 Mems element and manufacturing method thereof

Also Published As

Publication number Publication date
JP2020093347A (en) 2020-06-18

Similar Documents

Publication Publication Date Title
TWI248525B (en) Wavelength-tunable filter and method of manufacturing the same
JP4465306B2 (en) Manufacturing method of semiconductor substrate
JP6931208B2 (en) Low stress low hydrogen LPCVD silicon nitride
JP3344397B2 (en) Method for manufacturing semiconductor device
WO2003012838A1 (en) Method of etching conductive layers for capacitor and semiconductor device fabrication
JP2007103654A (en) Semiconductor device and its manufacturing method
JP2008051511A (en) Capacitance sensor and its manufacturing method
US5641709A (en) Method of manufacturing a conductive micro bridge
CN103803487B (en) The formation method of semiconductor structure
JP6151541B2 (en) MEMS device and manufacturing method thereof
JP7364163B2 (en) MEMS element and its manufacturing method
JP6356512B2 (en) MEMS element
JP3715480B2 (en) Method for forming element isolation film of semiconductor device
JP2007529113A (en) Piezoelectric diaphragm with IDT electrode
JP2000091663A (en) Method for working silicon micro-device
JP6645652B2 (en) Method for manufacturing MEMS device
JPH06302834A (en) Manufacture of thin-film structure
JP6863545B2 (en) MEMS device and its manufacturing method
US10035701B2 (en) Composite cavity and forming method thereof
JPS6130046A (en) Manufacture of semiconductor integrated circuit device
JP4246578B2 (en) Manufacturing method of microstructure
JP7156690B2 (en) Electronic device manufacturing method
JP3478222B2 (en) Manufacturing method of recording head
CN117800282A (en) Semiconductor device and method for manufacturing the same
JP2020028958A (en) Mems element and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230926

R150 Certificate of patent or registration of utility model

Ref document number: 7364163

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150