JP2018058150A - Mems element and manufacturing method thereof - Google Patents

Mems element and manufacturing method thereof Download PDF

Info

Publication number
JP2018058150A
JP2018058150A JP2016196806A JP2016196806A JP2018058150A JP 2018058150 A JP2018058150 A JP 2018058150A JP 2016196806 A JP2016196806 A JP 2016196806A JP 2016196806 A JP2016196806 A JP 2016196806A JP 2018058150 A JP2018058150 A JP 2018058150A
Authority
JP
Japan
Prior art keywords
movable electrode
electrode
movable
fixed electrode
air gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016196806A
Other languages
Japanese (ja)
Inventor
新一 荒木
Shinichi Araki
新一 荒木
孝英 臼井
Takahide Usui
孝英 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2016196806A priority Critical patent/JP2018058150A/en
Publication of JP2018058150A publication Critical patent/JP2018058150A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Micromachines (AREA)
  • Pressure Sensors (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a MEMS element improved in sensitivity by large displacement of a movable electrode without reducing intensity, and having increased sensitivity with area efficiency.SOLUTION: In a MEMS element, a fixed electrode 5 is disposed on a substrate 1 having a back chamber 10, and a displaceable movable electrode 3 is disposed almost in parallel on the fixed electrode 5 via an air gap G. In the MEMS element, support columns 7 that penetrate a hole h formed from an insulator film 6 to the fixed electrode 5 and reach the movable electrode 3 are arranged in matrix on a surface of the movable electrode. Accordingly, a narrow air gap G is realized with the thin movable electrode 3 so that sensitivity is increased.SELECTED DRAWING: Figure 1

Description

本発明はMEMS素子及びその製造方法、特にトランスデューサー等の各種センサとして用いられるMEMS素子及びその製造方法に関する。   The present invention relates to a MEMS element and a manufacturing method thereof, and more particularly to a MEMS element used as various sensors such as a transducer and a manufacturing method thereof.

従来から、トランスデューサー、センサ、アクチュエータ、電子回路等に、MEMS(Micro Electro Mechanical System)素子が用いられている。   Conventionally, MEMS (Micro Electro Mechanical System) elements are used for transducers, sensors, actuators, electronic circuits, and the like.

図4に、従来のMEMS素子であるトランスデューサー(マイクロフォン)の一例が示されており、このマイクロフォンでは、半導体基板11に絶縁膜12を介して厚さ0.2〜2.0μm程度の可動電極13が形成されると共に、支持層14を介して固定電極15が設けられる。この固定電極15と可動電極13は、2.0〜5.0μm程度のエアーギャップGを介して平行となるように配置され、上記固定電極15とその上の絶縁膜16に、多数の音孔18が形成される。上記支持層14は、可動電極13の上に形成された犠牲層の一部であり、この犠牲層の一部を除去することで、可動電極13と固定電極15との間にエアーギャップ(中空)Gが形成される。なお、19は固定電極15に接続する電極、20はバックチャンバーであり、可動電極13に接続する電極は、図示を省略している。   FIG. 4 shows an example of a transducer (microphone) which is a conventional MEMS element. In this microphone, a movable electrode having a thickness of about 0.2 to 2.0 μm is formed on a semiconductor substrate 11 with an insulating film 12 interposed therebetween. 13 is formed, and a fixed electrode 15 is provided via a support layer 14. The fixed electrode 15 and the movable electrode 13 are arranged so as to be parallel via an air gap G of about 2.0 to 5.0 μm, and a large number of sound holes are formed in the fixed electrode 15 and the insulating film 16 thereon. 18 is formed. The support layer 14 is a part of a sacrificial layer formed on the movable electrode 13, and an air gap (hollow) is formed between the movable electrode 13 and the fixed electrode 15 by removing a part of the sacrificial layer. ) G is formed. In addition, 19 is an electrode connected to the fixed electrode 15, 20 is a back chamber, and an electrode connected to the movable electrode 13 is not shown.

このようなマイクロフォンは、基板11上に作製された可動電極13と固定電極15とが平行平板型コンデンサを形成し、音圧によって可動電極が振動して生じる静電容量の変位を検出することにより、音声を電気信号に変換する構成となっている。   In such a microphone, the movable electrode 13 and the fixed electrode 15 formed on the substrate 11 form a parallel plate type capacitor, and the displacement of the electrostatic capacitance caused by the vibration of the movable electrode due to sound pressure is detected. The voice is converted into an electrical signal.

特開2014−233059号公報JP, 2014-233059, A

ところで、上述のように、マイクロフォンの感度は、音孔18からの音圧を受けた可動電極13が変位して生じる静電容量の変化を検出するため、感度を上げるには、この可動電極13の変位を大きくする必要がある。
そこで、感度を上げるため、可動電極13のバネを弱くする方法が一般的に行われるが、この方法は、可動電極13の強度が低下する原因となり、可動電極13のバネを弱くすると同時に、ある程度の強度を保つということは難しい問題であった。
By the way, as described above, the sensitivity of the microphone detects the change in the electrostatic capacitance caused by the displacement of the movable electrode 13 that has received the sound pressure from the sound hole 18. It is necessary to increase the displacement.
Therefore, in order to increase the sensitivity, a method of weakening the spring of the movable electrode 13 is generally performed. However, this method causes the strength of the movable electrode 13 to decrease, and at the same time, weakens the spring of the movable electrode 13 and at the same time. It was a difficult problem to maintain the strength.

このような問題は、上記マイクロフォンに限らず、変位や振動を電気量に変換する他のMEMS素子についても同様に解決課題となる。
また、MEMS素子において、感度領域の面積効率を高めることができれば、感度向上だけでなく、素子の小型化にも貢献できることになる。
Such a problem is not limited to the above-described microphone, and is similarly a problem to be solved for other MEMS elements that convert displacement and vibration into an electric quantity.
Further, in the MEMS element, if the area efficiency of the sensitivity region can be increased, not only the sensitivity can be improved, but also the element can be miniaturized.

本発明は上記問題点に鑑みてなされたものであり、その目的は、強度の低下がなく、可動電極の大きな変位により感度を向上させ、しかも面積効率よく感度を高めることが可能となるMEMS素子を提供することにある。   The present invention has been made in view of the above problems, and its object is to provide a MEMS element that does not decrease in strength, improves sensitivity by a large displacement of the movable electrode, and can increase sensitivity efficiently in an area. Is to provide.

上記目的を達成するために、請求項1の発明に係るMEMS素子は、バックチャンバーを有する基板上に、固定電極と、この固定電極にエアーギャップを介して略平行に配置された変位可能な可動電極とを備えたMEMS素子において、上記固定電極に形成された孔を貫通しかつ上記可動電極まで延出してこの可動電極を支持する支持柱を設け、上記可動電極に上記支持柱で支持された可動小領域を配列したことを特徴とする。
請求項2の発明は、上記固定電極の上記エアーギャップとは反対側に形成された絶縁膜に、上記支持柱を一体に結合させる構成としたことを特徴とする。
請求項3の発明は、上記支持柱を、上記可動電極面に対しマトリクス状に配置したことを特徴とする。
In order to achieve the above object, a MEMS device according to the invention of claim 1 is a displaceable movable device in which a fixed electrode is disposed on a substrate having a back chamber and substantially parallel to the fixed electrode via an air gap. In a MEMS device including an electrode, a support column that extends through the hole formed in the fixed electrode and extends to the movable electrode to support the movable electrode is provided, and is supported on the movable electrode by the support column. The movable small area is arranged.
The invention of claim 2 is characterized in that the support pillar is integrally coupled to an insulating film formed on the opposite side of the fixed electrode to the air gap.
The invention of claim 3 is characterized in that the support columns are arranged in a matrix with respect to the movable electrode surface.

請求項4の発明に係るMEMS素子の製造方法は、基板上に、可動電極、エアーギャップを形成するための犠牲層及び固定電極を形成する工程と、上記固定電極及び犠牲層に上記可動電極まで到達する貫通孔を形成する工程と、上記固定電極の上記エアーギャップとは反対側から上記貫通孔を通って上記可動電極に到達し、この可動電極を支持する支持柱を形成する支持柱形成工程と、上記犠牲層の一部を除去してエアーギャップを形成する工程と、上記基板にバックチャンバーを形成する工程と、を含んでなることを特徴とする。
請求項5の発明は、上記支持柱形成工程では、上記貫通孔が形成された上記固定電極表面に絶縁材を堆積させることにより、上記絶縁材を上記貫通孔に埋め込み上記支持柱を形成することを特徴とする。
According to a fourth aspect of the present invention, there is provided a method of manufacturing a MEMS element comprising: forming a movable electrode, a sacrificial layer for forming an air gap and a fixed electrode on a substrate; and forming the movable electrode on the fixed electrode and the sacrificial layer. A step of forming a reaching through hole, and a support column forming step of forming a support column for supporting the movable electrode by reaching the movable electrode through the through hole from the opposite side of the air gap of the fixed electrode And a step of forming an air gap by removing a part of the sacrificial layer, and a step of forming a back chamber on the substrate.
According to a fifth aspect of the present invention, in the support pillar forming step, an insulating material is deposited on the surface of the fixed electrode on which the through hole is formed, thereby embedding the insulating material in the through hole to form the support pillar. It is characterized by.

以上の構成によれば、可動電極を例えば複数の支持柱で支持することで、可動電極に複数の可動小領域が設けられ、可動電極を従来より薄くすることで、必要な変位が保たれた可動小領域が複数、並列に配列されることになる。この可動電極は、マクロでは固定電極と似た物性となり、平行平板型のコンデンサに近い挙動をするので、SNRの向上に寄与できることになる。   According to the above configuration, the movable electrode is supported by, for example, a plurality of support pillars, so that the movable electrode is provided with a plurality of movable small regions, and the movable electrode is made thinner than the conventional one, so that the necessary displacement is maintained. A plurality of movable small regions are arranged in parallel. This movable electrode has physical properties similar to those of a fixed electrode in a macro and behaves like a parallel plate type capacitor, which can contribute to an improvement in SNR.

本発明によれば、可動電極を支持柱により支持して複数の可動小領域を設けたので、可動電極を従来より薄くしても強度の低下がなく、エアーギャップGの間隔も狭くすることができるので、可動電極の十分な変位により感度を向上させることが可能となる。
また、可動電極も従来のように円形に限らず、四角形に近い形にすることができるので、従来と同じ素子面積の中に大きな感度領域を設定することができ、面積効率よく感度を高めることが可能となり、小型化にも貢献できるという利点がある。
According to the present invention, since the movable electrode is supported by the support column and provided with a plurality of movable small regions, even if the movable electrode is made thinner than the conventional one, the strength is not lowered and the interval of the air gap G can be narrowed. Therefore, the sensitivity can be improved by sufficient displacement of the movable electrode.
In addition, the movable electrode is not limited to a circle as in the prior art, but can be a shape close to a quadrangle, so a large sensitivity area can be set in the same element area as in the past, and the area efficiency is increased. This has the advantage that it can contribute to downsizing.

本発明の実施例のMEMS素子であるマイクロフォンの構成を示し、図(A)は断面図、図(B)は平面図である。The structure of the microphone which is a MEMS element of the Example of this invention is shown, A figure (A) is sectional drawing, A figure (B) is a top view. 図1のマイクロフォンの一部を拡大した図である。It is the figure which expanded a part of microphone of FIG. 実施例のマイクロフォンの製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the microphone of an Example. 従来例のマイクロフォンの構成を示し、図(A)は断面図、図(B)は平面である。The structure of the microphone of a prior art example is shown, FIG. (A) is sectional drawing and FIG. (B) is a plane.

図1乃至図2に、実施例のMEMS素子(トランスデューサー)であるマイクロフォンの構成が示されており、図1において、1はシリコン基板、2は絶縁膜、3は絶縁膜2の上に形成された可動電極、4は支持層、5は支持層4で支持され、可動電極3に対し平行に配置された固定電極、6は絶縁膜、7は複数設けられた支持柱であり、この支持柱7は絶縁膜6と一体であり、エアーギャップG内に延出して可動電極3に結合され、可動電極3を複数点で支持する柱となる。従って、この支持柱7で囲まれる領域が可動小領域となり、これが1つの小さな可動電極を構成することになる。また、8は絶縁膜6及び固定電極5を貫通する音孔、Gは可動電極3と固定電極5の間のエアーギャップ、10はバックチャンバー、19は固定電極5に接続する電極である。なお、可動電極3に接続する電極は、図示を省略している。   1 and 2 show the configuration of a microphone that is a MEMS element (transducer) of the embodiment. In FIG. 1, 1 is a silicon substrate, 2 is an insulating film, and 3 is formed on the insulating film 2. 4 is a support layer, 5 is a support electrode supported by the support layer 4 and is arranged parallel to the movable electrode 3, 6 is an insulating film, and 7 is a plurality of support pillars. The pillar 7 is integral with the insulating film 6, extends into the air gap G, is coupled to the movable electrode 3, and serves as a pillar that supports the movable electrode 3 at a plurality of points. Therefore, the area surrounded by the support pillar 7 becomes a movable small area, and this constitutes one small movable electrode. 8 is a sound hole penetrating the insulating film 6 and the fixed electrode 5, G is an air gap between the movable electrode 3 and the fixed electrode 5, 10 is a back chamber, and 19 is an electrode connected to the fixed electrode 5. Note that the electrodes connected to the movable electrode 3 are not shown.

次に、図3に基づいて、実施例のマイクロフォンの製造工程を説明する。
まず、図3(A)の工程(電極形成工程)では、結晶方位(100)面の厚さ420μmのシリコン基板1の上に、厚さ1μm程度の熱酸化膜2a(絶縁膜2となる)が形成され、この熱酸化膜2a上に、CVD(Chemical Vaper Deposition)法により厚さ0.01〜0.10μm程度の非常に薄い導電性ポリシリコン膜(3)を積層形成し、その後、通常のフォトリソグラフ法により導電性ポリシリコン膜をパターニングすることで、可動電極3が形成される。
Next, a manufacturing process of the microphone of the embodiment will be described with reference to FIG.
First, in the process of FIG. 3A (electrode formation process), a thermal oxide film 2a having a thickness of about 1 μm (becomes an insulating film 2) is formed on a silicon substrate 1 having a crystal orientation (100) plane of 420 μm. A very thin conductive polysilicon film (3) having a thickness of about 0.01 to 0.10 μm is laminated on the thermal oxide film 2a by a CVD (Chemical Vapor Deposition) method. The movable electrode 3 is formed by patterning the conductive polysilicon film by the photolithographic method.

このときのポリシリコン膜(3)の厚さは、可動電極3の可動小領域のサイズと破壊強度を考慮して所望の厚さとする。即ち、従来の可動電極の厚さは、0.2〜2.0μm程度とされるが、実施例では、上述のように、支持柱7で可動小領域が設定されるので、この可動小領域の大きさを考慮して従来と比較して20分の1程度まで薄くしている。なお、この可動電極3としては、上記ポリシリコン(多結晶シリコン)膜の他に、シリコン単結晶、アモルファスシリコン等でいずれも不純物を添加したものを用いることができる。   The thickness of the polysilicon film (3) at this time is set to a desired thickness in consideration of the size of the movable small region of the movable electrode 3 and the breaking strength. That is, the thickness of the conventional movable electrode is about 0.2 to 2.0 μm. In the embodiment, the movable small area is set by the support pillar 7 as described above. In consideration of the size, the thickness is reduced to about 1/20 of the conventional one. As the movable electrode 3, in addition to the polysilicon (polycrystalline silicon) film, a silicon single crystal, amorphous silicon, or the like to which impurities are added can be used.

次いで、可動電極3上に、厚さ0.5〜1.0μm程度の薄いUSG(Undoped Silicate Glass)膜からなる犠牲層4a(支持層4となる)を積層形成する。この犠牲層4aの上に、厚さ0.1〜1.0μm程度の導電性ポリシリコン膜(5)を積層形成し、フォトリソグラフ法により導電性ポリシリコン膜(5)をパターニングすることで、固定電極5が形成される。上記の犠牲層4aの中心側は、最終的に除去されて可動電極−固定電極間のエアーギャップGとなるが、このエアーギャップGも従来と比べて狭くする。即ち、従来のエアーギャップGの間隔は、2〜5μm程度であるが、実施例では可動小領域の大きさを考慮して0.1〜1.0μm程度まで狭くしている。   Next, a sacrificial layer 4 a (to be a support layer 4) made of a thin USG (Undoped Silicate Glass) film having a thickness of about 0.5 to 1.0 μm is stacked on the movable electrode 3. By laminating and forming a conductive polysilicon film (5) having a thickness of about 0.1 to 1.0 μm on the sacrificial layer 4a, and patterning the conductive polysilicon film (5) by a photolithography method, A fixed electrode 5 is formed. The central side of the sacrificial layer 4a is finally removed to form an air gap G between the movable electrode and the fixed electrode. The air gap G is also narrower than in the prior art. That is, the interval of the conventional air gap G is about 2 to 5 μm, but in the embodiment, it is narrowed to about 0.1 to 1.0 μm in consideration of the size of the movable small region.

図3(B)の工程(貫通孔形成工程)では、上記固定電極5と犠牲層4aに対し、通常のフォトリソグラフ法により、図1(B)の支持柱7で示されるようにマトリクス状に複数のホールhを形成する。このホールhは、固定電極5と犠牲層4aを貫通して可動電極3に達するように形成される。このマトリクス状のホールhの間隔は、可動電極3で設定される可動小領域の大きさを決定するため、可動電極3のバネの強さと強度を考慮して、所望の間隔に形成することになる。   In the step of FIG. 3B (through-hole forming step), the fixed electrode 5 and the sacrificial layer 4a are formed in a matrix by a normal photolithography method as shown by the support pillars 7 in FIG. A plurality of holes h are formed. The hole h is formed so as to penetrate the fixed electrode 5 and the sacrificial layer 4a and reach the movable electrode 3. In order to determine the size of the movable small region set by the movable electrode 3, the matrix-shaped holes h are formed at a desired interval in consideration of the strength and strength of the spring of the movable electrode 3. Become.

図3(C)の工程(支持柱形成工程)では、固定電極5を設けた素子の上面全面に、絶縁膜としての厚さ0.2μm〜2.0μm程度の窒化膜6aを堆積させ、同時にマトリクス状のホールhの内部に、支持柱7となる窒化膜6aを埋め込む。この窒化膜6aにより、固定電極5上の絶縁膜6と、この絶縁膜6から貫通孔hと介して可動電極3に結合する支持柱7が形成される。この窒化膜(シリコンナイトライド)6aの代わりに、酸素添加多結晶シリコン、酸化膜等の絶縁材料を用いてもよい。   In the step of FIG. 3C (support column forming step), a nitride film 6a having a thickness of about 0.2 μm to 2.0 μm is deposited on the entire upper surface of the element provided with the fixed electrode 5, and simultaneously A nitride film 6a to be the support pillar 7 is embedded in the matrix-shaped holes h. The nitride film 6a forms an insulating film 6 on the fixed electrode 5 and a support column 7 coupled from the insulating film 6 to the movable electrode 3 through the through hole h. Instead of the nitride film (silicon nitride) 6a, an insulating material such as oxygen-doped polycrystalline silicon or oxide film may be used.

図3(D)の工程(音孔形成工程)では、通常のフォトリソグラフ法により、可動電極3と固定電極5にそれぞれ接続する配線部パターン及び電極19が厚さ1.0〜3.0μmのAlCu膜によって形成される。なお、図では、可動電極に形成する配線部を省略している。また、絶縁膜6及び固定電極5を貫通し、犠牲層4aの一部を露出させる音孔8が形成される。   In the step of FIG. 3D (sound hole forming step), the wiring pattern and the electrode 19 respectively connected to the movable electrode 3 and the fixed electrode 5 are 1.0 to 3.0 μm in thickness by a normal photolithographic method. It is formed by an AlCu film. In the figure, the wiring portion formed on the movable electrode is omitted. In addition, a sound hole 8 that penetrates the insulating film 6 and the fixed electrode 5 and exposes a part of the sacrificial layer 4a is formed.

図3(E)の工程(バックチャンバー及びエアーギャップ形成工程)では、シリコン基板1の裏面側から可動電極3の下部の熱酸化膜2aが露出するまでシリコン基板1を除去することで、バックチャンバー10が形成される。
次いで、一般的な容量型MEMS素子の製造工程と同様に、固定電極5に形成された音孔8を通して犠牲層4aの一部を除去し、可動電極3と固定電極5の間にエアーギャップGが形成される。このとき、可動電極3下部の熱酸化膜2aも除去される。固定電極5と可動電極3との間には、支持柱7があるため、従来より狭いエアーギャップGとしてもステッキングが生じることもない。
In the step of FIG. 3E (back chamber and air gap forming step), the silicon substrate 1 is removed from the back surface side of the silicon substrate 1 until the thermal oxide film 2a below the movable electrode 3 is exposed. 10 is formed.
Next, as in the general manufacturing process of the capacitive MEMS element, a part of the sacrificial layer 4 a is removed through the sound hole 8 formed in the fixed electrode 5, and the air gap G between the movable electrode 3 and the fixed electrode 5 is removed. Is formed. At this time, the thermal oxide film 2a under the movable electrode 3 is also removed. Since there is a support column 7 between the fixed electrode 5 and the movable electrode 3, sticking does not occur even if the air gap G is narrower than before.

以上のようにして製作されたマイクロフォンは、図1(A),(B)のように構成されるが、実施例によれば、可動電極3を極めて薄く形成した上で、図1(B)のように、マトリクス状に配列した支持柱7によって可動電極3に複数の可動小領域が設定されるので、図2に示されるように、音孔8から音圧を受けると、可動電極3では支持柱間のそれぞれの可動小領域が変位・振動し、この可動小領域が大きく変位・振動する。可動電極3に対向する固定電極5は、従来より近い位置に配置しているので、感度の向上を図ることが可能となる。   The microphone manufactured as described above is configured as shown in FIGS. 1A and 1B. However, according to the embodiment, the movable electrode 3 is formed very thin, and then the microphone shown in FIG. As shown in FIG. 2, when the sound pressure is received from the sound hole 8 as shown in FIG. 2, the movable electrode 3 has a plurality of small movable regions set in the movable electrode 3 by the support columns 7 arranged in a matrix. Each movable small area between the support columns is displaced and vibrated, and the movable small area is greatly displaced and vibrated. Since the fixed electrode 5 facing the movable electrode 3 is arranged at a position closer to that of the conventional art, it is possible to improve the sensitivity.

また、本願発明では、図1(B)に示されるように、可動電極3及び固定電極5の配置領域、そしてバックチャンバー10の開口を円ではなく、四角形や楕円形にして、従来よりも広くし、素子における感度領域(振動膜)の面積効率を高めることができる。即ち、従来では、図4(B)で示されるように、感度領域(又はバックチャンバー20の開口)が円形となるが、本願発明は、可動小領域を複数配置する形になるので、感度領域の形を自由に選択できる。矩形の素子の場合、感度領域を円よりも矩形に近い形とした方がその面積が大きくなり、実施例では、可動電極3及び固定電極5の領域とバックチャンバー開口を矩形に近い形として、感度領域の面積効率を高めている。一方、感度が十分な場合には、素子の小型化を図ることが可能になる。   Further, in the present invention, as shown in FIG. 1B, the arrangement area of the movable electrode 3 and the fixed electrode 5 and the opening of the back chamber 10 are not a circle but a square or an ellipse, which is wider than before. In addition, the area efficiency of the sensitivity region (vibration membrane) in the element can be increased. That is, in the related art, as shown in FIG. 4B, the sensitivity region (or the opening of the back chamber 20) is circular. You can freely choose the shape. In the case of a rectangular element, the area becomes larger when the sensitivity region is closer to a rectangle than a circle, and in the embodiment, the regions of the movable electrode 3 and the fixed electrode 5 and the back chamber opening are closer to a rectangle. The area efficiency of the sensitivity region is increased. On the other hand, when the sensitivity is sufficient, the element can be downsized.

1,11…シリコン基板、 2,12…絶縁膜、
2a…熱酸化膜、 3,13…可動電極、
4,14…支持層、 4a…犠牲層、
5,15…固定電極、 6,16…絶縁膜、
6a…窒化膜、 7…支持柱、
8,18…音孔、 10,20…バックチャンバー、
h…ホール(貫通孔)、 G…エアーギャップ。
1, 11 ... silicon substrate, 2, 12 ... insulating film,
2a ... thermal oxide film 3,13 ... movable electrode,
4,14 ... support layer, 4a ... sacrificial layer,
5, 15 ... fixed electrode, 6, 16 ... insulating film,
6a ... nitride film, 7 ... support pillar,
8, 18 ... sound holes, 10, 20 ... back chamber,
h: Hole (through hole), G: Air gap.

Claims (5)

バックチャンバーを有する基板上に、固定電極と、この固定電極にエアーギャップを介して略平行に配置された変位可能な可動電極とを備えたMEMS素子において、
上記固定電極に形成された孔を貫通しかつ上記可動電極まで延出してこの可動電極を支持する支持柱を設け、上記可動電極に上記支持柱で支持された可動小領域を配列したことを特徴とするMEMS素子。
In a MEMS element comprising a fixed electrode on a substrate having a back chamber, and a movable movable electrode disposed substantially parallel to the fixed electrode via an air gap,
A support column that extends through the hole formed in the fixed electrode and extends to the movable electrode to support the movable electrode is provided, and a movable small region supported by the support column is arranged on the movable electrode. MEMS element.
上記固定電極の上記エアーギャップとは反対側に形成された絶縁膜に、上記支持柱を一体に結合させる構成としたことを特徴とする請求項1記載のMEMS素子。   The MEMS element according to claim 1, wherein the support pillar is integrally coupled to an insulating film formed on a side opposite to the air gap of the fixed electrode. 上記支持柱は、上記可動電極面に対しマトリクス状に配置したことを特徴とする請求項1又は2記載のMEMS素子。   3. The MEMS element according to claim 1, wherein the support columns are arranged in a matrix with respect to the movable electrode surface. 基板上に、可動電極、エアーギャップを形成するための犠牲層及び固定電極を形成する工程と、
上記固定電極及び犠牲層に上記可動電極まで到達する貫通孔を形成する工程と、
上記固定電極の上記エアーギャップとは反対側から上記貫通孔を通って上記可動電極に到達し、この可動電極を支持する支持柱を形成する支持柱形成工程と、
上記犠牲層の一部を除去してエアーギャップを形成する工程と、
上記基板にバックチャンバーを形成する工程と、を含んでなるMEMS素子の製造方法。
Forming a movable electrode, a sacrificial layer for forming an air gap, and a fixed electrode on the substrate;
Forming a through hole reaching the movable electrode to the fixed electrode and the sacrificial layer;
A support column forming step of forming a support column for supporting the movable electrode by reaching the movable electrode through the through hole from the opposite side of the air gap of the fixed electrode;
Removing a portion of the sacrificial layer to form an air gap;
Forming a back chamber on the substrate.
上記支持柱形成工程では、上記貫通孔が形成された上記固定電極表面に絶縁材を堆積させることにより、上記絶縁材を上記貫通孔に埋め込み上記支持柱を形成することを特徴とする請求項4記載のMEMS素子の製造方法。   5. The support pillar forming step includes depositing an insulating material on the surface of the fixed electrode in which the through hole is formed, thereby embedding the insulating material in the through hole to form the support pillar. The manufacturing method of the MEMS element of description.
JP2016196806A 2016-10-04 2016-10-04 Mems element and manufacturing method thereof Pending JP2018058150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016196806A JP2018058150A (en) 2016-10-04 2016-10-04 Mems element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016196806A JP2018058150A (en) 2016-10-04 2016-10-04 Mems element and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2018058150A true JP2018058150A (en) 2018-04-12

Family

ID=61909354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016196806A Pending JP2018058150A (en) 2016-10-04 2016-10-04 Mems element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2018058150A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020028946A (en) * 2018-08-22 2020-02-27 新日本無線株式会社 Mems element and method of manufacturing the same
JP2020093347A (en) * 2018-12-13 2020-06-18 新日本無線株式会社 Mems element and manufacturing method for the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001504994A (en) * 1996-11-22 2001-04-10 シーメンス アクチエンゲゼルシヤフト Manufacturing method of micromechanical functional element
JP2002250665A (en) * 2001-02-23 2002-09-06 Omron Corp Capacitance-type sensor and its manufacturing method
JP2014180702A (en) * 2013-03-18 2014-09-29 New Japan Radio Co Ltd Mems element and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001504994A (en) * 1996-11-22 2001-04-10 シーメンス アクチエンゲゼルシヤフト Manufacturing method of micromechanical functional element
JP2002250665A (en) * 2001-02-23 2002-09-06 Omron Corp Capacitance-type sensor and its manufacturing method
JP2014180702A (en) * 2013-03-18 2014-09-29 New Japan Radio Co Ltd Mems element and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020028946A (en) * 2018-08-22 2020-02-27 新日本無線株式会社 Mems element and method of manufacturing the same
JP7120543B2 (en) 2018-08-22 2022-08-17 日清紡マイクロデバイス株式会社 Manufacturing method of MEMS element
JP2020093347A (en) * 2018-12-13 2020-06-18 新日本無線株式会社 Mems element and manufacturing method for the same
JP7364163B2 (en) 2018-12-13 2023-10-18 日清紡マイクロデバイス株式会社 MEMS element and its manufacturing method

Similar Documents

Publication Publication Date Title
KR101740113B1 (en) A mems sensor structure for sensing pressure waves and a change in ambient pressure
KR101787187B1 (en) System and method for a microphone
US9516428B2 (en) MEMS acoustic transducer, MEMS microphone, MEMS microspeaker, array of speakers and method for manufacturing an acoustic transducer
KR101578542B1 (en) Method of Manufacturing Microphone
JPWO2010079574A1 (en) MEMS device
US9693149B2 (en) Microphone and method for manufacturing the same
KR102322258B1 (en) Microphone and manufacturing method thereof
JP2018058150A (en) Mems element and manufacturing method thereof
JP6481265B2 (en) MEMS element
US9668064B2 (en) Microelectromechanical system microphone
JP7499020B2 (en) MEMS element
JP2016192628A (en) MEMS element
JP6307171B2 (en) MEMS microphone
JP2017121028A (en) MEMS element
JP2010081192A (en) Mems sensor
US20210139319A1 (en) Membrane Support for Dual Backplate Transducers
JP2007309892A (en) Capacitance-type sensor
JP2016007681A (en) Mems element and method for manufacturing the same
JP2015188947A (en) MEMS element
US20110141854A1 (en) Acoustic sensor and method of fabricating the same
JP6662509B2 (en) MEMS element
JP2006157777A (en) Electret capacitor type microphone
JP6874943B2 (en) MEMS element
CN107205203B (en) MEMS structure and manufacturing method thereof
JP6639042B2 (en) MEMS element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210309