JP7364098B2 - Acrylic (meth)acrylate resin, active energy ray-curable resin composition, cured product and article - Google Patents

Acrylic (meth)acrylate resin, active energy ray-curable resin composition, cured product and article Download PDF

Info

Publication number
JP7364098B2
JP7364098B2 JP2022575713A JP2022575713A JP7364098B2 JP 7364098 B2 JP7364098 B2 JP 7364098B2 JP 2022575713 A JP2022575713 A JP 2022575713A JP 2022575713 A JP2022575713 A JP 2022575713A JP 7364098 B2 JP7364098 B2 JP 7364098B2
Authority
JP
Japan
Prior art keywords
meth
acrylate
acrylic
active energy
energy ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022575713A
Other languages
Japanese (ja)
Other versions
JPWO2023276600A1 (en
JPWO2023276600A5 (en
Inventor
哲志 矢島
卓哉 西田
直人 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Publication of JPWO2023276600A1 publication Critical patent/JPWO2023276600A1/ja
Publication of JPWO2023276600A5 publication Critical patent/JPWO2023276600A5/ja
Application granted granted Critical
Publication of JP7364098B2 publication Critical patent/JP7364098B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/12Polymers provided for in subclasses C08C or C08F
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/12Polymers provided for in subclasses C08C or C08F
    • C08F290/126Polymers of unsaturated carboxylic acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/003Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • C08F220/325Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals containing glycidyl radical, e.g. glycidyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Description

本発明は、アクリル(メタ)アクリレート樹脂、活性エネルギー線硬化性樹脂組成物、硬化物及び物品に関する。 The present invention relates to an acrylic (meth)acrylate resin, an active energy ray-curable resin composition, a cured product, and an article.

(メタ)アクリロイル基を有する樹脂材料は、紫外線照射等により容易かつ瞬時に硬化させることができ、かつ、硬化物の透明性や硬度等に優れることから、塗料やコーティング剤等の分野で広く用いられている。その塗工対象物は光学フィルムやプラスチック成型品、木工品等多岐に渡っており、塗工対象物の種類や用途等に応じて要求性能も様々であることから、目的に応じて設計された樹脂が数多く提案されている。 Resin materials with (meth)acryloyl groups are widely used in fields such as paints and coatings because they can be easily and instantly cured by ultraviolet irradiation, etc., and the cured products have excellent transparency and hardness. It is being The objects to be coated are wide-ranging, such as optical films, plastic molded products, and wood products, and the required performance varies depending on the type and purpose of the object to be coated. Many resins have been proposed.

(メタ)アクリロイル基を有する樹脂材料としては、(メタ)アクリロイル基を有するアクリル樹脂、ペンタエリスリトールテトラアクリレート、及びペンタエリスリトールトリアクリレートを含有する活性エネルギー線硬化型樹脂組成物が知られている(例えば、特許文献1参照)。前記特許文献1に記載された活性エネルギー線硬化型樹脂組成物は硬化物における表面硬度と低硬化収縮性とのバランスに優れることから、比較的薄いプラスチックフィルムを塗工対象とするコート剤として有用である。しかしながら、フィルム基材への密着性、特に高温湿潤条件下での長期保存後の密着性が低く、剥がれが生じやすい課題があった。 As resin materials having (meth)acryloyl groups, active energy ray-curable resin compositions containing acrylic resins having (meth)acryloyl groups, pentaerythritol tetraacrylate, and pentaerythritol triacrylate are known (e.g. , see Patent Document 1). The active energy ray-curable resin composition described in Patent Document 1 has an excellent balance between surface hardness and low curing shrinkage in the cured product, so it is useful as a coating agent for coating relatively thin plastic films. It is. However, there was a problem that the adhesion to the film base material, especially after long-term storage under high temperature and humid conditions, was low and peeling easily occurred.

そこで、優れた密着性を有し、かつ、コーティング剤として使用可能な耐擦傷性に優れた材料が求められていた。 Therefore, there has been a need for a material with excellent adhesion and scratch resistance that can be used as a coating agent.

特開2011-207947号公報JP2011-207947A

本発明が解決しようとする課題は、優れた密着性を有し、かつ、硬化物における優れた伸度、耐擦傷性及び耐薬品性を有するアクリル(メタ)アクリレート樹脂、活性エネルギー線硬化性樹脂組成物、硬化物及び物品を提供することである。 The problem to be solved by the present invention is an acrylic (meth)acrylate resin, an active energy ray-curable resin, which has excellent adhesion, and has excellent elongation, scratch resistance, and chemical resistance in the cured product. The purpose of the present invention is to provide compositions, cured products, and articles.

本発明者らは、上記課題を解決すべく鋭意研究した結果、特定の重合性化合物の共重合体であるアクリル重合体と、カルボキシル基を有する(メタ)アクリルモノマー(B)を原料とするアクリル(メタ)アクリレート樹脂を用いることにより、上記課題を解決できることを見出し、本発明を完成させた。 As a result of intensive research to solve the above problems, the present inventors have discovered an acrylic polymer that is a copolymer of a specific polymerizable compound, and an acrylic polymer made from a (meth)acrylic monomer (B) having a carboxyl group. The inventors have discovered that the above problems can be solved by using (meth)acrylate resin, and have completed the present invention.

すなわち、本発明は、アクリル重合体(A)、及びカルボキシル基を有する(メタ)アクリルモノマー(B)を原料とするアクリル(メタ)アクリレート樹脂であり、前記アクリル重合体(A)が、グリシジル(メタ)アクリレート(a1)と、ホモポリマーのガラス転移温度(Tg)が50℃以上の(メタ)アクリレート化合物(a2)と、を含む重合性化合物の共重合体であることを特徴とするアクリル(メタ)アクリレート樹脂、活性エネルギー線硬化性樹脂組成物、硬化物及び物品に関するものである。 That is, the present invention is an acrylic (meth)acrylate resin made from an acrylic polymer (A) and a (meth)acrylic monomer (B) having a carboxyl group as raw materials, wherein the acrylic polymer (A) is glycidyl ( Acrylic (a) characterized by being a copolymer of a polymerizable compound containing meth)acrylate (a1) and a (meth)acrylate compound (a2) whose homopolymer glass transition temperature (Tg) is 50°C or higher. The present invention relates to meth)acrylate resins, active energy ray-curable resin compositions, cured products, and articles.

本発明のアクリル(メタ)アクリレート樹脂は、優れた基材密着性を有し、また、優れた伸度、耐擦傷性及び耐薬品性を有する硬化物を形成可能なことから、コーティング剤や接着剤として用いることができ、特にコーティング剤として好適に用いることができる。 The acrylic (meth)acrylate resin of the present invention has excellent adhesion to substrates and can form a cured product with excellent elongation, scratch resistance, and chemical resistance, so it can be used as a coating agent or adhesive. It can be used as a coating agent, particularly as a coating agent.

本発明のアクリル(メタ)アクリレート樹脂は、アクリル重合体(A)、及びカルボキシル基を有する(メタ)アクリルモノマー(B)を原料とするものであることを特徴とする。 The acrylic (meth)acrylate resin of the present invention is characterized in that it is made from an acrylic polymer (A) and a (meth)acrylic monomer (B) having a carboxyl group as raw materials.

なお、本発明において、「(メタ)アクリレート」とは、アクリレート及び/またはメタクリレートを意味する。また、「(メタ)アクリロイル」とは、アクリロイル及び/またはメタクリロイルを意味する。さらに、「(メタ)アクリル」とは、アクリル及び/またはメタクリルを意味する。 In the present invention, "(meth)acrylate" means acrylate and/or methacrylate. Moreover, "(meth)acryloyl" means acryloyl and/or methacryloyl. Furthermore, "(meth)acrylic" means acrylic and/or methacrylic.

前記アクリル重合体(A)としては、グリシジル(メタ)アクリレート(a1)と、ホモポリマーのガラス転移温度(Tg)が50℃以上の(メタ)アクリレート化合物(a2)と、を含む重合性化合物の共重合体を用いる。 The acrylic polymer (A) is a polymerizable compound containing glycidyl (meth)acrylate (a1) and a (meth)acrylate compound (a2) whose homopolymer glass transition temperature (Tg) is 50°C or higher. Use a copolymer.

前記グリシジル(メタ)アクリレート(a1)の含有量は、優れた基材密着性を有し、伸度、耐擦傷性及び耐薬品性に優れた硬化物を形成可能なアクリル(メタ)アクリレート樹脂が得られることから、前記重合性化合物中に5~50質量%の範囲が好ましく、5~20質量%の範囲がより好ましい。 The content of the glycidyl (meth)acrylate (a1) is such that the acrylic (meth)acrylate resin has excellent adhesion to the base material and can form a cured product with excellent elongation, scratch resistance, and chemical resistance. Therefore, the amount in the polymerizable compound is preferably in the range of 5 to 50% by weight, more preferably in the range of 5 to 20% by weight.

前記(メタ)アクリレート化合物(a2)としては、ホモポリマーのガラス転移温度(Tg)が50℃以上のものであれば何れでもよく、例えば、メチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、シクロへキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、アダマンチル(メタ)アクリレート等が挙げられる。これらの(メタ)アクリレート化合物は、単独で用いることも2種以上を併用することもできる。また、これらの中でも、優れた基材密着性を有し、伸度、耐擦傷性及び耐薬品性に優れた硬化物を形成可能なアクリル(メタ)アクリレート樹脂が得られることから、少なくとも2種併用することが好ましく、少なくとも1種がメチル(メタ)アクリレートであることが好ましい。 The (meth)acrylate compound (a2) may be any homopolymer having a glass transition temperature (Tg) of 50° C. or higher, such as methyl (meth)acrylate, tert-butyl (meth)acrylate, Examples include cyclohexyl (meth)acrylate, benzyl (meth)acrylate, isobornyl (meth)acrylate, dicyclopentanyl (meth)acrylate, and adamantyl (meth)acrylate. These (meth)acrylate compounds can be used alone or in combination of two or more. Among these, at least two types of acrylic (meth)acrylate resins can be obtained that have excellent adhesion to substrates and can form cured products with excellent elongation, scratch resistance, and chemical resistance. It is preferable to use them in combination, and it is preferable that at least one of them is methyl (meth)acrylate.

前記(メタ)アクリレート化合物(a2)として、メチル(メタ)アクリレートを用いる場合、前記メチル(メタ)アクリレートの含有量は、優れた基材密着性を有し、伸度、耐擦傷性及び耐薬品性に優れた硬化物を形成可能なアクリル(メタ)アクリレート樹脂が得られることから、前記(メタ)アクリレート化合物(a2)中に25~65質量%の範囲が好ましく、35~55の範囲がより好ましい。 When methyl (meth)acrylate is used as the (meth)acrylate compound (a2), the content of methyl (meth)acrylate has excellent adhesion to the base material, elongation, scratch resistance, and chemical resistance. In order to obtain an acrylic (meth)acrylate resin that can form a cured product with excellent properties, the (meth)acrylate compound (a2) preferably contains 25 to 65% by mass, and more preferably 35 to 55% by mass. preferable.

前記グリシジル(メタ)アクリレート(a1)と前記(メタ)アクリレート化合物(a2)との質量割合[(a1)/(a2)]は、優れた基材密着性を有し、伸度、耐擦傷性及び耐薬品性に優れた硬化物を形成可能なアクリル(メタ)アクリレート樹脂が得られることから、0.05~20の範囲が好ましく、0.1~8の範囲がより好ましい。 The mass ratio [(a1)/(a2)] of the glycidyl (meth)acrylate (a1) and the (meth)acrylate compound (a2) has excellent base material adhesion, elongation, and scratch resistance. The range is preferably from 0.05 to 20, and more preferably from 0.1 to 8, since an acrylic (meth)acrylate resin can be obtained that can form a cured product with excellent chemical resistance.

前記重合性化合物としては、必要に応じて、前記グリシジル(メタ)アクリレート(a1)及び前記(メタ)アクリレート化合物(a2)以外の(メタ)アクリレート化合物(以下「その他の(メタ)アクリレート化合物」と略記する。)を含んでいてもよい。 The polymerizable compound may include (meth)acrylate compounds other than the glycidyl (meth)acrylate (a1) and the (meth)acrylate compound (a2) (hereinafter referred to as "other (meth)acrylate compounds"), if necessary. (abbreviated)) may be included.

前記その他の(メタ)アクリレート化合物としては、例えば、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート等の(メタ)アクリル酸アルキルエステル;シクロヘキシル(メタ)アクリレート等の脂環式構造含有(メタ)アクリレート;フェニル(メタ)アクリレート、フェノキシエチルアクリレート等の芳香環含有(メタ)アクリレート;3-メタクリロキシプロピルトリメトキシシラン等のシリル基を有する(メタ)アクリレート;スチレン、α-メチルスチレン、クロロスチレン等のスチレン誘導体等が挙げられる。これらは単独で用いることも2種以上を併用することもできる。 Examples of the other (meth)acrylate compounds include (meth)acrylic acid alkyl esters such as ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, and 2-ethylhexyl (meth)acrylate; cyclohexyl ( (meth)acrylates containing alicyclic structures such as meth)acrylates; (meth)acrylates containing aromatic rings such as phenyl (meth)acrylate and phenoxyethyl acrylate; (meth)acrylates containing silyl groups such as 3-methacryloxypropyltrimethoxysilane ) Acrylate; Examples include styrene derivatives such as styrene, α-methylstyrene, and chlorostyrene. These can be used alone or in combination of two or more.

前記カルボキシル基を有する(メタ)アクリルモノマー(B)としては、例えば、アクリル酸、メタクリル酸、無水アクリル酸、無水メタクリル酸等が挙げられる。これらのカルボキシル基を有する(メタ)アクリルモノマーは、単独で用いることも2種以上を併用することもできる。また、これらの中でも、優れた基材密着性を有し、伸度、耐擦傷性及び耐薬品性に優れた硬化物を形成可能なアクリル(メタ)アクリレート樹脂が得られることから、アクリル酸が好ましい。 Examples of the (meth)acrylic monomer (B) having a carboxyl group include acrylic acid, methacrylic acid, acrylic anhydride, and methacrylic anhydride. These (meth)acrylic monomers having a carboxyl group can be used alone or in combination of two or more. In addition, among these, acrylic acid is preferred because it provides an acrylic (meth)acrylate resin that has excellent substrate adhesion and can form a cured product with excellent elongation, scratch resistance, and chemical resistance. preferable.

前記カルボキシル基を有する(メタ)アクリルモノマー(B)の使用量は、優れた基材密着性を有し、伸度、耐擦傷性及び耐薬品性に優れた硬化物を形成可能なアクリル(メタ)アクリレート樹脂が得られることから、グリシジル(メタ)アクリレート(a1)1モルに対して、0.98~1.02モル%の範囲が好ましい。 The amount of the (meth)acrylic monomer (B) having a carboxyl group used is determined by the amount of the acrylic (meth)acrylic monomer (B) that can form a cured product that has excellent substrate adhesion and has excellent elongation, scratch resistance, and chemical resistance. ) Since an acrylate resin can be obtained, the amount is preferably in the range of 0.98 to 1.02 mol % based on 1 mol of glycidyl (meth)acrylate (a1).

本発明のアクリル(メタ)アクリレート樹脂の製造方法としては、特に制限されず、適宜公知の方法により製造することができる。例えば、前記アクリル重合体(A)と前記カルボキシル基を有する(メタ)アクリルモノマー(B)とを滴下法により窒素雰囲気下で4~10時間滴下して製造する方法等が挙げられる。 The method for producing the acrylic (meth)acrylate resin of the present invention is not particularly limited, and can be produced by any known method as appropriate. For example, a method may be mentioned in which the acrylic polymer (A) and the (meth)acrylic monomer (B) having a carboxyl group are added dropwise in a nitrogen atmosphere for 4 to 10 hours by a dropping method.

本発明のアクリル(メタ)アクリレート樹脂の(メタ)アクリロイル基当量は、優れた基材密着性を有し、伸度、耐擦傷性及び耐薬品性に優れた硬化物を形成可能なアクリル(メタ)アクリレート樹脂が得られることから、400~3000g/当量の範囲が好ましく、500~2000g/当量の範囲がより好ましい。 The (meth)acryloyl group equivalent of the acrylic (meth)acrylate resin of the present invention is such that the acrylic (meth)acrylate resin can form a cured product with excellent substrate adhesion and excellent elongation, scratch resistance, and chemical resistance. ) Since an acrylate resin can be obtained, the range is preferably from 400 to 3000 g/equivalent, and more preferably from 500 to 2000 g/equivalent.

本発明のアクリル(メタ)アクリレート樹脂は、分子構造中に(メタ)アクリロイル基を有することから、例えば、光重合開始剤を添加することにより活性エネルギー線硬化性樹脂組成物として利用することができる。 Since the acrylic (meth)acrylate resin of the present invention has a (meth)acryloyl group in its molecular structure, it can be used as an active energy ray-curable resin composition, for example, by adding a photopolymerization initiator. .

前記光重合開始剤としては、例えば、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、チオキサントン及びチオキサントン誘導体、2,2’-ジメトキシ-1,2-ジフェニルエタン-1-オン、ジフェニル(2,4,6-トリメトキシベンゾイル)ホスフィンオキシド、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-1-ブタノン等の光ラジカル重合開始剤などが挙げられる。 Examples of the photopolymerization initiator include 1-hydroxycyclohexylphenylketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-[4-(2-hydroxyethoxy)phenyl]-2- Hydroxy-2-methyl-1-propan-1-one, thioxanthone and thioxanthone derivatives, 2,2'-dimethoxy-1,2-diphenylethan-1-one, diphenyl(2,4,6-trimethoxybenzoyl)phosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide, 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropane-1- Examples include photoradical polymerization initiators such as 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-1-butanone and the like.

前記その他の光重合開始剤の市販品としては、例えば、「Omnirad 1173」、「Omnirad 184」、「Omnirad 127」、「Omnirad 2959」、「Omnirad 369」、「Omnirad 379」、「Omnirad 907」、「Omnirad 4265」、「Omnirad 1000」、「Omnirad 651」、「Omnirad TPO」、「Omnirad 819」、「Omnirad 2022」、「Omnirad 2100」、「Omnirad 754」、「Omnirad 784」、「Omnirad 500」、「Omnirad 81」(IGM Resins社製);「KAYACURE DETX」、「KAYACURE MBP」、「KAYACURE DMBI」、「KAYACURE EPA」、「KAYACURE OA」(日本化薬株式会社製);「Vicure 10」、「Vicure 55」(Stoffa Chemical社製);「Trigonal P1」(Akzo Nobel社製)、「SANDORAY 1000」(SANDOZ社製);「DEAP」(Upjohn Chemical社製)、「Quantacure PDO」、「Quantacure ITX」、「Quantacure EPD」(Ward Blenkinsop社製);「Runtecure 1104」(Runtec社製)等が挙げられる。これらの光重合開始剤は、単独で用いることも、2種以上を併用することもできる。 Examples of commercially available photopolymerization initiators include "Omnirad 1173", "Omnirad 184", "Omnirad 127", "Omnirad 2959", "Omnirad 369", "Omnirad 379", "Omnirad 907", “Omnirad 4265”, “Omnirad 1000”, “Omnirad 651”, “Omnirad TPO”, “Omnirad 819”, “Omnirad 2022”, “Omnirad 2100”, “Omnirad 754”, “Omnirad ad 784”, “Omnirad 500”, "Omnirad 81" (manufactured by IGM Resins); "KAYACURE DETX", "KAYACURE MBP", "KAYACURE DMBI", "KAYACURE EPA", "KAYACURE OA" (manufactured by Nippon Kayaku Co., Ltd.); "Vicure 10", " "Vicure 55" (manufactured by Stoffa Chemical); "Trigonal P1" (manufactured by Akzo Nobel), "SANDORAY 1000" (manufactured by SANDOZ); "DEAP" (manufactured by Upjohn Chemical), "Quan tacure PDO”, “Quantacure ITX” , "Quantacure EPD" (manufactured by Ward Blenkinsop); "Runtecure 1104" (manufactured by Runtec), and the like. These photopolymerization initiators can be used alone or in combination of two or more.

前記光重合開始剤の添加量は、例えば、活性エネルギー線硬化性樹脂組成物の溶剤以外の成分の合計中に0.05~15質量%の範囲であることが好ましく、0.1~10質量%の範囲であることがより好ましい。 The amount of the photopolymerization initiator added is, for example, preferably in the range of 0.05 to 15% by mass, and 0.1 to 10% by mass in the total of components other than the solvent of the active energy ray-curable resin composition. % range is more preferable.

また、前記光重合開始剤は、必要に応じて、アミン化合物、尿素化合物、含硫黄化合物、含燐化合物、含塩素化合物、ニトリル化合物等の光増感剤を併用することもできる。 Further, the photopolymerization initiator may be used in combination with a photosensitizer such as an amine compound, a urea compound, a sulfur-containing compound, a phosphorus-containing compound, a chlorine-containing compound, or a nitrile compound, if necessary.

本発明の活性エネルギー線硬化性樹脂組成物は、前述したアクリル(メタ)アクリレート樹脂以外のその他の樹脂成分を含有しても良い。前記その他の樹脂成分としては、例えば、デンドリマー型(メタ)アクリレート樹脂、ウレタン(メタ)アクリレート樹脂、アクリル(メタ)アクリレート樹脂、エポキシ(メタ)アクリレート樹脂等が挙げられる。これらのその他の(メタ)アクリレート樹脂は、単独で用いることも2種以上を併用することもできる。 The active energy ray-curable resin composition of the present invention may contain resin components other than the above-mentioned acrylic (meth)acrylate resin. Examples of the other resin components include dendrimer type (meth)acrylate resin, urethane (meth)acrylate resin, acrylic (meth)acrylate resin, and epoxy (meth)acrylate resin. These other (meth)acrylate resins can be used alone or in combination of two or more.

前記デンドリマー型(メタ)アクリレート樹脂とは、規則性のある多分岐構造を有し、各分岐鎖の末端に(メタ)アクリロイル基を有する樹脂のことをいい、デンドリマー型の他、ハイパーブランチ型或いはスターポリマーなどと呼ばれている。このような化合物は、例えば、下記構造式(1-1)~(1-8)で表されるものなどが挙げられるが、これらに限定されるものではなく、規則性のある多分岐構造を有し、各分岐鎖の末端に(メタ)アクリロイル基を有する樹脂であればいずれのものも用いることができる。 The above-mentioned dendrimer type (meth)acrylate resin refers to a resin having a regular multi-branched structure and a (meth)acryloyl group at the end of each branched chain, and includes dendrimer type, hyperbranched type or It is also called star polymer. Examples of such compounds include, but are not limited to, those represented by the following structural formulas (1-1) to (1-8). Any resin can be used as long as it has a (meth)acryloyl group at the end of each branched chain.

Figure 0007364098000001
Figure 0007364098000001

Figure 0007364098000002
[式(1-1)~(1-8)中、Rは水素原子又はメチル基であり、Rは炭素原子数1~4の炭化水素基である。]
Figure 0007364098000002
[In formulas (1-1) to (1-8), R 1 is a hydrogen atom or a methyl group, and R 2 is a hydrocarbon group having 1 to 4 carbon atoms. ]

前記デンドリマー型(メタ)アクリレート樹脂の市販品としては、例えば、大阪有機化学株式会社製「ビスコート#1000」[重量平均分子量(Mw)1,500~2,000、一分子あたりの平均(メタ)アクリロイル基数14]、「ビスコート1020」[重量平均分子量(Mw)1,000~3,000]、「SIRIUS501」[重量平均分子量(Mw)15,000~23,000]、MIWON社製「SP-1106」[重量平均分子量(Mw)1,630、一分子あたりの平均(メタ)アクリロイル基数18]、SARTOMER社製「CN2301」、「CN2302」[一分子あたりの平均(メタ)アクリロイル基数16]、「CN2303」[一分子あたりの平均(メタ)アクリロイル基数6]、「CN2304」[一分子あたりの平均(メタ)アクリロイル基数18]、新日鉄住金化学株式会社製「エスドリマーHU-22」、新中村化学株式会社製「A-HBR-5」、第一工業製薬株式会社製「ニューフロンティアR-1150」、日産化学株式会社製「ハイパーテックUR-101」等が挙げられる。 As a commercial product of the dendrimer type (meth)acrylate resin, for example, "Viscoat #1000" manufactured by Osaka Organic Chemical Co., Ltd. [weight average molecular weight (Mw) 1,500 to 2,000, average per molecule (meth) Acryloyl group number 14], “Viscoat 1020” [weight average molecular weight (Mw) 1,000 to 3,000], “SIRIUS501” [weight average molecular weight (Mw) 15,000 to 23,000], MIWON “SP- 1106" [weight average molecular weight (Mw) 1,630, average number of (meth)acryloyl groups per molecule 18], manufactured by SARTOMER "CN2301", "CN2302" [average number of (meth)acryloyl groups per molecule 16], "CN2303" [average number of (meth)acryloyl groups per molecule: 6], "CN2304" [average number of (meth)acryloyl groups per molecule: 18], "Esdrimer HU-22" manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., Shin Nakamura Chemical Examples include "A-HBR-5" manufactured by Daiichi Kogyo Seiyaku Co., Ltd., "New Frontier R-1150" manufactured by Daiichi Kogyo Seiyaku Co., Ltd., and "Hypertech UR-101" manufactured by Nissan Chemical Co., Ltd.

前記デンドリマー型(メタ)アクリレート樹脂の重量平均分子量(Mw)は、1,000~30,000の範囲であることが好ましい。また、一分子あたりの平均(メタ)アクリロイル基数は、5~30の範囲が好ましい。 The weight average molecular weight (Mw) of the dendrimer type (meth)acrylate resin is preferably in the range of 1,000 to 30,000. Further, the average number of (meth)acryloyl groups per molecule is preferably in the range of 5 to 30.

前記ウレタン(メタ)アクリレート樹脂(B2)は、例えば、各種のポリイソシアネート化合物、水酸基を有する(メタ)アクリレート化合物、及び必要に応じて各種のポリオール化合物を反応させて得られるものが挙げられる。前記ポリイソシアネート化合物は、例えば、ブタンジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート化合物;ノルボルナンジイソシアネート、イソホロンジイソシアネート、水添キシリレンジイソシアネート、水添ジフェニルメタンジイソシアネート等の脂環式ジイソシアネート化合物;トリレンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、ジフェニルメタンジイソシアネート、1,5-ナフタレンジイソシアネート等の芳香族ジイソシアネート化合物;下記構造式(2)で表される繰り返し構造を有するポリメチレンポリフェニルポリイソシアネート;これらのイソシアヌレート変性体、ビウレット変性体、アロファネート変性体等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。 Examples of the urethane (meth)acrylate resin (B2) include those obtained by reacting various polyisocyanate compounds, (meth)acrylate compounds having a hydroxyl group, and, if necessary, various polyol compounds. The polyisocyanate compounds include, for example, aliphatic diisocyanate compounds such as butane diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, and 2,4,4-trimethylhexamethylene diisocyanate; norbornane diisocyanate, isophorone diisocyanate, and water. Alicyclic diisocyanate compounds such as doped xylylene diisocyanate and hydrogenated diphenylmethane diisocyanate; Aromatic diisocyanate compounds such as tolylene diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, diphenylmethane diisocyanate, and 1,5-naphthalene diisocyanate; The following structural formula Polymethylene polyphenyl polyisocyanate having a repeating structure represented by (2); examples thereof include isocyanurate-modified products, biuret-modified products, allophanate-modified products, and the like. Each of these may be used alone, or two or more types may be used in combination.

Figure 0007364098000003
[式(2)中、Rはそれぞれ独立に水素原子、炭素原子数1~6の炭化水素基の何れかである。Rはそれぞれ独立に炭素原子数1~4のアルキル基、又は構造式(2)で表される構造部位と*印が付されたメチレン基を介して連結する結合点の何れかである。lは0又は1~3の整数であり、mは1以上の整数である。]
Figure 0007364098000003
[In formula (2), R 3 is each independently a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms. R 4 each independently represents either an alkyl group having 1 to 4 carbon atoms or a bonding point connected to the structural moiety represented by Structural Formula (2) via a methylene group marked with *. l is 0 or an integer of 1 to 3, and m is an integer of 1 or more. ]

前記水酸基を有する(メタ)アクリレート化合物は、例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等の水酸基を有する(メタ)アクリレート化合物;前記各種の水酸基を有する(メタ)アクリレート化合物の分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等の(ポリ)オキシアルキレン鎖を導入した(ポリ)オキシアルキレン変性体;前記各種の水酸基を有する(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性体等が挙げられる。 The (meth)acrylate compound having a hydroxyl group is, for example, hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, trimethylolpropane di(meth)acrylate, pentaerythritol tri(meth)acrylate, ditrimethylolpropane tri(meth)acrylate, etc. ) acrylate, dipentaerythritol (meth)acrylate compounds having a hydroxyl group such as penta(meth)acrylate; (meth)acrylate compounds having various hydroxyl groups have (poly)oxyethylene chains and (poly)oxypropylene in their molecular structures; (poly)oxyalkylene modified product into which a (poly)oxyalkylene chain such as a (poly)oxytetramethylene chain or the like is introduced; Examples include introduced lactone modified products.

前記ポリオール化合物は、例えば、エチレングリコール、プロプレングリコール、ブタンジオール、ヘキサンジオール、グリセリン、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール等の脂肪族ポリオール化合物;ビフェノール、ビスフェノール等の芳香族ポリオール化合物;前記各種のポリオール化合物の分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等の(ポリ)オキシアルキレン鎖を導入した(ポリ)オキシアルキレン変性体;前記各種のポリオール化合物の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性体等が挙げられる。 The polyol compounds include, for example, aliphatic polyol compounds such as ethylene glycol, propene glycol, butanediol, hexanediol, glycerin, trimethylolpropane, ditrimethylolpropane, pentaerythritol, and dipentaerythritol; aromatic polyol compounds such as biphenol and bisphenol. Polyol compound; (poly)oxyalkylene in which a (poly)oxyalkylene chain such as a (poly)oxyethylene chain, (poly)oxypropylene chain, or (poly)oxytetramethylene chain is introduced into the molecular structure of the various polyol compounds mentioned above. Modified products: Examples include lactone modified products in which a (poly)lactone structure is introduced into the molecular structure of the various polyol compounds described above.

前記アクリル(メタ)アクリレート樹脂としては、例えば、水酸基やカルボキシル基、イソシアネート基、グリシジル基等の反応性官能基を有する(メタ)アクリレート化合物(α)を必須の成分として重合させて得られるアクリル樹脂中間体に、これらの官能基と反応し得る反応性官能基を有する(メタ)アクリレート化合物(β)を更に反応させることにより(メタ)アクリロイル基を導入して得られるものが挙げられる。 The acrylic (meth)acrylate resin is, for example, an acrylic resin obtained by polymerizing a (meth)acrylate compound (α) having a reactive functional group such as a hydroxyl group, a carboxyl group, an isocyanate group, or a glycidyl group as an essential component. Examples include those obtained by introducing a (meth)acryloyl group into the intermediate by further reacting a (meth)acrylate compound (β) having a reactive functional group capable of reacting with these functional groups.

前記反応性官能基を有する(メタ)アクリレート化合物(α)は、例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート等の水酸基を有する(メタ)アクリレートモノマー;(メタ)アクリル酸等のカルボキシル基を有する(メタ)アクリレートモノマー;2-アクリロイルオキシエチルイソシアネート、2-メタクリロイルオキシエチルイソシアネート、1,1-ビス(アクリロイルオキシメチル)エチルイソシアネート等のイソシアネート基を有する(メタ)アクリレートモノマー;グリシジル(メタ)アクリレート、4-ヒドロキシブチルアクリレートグリシジルエーテル等のグリシジル基を有する(メタ)アクリレートモノマー等が挙げられる。これらは単独で用いることも2種以上を併用することもできる。 The (meth)acrylate compound (α) having a reactive functional group is, for example, a (meth)acrylate monomer having a hydroxyl group such as hydroxyethyl (meth)acrylate or hydroxypropyl (meth)acrylate; (Meth)acrylate monomers having carboxyl groups; (meth)acrylate monomers having isocyanate groups such as 2-acryloyloxyethyl isocyanate, 2-methacryloyloxyethyl isocyanate, 1,1-bis(acryloyloxymethyl)ethyl isocyanate; glycidyl ( Examples include (meth)acrylate monomers having a glycidyl group such as meth)acrylate and 4-hydroxybutyl acrylate glycidyl ether. These can be used alone or in combination of two or more.

前記アクリル樹脂中間体は、前記(メタ)アクリレート化合物(α)の他、必要に応じてその他の重合性不飽和基を有する化合物を共重合させたものであってもよい。前記その他の重合性不飽和基を有する化合物は、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート等の(メタ)アクリル酸アルキルエステル;シクロヘキシル(メタ)アクリレート、イソボロニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート等の脂環式構造含有(メタ)アクリレート;フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチルアクリレート等の芳香環含有(メタ)アクリレート;3-メタクリロキシプロピルトリメトキシシラン等のシリル基を有する(メタ)アクリレート;スチレン、α-メチルスチレン、クロロスチレン等のスチレン誘導体等が挙げられる。これらは単独で用いることも2種以上を併用することもできる。 In addition to the (meth)acrylate compound (α), the acrylic resin intermediate may be one obtained by copolymerizing other compounds having polymerizable unsaturated groups as necessary. Examples of the other compounds having polymerizable unsaturated groups include (meth)acrylate, such as methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, and 2-ethylhexyl (meth)acrylate. ) Acrylic acid alkyl ester; alicyclic structure-containing (meth)acrylates such as cyclohexyl (meth)acrylate, isobornyl (meth)acrylate, dicyclopentanyl (meth)acrylate; phenyl (meth)acrylate, benzyl (meth)acrylate, Examples include aromatic ring-containing (meth)acrylates such as phenoxyethyl acrylate; (meth)acrylates having a silyl group such as 3-methacryloxypropyltrimethoxysilane; and styrene derivatives such as styrene, α-methylstyrene, and chlorostyrene. These can be used alone or in combination of two or more.

前記アクリル樹脂中間体は、一般的なアクリル樹脂と同様の方法にて製造することができる。製造条件の一例としては、例えば、重合開始剤の存在下、60℃~150℃の温度領域で各種モノマーを重合させることにより製造することができる。重合の方法は、例えば、塊状重合法、溶液重合法、懸濁重合法、乳化重合法等が挙げられる。また、重合様式は、例えば、ランダム共重合体、ブロック共重合体、グラフト共重合体等が挙げられる。溶液重合法で行う場合には、例えば、メチルエチルケトン、メチルイソブチルケトン等のケトン溶媒や、プロピレングリコールモノメチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル等のグリコールエーテル溶媒を好ましく用いることができる。 The acrylic resin intermediate can be produced in the same manner as general acrylic resins. As an example of production conditions, it can be produced, for example, by polymerizing various monomers in the presence of a polymerization initiator at a temperature range of 60°C to 150°C. Examples of polymerization methods include bulk polymerization, solution polymerization, suspension polymerization, and emulsion polymerization. Moreover, examples of the polymerization mode include random copolymers, block copolymers, graft copolymers, and the like. When carrying out the solution polymerization method, for example, ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone, and glycol ether solvents such as propylene glycol monomethyl ether, propylene glycol dimethyl ether, propylene glycol monopropyl ether, and propylene glycol monobutyl ether are preferably used. I can do it.

前記(メタ)アクリレート化合物(β)は、前記(メタ)アクリレート化合物(α)が有する反応性官能基と反応し得るものであれば特に限定されないが、反応性の観点から以下の組み合わせであることが好ましい。即ち、前記(メタ)アクリレート化合物(α)として水酸基を有する(メタ)アクリレートを用いた場合には、(メタ)アクリレート化合物(β)としてイソシアネート基を有する(メタ)アクリレートを用いることが好ましい。前記(メタ)アクリレート化合物(α)としてカルボキシル基を有する(メタ)アクリレートを用いた場合には、(メタ)アクリレート化合物(β)としてグリシジル基を有する(メタ)アクリレートを用いることが好ましい。前記(メタ)アクリレート化合物(α)としてイソシアネート基を有する(メタ)アクリレートを用いた場合には、(メタ)アクリレート化合物(β)として水酸基を有する(メタ)アクリレートを用いることが好ましい。前記(メタ)アクリレート化合物(α)としてグリシジル基を有する(メタ)アクリレートを用いた場合には、(メタ)アクリレート化合物(β)としてカルボキシル基を有する(メタ)アクリレートを用いることが好ましい。前記(メタ)アクリレート化合物(β)は、単独で用いることも2種以上を併用することもできる。 The (meth)acrylate compound (β) is not particularly limited as long as it can react with the reactive functional group possessed by the (meth)acrylate compound (α), but from the viewpoint of reactivity it should be the following combination: is preferred. That is, when a (meth)acrylate having a hydroxyl group is used as the (meth)acrylate compound (α), it is preferable to use a (meth)acrylate having an isocyanate group as the (meth)acrylate compound (β). When a (meth)acrylate having a carboxyl group is used as the (meth)acrylate compound (α), it is preferable to use a (meth)acrylate having a glycidyl group as the (meth)acrylate compound (β). When a (meth)acrylate having an isocyanate group is used as the (meth)acrylate compound (α), it is preferable to use a (meth)acrylate having a hydroxyl group as the (meth)acrylate compound (β). When a (meth)acrylate having a glycidyl group is used as the (meth)acrylate compound (α), it is preferable to use a (meth)acrylate having a carboxyl group as the (meth)acrylate compound (β). The (meth)acrylate compound (β) can be used alone or in combination of two or more.

前記アクリル樹脂中間体と(メタ)アクリレート化合物(β)との反応は、例えば、該反応がエステル化反応である場合には、60~150℃の温度範囲で、トリフェニルホスフィン等のエステル化触媒を適宜用いるなどの方法が挙げられる。また、該反応がウレタン化反応である場合には、50~120℃の温度範囲で、アクリル樹脂中間体に化合物(β)を滴下しながら反応させる等の方法が挙げられる。両者の反応割合は、前記アクリル樹脂中間体中の官能基数1モルに対し、前記(メタ)アクリレート化合物(β)を1.0~1.1モルの範囲で用いることが好ましい。 For example, when the reaction is an esterification reaction, the reaction between the acrylic resin intermediate and the (meth)acrylate compound (β) is carried out at a temperature range of 60 to 150°C using an esterification catalyst such as triphenylphosphine. Examples of such methods include appropriately using . In addition, when the reaction is a urethanization reaction, a method such as allowing the reaction to occur while dropping the compound (β) onto the acrylic resin intermediate at a temperature range of 50 to 120°C can be mentioned. The reaction ratio between the two is preferably 1.0 to 1.1 mol of the (meth)acrylate compound (β) per 1 mol of functional groups in the acrylic resin intermediate.

前記エポキシ(メタ)アクリレート樹脂としては、例えば、エポキシ樹脂に(メタ)アクリル酸又はその無水物を反応させて得られるものが挙げられる。前記エポキシ樹脂は、例えば、ヒドロキノン、カテコール等の2価フェノールのジグリシジルエーテル;3,3’-ビフェニルジオール、4,4’-ビフェニルジオール等のビフェノール化合物のジグリシジルエーテル;ビスフェノールA型エポキシ樹脂、ビスフェノールB型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等のビスフェノール型エポキシ樹脂;1,4-ナフタレンジオール、1,5-ナフタレンジオール、1,6-ナフタレンジオール、2,6-ナフタレンジオール、2,7-ナフタレンジオール、ビナフトール、ビス(2,7-ジヒドロキシナフチル)メタン等のナフトール化合物のポリグリジシルエーテル;4,4’,4”-メチリジントリスフェノール等のトリグリシジルエーテル;フェノールノボラック型エポキシ樹脂、クレゾールノボラック樹脂等のノボラック型エポキシ樹脂;前記各種のエポキシ樹脂の分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等の(ポリ)オキシアルキレン鎖を導入した(ポリ)オキシアルキレン変性体;前記各種のエポキシ樹脂の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性体等が挙げられる。 Examples of the epoxy (meth)acrylate resin include those obtained by reacting an epoxy resin with (meth)acrylic acid or its anhydride. The epoxy resin is, for example, diglycidyl ether of dihydric phenol such as hydroquinone or catechol; diglycidyl ether of biphenol compound such as 3,3'-biphenyldiol or 4,4'-biphenyldiol; bisphenol A type epoxy resin; Bisphenol type epoxy resins such as bisphenol B type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin; 1,4-naphthalene diol, 1,5-naphthalene diol, 1,6-naphthalene diol, 2,6-naphthalene Polyglycidyl ethers of naphthol compounds such as diols, 2,7-naphthalenediol, binaphthol, and bis(2,7-dihydroxynaphthyl)methane; triglycidyl ethers such as 4,4',4''-methylidine trisphenol; phenol Novolak type epoxy resins such as novolac type epoxy resins and cresol novolac resins; ) A (poly)oxyalkylene modified product in which an oxyalkylene chain is introduced; a lactone modified product in which a (poly)lactone structure is introduced into the molecular structure of the various epoxy resins mentioned above.

また、本発明の活性エネルギー線硬化性樹脂組成物は、更にその他の成分を含有していてもよい。前記その他の成分としては、例えば、無機微粒子、シランカップリング剤、リン酸エステル化合物、溶剤、紫外線吸収剤、酸化防止剤、シリコン系添加剤、フッ素系添加剤、帯電防止剤、有機ビーズ、量子ドット(QD)、レオロジーコントロール剤、脱泡剤、防曇剤、着色剤等が挙げられる。 Moreover, the active energy ray-curable resin composition of the present invention may further contain other components. Examples of the other components include inorganic fine particles, silane coupling agents, phosphate ester compounds, solvents, ultraviolet absorbers, antioxidants, silicon additives, fluorine additives, antistatic agents, organic beads, quantum Examples include dots (QD), rheology control agents, defoaming agents, antifogging agents, coloring agents, and the like.

前記無機微粒子は、活性エネルギー線硬化性樹脂組成物の硬化塗膜における硬度や屈折率等を調整する等の目的で添加されるものであり、公知慣用の種々の無機微粒子を用いることができる。一例としては、シリカ、アルミナ、ジルコニア、チタニア、チタン酸バリウム、三酸化アンチモン等の微粒子が挙げられる。これらはそれぞれ単独で用いても良いし、二種類以上を併用しても良い。 The inorganic fine particles are added for the purpose of adjusting the hardness, refractive index, etc. of the cured coating film of the active energy ray-curable resin composition, and various known and commonly used inorganic fine particles can be used. Examples include fine particles of silica, alumina, zirconia, titania, barium titanate, antimony trioxide, and the like. These may be used alone or in combination of two or more.

これら無機微粒子の中でも、入手が容易で扱いが簡便なことからシリカ粒子が好ましい。シリカ粒子は、例えば、フュームドシリカや、沈殿法シリカ、ゲルシリカ、ゾルゲルシリカ等と呼ばれる湿式シリカなど各種のシリカ粒子が挙げられ、いずれを用いても良い。 Among these inorganic fine particles, silica particles are preferred because they are easily available and easy to handle. Examples of the silica particles include various silica particles such as fumed silica, wet silica called precipitated silica, gel silica, and sol-gel silica, and any of them may be used.

前記無機微粒子は、各種シランカップリング剤にて微粒子表面に官能基を導入したものでも良い。該無機微粒子の表面に官能基を導入することにより、前記アクリル(メタ)アクリレート樹脂(A)等の有機成分との混和性が高まり、保存安定性が向上する。 The inorganic fine particles may have functional groups introduced onto their surfaces using various silane coupling agents. By introducing a functional group onto the surface of the inorganic fine particles, the miscibility with organic components such as the acrylic (meth)acrylate resin (A) is increased, and storage stability is improved.

前記無機微粒子を修飾するシランカップリング剤は、例えば、[(メタ)アクリロイルオキシアルキル]トリアルキルシラン、[(メタ)アクリロイルオキシアルキル]ジアルキルアルコキシシラン、[(メタ)アクリロイルオキシアルキル]アルキルジアルコキシシラン、[(メタ)アクリロイルオキシアルキル]トリアルコキシシラン、当の(メタ)アクリロイルオキシ系シランカップリング剤;トリアルキルビニルシラン、ジアルキルアルコキシビニルシラン、アルキルジアルコキシビニルシラン、トリアルコキシビニルシラン、トリアルキルアリルシラン、ジアルキルアルコキシアリルシラン、アルキルジアルコキシアリルシラン、トリアルコキシアリルシラン等のビニル系シランカップリング剤;スチリルトリアルキル、スチリルジアルキルアルコキシシラン、スチリルアルキルジアルコキシシラン、スチリルトリアルコキシシラン等のスチレン系シランカップリング剤;(グリシジルオキシアルキル)トリアルキルシラン、(グリシジルオキシアルキル)ジアルキルアルコキシシラン、(グリシジルオキシアルキル)アルキルジアルコキシシラン、(グリシジルオキシアルキル)トリアルコキシシラン、[(3,4-エポキシシクロヘキシル)アルキル]トリメトキシシラン、[(3,4-エポキシシクロヘキシル)アルキル]トリアルキルシラン、[(3,4-エポキシシクロヘキシル)アルキル]ジアルキルアルコキシシラン、[(3,4-エポキシシクロヘキシル)アルキル]アルキルジアルコキシシラン、[(3,4-エポキシシクロヘキシル)アルキル]トリアルコキシシラン等のエポキシ系シランカップリング剤;(イソシアネートアルキル)トリアルキルシラン、(イソシアネートアルキル)ジアルキルアルコキシシラン、(イソシアネートアルキル)アルキルジアルコキシシラン、(イソシアネートアルキル)トリアルコキシシラン等のイソシアネート系シランカップリング剤等が挙げられる。これらそれぞれ単独で用いても良いし、2種類以上を併用しても良い。 Examples of the silane coupling agent that modifies the inorganic fine particles include [(meth)acryloyloxyalkyl]trialkylsilane, [(meth)acryloyloxyalkyl]dialkylalkoxysilane, and [(meth)acryloyloxyalkyl]alkyldialkoxysilane. , [(meth)acryloyloxyalkyl]trialkoxysilane, the (meth)acryloyloxy-based silane coupling agent; trialkylvinylsilane, dialkylalkoxyvinylsilane, alkyldialkoxyvinylsilane, trialkoxyvinylsilane, trialkylarylsilane, dialkylalkoxyallylsilane , alkyldialkoxyallylsilane, trialkoxyallylsilane; styrenic silane coupling agents such as styryltrialkyl, styryldialkylalkoxysilane, styrylalkyldialkoxysilane, styryltrialkoxysilane; (glycidyloxyalkyl) ) trialkylsilane, (glycidyloxyalkyl)dialkylalkoxysilane, (glycidyloxyalkyl)alkyldialkoxysilane, (glycidyloxyalkyl)trialkoxysilane, [(3,4-epoxycyclohexyl)alkyl]trimethoxysilane, [( 3,4-epoxycyclohexyl)alkyl]trialkylsilane, [(3,4-epoxycyclohexyl)alkyl]dialkylalkoxysilane, [(3,4-epoxycyclohexyl)alkyl]alkyldialkoxysilane, [(3,4- Epoxy-based silane coupling agents such as epoxycyclohexyl)alkyl]trialkoxysilane; (isocyanatealkyl)trialkylsilane, (isocyanatealkyl)dialkylalkoxysilane, (isocyanatealkyl)alkyldialkoxysilane, (isocyanatealkyl)trialkoxysilane, etc. Examples include isocyanate-based silane coupling agents. Each of these may be used alone, or two or more types may be used in combination.

前記シランカップリング剤の中でも、前記アクリル(メタ)アクリレート樹脂等の有機成分との混和性に優れる無機微粒子となることから、(メタ)アクリロイルオキシ系シランカップリング剤が好ましく、3-(メタ)アクリロイルオキシプロピルトリメトキシシラン等の[(メタ)アクリロイルオキシアルキル]トリアルコキシシランが特に好ましい。 Among the silane coupling agents, (meth)acryloyloxy-based silane coupling agents are preferred because they form inorganic fine particles with excellent miscibility with organic components such as the acrylic (meth)acrylate resin. Particularly preferred are [(meth)acryloyloxyalkyl]trialkoxysilanes such as acryloyloxypropyltrimethoxysilane.

前記無機微粒子の平均粒子径は特に限定されず、所望の硬化物性能等に応じて適宜調整してよい。特に、耐擦傷性とクラック防止性の他、耐ブロッキング性や透明性等にも優れる硬化塗膜が得られることから、前記無機微粒子の平均粒子径は80~250nmの範囲であることが好ましく、90~180nmの範囲であることがより好ましく、100~150nmの範囲であることが特に好ましい。 The average particle diameter of the inorganic fine particles is not particularly limited, and may be adjusted as appropriate depending on the desired performance of the cured product. In particular, the average particle diameter of the inorganic fine particles is preferably in the range of 80 to 250 nm, since a cured coating film having excellent anti-blocking properties and transparency in addition to scratch resistance and crack prevention properties can be obtained. The range is more preferably from 90 to 180 nm, and particularly preferably from 100 to 150 nm.

なお、前記無機微粒子の平均粒子径は、活性エネルギー線硬化性樹脂組成物中の粒子径を以下の条件で測定した値である。
粒子径測定装置:大塚電子株式会社製「ELSZ-2」
粒子径測定サンプル:活性エネルギー線硬化性樹脂組成物を不揮発分1質量%のメチルイソブチルケトン溶液としたもの。
The average particle diameter of the inorganic fine particles is a value obtained by measuring the particle diameter in the active energy ray-curable resin composition under the following conditions.
Particle size measuring device: “ELSZ-2” manufactured by Otsuka Electronics Co., Ltd.
Particle size measurement sample: A solution of an active energy ray-curable resin composition in methyl isobutyl ketone with a nonvolatile content of 1% by mass.

本発明の活性エネルギー線硬化性樹脂組成物中、前記無機微粒子の含有量は特に限定されず、所望の硬化物性能等に応じて適宜調整してよい。特に、耐擦傷性に優れる硬化塗膜が得られることから、前記無機微粒子の含有率は、前記アクリル(メタ)アクリレート樹脂100質量部に対して10~100質量部の範囲であることが好ましい。 In the active energy ray-curable resin composition of the present invention, the content of the inorganic fine particles is not particularly limited, and may be adjusted as appropriate depending on the desired performance of the cured product. In particular, since a cured coating film with excellent scratch resistance can be obtained, the content of the inorganic fine particles is preferably in the range of 10 to 100 parts by mass based on 100 parts by mass of the acrylic (meth)acrylate resin.

前記活性エネルギー線硬化性樹脂組成物中に添加するシランカップリング剤は例えば、[(メタ)アクリロイルオキシアルキル]トリアルキルシラン、[(メタ)アクリロイルオキシアルキル]ジアルキルアルコキシシラン、[(メタ)アクリロイルオキシアルキル]アルキルジアルコキシシラン、[(メタ)アクリロイルオキシアルキル]トリアルコキシシラン等の(メタ)アクリロイルオキシ系シランカップリング剤;トリアルキルビニルシラン、ジアルキルアルコキシビニルシラン、アルキルジアルコキシビニルシラン、トリアルコキシビニルシラン、トリアルキルアリルシラン、ジアルキルアルコキシアリルシラン、アルキルジアルコキシアリルシラン、トリアルコキシアリルシラン等のビニル系シランカップリング剤;スチリルトリアルキル、スチリルジアルキルアルコキシシラン、スチリルアルキルジアルコキシシラン、スチリルトリアルコキシシラン等のスチレン系シランカップリング剤;(グリシジルオキシアルキル)トリアルキルシラン、(グリシジルオキシアルキル)ジアルキルアルコキシシラン、(グリシジルオキシアルキル)アルキルジアルコキシシラン、(グリシジルオキシアルキル)トリアルコキシシラン、[(3,4-エポキシシクロヘキシル)アルキル]トリメトキシシラン、[(3,4-エポキシシクロヘキシル)アルキル]トリアルキルシラン、[(3,4-エポキシシクロヘキシル)アルキル]ジアルキルアルコキシシラン、[(3,4-エポキシシクロヘキシル)アルキル]アルキルジアルコキシシラン、[(3,4-エポキシシクロヘキシル)アルキル]トリアルコキシシラン等のエポキシ系シランカップリング剤;(イソシアネートアルキル)トリアルキルシラン、(イソシアネートアルキル)ジアルキルアルコキシシラン、(イソシアネートアルキル)アルキルジアルコキシシラン、(イソシアネートアルキル)トリアルコキシシラン等のイソシアネート系シランカップリング剤等が挙げられる。これらそれぞれ単独で用いても良いし、2種類以上を併用しても良い。 Examples of the silane coupling agent added to the active energy ray-curable resin composition include [(meth)acryloyloxyalkyl]trialkylsilane, [(meth)acryloyloxyalkyl]dialkylalkoxysilane, and [(meth)acryloyloxy]. (meth)acryloyloxy-based silane coupling agents such as [alkyl]alkyldialkoxysilane, [(meth)acryloyloxyalkyl]trialkoxysilane; trialkylvinylsilane, dialkylalkoxyvinylsilane, alkyldialkoxyvinylsilane, trialkoxyvinylsilane, trialkyl Vinyl silane coupling agents such as allylsilane, dialkylalkoxyallylsilane, alkyldialkoxyallylsilane, and trialkoxyallylsilane; Styrenic silane coupling agents such as styryltrialkyl, styryldialkylalkoxysilane, styrylalkyldialkoxysilane, and styryltrialkoxysilane ; (glycidyloxyalkyl)trialkylsilane, (glycidyloxyalkyl)dialkylalkoxysilane, (glycidyloxyalkyl)alkyldialkoxysilane, (glycidyloxyalkyl)trialkoxysilane, [(3,4-epoxycyclohexyl)alkyl]tri Methoxysilane, [(3,4-epoxycyclohexyl)alkyl]trialkylsilane, [(3,4-epoxycyclohexyl)alkyl]dialkylalkoxysilane, [(3,4-epoxycyclohexyl)alkyl]alkyldialkoxysilane, [ Epoxy-based silane coupling agents such as (3,4-epoxycyclohexyl)alkyl]trialkoxysilane; (isocyanatealkyl)trialkylsilane, (isocyanatealkyl)dialkylalkoxysilane, (isocyanatealkyl)alkyldialkoxysilane, (isocyanatealkyl) ) Isocyanate-based silane coupling agents such as trialkoxysilane and the like. Each of these may be used alone, or two or more types may be used in combination.

前記リン酸エステル化合物の市販品としては、例えば、分子構造中に(メタ)アクリロイル基を有するリン酸エステル化合物である日本化薬株式会社製「カヤマーPM-2」、「カヤマーPM-21」、共栄社化学株式会社製「ライトエステルP-1M」「ライトエステルP-2M」、「ライトアクリレートP-1A(N)」、SOLVAY社製「SIPOMER PAM 100」、「SIPOMER PAM 200」、「SIPOMER PAM 300」、「SIPOMER PAM 4000」、大阪有機化学工業社製「ビスコート#3PA」、「ビスコート#3PMA」、第一工業製薬社製「ニューフロンティア S-23A」;分子構造中にアリルエーテル基を有するリン酸エステル化合物であるSOLVAY社製「SIPOMER PAM 5000」等が挙げられる。 Examples of commercially available phosphate ester compounds include "Kayamar PM-2" and "Kayamar PM-21" manufactured by Nippon Kayaku Co., Ltd., which are phosphoric ester compounds having a (meth)acryloyl group in their molecular structure. "Light Ester P-1M", "Light Ester P-2M", "Light Acrylate P-1A (N)" manufactured by Kyoeisha Chemical Co., Ltd. "SIPOMER PAM 100", "SIPOMER PAM 200", "SIPOMER PAM 300" manufactured by SOLVAY ”, “SIPOMER PAM 4000”, “Viscoat #3PA”, “Viscoat #3PMA”, manufactured by Osaka Organic Chemical Industry Co., Ltd., “New Frontier S-23A”, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.; Examples include "SIPOMER PAM 5000" manufactured by SOLVAY, which is an acid ester compound.

前記溶剤は、活性エネルギー線硬化性樹脂組成物の塗工粘度調節等の目的で添加されるものであり、その種類や添加量は、所望の性能に応じて適宜調整される。一般には、活性エネルギー線硬化性樹脂組成物の不揮発分が10~90質量%の範囲となるように用いられる。前記溶剤の具体例としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン溶剤;テトラヒドロフラン、ジオキソラン等の環状エーテル溶剤;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル;トルエン、キシレン等の芳香族溶剤;シクロヘキサン、メチルシクロヘキサン等の脂環族溶剤;カルビトール、セロソルブ、メタノール、イソプロパノール、ブタノール、プロピレングリコールモノメチルエーテルなどのアルコール溶剤;エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル等のグリコールエーテル系溶剤などが挙げられる。これらの溶剤は、単独で用いることも2種以上を併用することもできる。 The solvent is added for the purpose of controlling the coating viscosity of the active energy ray-curable resin composition, and the type and amount thereof are adjusted as appropriate depending on the desired performance. Generally, the active energy ray-curable resin composition is used so that the nonvolatile content is in the range of 10 to 90% by mass. Specific examples of the solvent include ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; cyclic ether solvents such as tetrahydrofuran and dioxolane; esters such as methyl acetate, ethyl acetate, and butyl acetate; and aromatic solvents such as toluene and xylene. Solvents: Alicyclic solvents such as cyclohexane and methylcyclohexane; Alcohol solvents such as carbitol, cellosolve, methanol, isopropanol, butanol, and propylene glycol monomethyl ether; Ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene Examples include glycol ether solvents such as glycol monopropyl ether. These solvents can be used alone or in combination of two or more.

前記紫外線吸収剤としては、例えば、2-[4-{(2-ヒドロキシ-3-ドデシルオキシプロピル)オキシ}-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-[4-{(2-ヒドロキシ-3-トリデシルオキシプロピル)オキシ}-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン等のトリアジン誘導体、2-(2’-キサンテンカルボキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-o-ニトロベンジロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-キサンテンカルボキシ-4-ドデシロキシベンゾフェノン、2-o-ニトロベンジロキシ-4-ドデシロキシベンゾフェノン等が挙げられる。これらの紫外線吸収剤は、単独で用いることも2種以上を併用することもできる。 Examples of the ultraviolet absorber include 2-[4-{(2-hydroxy-3-dodecyloxypropyl)oxy}-2-hydroxyphenyl]-4,6-bis(2,4-dimethylphenyl)-1 , 3,5-triazine, 2-[4-{(2-hydroxy-3-tridecyloxypropyl)oxy}-2-hydroxyphenyl]-4,6-bis(2,4-dimethylphenyl)-1, Triazine derivatives such as 3,5-triazine, 2-(2'-xanthenecarboxy-5'-methylphenyl)benzotriazole, 2-(2'-o-nitrobenzyloxy-5'-methylphenyl)benzotriazole, 2 -xanthenecarboxy-4-dodecyloxybenzophenone, 2-o-nitrobenzyloxy-4-dodecyloxybenzophenone, and the like. These ultraviolet absorbers can be used alone or in combination of two or more.

前記酸化防止剤としては、例えば、ヒンダードフェノール系酸化防止剤、ヒンダードアミン系酸化防止剤、有機硫黄系酸化防止剤、リン酸エステル系酸化防止剤等が挙げられる。これらの酸化防止剤は、単独で用いることも2種以上を併用することもできる。 Examples of the antioxidant include hindered phenol antioxidants, hindered amine antioxidants, organic sulfur antioxidants, phosphate ester antioxidants, and the like. These antioxidants can be used alone or in combination of two or more.

前記シリコン系添加剤としては、例えば、ジメチルポリシロキサン、メチルフェニルポリシロキサン、環状ジメチルポリシロキサン、メチルハイドロゲンポリシロキサン、ポリエーテル変性ジメチルポリシロキサン共重合体、ポリエステル変性ジメチルポリシロキサン共重合体、フッ素変性ジメチルポリシロキサン共重合体、アミノ変性ジメチルポリシロキサン共重合体など如きアルキル基やフェニル基を有するポリオルガノシロキサン、ポリエーテル変性アクリル基を有するポリジメチルシロキサン、ポリエステル変性アクリル基を有するポリジメチルシロキサン等が挙げられる。これらのシリコン系添加剤は、単独で用いることも2種以上を併用することもできる。 Examples of the silicone additive include dimethylpolysiloxane, methylphenylpolysiloxane, cyclic dimethylpolysiloxane, methylhydrogenpolysiloxane, polyether-modified dimethylpolysiloxane copolymer, polyester-modified dimethylpolysiloxane copolymer, and fluorine-modified copolymer. Polyorganosiloxanes having alkyl groups or phenyl groups such as dimethylpolysiloxane copolymers and amino-modified dimethylpolysiloxane copolymers, polydimethylsiloxanes having polyether-modified acrylic groups, polydimethylsiloxanes having polyester-modified acrylic groups, etc. Can be mentioned. These silicon-based additives can be used alone or in combination of two or more.

前記フッ素系添加剤の市販品としては、例えば、DIC株式会社製「メガフェース」シリーズ等が挙げられる。これらのフッ素系添加剤は、単独で用いることも2種以上を併用することもできる。 Examples of commercially available fluorine additives include the "Megaface" series manufactured by DIC Corporation. These fluorine-based additives can be used alone or in combination of two or more.

前記帯電防止剤としては、例えば、ビス(トリフルオロメタンスルホニル)イミド又はビス(フルオロスルホニル)イミドのピリジニウム、イミダゾリウム、ホスホニウム、アンモニウム、又はリチウム塩が挙げられる。これらの帯電防止剤は、単独で用いることも2種以上を併用することもできる。 Examples of the antistatic agent include pyridinium, imidazolium, phosphonium, ammonium, or lithium salts of bis(trifluoromethanesulfonyl)imide or bis(fluorosulfonyl)imide. These antistatic agents can be used alone or in combination of two or more.

前記有機ビーズとしては、例えば、ポリメタクリル酸メチルビーズ、ポリカーボネートビーズ、ポリスチレンビーズ、ポリアクリルスチレンビーズ、シリコーンビ-ズ、ガラスビーズ、アクリルビーズ、ベンゾグアナミン系樹脂ビーズ、メラミン系樹脂ビーズ、ポリオレフィン系樹脂ビーズ、ポリエステル系樹脂ビーズ、ポリアミド樹脂ビーズ、ポリイミド系樹脂ビーズ、ポリフッ化エチレン樹脂ビーズ、ポリエチレン樹脂ビーズ等が挙げられる。これらの有機ビーズは、単独で用いることも2種以上を併用することもできる。また、これらの有機ビーズの平均粒径は1~10μmの範囲であることが好ましい。 Examples of the organic beads include polymethyl methacrylate beads, polycarbonate beads, polystyrene beads, polyacryl styrene beads, silicone beads, glass beads, acrylic beads, benzoguanamine resin beads, melamine resin beads, and polyolefin resin beads. , polyester resin beads, polyamide resin beads, polyimide resin beads, polyfluoroethylene resin beads, polyethylene resin beads, and the like. These organic beads can be used alone or in combination of two or more. Further, the average particle size of these organic beads is preferably in the range of 1 to 10 μm.

前記量子ドット(QD)としては、II-V族半導体化合物、II-VI族半導体化合物、III-IV族半導体化合物、III-V族半導体化合物、III-VI族半導体化合物、IV-VI族半導体化合物、I-III-VI族半導体化合物、II-IV-VI族半導体化合物、II-IV-V族半導体化合物、I-II-IV-VI族半導体化合物、IV族元素又はこれを含む化合物等が挙げられる。前記II-VI族半導体化合物は、例えば、ZnO、ZnS、ZnSe、ZnTe、CdS、CdSe、CdTe、HgS、HgSe、HgTe等の二元化合物;ZnSeS、ZnSeTe、ZnSTe、CdZnS、CdZnSe、CdZnTe、CdSeS、CdSeTe、CdSTe、CdHgS、CdHgSe、CdHgTe、HgSeS、HgSeTe、HgSTe、HgZnS、HgZnSe、HgZnTe等の三元化合物;CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、CdHgZnTe、HgZnSeS、HgZnSeTe、HgZnSTe等の四元化合物等が挙げられる。前記III-IV族半導体化合物は、例えば、B、Al、Ga等が挙げられる。前記III-V族半導体化合物は、例えば、BP、BN、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb等の二元化合物;GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP等の三元化合物;GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSb等の四元化合物等が挙げられる。前記III-VI族半導体化合物は、例えば、Al、AlSe、AlTe、Ga、GaSe、GaTe、GaTe、In、InSe、InTe、InTe等が挙げられる。前記IV-VI族半導体化合物は、例えば、SnS、SnSe、SnTe、PbS、PbSe、PbTe等の二元化合物;SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe等の三元化合物;SnPbSSe、SnPbSeTe、SnPbSTe等の四元化合物等が挙げられる。前記I-III-VI族半導体化合物は、例えば、CuInS、CuInSe、CuInTe、CuGaS、CuGaSe、CuGaSe、AgInS、AgInSe、AgInTe、AgGaSe、AgGaS、AgGaTe等が挙げられる。前記IV族元素又はこれを含む化合物は、例えば、C、Si、Ge、SiC、SiGe等が挙げられる。量子ドットは単一の半導体化合物からなっていてもよいし、複数の半導体化合物からなるコアシェル構造を有していてもよい。また、その表面を有機化合物にて修飾したものであってもよい。The quantum dots (QDs) include II-V group semiconductor compounds, II-VI group semiconductor compounds, III-IV group semiconductor compounds, III-V group semiconductor compounds, III-VI group semiconductor compounds, and IV-VI group semiconductor compounds. , I-III-VI group semiconductor compounds, II-IV-VI group semiconductor compounds, II-IV-V group semiconductor compounds, I-II-IV-VI group semiconductor compounds, group IV elements or compounds containing them, etc. It will be done. The II-VI group semiconductor compound is, for example, a binary compound such as ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, HgS, HgSe, HgTe; ZnSeS, ZnSeTe, ZnSTe, CdZnS, CdZnSe, CdZ. nTe, CdSeS, Ternary compounds such as CdSeTe, CdSTe, CdHgS, CdHgSe, CdHgTe, HgSeS, HgSeTe, HgSTe, HgZnS, HgZnSe, HgZnTe; CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSe Quaternary elements such as S, CdHgSeTe, CdHgSTe, CdHgZnTe, HgZnSeS, HgZnSeTe, HgZnSTe, etc. Examples include compounds. Examples of the III-IV group semiconductor compounds include B 4 C 3 , Al 4 C 3 , and Ga 4 C 3 . The III-V semiconductor compound is, for example, a binary compound such as BP, BN, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb; GaNP, GaNAs, GaNSb, Ternary compounds such as GaPAs, GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, GaAlNP; GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP , GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP , InAlNAs, InAlNSb, InAlPAs, InAlPSb, and other quaternary compounds. The III-VI group semiconductor compounds include, for example, Al 2 S 3 , Al 2 Se 3 , Al 2 Te 3 , Ga 2 S 3 , Ga 2 Se 3 , Ga 2 Te 3 , GaTe, In 2 S 3 , In 2 Se3 , In2Te3 , InTe , etc. are mentioned. The IV-VI group semiconductor compound is, for example, a binary compound such as SnS, SnSe, SnTe, PbS, PbSe, PbTe; or a ternary compound such as SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbTe, etc. ; Examples include quaternary compounds such as SnPbSSe, SnPbSeTe, and SnPbSTe. The I-III-VI group semiconductor compounds include, for example, CuInS 2 , CuInSe 2 , CuInTe 2 , CuGaS 2 , CuGaSe 2 , CuGaSe 2 , AgInS 2 , AgInSe 2 , AgInTe 2 , AgGaSe 2 , AgGaS 2 , AgGaTe 2 etc. Can be mentioned. Examples of the group IV element or a compound containing the same include C, Si, Ge, SiC, and SiGe. A quantum dot may be made of a single semiconductor compound, or may have a core-shell structure made of a plurality of semiconductor compounds. Moreover, the surface may be modified with an organic compound.

これら各種の添加剤は、所望の性能等に応じて任意の量添加することができるが、通常、活性エネルギー線硬化性樹脂組成物中の溶剤を除いた成分の合計100質量%中、0.01~40質量%の範囲で用いることが好ましい。 These various additives can be added in any amount depending on the desired performance, etc., but usually 0.0% to 100% by mass of the total components excluding the solvent in the active energy ray-curable resin composition. It is preferable to use it in a range of 0.01 to 40% by mass.

本発明で用いる活性エネルギー線硬化性樹脂組成物は前記各配合成分を混合して製造される。混合方法は特に限定されず、ペイントシェイカー、ディスパー、ロールミル、ビーズミル、ボールミル、アトライター、サンドミル、ビーズミル等を用いてもよい。 The active energy ray-curable resin composition used in the present invention is produced by mixing the above ingredients. The mixing method is not particularly limited, and a paint shaker, disperser, roll mill, bead mill, ball mill, attritor, sand mill, bead mill, etc. may be used.

本発明の硬化物は、前記活性エネルギー線硬化性樹脂組成物に、活性エネルギー線を照射することで得ることができる。前記活性エネルギー線としては、例えば、紫外線、電子線、α線、β線、γ線等の電離放射線が挙げられる。また、前記活性エネルギー線として、紫外線を用いる場合、紫外線による硬化反応を効率よく行う上で、窒素ガス等の不活性ガス雰囲気下で照射してもよく、空気雰囲気下で照射してもよい。 The cured product of the present invention can be obtained by irradiating the active energy ray-curable resin composition with active energy rays. Examples of the active energy ray include ionizing radiation such as ultraviolet rays, electron beams, α rays, β rays, and γ rays. Further, when ultraviolet rays are used as the active energy rays, in order to efficiently perform the curing reaction by ultraviolet rays, the irradiation may be performed in an inert gas atmosphere such as nitrogen gas, or in an air atmosphere.

紫外線発生源としては、実用性、経済性の面から紫外線ランプが一般的に用いられている。具体的には、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、キセノンランプ、ガリウムランプ、メタルハライドランプ、太陽光、LED等が挙げられる。 As a source of ultraviolet light, an ultraviolet lamp is generally used from the viewpoint of practicality and economy. Specifically, low-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, xenon lamps, gallium lamps, metal halide lamps, sunlight, LEDs, etc. can be mentioned.

前記活性エネルギー線の積算光量は、特に制限されないが、0.1~50kJ/mであることが好ましく、0.5~10kJ/mであることがより好ましい。積算光量が上記範囲であると、未硬化部分の発生の防止または抑制ができることから好ましい。The cumulative amount of active energy rays is not particularly limited, but is preferably 0.1 to 50 kJ/m 2 , more preferably 0.5 to 10 kJ/m 2 . It is preferable that the cumulative light amount is within the above range because it is possible to prevent or suppress the occurrence of uncured portions.

なお、前記活性エネルギー線の照射は、一段階で行ってもよいし、二段階以上に分けて行ってもよい。 Note that the irradiation with the active energy rays may be performed in one step, or may be performed in two or more steps.

また、120~200℃の温度範囲における前記硬化物の動的粘弾性スペクトルで測定されるtanδは、優れた基材密着性を有し、伸度、耐擦傷性及び耐薬品性に優れることから、0.1~1の範囲が好ましい。 In addition, the tan δ measured by the dynamic viscoelasticity spectrum of the cured product in the temperature range of 120 to 200°C has excellent adhesion to the base material and excellent elongation, scratch resistance, and chemical resistance. , preferably in the range of 0.1 to 1.

本発明の物品としては、前記積層体を表面に有するものである。前記物品としては、例えば、携帯電話、家電製品、自動車内外装材、OA機器等のプラスチック成形品などが挙げられる。 The article of the present invention has the above-mentioned laminate on its surface. Examples of the articles include plastic molded articles such as mobile phones, home appliances, automobile interior and exterior materials, and OA equipment.

以下、実施例と比較例とにより、本発明を具体的に説明する。なお、本発明は、以下に挙げた実施例に限定されるものではない。 Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples. Note that the present invention is not limited to the examples listed below.

なお、本実施例において、重量平均分子量(Mw)は、ゲル・パーミエーション・クロマトグラフィー(GPC)を用い、下記の条件により測定した値である。 In this example, the weight average molecular weight (Mw) is a value measured using gel permeation chromatography (GPC) under the following conditions.

測定装置 ; 東ソー株式会社製「HLC-8220」
カラム ; 東ソー株式会社製「ガードカラムHXL-H」
+東ソー株式会社製「TSKgel G5000HXL」
+東ソー株式会社製「TSKgel G4000HXL」
+東ソー株式会社製「TSKgel G3000HXL」
+東ソー株式会社製「TSKgel G2000HXL」
検出器 ; RI(示差屈折計)
データ処理:東ソー株式会社製「SC-8010」
測定条件: カラム温度 40℃
溶媒 テトラヒドロフラン
流速 1.0ml/分
標準 ;ポリスチレン
試料 ;樹脂固形分換算で0.4質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(100μl)
Measuring device: “HLC-8220” manufactured by Tosoh Corporation
Column: “Guard Column H XL -H” manufactured by Tosoh Corporation
+ “TSKgel G5000HXL” manufactured by Tosoh Corporation
+ “TSKgel G4000HXL” manufactured by Tosoh Corporation
+ “TSKgel G3000HXL” manufactured by Tosoh Corporation
+ “TSKgel G2000HXL” manufactured by Tosoh Corporation
Detector; RI (differential refractometer)
Data processing: “SC-8010” manufactured by Tosoh Corporation
Measurement conditions: Column temperature 40℃
Solvent Tetrahydrofuran
Flow rate 1.0ml/min Standard: Polystyrene Sample: 0.4% by mass of tetrahydrofuran solution in terms of resin solid content filtered through a microfilter (100μl)

(実施例1:アクリルアクリレート樹脂(1)の調製)
撹拌装置、冷却管、滴下ロートおよび窒素導入管を備えた反応装置に、メチルイソブチルケトン67.9質量部を仕込み、撹拌しながら系内温度が110℃になるまで昇温した。次いで、グリシジルメタクリレート8.4質量部、メチルメタクリレート37.8質量部、ターシャルブチルメタクリレート53.8質量部、エチルアクリレート0.2質量部、t-ブチルパーオキシ-2-エチルヘキサノエート(日本乳化剤株式会社製「パーブチルO」)1.8質量部からなる混合液を4時間かけて滴下ロートより滴下し、110℃で15時間保持した。次いで、90℃まで降温した後、メトキノン0.05質量部およびアクリル酸4.3質量部を仕込み、トリフェニルホスフィン0.5質量部を添加して、100℃で8時間以上反応させた後、メチルイソブチルケトンで希釈を行い、アクリルアクリレート樹脂のメチルイソブチルケトン溶液238質量部(不揮発分45.0質量%)を得た。このアクリルアクリレート樹脂(1)の重量平均分子量(Mw)は26,000であり、固形分換算の理論アクリロイル基当量は、1790g/当量であった。
(Example 1: Preparation of acrylic acrylate resin (1))
67.9 parts by mass of methyl isobutyl ketone was charged into a reaction apparatus equipped with a stirring device, a cooling tube, a dropping funnel, and a nitrogen introduction tube, and the temperature was raised while stirring until the internal temperature of the system reached 110°C. Next, 8.4 parts by mass of glycidyl methacrylate, 37.8 parts by mass of methyl methacrylate, 53.8 parts by mass of tert-butyl methacrylate, 0.2 parts by mass of ethyl acrylate, t-butylperoxy-2-ethylhexanoate (Japan) A mixed solution consisting of 1.8 parts by mass of "Perbutyl O" (manufactured by Emulsifier Co., Ltd.) was added dropwise from the dropping funnel over 4 hours, and maintained at 110° C. for 15 hours. Next, after lowering the temperature to 90 ° C., 0.05 parts by mass of methoquinone and 4.3 parts by mass of acrylic acid were added, and 0.5 parts by mass of triphenylphosphine was added, and after reacting at 100 ° C. for 8 hours or more, The mixture was diluted with methyl isobutyl ketone to obtain 238 parts by mass (nonvolatile content: 45.0 mass %) of a solution of acrylic acrylate resin in methyl isobutyl ketone. The weight average molecular weight (Mw) of this acrylic acrylate resin (1) was 26,000, and the theoretical acryloyl group equivalent in terms of solid content was 1790 g/equivalent.

(実施例2~5:アクリルアクリレート樹脂(2)~(6)の製造)
表1に示す配合比率で実施例1と同様の方法にて、アクリルアクリレート(2)~(6)を得た。
(Examples 2 to 5: Production of acrylic acrylate resins (2) to (6))
Acrylic acrylates (2) to (6) were obtained in the same manner as in Example 1 using the blending ratios shown in Table 1.

(比較例1及び2:アクリルアクリレート樹脂(R1)及び(R2)の製造)
表1に示す配合比率で実施例1と同様の方法にて、アクリルアクリレート(2)~(5)を得た。
(Comparative Examples 1 and 2: Production of acrylic acrylate resins (R1) and (R2))
Acrylic acrylates (2) to (5) were obtained in the same manner as in Example 1 using the blending ratios shown in Table 1.

実施例1~6、並びに比較例1及び2で調製したアクリルアクリレート樹脂(1)~(6)、(R1)及び(R2)の組成を表1に示す。 Table 1 shows the compositions of the acrylic acrylate resins (1) to (6), (R1) and (R2) prepared in Examples 1 to 6 and Comparative Examples 1 and 2.

Figure 0007364098000004
Figure 0007364098000004

表1中の「GMA」は、グリシジルメタクリレート(ホモポリマーのTg:46℃)を示す。 "GMA" in Table 1 indicates glycidyl methacrylate (Tg of homopolymer: 46°C).

表1中の「MMA」は、メチルメタクリレート(ホモポリマーのTg:105℃)を示す。 "MMA" in Table 1 indicates methyl methacrylate (Tg of homopolymer: 105°C).

表1中の「tBMA」は、ターシャルブチルメタクリレート(ホモポリマーのTg:107℃)を示す。 "tBMA" in Table 1 indicates tertiary butyl methacrylate (Tg of homopolymer: 107°C).

表1中の「CHMA」は、シクロへキシルメタクリレート(ホモポリマーのTg:66℃)を示す。 "CHMA" in Table 1 indicates cyclohexyl methacrylate (Tg of homopolymer: 66°C).

表1中の「IBXMA」は、イソボルニルメタクリレート(ホモポリマーのTg:180℃)を示す。 "IBXMA" in Table 1 indicates isobornyl methacrylate (Tg of homopolymer: 180°C).

表1中の「BZMA」は、ベンジルメタクリレート(ホモポリマーのTg:54℃)を示す。 "BZMA" in Table 1 indicates benzyl methacrylate (Tg of homopolymer: 54°C).

表1中の「EA」は、エチルアクリレート(ホモポリマーのTg:-20℃)を示す。 "EA" in Table 1 indicates ethyl acrylate (Tg of homopolymer: -20°C).

表1中の「AA」は、アクリル酸を示す。 "AA" in Table 1 indicates acrylic acid.

表1中の「MIBK」は、メチルイソブチルケトンを示す。 "MIBK" in Table 1 indicates methyl isobutyl ketone.

表1中の「p-O」は、t-ブチルパーオキシ-2-エチルヘキサノエート(日本乳化剤株式会社製「パーブチルO」)を示す。 "p-O" in Table 1 indicates t-butyl peroxy-2-ethylhexanoate ("Perbutyl O" manufactured by Nippon Nyukazai Co., Ltd.).

表1中の「TPP」は、トリフェニルホスフィンを示す。 "TPP" in Table 1 indicates triphenylphosphine.

(実施例7:活性エネルギー線硬化性樹脂組成物(1)の調製)
実施例1で得た不揮発分45質量%のアクリルアクリレート樹脂15.5質量部(固形分として7質量部)、ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(東亞合成株式会社製「アロニックス M-403」)3質量部、光重合開始剤(IGM Resins社製「Omnirad-184」0.3質量部を混合し、活性エネルギー線硬化性樹脂組成物(1)を得た。
(Example 7: Preparation of active energy ray-curable resin composition (1))
15.5 parts by mass of the acrylic acrylate resin with a non-volatile content of 45% by mass (7 parts by mass as solid content) obtained in Example 1, a mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate (“Aronix” manufactured by Toagosei Co., Ltd.) 3 parts by mass of "M-403") and 0.3 parts by mass of a photopolymerization initiator ("Omnirad-184" manufactured by IGM Resins) were mixed to obtain an active energy ray-curable resin composition (1).

(実施例8~12:活性エネルギー線硬化性樹脂組成物(2)~(6)の調製)
表1に示す配合比率で実施例6と同様の方法にて、活性エネルギー線硬化性樹脂組成物(2)~(6)を得た。
(Examples 8 to 12: Preparation of active energy ray-curable resin compositions (2) to (6))
Active energy ray-curable resin compositions (2) to (6) were obtained in the same manner as in Example 6 using the blending ratios shown in Table 1.

上記の実施例及び比較例で得られた活性エネルギー線硬化性樹脂組成物(1)~(6)、(R1)及び(R2)を用いて、下記の評価を行った。 The following evaluations were performed using the active energy ray-curable resin compositions (1) to (6), (R1), and (R2) obtained in the above Examples and Comparative Examples.

[tanδの測定方法]
活性エネルギー線硬化性樹脂組成物を鏡面アルミ板にアプリケータで塗布し、100℃30分の予備過熱後に、窒素雰囲気下、高圧水銀ランプで紫外線を照射することで(150mJ/cm)で硬化膜を作成した。得られた硬化膜を鏡面アルミ板から単離し、厚さ50μm、幅6mm、長さ54mmの試験片を作成した。TAインスツルメント社製「固体粘弾性測定装置RSA-G2」を用い、DMA(動的粘弾性)測定により、昇温速度を5℃/分、周波数が1Hz、負荷歪を0.1%にて試験片の弾性率を測定した。tanδは伸度測定温度と同温である130℃における数値を採用した。
[Method for measuring tanδ]
The active energy ray-curable resin composition is applied to a mirror-finished aluminum plate using an applicator, and after preheating at 100°C for 30 minutes, it is cured by irradiating ultraviolet rays (150 mJ/cm 2 ) with a high-pressure mercury lamp in a nitrogen atmosphere. A membrane was created. The obtained cured film was isolated from the mirror-finished aluminum plate, and a test piece with a thickness of 50 μm, a width of 6 mm, and a length of 54 mm was prepared. DMA (dynamic viscoelasticity) was measured using TA Instruments'"Solid Rheological Elasticity Measurement Device RSA-G2" at a heating rate of 5°C/min, a frequency of 1Hz, and a load strain of 0.1%. The elastic modulus of the test piece was measured. For tan δ, the value at 130° C., which is the same temperature as the elongation measurement temperature, was adopted.

[基材密着性の評価方法]
活性エネルギー線硬化性樹脂組成物を厚さ250μmのポリカーボネート-アクリル積層フィルム(株式会社シャインテクノ製「ShineTech AW-10U」)上にバーコーターで塗布し、80℃で1分間乾燥させた。次いで、空気雰囲気下、80W高圧水銀ランプで紫外線を400mJ/cm照射し、アクリルフィルム上に膜厚5μmの硬化塗膜を有する積層体(2)を得た。この積層体(2)の硬化塗膜表面にカッターナイフで切れ目を入れて、1mm×1mmの碁盤目を100個作成し、その上からセロハン粘着テープを貼着した後、急速に剥がす操作を行い、剥離せずに残存した碁盤目の数を数え、以下の基準に従って評価した。
[Evaluation method of base material adhesion]
The active energy ray-curable resin composition was applied onto a 250 μm thick polycarbonate-acrylic laminate film (“ShineTech AW-10U” manufactured by Shine Techno Co., Ltd.) using a bar coater, and dried at 80° C. for 1 minute. Next, 400 mJ/cm 2 of ultraviolet rays were irradiated with an 80 W high-pressure mercury lamp in an air atmosphere to obtain a laminate (2) having a cured coating film with a thickness of 5 μm on the acrylic film. Cut the surface of the cured coating film of this laminate (2) with a cutter knife to create 100 grids of 1 mm x 1 mm, apply cellophane adhesive tape on top of the grid, and then rapidly peel it off. The number of grids remaining without peeling was counted and evaluated according to the following criteria.

A:碁盤目の残存数が80個以上であった。
B:碁盤目の残存数が80個未満であった。
A: The number of remaining pieces on the grid was 80 or more.
B: The number of remaining pieces of the grid was less than 80.

[伸度の評価方法]
伸度の測定は、引張試験に基づいて行った。
<積層フィルム1の作製>
実施例及び比較例で得た活性エネルギー線硬化性樹脂組成物を厚さ188μmのポリエチレンテレフタラート(PET)フィルム(東レ ルミラーSF-20)にバーコーターで塗布し、80℃で1分間乾燥した。次いで、窒素雰囲気下、高圧水銀ランプで紫外線を照射することで(150mJ/cm)、PETフィルム上に膜厚5μmの硬化物が積層された積層フィルム1を得た。
[Evaluation method of elongation]
The elongation was measured based on a tensile test.
<Production of laminated film 1>
The active energy ray-curable resin compositions obtained in Examples and Comparative Examples were applied to a 188 μm thick polyethylene terephthalate (PET) film (Toray Mirror SF-20) using a bar coater, and dried at 80° C. for 1 minute. Next, by irradiating ultraviolet rays (150 mJ/cm 2 ) with a high-pressure mercury lamp in a nitrogen atmosphere, a laminated film 1 in which a cured product having a thickness of 5 μm was laminated on a PET film was obtained.

<引張試験>
得られた積層フィルムを幅10mm×長さ100mmの試験片となるように切り出し、得られた試験片に対して、以下の条件で引張試験を行い、試験片表面にクラックが発生又は試験片が破断するまでの伸張伸度を測定し、以下の基準に従って万能試験機(メーカー:島津製作所、オートグラフAG-IS)を使用して評価を行った。
<Tensile test>
The obtained laminated film was cut into test pieces with a width of 10 mm and a length of 100 mm, and the obtained test pieces were subjected to a tensile test under the following conditions. The tensile elongation until breakage was measured and evaluated using a universal testing machine (manufacturer: Shimadzu Corporation, Autograph AG-IS) according to the following criteria.

測定条件:引張速度:100mm/分、チャック間距離:40mm、温度:130℃
ロードセル:1kN
Measurement conditions: tensile speed: 100 mm/min, distance between chucks: 40 mm, temperature: 130°C
Load cell: 1kN

[耐擦傷性の評価方法]
スチ-ルウ-ル(日本スチ-ルウ-ル株式会社製「ボンスタ-#0000」)0.5gで直径2.4センチメ-トルの円盤状の圧子を包み、該圧子に500g重の荷重をかけて、前記<積層フィルム1の作製>で得た積層フィルムの塗装表面を10往復させる磨耗試験を行った。磨耗試験前後の積層フィルムのヘ-ズ値をスガ試験機株式会社製「ヘ-ズコンピュ-タHZ-2」を用いて測定し、それらの差の値(dH)を用いて、以下の基準に従い評価した。なお、差の値(dH)が小さいほど、擦傷に対する耐性が高い。
[Evaluation method of scratch resistance]
A disc-shaped indenter with a diameter of 2.4 cm is wrapped with 0.5 g of steel wool ("Bonstar #0000" manufactured by Nippon Steel Wool Co., Ltd.), and a load of 500 g is applied to the indenter. Then, an abrasion test was conducted by making the coated surface of the laminated film obtained in <Preparation of Laminated Film 1> reciprocate 10 times. The haze value of the laminated film before and after the abrasion test was measured using "Haze Computer HZ-2" manufactured by Suga Test Instruments Co., Ltd., and the difference value (dH) was used to determine the haze value according to the following standards. evaluated. Note that the smaller the difference value (dH), the higher the resistance to scratches.

A:dHが、1.0%以下であった
B:dHが、1.0%超~3.0%以下であった。
C:dHが、3.0%超であった。
A: dH was 1.0% or less B: dH was more than 1.0% to 3.0% or less.
C: dH was over 3.0%.

[耐薬品性の評価方法]
<積層フィルム2の作製>
実施例及び比較例で得た活性エネルギー線硬化性樹脂組成物を厚さ250μmのポリカーボネート(PC)フィルム(株式会社シャインテクノ製「ShineTech PC-10U」)にバーコーターで塗布し、90℃で2分間乾燥した。次いで、空気雰囲気下、高圧水銀ランプで紫外線を照射することで(500mJ/cm)、PCフィルム上に膜厚5μmの硬化物が積層された積層フィルム2を得た。
<耐薬品性試験>
前記積層フィルム2の硬化塗膜表面上に日焼け止めクリーム(Johnson&Johnson Consumer Inc.社製「ニュートロジーナ ウルトラシアーサンスクリーン」)を0.1g/cmとなるように塗布し、80℃のオーブン内で4時間静置した。オーブンから取り出し常温に戻した後、布で日焼け止めクリームを拭き取り、拭き取り後の塗膜表面の状態を下記の基準に従って評価した。
[Method for evaluating chemical resistance]
<Production of laminated film 2>
The active energy ray-curable resin compositions obtained in Examples and Comparative Examples were coated on a 250 μm thick polycarbonate (PC) film (“ShineTech PC-10U” manufactured by Shine Techno Co., Ltd.) using a bar coater, and coated at 90°C for 2 hours. Dry for a minute. Next, by irradiating ultraviolet rays (500 mJ/cm 2 ) with a high-pressure mercury lamp in an air atmosphere, a laminated film 2 in which a cured product having a thickness of 5 μm was laminated on the PC film was obtained.
<Chemical resistance test>
A sunscreen cream ("Neutrogena Ultra Sheer Sunscreen" manufactured by Johnson & Johnson Consumer Inc.) was applied to the cured coating surface of the laminated film 2 at a concentration of 0.1 g/cm 2 and then heated in an oven at 80° C. for 4 hours. Let it stand for a while. After taking it out of the oven and returning it to room temperature, the sunscreen cream was wiped off with a cloth, and the condition of the coating film surface after wiping was evaluated according to the following criteria.

A:試験前の積層体と比較して変化がない。
B:塗膜に薄い透明な跡が残る。
C:塗布部の一部に白化やクラックが生じる。
D:塗布部の全面に白化やクラックが生じる。
A: There is no change compared to the laminate before the test.
B: A thin transparent mark remains on the coating film.
C: Whitening and cracks occur in a part of the coated area.
D: Whitening and cracks occur on the entire surface of the coated area.

実施例7~12で調製した活性エネルギー線硬化性樹脂組成物(1)~(6)、並びに比較例3及び4で調製した(R1)及び(R2)の組成及び評価結果を表1に示す。 Table 1 shows the compositions and evaluation results of active energy ray-curable resin compositions (1) to (6) prepared in Examples 7 to 12, and (R1) and (R2) prepared in Comparative Examples 3 and 4. .

Figure 0007364098000005
Figure 0007364098000005

表2中の「アロニックス M-403」は、東亞合成株式会社製「アロニックス M-403」;ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物を示す。 "Aronix M-403" in Table 2 refers to "Aronix M-403" manufactured by Toagosei Co., Ltd.; a mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate.

表2中の「Omnirad 184」はIGM Resins社製「「Omnirad 184」;光重合開始剤を示す。 "Omnirad 184" in Table 2 indicates a photopolymerization initiator manufactured by IGM Resins.

表2に示した実施例7~12は、本発明のアクリルアクリレート樹脂を含有する活性エネルギー線硬化性樹脂組成物の例である。これらの活性エネルギー線硬化性樹脂組成物の硬化物は、優れた基材密着性、伸度、耐擦傷性及び耐薬品性を有することが確認できた。 Examples 7 to 12 shown in Table 2 are examples of active energy ray-curable resin compositions containing the acrylic acrylate resin of the present invention. It was confirmed that the cured products of these active energy ray-curable resin compositions had excellent substrate adhesion, elongation, scratch resistance, and chemical resistance.

一方、表2に示した比較例3は、ホモポリマーのガラス転移温度(Tg)が50℃未満の(メタ)アクリレート化合物を原料に用いた活性エネルギー線硬化性樹脂組成物の例である。この活性エネルギー線硬化性樹脂組成物の硬化物は、基材密着性には優れるものの、伸度、耐擦傷性及び耐薬品性に関しては、著しく不十分であることが確認できた。 On the other hand, Comparative Example 3 shown in Table 2 is an example of an active energy ray-curable resin composition using a (meth)acrylate compound having a homopolymer glass transition temperature (Tg) of less than 50° C. as a raw material. Although the cured product of this active energy ray-curable resin composition had excellent adhesion to substrates, it was confirmed that it was significantly insufficient in elongation, scratch resistance, and chemical resistance.

比較例4は、ホモポリマーのガラス転移温度(Tg)が50℃以上の(メタ)アクリレート化合物(a2)を原料に用いない活性エネルギー線硬化性樹脂組成物の例である。この活性エネルギー線硬化性樹脂組成物の硬化物は、伸度、耐擦傷性及び耐薬品性に関して、著しく不十分であることが確認できた。 Comparative Example 4 is an example of an active energy ray-curable resin composition in which a (meth)acrylate compound (a2) whose homopolymer has a glass transition temperature (Tg) of 50° C. or higher is not used as a raw material. It was confirmed that the cured product of this active energy ray-curable resin composition was extremely insufficient in terms of elongation, scratch resistance, and chemical resistance.

Claims (7)

アクリル重合体(A)、及びカルボキシル基を有する(メタ)アクリルモノマー(B)を原料とするアクリル(メタ)アクリレート樹脂であり、
前記アクリル重合体(A)が、グリシジル(メタ)アクリレート(a1)と、ホモポリマーのガラス転移温度(Tg)が66℃以上の2種以上の(メタ)アクリレート化合物(a2)と、を含む重合性化合物の共重合体であり、
前記(メタ)アクリレート化合物(a2)は、メチルメタクリレートを含み、
前記メチルメタクリレートの含有量は、前記(メタ)アクリレート化合物(a2)中に25~65質量%の範囲であり、
前記グリシジル(メタ)アクリレート(a1)の含有量は、前記重合性化合物中に5質量%以上20質量%以下の範囲である、アクリル(メタ)アクリレート樹脂。
An acrylic (meth)acrylate resin made from an acrylic polymer (A) and a (meth)acrylic monomer (B) having a carboxyl group,
Polymerization in which the acrylic polymer (A) contains glycidyl (meth)acrylate (a1) and two or more (meth)acrylate compounds (a2) whose homopolymer glass transition temperature (Tg) is 66 ° C. or higher. It is a copolymer of chemical compounds,
The (meth)acrylate compound (a2) contains methyl methacrylate,
The content of the methyl methacrylate is in the range of 25 to 65% by mass in the (meth)acrylate compound (a2),
The content of the glycidyl (meth)acrylate (a1) in the polymerizable compound is 5% by mass or more and 20% by mass or less of the acrylic (meth)acrylate resin.
前記(メタ)アクリレート化合物(a2)は、メチルメタクリレートと、tert-ブチルメタクリレート、シクロへキシルメタクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート及びアダマンチル(メタ)アクリレートからなる群より選ばれる1種以上と、を含む、請求項1記載のアクリル(メタ)アクリレート樹脂。 The (meth)acrylate compound (a2) is selected from the group consisting of methyl methacrylate, tert-butyl methacrylate, cyclohexyl methacrylate, isobornyl (meth)acrylate, dicyclopentanyl (meth)acrylate, and adamantyl (meth)acrylate. The acrylic (meth)acrylate resin according to claim 1, comprising at least one type of acrylic (meth)acrylate resin. (メタ)アクリロイル基当量が、400~3000g/当量である請求項1又は2に記載のアクリル(メタ)アクリレート樹脂。 The acrylic (meth)acrylate resin according to claim 1 or 2, wherein the (meth)acryloyl group equivalent is 400 to 3000 g/equivalent. 請求項1又は2に記載のアクリル(メタ)アクリレート樹脂と、光重合開始剤とを含有することを特徴とする活性エネルギー線硬化性樹脂組成物。 An active energy ray-curable resin composition comprising the acrylic (meth)acrylate resin according to claim 1 or 2 and a photopolymerization initiator . 請求項4記載の活性エネルギー線硬化性樹脂組成物の硬化物。 A cured product of the active energy ray-curable resin composition according to claim 4. 120~200℃の温度範囲における、動的粘弾性スペクトルで測定されるtanδが0.1~1の範囲である請求項5記載の硬化物。 The cured product according to claim 5, which has a tan δ of 0.1 to 1 as measured by dynamic viscoelasticity spectrum in a temperature range of 120 to 200°C. 請求項5又は6記載の硬化物からなる塗膜を有することを特徴とする物品。 An article comprising a coating film made of the cured product according to claim 5 or 6.
JP2022575713A 2021-06-29 2022-06-09 Acrylic (meth)acrylate resin, active energy ray-curable resin composition, cured product and article Active JP7364098B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2021107472 2021-06-29
JP2021107472 2021-06-29
PCT/JP2022/023220 WO2023276600A1 (en) 2021-06-29 2022-06-09 Acrylic (meth)acrylate resin, active energy ray-curable resin composition, cured product and article

Publications (3)

Publication Number Publication Date
JPWO2023276600A1 JPWO2023276600A1 (en) 2023-01-05
JPWO2023276600A5 JPWO2023276600A5 (en) 2023-06-07
JP7364098B2 true JP7364098B2 (en) 2023-10-18

Family

ID=84691698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022575713A Active JP7364098B2 (en) 2021-06-29 2022-06-09 Acrylic (meth)acrylate resin, active energy ray-curable resin composition, cured product and article

Country Status (4)

Country Link
JP (1) JP7364098B2 (en)
KR (1) KR20240024081A (en)
CN (1) CN117580874A (en)
WO (1) WO2023276600A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001059005A (en) 1999-08-24 2001-03-06 Hitachi Chem Co Ltd Photoresist composition and coating material
JP2004010772A (en) 2002-06-07 2004-01-15 Hitachi Chem Co Ltd Photo-setting resin, and resin composition and coating material containing the resin
JP2008087322A (en) 2006-10-02 2008-04-17 Dainippon Printing Co Ltd Embossed process release paper
JP2009286068A (en) 2008-05-30 2009-12-10 Dainippon Printing Co Ltd Web of embossed mold release sheet, embossed mold release sheet, method for manufacturing web of embossed mold release sheet, method for manufacturing embossed mold release sheet, and method for manufacturing synthetic leather
JP2010250128A (en) 2009-04-16 2010-11-04 Goo Chemical Co Ltd Alkali-developable curable composition and cured product thereof
WO2012176570A1 (en) 2011-06-24 2012-12-27 Dic株式会社 Active-energy-ray-curable resin composition, method for producing active-energy-ray-curable resin composition, coating agent, coating film, and film
CN103193960A (en) 2013-03-22 2013-07-10 江门市恒光新材料有限公司 Modified UV (Ultraviolet) photocuring pure-acrylic resin and preparation method thereof
JP2021161393A (en) 2020-03-31 2021-10-11 住友化学株式会社 Curable resin composition and display device
JP2022065304A (en) 2020-10-15 2022-04-27 東洋インキScホールディングス株式会社 Photosensitive coloring composition, color filter, and image display device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3329877B2 (en) * 1993-03-02 2002-09-30 互応化学工業株式会社 Resist ink composition for manufacturing printed circuit board, resist film using the same, and printed circuit board
JP5569726B2 (en) 2010-03-29 2014-08-13 Dic株式会社 Active energy ray-curable resin composition and film substrate
JP6459366B2 (en) * 2014-10-02 2019-01-30 東洋インキScホールディングス株式会社 Zwitterion-containing compound, biocompatible material, and production method thereof.
US10519318B2 (en) * 2015-10-27 2019-12-31 Kansai Paint Co., Ltd. Actinic-ray-curable coating composition

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001059005A (en) 1999-08-24 2001-03-06 Hitachi Chem Co Ltd Photoresist composition and coating material
JP2004010772A (en) 2002-06-07 2004-01-15 Hitachi Chem Co Ltd Photo-setting resin, and resin composition and coating material containing the resin
JP2008087322A (en) 2006-10-02 2008-04-17 Dainippon Printing Co Ltd Embossed process release paper
JP2009286068A (en) 2008-05-30 2009-12-10 Dainippon Printing Co Ltd Web of embossed mold release sheet, embossed mold release sheet, method for manufacturing web of embossed mold release sheet, method for manufacturing embossed mold release sheet, and method for manufacturing synthetic leather
JP2010250128A (en) 2009-04-16 2010-11-04 Goo Chemical Co Ltd Alkali-developable curable composition and cured product thereof
WO2012176570A1 (en) 2011-06-24 2012-12-27 Dic株式会社 Active-energy-ray-curable resin composition, method for producing active-energy-ray-curable resin composition, coating agent, coating film, and film
CN103193960A (en) 2013-03-22 2013-07-10 江门市恒光新材料有限公司 Modified UV (Ultraviolet) photocuring pure-acrylic resin and preparation method thereof
JP2021161393A (en) 2020-03-31 2021-10-11 住友化学株式会社 Curable resin composition and display device
JP2022065304A (en) 2020-10-15 2022-04-27 東洋インキScホールディングス株式会社 Photosensitive coloring composition, color filter, and image display device

Also Published As

Publication number Publication date
KR20240024081A (en) 2024-02-23
JPWO2023276600A1 (en) 2023-01-05
WO2023276600A1 (en) 2023-01-05
CN117580874A (en) 2024-02-20

Similar Documents

Publication Publication Date Title
JP7338154B2 (en) Active energy ray-curable resin composition and laminate
CN113661064B (en) Active energy ray-curable resin composition, cured product, laminate, and article
KR20200064073A (en) Wavelength conversion member, backlight unit, image display device, resin composition for wavelength conversion, and cured resin for wavelength conversion
US10759991B2 (en) Copolymeric stabilizing carrier fluid for nanoparticles
CN116783267A (en) Solvent-free quantum dot composition, preparation method thereof, cured film comprising solvent-free quantum dot composition, color filter comprising solvent-free quantum dot composition, and display device comprising solvent-free quantum dot composition
JP2023143911A (en) Active energy ray curable resin composition, laminated film, producing method thereof, and producing method for decorative film
CN110741025B (en) Curable composition and laminated film
JP7364098B2 (en) Acrylic (meth)acrylate resin, active energy ray-curable resin composition, cured product and article
JP6919308B2 (en) (Meta) Acryloyl group-containing resin and laminated film
JP7003453B2 (en) Urethane (meth) acrylate resin
JP7346817B2 (en) Laminate and its uses
CN115466551A (en) Inorganic fine particle dispersion, active energy ray-curable composition, cured product, laminate, and article
JP7495016B2 (en) Active energy ray curable resin composition, cured coating film and article
CN114656767A (en) Active energy ray-curable resin composition, cured product, and article
JP7013682B2 (en) Urethane (meth) acrylate resin
KR20240149682A (en) Quantum dot composition, manufacturing method thereof, cured product thereof, and display device comprising the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221208

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20221208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230918

R151 Written notification of patent or utility model registration

Ref document number: 7364098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151