JP7362573B2 - Elevator failure recovery method and elevator failure recovery support system - Google Patents

Elevator failure recovery method and elevator failure recovery support system Download PDF

Info

Publication number
JP7362573B2
JP7362573B2 JP2020148848A JP2020148848A JP7362573B2 JP 7362573 B2 JP7362573 B2 JP 7362573B2 JP 2020148848 A JP2020148848 A JP 2020148848A JP 2020148848 A JP2020148848 A JP 2020148848A JP 7362573 B2 JP7362573 B2 JP 7362573B2
Authority
JP
Japan
Prior art keywords
failure
elevator
weighting coefficient
history
probability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020148848A
Other languages
Japanese (ja)
Other versions
JP2022043532A (en
Inventor
繁 西村
匡 五嶋
輝佳 厚沢
久典 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Building Systems Co Ltd
Original Assignee
Hitachi Building Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Building Systems Co Ltd filed Critical Hitachi Building Systems Co Ltd
Priority to JP2020148848A priority Critical patent/JP7362573B2/en
Publication of JP2022043532A publication Critical patent/JP2022043532A/en
Application granted granted Critical
Publication of JP7362573B2 publication Critical patent/JP7362573B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Maintenance And Inspection Apparatuses For Elevators (AREA)

Description

本発明は、昇降機故障時に復旧させる昇降機故障復旧方法及び昇降機故障復旧支援システムに関する。 The present invention relates to an elevator failure recovery method and an elevator failure recovery support system for recovering an elevator when it fails.

エレベーター、エスカレーター等の昇降機は複数の装置で構成されており、故障の原因は多岐にわたっている。そのため、昇降機の故障復旧には高度な知識と技術が要求される。従って、経験の少ない保守員では十分に対応しきれず、故障原因の判明まで長時間を要する場合がある。また、故障復旧対策を誤ると真の故障原因が残ってしまい、同一故障を再発させる恐れがある。 Lifts and escalators such as elevators and escalators are composed of multiple devices, and failures can occur for a wide variety of reasons. Therefore, advanced knowledge and skills are required to restore elevators from failure. Therefore, inexperienced maintenance personnel may not be able to adequately handle the problem, and it may take a long time to determine the cause of the failure. Furthermore, if fault recovery measures are taken incorrectly, the true cause of the fault may remain and there is a risk that the same fault will occur again.

この課題を解決するために、例えば特許文献1及び2に記載の技術が提案されている。 In order to solve this problem, techniques described in Patent Documents 1 and 2, for example, have been proposed.

特許文献1には、保守員が故障状態を携帯端末から入力すると、データベースに格納された情報から過去の同種の故障原因が抽出され、抽出した故障原因、対策に関する情報を発生確率の高い順に保守員の携帯端末に送信し、故障復旧に要する時間を低減するようにした技術が開示されている。 Patent Document 1 discloses that when a maintenance worker inputs a failure state from a mobile terminal, past causes of similar failures are extracted from information stored in a database, and information regarding the extracted failure causes and countermeasures is maintained in order of probability of occurrence. A technology has been disclosed that reduces the time required for failure recovery by transmitting information to employees' mobile terminals.

また、特許文献2には、類似する故障の再発率に基づいて優先度を設定し、設定された優先度に応じて対策を保守員に提示し、同一故障の再発を防ぐようにした技術が開示されている。 Additionally, Patent Document 2 discloses a technology that sets priorities based on the recurrence rate of similar failures, presents countermeasures to maintenance personnel according to the set priorities, and prevents recurrence of the same failure. Disclosed.

特開2018-100176号公報Japanese Patent Application Publication No. 2018-100176 国際特許公開WO2019/229946号International patent publication WO2019/229946

しかしながら、特許文献1及び2においては、故障発生の確率が高い原因から調査を進めるため、例えば故障発生の確率が低い原因によって昇降機の故障が発生した場合、故障原因の特定に時間を要し、昇降機の停止時間が長くなるといった課題があった。また、故障原因機器が故障発生前に保全作業によって調整、給脂等の作業が実施された場合、状態が良好になって一時的に不具合が解消され、再発する不具合の兆候を見逃してしまったり、逆に調整後の状態がなじむまで不安定になることがある。このような場合、単純に過去の故障件数の多寡からでは、故障原因の特定を判断することが困難である。 However, in Patent Documents 1 and 2, since the investigation proceeds from the cause with a high probability of failure occurrence, for example, if a failure of an elevator occurs due to a cause with a low probability of failure occurrence, it takes time to identify the cause of the failure, There was a problem that the elevator stopped for a long time . In addition , if maintenance work such as adjustment and lubrication is performed on the equipment that caused the failure before the failure occurs, the condition will improve and the failure will be temporarily resolved, making it possible to overlook any signs of a recurring failure. It may become unstable until you get used to the adjusted state. In such a case, it is difficult to identify the cause of the failure simply based on the number of past failures.

本発明の目的は、上記課題を解決し、昇降機の故障原因の特定を早め、昇降機が長時間停止、故障再発を抑制する昇降機故障復旧方法及び昇降機故障復旧支援システムを提供することにある。 An object of the present invention is to provide an elevator failure recovery method and an elevator failure recovery support system that solve the above-mentioned problems, speed up the identification of the cause of elevator failure, and suppress long-term suspension of the elevator and recurrence of the failure.

上記目的を達成するために本発明は、昇降機の故障発生時に、保存された故障履歴情報から類似する過去の故障履歴群を抽出し、抽出した前記故障履歴群から故障原因機器別に分類し、前記故障原因機器別に故障確率を算出して故障原因機器を調査するようにした昇降機故障復旧方法において、前記故障履歴情報に基づいて時系列的に長時間重み付け係数を算出し、保存された前記昇降機の保全履歴情報に基づいて時系列的に繰り返し重み付け係数を算出し、時系列的に算出した前記長時間重み付け係数及び前記繰り返し重み付け係数から故障発生日の長時間重み付け係数及び繰り返し重み付け係数を抽出し、前記故障発生日の長時間重み付け係数及び繰り返し重み付け係数を用いて前記故障確率を補正することを特徴とする。 In order to achieve the above object, the present invention extracts a similar past failure history group from stored failure history information when a failure occurs in an elevator, classifies the extracted failure history group by failure cause equipment, and In an elevator failure recovery method in which a failure probability is calculated for each failure-causing device and the failure-causing device is investigated , a long-term weighting coefficient is calculated in chronological order based on the failure history information, and the stored elevator Calculating repeated weighting coefficients in a time-series manner based on maintenance history information, extracting long-term weighting coefficients and repeated weighting coefficients on the day of failure from the long-term weighting coefficients and the repeated weighting coefficients calculated in a time-series manner, The method is characterized in that the failure probability is corrected using a long-term weighting coefficient and a repeated weighting coefficient of the failure occurrence date.

また本発明は、昇降機の故障履歴情報を保存する故障履歴データベースと、前記昇降機の故障発生時に、前記故障履歴データベースから類似する過去の故障履歴群を抽出する類似故障検索手段と、前記類似故障検索手段で抽出された故障履歴群から故障原因機器別に分類して故障確率を算出する故障原因機器候補抽出手段とを備えた昇降機故障復旧システムにおいて、前記昇降機の保全履歴情報を保存する保全履歴データベースと、前記故障履歴データベースに保存された前記故障履歴情報に基づいて長時間重み付け係数を時系列的に算出すると共に、前記保全履歴データベースに保存された前記保全履歴情報に基づいて繰り返し重み付け係数を時系列的に算出する重み付け係数生成手段と、前記重み付け係数生成手段で時系列的に算出した前記長時間重み付け係数及び前記繰り返し重み付け係数から故障発生日の長時間重み付け係数及び繰り返し重み付け係数を抽出する重み付け係数算出手段と、前記重み付け係数算出手段で算出された長時間重み付け係数及び繰り返し重み付け係数を用いて前記故障確率を補正する故障原因機器確率補正処理手段を備えたことを特徴とする。 The present invention also provides a failure history database for storing failure history information of elevators, a similar failure search means for extracting a similar past failure history group from the failure history database when a failure occurs in the elevator, and the similar failure search In an elevator failure recovery system, the elevator failure recovery system includes a failure cause device candidate extracting means for classifying the failure history group by failure cause device and calculating a failure probability from the failure history group extracted by the means, a maintenance history database for storing maintenance history information of the elevator; , calculating long-term weighting coefficients in time series based on the failure history information stored in the failure history database, and repeatedly calculating weighting coefficients in time series based on the maintenance history information stored in the maintenance history database. a weighting coefficient that extracts a long-term weighting coefficient and a repeated weighting coefficient on the day of failure from the long-term weighting coefficient and the repeated weighting coefficient calculated in a time series by the weighting coefficient generating means; The present invention is characterized by comprising: a calculating means; and a fault-causing device probability correction processing means for correcting the failure probability using the long-term weighting coefficient and the repeated weighting coefficient calculated by the weighting coefficient calculating means.

本発明によれば、昇降機の故障原因の特定を早め、昇降機が長時間停止、故障再発を抑制する昇降機故障復旧方法及び昇降機故障復旧支援システムを提供することができる。 Advantageous Effects of Invention According to the present invention, it is possible to provide an elevator failure recovery method and an elevator failure recovery support system that quickly identify the cause of an elevator failure and prevent the elevator from stopping for a long time and from recurrence of the failure.

本発明の実施例に係る昇降機故障復旧支援システムのシステム構成図である。1 is a system configuration diagram of an elevator failure recovery support system according to an embodiment of the present invention. 本発明の実施例に係る昇降機故障復旧支援システムの動作を示すフローチャートである。3 is a flowchart showing the operation of the elevator failure recovery support system according to the embodiment of the present invention. 本発明の実施例に係る調整部位の一例であるチェーンの重み付け係数の変動を示す図である。It is a figure which shows the fluctuation|variation of the weighting coefficient of the chain which is an example of the adjustment part based on the Example of this invention. 本発明の実施例に係る安全スイッチの重み付け係数の変動を示す図である。FIG. 3 is a diagram showing variations in weighting coefficients of the safety switch according to the embodiment of the present invention. 本発明の実施例に係る巻上機の軸に設けられたロータリーエンコーダーの故障確率に対する重み付け係数の変動を示す図である。FIG. 6 is a diagram showing the variation of the weighting coefficient with respect to the failure probability of the rotary encoder provided on the shaft of the hoisting machine according to the embodiment of the present invention. 本発明の実施例に係る故障原因機器の補正前と補正後の故障確率及び調査順序を示す図である。FIG. 7 is a diagram showing failure probabilities and investigation order before and after correction of a failure-causing device according to an embodiment of the present invention. 従来技術に対する本発明の故障対応の効率化の効果を示した図である。FIG. 3 is a diagram showing the effect of improving the efficiency of failure response of the present invention over the conventional technology.

以下、本発明の実施例について添付の図面を参照しつつ説明する。同様の構成要素には同様の符号を付し、同様の説明は繰り返さない。 Embodiments of the present invention will be described below with reference to the accompanying drawings. Similar components are given the same reference numerals, and similar descriptions will not be repeated.

本発明の各種の構成要素は必ずしも個々に独立した存在である必要はなく、一の構成要素が複数の部材から成ること、複数の構成要素が一の部材から成ること、或る構成要素が別の構成要素の一部であること、或る構成要素の一部と他の構成要素の一部とが重複すること、などを許容する。 The various components of the present invention do not necessarily have to exist independently, and one component may be made up of multiple members, multiple components may be made of one member, or a certain component may be different from each other. It is allowed that a part of a certain component overlaps with a part of another component, etc.

図1は本発明の実施例に係る昇降機故障復旧支援システムのシステム構成図である。昇降機故障復旧支援システムは、昇降機1と、昇降機1から離れた位置に設置された監視センター2と、保守員4が携帯する携帯端末5とによって構成されている。 FIG. 1 is a system configuration diagram of an elevator failure recovery support system according to an embodiment of the present invention. The elevator failure recovery support system is comprised of an elevator 1, a monitoring center 2 installed at a location away from the elevator 1, and a mobile terminal 5 carried by a maintenance worker 4.

エレベーター、エスカレーター等の昇降機1は、昇降機1の運転制御を司る昇降機制御盤11、及び昇降機制御盤11のエラーコード出力端子に常時接続され、少なくとも昇降機1の故障発生時に昇降機識別データ、故障内容を示すエラーコードを含む異常信号を送信する昇降機通信端末12が設けられている。 Elevators 1 such as elevators and escalators are always connected to an elevator control panel 11 that controls the operation of the elevator 1 and an error code output terminal of the elevator control panel 11, so that at least when a failure occurs in the elevator 1, the elevator identification data and the details of the failure are transmitted. An elevator communication terminal 12 is provided which transmits an abnormality signal including an error code indicating the error code.

監視センター2は、昇降機1に装備される昇降機通信端末12とは専用回線、インターネットその他の有線伝送ラインまたは無線伝送ラインによって接続され、昇降機通信端末12から送信されてくる昇降機識別データ、エラーコードを含む異常発報信号を受信する監視センター通信手段21を備える。監視センター通信手段21は受信部21aと、送信部21bから構成されている。 The monitoring center 2 is connected to the elevator communication terminal 12 installed in the elevator 1 through a dedicated line, the Internet, other wired transmission lines, or wireless transmission lines, and receives elevator identification data and error codes sent from the elevator communication terminal 12. A monitoring center communication means 21 is provided for receiving abnormality reporting signals including: The monitoring center communication means 21 is composed of a receiving section 21a and a transmitting section 21b.

故障履歴DB22(以下データベースをDBと記す)には、過去に発生した故障について、少なくとも昇降機の型式、製造番号等の識別データ、エラーコード、故障状態、故障原因、復旧作業内容、原因調査時間、対策時間のデータ等の故障履歴情報が保存されている。 The failure history DB 22 (hereinafter referred to as DB) contains at least identification data such as the elevator model and serial number, error codes, failure conditions, failure causes, recovery work details, cause investigation time, etc. for failures that have occurred in the past. Failure history information such as countermeasure time data is stored.

昇降機情報DB23は、保全対象の全昇降機の識別データや型式、機器仕様などの情報が蓄積されたデータベースであり、昇降機1が昇降機通信端末12を介して送信する識別データをキーにして、昇降機1の仕様情報を抽出することができる。 The elevator information DB 23 is a database in which information such as identification data, model, equipment specifications, etc. of all elevators to be maintained is accumulated. Specification information can be extracted.

類似故障履歴検索手段24は、監視センター通信手段21の受信部21aが昇降機1の異常発報を受信したとき(故障発生時)に、例えばCPUを用いてソフトウエア的に故障検索を実行すると、同時に昇降機1の型式などの識別データとエラーコードをもとに故障履歴DB22から類似する過去の故障履歴群を抽出する機能を備える。例えば昇降機に振動が発生した場合、あるいは昇降機に異音が発生した場合、故障原因は1つとは限らず、複数の故障原因がある。また、類似する故障であっても、故障の発生源となる機器は特定に機器に限らない。類似故障履歴検索手段24では、ある一つの故障に対して、複数の故障原因、その故障原因の発生源と考えられる複数の機器を類似故障群として抽出する。 When the receiving unit 21a of the monitoring center communication means 21 receives an abnormality notification of the elevator 1 (when a failure occurs), the similar failure history search means 24 performs a failure search using software using, for example, a CPU. At the same time, it has a function of extracting a similar past failure history group from the failure history DB 22 based on identification data such as the model of the elevator 1 and an error code. For example, when vibration occurs in an elevator or an abnormal noise occurs in an elevator, the cause of failure is not limited to one, but there are multiple causes of failure. Further, even if the failure is similar, the device that is the source of the failure is not limited to a specific device. The similar failure history search means 24 extracts, for a given failure, a plurality of failure causes and a plurality of devices considered to be the source of the failure cause as a similar failure group.

故障原因機器候補抽出手段25は、類似故障履歴検索手段24が抽出した類似故障履歴群を故障原因機器別に分類・集計して故障確率を算出する機能を備える。例えば昇降機に振動が発生した場合、あるいは昇降機に異音が発生した場合、故障原因は1つとは限らず、様々な故障原因がある。また、故障の発生源も様々な機器に渡る。故障原因機器候補抽出手段25では、故障の発生源と機器について、原因機器別に分類・集計して確率を算出する。 The failure cause device candidate extraction means 25 has a function of classifying and totaling the similar failure history group extracted by the similar failure history search means 24 by failure cause device and calculating a failure probability. For example, when vibration occurs in an elevator or when an abnormal noise occurs in an elevator, the cause of failure is not limited to one, but there are various causes of failure. In addition, the sources of failures can be found in various devices. The failure-causing device candidate extracting means 25 classifies and totals the sources of failure and devices by causative device, and calculates the probability.

保全履歴DB26は、昇降機の点検機器、機器の交換履歴、機器の整備履歴といった保全履歴情報を蓄積し保存したデータベースであり、保守終了後、保守員4が携帯端末5から入力した情報が蓄積される。点検機器、機器の交換履歴、機器の整備履歴は昇降機毎に蓄積される。 The maintenance history DB 26 is a database that accumulates and stores maintenance history information such as elevator inspection equipment, equipment replacement history, and equipment maintenance history. Ru. Inspection equipment, equipment replacement history, and equipment maintenance history are accumulated for each elevator.

重み付け係数生成手段27は、故障当該号機について、故障前に、整備および部品交換実績がある場合は、故障原因機器候補抽出手段25が導出した故障機器別の確率を補正する確率補正値となる重み付け係数を時系列的に算出する機能を備える。重み付け係数は、故障履歴DB22に保存された故障履歴情報と、保全履歴DB26に保存された保全履歴情報に基づいて算出される。 If the failed machine has a record of maintenance and parts replacement before the failure, the weighting coefficient generation means 27 generates a weight that becomes a probability correction value for correcting the probability for each failed device derived by the failure cause device candidate extraction means 25. Equipped with a function to calculate coefficients over time. The weighting coefficient is calculated based on the failure history information stored in the failure history DB 22 and the maintenance history information stored in the maintenance history DB 26.

重み付け係数算出手段(当該号機)28は、重み付け係数生成手段27が算出した重み付け係数を監視センター通信手段21の受信部21aから取得した故障発生日と突合せ、当該故障発生日の重み付け係数を抽出する機能を備える。 The weighting coefficient calculating means (the relevant machine) 28 compares the weighting coefficient calculated by the weighting coefficient generating means 27 with the failure occurrence date obtained from the receiving unit 21a of the monitoring center communication means 21, and extracts the weighting coefficient on the failure occurrence date. Equipped with functions.

故障原因機器確率補正処理手段29は、故障原因機器候補抽出手段25が抽出した類似故障の分類・集計と重み付け係数算出手段(当該号機)28を乗算して確率を補正する機能を備える。 The failure-causing device probability correction processing means 29 has a function of correcting the probability by multiplying the classification and aggregation of the similar failures extracted by the failure-causing device candidate extraction means 25 by the weighting coefficient calculation means (the relevant machine) 28.

調査作業位置順序最適化手段30は、故障原因機器確率補正処理手段29が算出した故障原因機器確率補正値をもとに、確率の高い順に調査順序を最適化する機能を備える。 The investigation work position order optimization means 30 has a function of optimizing the investigation order in descending order of probability based on the failure cause device probability correction value calculated by the failure cause device probability correction processing means 29.

調査作業位置順序最適化手段30が出力した調査順序に関する情報は、監視センター通信手段21の送信部21bから送信され、保守員4が携帯する携帯端末5の携帯端末通信手段で受信される。携帯端末5の表示画面には、受信した調査順序が表示され、保守員4はその表示画面で調査順序を確認する。昇降機故障復旧支援システムは、以上のように構成されたシステムとする。 The information regarding the investigation order outputted by the investigation work position order optimization means 30 is transmitted from the transmitter 21b of the monitoring center communication means 21, and is received by the mobile terminal communication means of the mobile terminal 5 carried by the maintenance worker 4. The received investigation order is displayed on the display screen of the mobile terminal 5, and the maintenance worker 4 confirms the investigation order on the display screen. The elevator failure recovery support system is configured as described above.

次に、昇降機故障復旧支援システムの動作について、図2を用いて説明する。図2は本発明の実施例に係る昇降機故障復旧支援システムの動作を示すフローチャートである。 Next, the operation of the elevator failure recovery support system will be explained using FIG. 2. FIG. 2 is a flowchart showing the operation of the elevator failure recovery support system according to the embodiment of the present invention.

昇降機1で故障が発生すると、昇降機制御盤11は昇降機通信端末12を介して昇降機1を識別する識別データと、エラーコードとを含む故障状態(異常)情報を発報する(ステップS1)。次に監視センター2は、昇降機通信端末12を介して発報された昇降機1の識別データと、エラーコードとを含む故障状態情報を監視センター通信手段21の送信部21bで受信する(ステップS2)。また、昇降機制御盤11からの異常発報がない場合においても、昇降機1の故障により住人・管理人3など利用客から呼出しがあった場合(ステップS1’)、監視センター2では、図示しない監視センター員が住人・管理人3から入手した情報をもとに昇降機識別データ及び不具合情報などの故障状態を入力する。もしくは保守員4が現地に行き、昇降機1の状態を確認して携帯端末5に故障状態を入力する(ステップS2’)。 When a failure occurs in the elevator 1, the elevator control panel 11 issues failure state (abnormality) information including identification data for identifying the elevator 1 and an error code via the elevator communication terminal 12 (step S1). Next, the monitoring center 2 receives, at the transmitting unit 21b of the monitoring center communication means 21, the failure state information including the identification data of the elevator 1 and the error code, which are notified via the elevator communication terminal 12 (step S2). . Furthermore, even if there is no abnormality notification from the elevator control panel 11, if a customer such as a resident or manager 3 calls due to a failure of the elevator 1 (step S1'), the monitoring center 2 performs monitoring (not shown). Based on the information obtained from the resident/manager 3, the center staff inputs the failure status such as elevator identification data and malfunction information. Alternatively, the maintenance person 4 goes to the site, checks the status of the elevator 1, and inputs the failure status into the mobile terminal 5 (step S2').

次に、監視センター2では、前述した故障状態情報に含まれる昇降機識別データをもとに、昇降機情報DB23から発生昇降機の型式等の仕様情報を検索し、抽出された情報を類似故障履歴検索手段24に送信する(ステップS3)。 Next, the monitoring center 2 searches the elevator information DB 23 for specification information such as the model of the elevator in question based on the elevator identification data included in the above-mentioned failure state information, and uses the extracted information to search for similar failure history. 24 (step S3).

類似故障履歴検索手段24は、昇降機1の型式ならびに、エラーコード、不具合事象などの故障状態を検索条件として、故障履歴DB22の中に該当故障と類似する故障があるかを判定する(ステップS4)。 The similar failure history search means 24 determines whether there is a failure similar to the corresponding failure in the failure history DB 22 using the model of the elevator 1 and failure states such as error codes and malfunction events as search conditions (step S4). .

次に、類似故障履歴検索手段24は、故障履歴DB22の中に該当故障と類似する過去の故障履歴がある場合は、類似故障群を抽出し、抽出した故障履歴を故障原因機器別に分類して集計し、故障原因機器候補抽出手段25に送信する(ステップS5)。 Next, if there is a past failure history similar to the corresponding failure in the failure history DB 22, the similar failure history search means 24 extracts a similar failure group and classifies the extracted failure history by failure cause device. The information is totaled and transmitted to the failure-causing device candidate extraction means 25 (step S5).

ここで、ステップS4の判定処理の結果、当該故障の類似する故障履歴がない場合は、過去の類似事例を故障原因調査に活用する意味がないと判断し、サポートセンター(図示なし)へ通報し専門技術者(図示なし)と現地の保守員4がやり取りして故障原因を究明する(ステップS5´)。 Here, as a result of the determination process in step S4, if there is no failure history similar to the failure in question, it is determined that there is no point in utilizing past similar cases for failure cause investigation, and the support center (not shown) is notified. A specialist engineer (not shown) and the local maintenance worker 4 interact to investigate the cause of the failure (step S5').

次に、故障原因機器候補抽出手段25は、抽出した類似故障履歴群について故障原因機器を分類した結果、複数の故障原因機器があるかを判定する(ステップS6)。 Next, the failure-causing device candidate extracting means 25 determines whether there is a plurality of failure-causing devices as a result of classifying the failure-causing devices in the extracted similar failure history group (step S6).

次に、複数の故障原因機器がある場合は、故障原因機器候補抽出手段25は、抽出した類似故障群を母数とし、分類した故障原因機器別の割合を故障原因機器別の故障確率として算出する(ステップS7)。なお、故障原因機器が1つである場合は、その故障原因機器を調査機器として指示する(ステップS12)。 Next, if there are multiple failure-causing devices, the failure-causing device candidate extraction means 25 uses the extracted similar failure group as a parameter and calculates the proportion of each classified failure-causing device as the failure probability for each failure-causing device. (Step S7). Note that if there is only one failure-causing device, that failure-causing device is designated as an investigation device (step S12).

次に、重み付け係数生成手段27は、故障履歴DB22から抽出した類似する故障履歴情報と、保全履歴DB26から抽出した類似故障発生昇降機の保全履歴情報に基づいて、時系列的に重み付け係数を算出する(ステップS8)。本実施例の重み付け係数は、故障履歴情報に基づいて算出される長時間重み付け係数と、保全履歴情報に基づいて算出される繰返し重み付け係数としている。 Next, the weighting coefficient generation means 27 calculates a weighting coefficient in chronological order based on the similar failure history information extracted from the failure history DB 22 and the maintenance history information of the similar failure elevators extracted from the maintenance history DB 26. (Step S8). The weighting coefficients of this embodiment are a long-term weighting coefficient calculated based on failure history information and a repetition weighting coefficient calculated based on maintenance history information.

長時間重み付け係数算出方法は、故障原因調査時間が3時間(所定時間)以上要した過去の長時間不稼働故障の件数を用いて、時系列的に発生確率カーブを作成する。更に、前記発生確率カーブについて、保全履歴情報をもとにした整備周期で時系列のばらつきを補正する。繰返し重み付け係数は、故障インターバルが半年以下の故障がある件数を用いて、長時間重み付け係数と同様の処理を行う。 The long-time weighting coefficient calculation method uses the number of past long-term non-operational failures in which failure cause investigation took three hours (predetermined time) or more to create an occurrence probability curve in time series. Further, regarding the occurrence probability curve, time-series variations are corrected using a maintenance cycle based on maintenance history information. The repetition weighting coefficient performs the same process as the long-term weighting coefficient using the number of failures with a failure interval of half a year or less.

次に、重み付け係数算出手段(当該号機)28は、重み付け係数生成手段27が生成した結果から、故障発生日時点における長時間重み付け係数と繰返し重み付け係数を算出する(ステップS9)。 Next, the weighting coefficient calculation means (the relevant machine) 28 calculates the long-term weighting coefficient and the repetition weighting coefficient at the time of the failure occurrence date from the results generated by the weighting coefficient generation means 27 (step S9).

次に、故障原因機器確率補正処理手段29は、故障原因機器候補抽出手段25が算出した故障原因機器別の故障確率に重み付け係数算出手段(当該号機)28が算出した長時間重み付け係数と繰返し重み付け係数を積算し、故障確率を補正する(ステップS10)。 Next, the failure-causing device probability correction processing means 29 repeatedly weights the failure probabilities for each failure-causing device calculated by the failure-causing device candidate extraction means 25 with the long-term weighting coefficient calculated by the weighting coefficient calculation means (the relevant machine) 28. The coefficients are integrated to correct the failure probability (step S10).

次に、調査作業位置順序最適化手段30は、上述した故障原因機器別の故障確率(ステップS7)に対し、故障履歴と保全履歴データに基づいた故障確率重み付け係数(ステップS9)と積算した結果に基づき、確率が高い機器順に原因を調査する機器の調査順序を決定する(ステップS11)。 Next, the investigation work position order optimization means 30 calculates the result of integrating the failure probabilities for each failure-causing device (step S7) with a failure probability weighting coefficient (step S9) based on the failure history and maintenance history data. Based on this, the order in which the causes are to be investigated is determined in descending order of probability (step S11).

次に、故障原因調査順序の指示は、監視センター通信手段21の送信部21bから保守員4が携帯する携帯端末5に送信され(ステップS12)、保守員4は調査順序に従い原因調査、対策を実施し(ステップS13)、故障が復旧したら(ステップS14)、保守員4は故障状態、故障原因、対策内容を携帯端末5から入力し、故障履歴DB22に登録する(ステップS15)。 Next, an instruction for the order of fault investigation is transmitted from the transmitter 21b of the monitoring center communication means 21 to the mobile terminal 5 carried by the maintenance worker 4 (step S12), and the maintenance worker 4 investigates the cause and takes countermeasures according to the investigation order. When the failure is recovered (step S14), the maintenance engineer 4 inputs the failure state, cause of failure, and countermeasure details from the mobile terminal 5 and registers them in the failure history DB 22 (step S15).

次に図3~図5を用いて、重み付け係数の算出結果を説明する。図3は本発明の実施例に係る調整部位の一例であるチェーンの重み付け係数の変動を示す図である。図3には、長時間重み付け係数40と、繰り返し重み付け係数41が示されている。 Next, the calculation results of the weighting coefficients will be explained using FIGS. 3 to 5. FIG. 3 is a diagram showing variations in weighting coefficients of a chain, which is an example of an adjustment part according to an embodiment of the present invention. In FIG. 3, a long-term weighting factor 40 and a repeating weighting factor 41 are shown.

チェーンのような可動機器は、可動初期時は他の部品との馴染みが無いので、重み付け係数が高くなるが、稼働時間と共に部品同士が馴染み重み付け係数が低下する。チェーンは経年に従って伸びが発生するため、定期的な保守作業として張り調整が必要となる。このように定期的に調整する機器は、調整直後は状態が良好なため長時間不稼動につながる可能性が低く、長時間重み付け係数40は小さくなる(図中Aの位置)。一方、次の調整時期に近づくに従って機器の状態は劣化し、長時間不稼動につながる可能性が高まり、長時間重み付け係数40は大きくなる(図中Bの位置)。また、繰り返し重み付け係数41は、初期伸び領域を除くと伸び速度が落ち着くため繰り返し重み付け係数41は経年に従い漸減傾向となる。 A movable device such as a chain does not fit well with other parts at the initial stage of operation, so the weighting coefficient becomes high, but as time passes, the parts get used to each other and the weighting coefficient decreases. Chains stretch over time, so tension adjustment is necessary as a regular maintenance task. Equipment that is regularly adjusted in this manner is in good condition immediately after adjustment, and therefore is less likely to be out of operation for a long period of time, and the long-term weighting coefficient 40 becomes small (position A in the figure). On the other hand, as the next adjustment period approaches, the condition of the equipment deteriorates, increasing the possibility that it will be out of operation for a long period of time, and the long-term weighting coefficient 40 increases (position B in the figure). Further, since the elongation speed of the repetition weighting coefficient 41 becomes stable when the initial elongation region is excluded, the repetition weighting coefficient 41 tends to gradually decrease over time.

図4は本発明の実施例に係る安全スイッチの重み付け係数の変動を示す図である。安全スイッチの動作は点検で確認可能であるが、接点の接触不良については確認が困難であるため、繰り返し重み付け係数41は一定としている。なお、スイッチの接点の故障は復旧対策が簡易であるため軽微な故障の部類に入り、長時間重み付け係数は一般的な寿命曲線を当てはめると良い。 FIG. 4 is a diagram showing variations in the weighting coefficients of the safety switch according to the embodiment of the present invention. Although the operation of the safety switch can be checked by inspection, it is difficult to check the contact failure of the contacts, so the repetition weighting coefficient 41 is set constant. Note that failures in switch contacts are classified as minor failures because recovery measures are simple, and a general lifespan curve should be applied to the long-term weighting coefficient.

図5は本発明の実施例に係る巻上機の軸に設けられたロータリーエンコーダーの故障確率に対する重み付け係数の変動を示す図である。巻上機は軸の潤滑性を保つために定期的な給脂を実施している。ここで、軸に給脂した余剰なグリスがロータリーエンコーダーに付着してロータリーエンコーダーに異常をきたすことがある。軸への給脂直後は余剰なグリスが垂れやすいため、給脂後しばらく繰り返し重み付け係数41は大きくなるが、余剰グリスの量が減るにつれてグリスはロータリーエンコーダーに付着する可能性が下がるため、繰り返し重み付け係数41は低下する。長時間不稼動となるのは、ロータリーエンコーダー本体不良のため、長時間重み付け係数40は一般的な寿命曲線を当てはめると良い。 FIG. 5 is a diagram showing the variation of the weighting coefficient with respect to the failure probability of the rotary encoder provided on the shaft of the hoisting machine according to the embodiment of the present invention. Hoisting machines require regular lubrication to maintain the lubricity of their shafts. Here, excess grease applied to the shaft may adhere to the rotary encoder and cause an abnormality in the rotary encoder. Immediately after greasing the shaft, excess grease tends to drip, so the repeated weighting coefficient 41 increases for a while after greasing, but as the amount of excess grease decreases, the possibility of grease adhering to the rotary encoder decreases, so the repeated weighting coefficient 41 increases. Coefficient 41 decreases. Since the rotary encoder is not in operation for a long period of time due to a malfunction of the rotary encoder itself, it is preferable to apply a general life curve to the long-term weighting coefficient 40.

図6は本発明の実施例に係る故障原因機器の補正前と補正後の故障確率及び調査順序を示す図である。図6はエスカレーターの例ある。 FIG. 6 is a diagram showing the failure probabilities and investigation order of the failure-causing device before and after correction according to the embodiment of the present invention. Figure 6 shows an example of an escalator.

図6において、類似故障履歴検索手段24によって、故障履歴DB22の中から故障原因機器が抽出され、故障原因機器候補抽出手段25によって故障の確率及び調査順位が算出される。図6では故障原因機器として、「ステップ」、「チェーン」、「ハンドレール」、「ドライビングマシーン」が抽出され、それぞれの確率が「ステップ」35%、「チェーン」25%、「ハンドレール」20%、「ドライビングマシーン」10%と算出されている。調査順位は確率の高い順となっている。この調査順序は補正前の確信度となっている。本実施例では、前述したように過去の故障履歴から算出された確率に、長時間重み付け係数及び繰返し重み係数を乗算して補正することを特徴としている。補正前の調査順位が1位である「ステップ」は、長時間重み付け係数が1.0であり、繰返し重み付け係数が0.6であり、これらの係数を乗算して確率を補正すると、0.35*1.0*0.6=0.21となる。すなわち、補正後の確率は21%となる。同様に、補正前の調査順位が2位である「チェーン」は、長時間重み付け係数が2.4であり、繰返し重み付け係数が0.6であり、これらの係数を乗算して確率を補正すると、0.25*2.0*0.6=0.30となる。すなわち、補正後の確率は30%となる。 In FIG. 6, a similar failure history search means 24 extracts a failure-causing device from the failure history DB 22, and a failure-causing device candidate extraction means 25 calculates a failure probability and an investigation ranking. In Figure 6, "steps", "chains", "handrails", and "driving machines" are extracted as failure-causing devices, and the respective probabilities are 35% for "steps," 25% for "chains," and 20% for "handrails." %, and ``Driving Machine'' is calculated as 10%. The survey ranking is in descending order of probability. This order of investigation is the confidence level before correction. The present embodiment is characterized in that, as described above, the probability calculated from the past failure history is corrected by multiplying it by a long-term weighting coefficient and a repetition weighting coefficient. "Step", which has the first place in the survey ranking before correction, has a long-term weighting coefficient of 1.0 and a repetition weighting coefficient of 0.6, and when these coefficients are multiplied to correct the probability, it is 0.35 * 1.0 * 0.6 = It becomes 0.21. In other words, the probability after correction is 21%. Similarly, "Chain", which ranks second in the survey ranking before correction, has a long-term weighting coefficient of 2.4 and a repetition weighting coefficient of 0.6, and when these coefficients are multiplied to correct the probability, it is 0.25 * 2.0 *0.6=0.30. In other words, the probability after correction is 30%.

このように過去の故障履歴から算出された確率に、長時間重み付け係数及び繰返し重み係数を乗算して補正すると、補正後の確率は「ステップ」21%、「チェーン」30%、「ハンドレール」28%、「ドライビングマシーン」4%となり、調査順序が「チェーン」、「ハンドレール」、「ステップ」、「ドライビングマシーン」のように変更される。 When the probability calculated from past failure history is corrected by multiplying it by the long-term weighting coefficient and the repetition weighting coefficient, the corrected probability is 21% for "step", 30% for "chain", and 30% for "handrail". 28%, "driving machine" 4%, and the investigation order is changed to "chain", "handrail", "step", and "driving machine".

抽出された各原因機器の確率について、重み付け係数算出手段(当該号機)28で算出された重み付け係数を故障原因機器確率補正処理手段29で積算し、積算後の確率が高い順に調査順序を割り振り、この結果が原因調査・対策作業を行う保守員4の携帯端末5に送信される。なお、本実施例では、確率補正は積算して算出したが、加算の他、機器の重要度別に関数を作成するなどしてもよい。 Regarding the probability of each extracted causative device, the weighting coefficient calculated by the weighting coefficient calculation means (the relevant machine) 28 is integrated by the failure-causing device probability correction processing means 29, and the investigation order is assigned in descending order of the probability after the integration, This result is transmitted to the mobile terminal 5 of the maintenance worker 4 who conducts cause investigation and countermeasure work. In this embodiment, the probability correction is calculated by integrating, but instead of adding, functions may be created for each device importance.

図7は従来技術に対する本発明の故障対応の効率化の効果を示した図である。例えば、エスカレーターで振動が発生した場合、従来は、故障原因機器別の故障確率が最上位のステップのみを調整して故障状態を復旧していた。しかしながら、時間経過後に復旧時間のかかるチェーンが破断するという故障が発生することがあった。これは、故障対応時にステップのみでなくチェーンも確認をしていれば防げたものであった。 FIG. 7 is a diagram showing the effect of the present invention on improving the efficiency of failure handling over the conventional technology. For example, when vibration occurs on an escalator, conventionally, only the step with the highest failure probability for each failure-causing device is adjusted to recover from the failure condition. However, after a certain amount of time has elapsed, a failure may occur in which the chain breaks, which takes time to restore. This could have been prevented if the chain had been checked in addition to the steps when responding to the failure.

これに対し、本発明では、各原因機器の確率について、重み付け係数算出手段(当該号機)28で算出された重み付け係数を故障原因機器確率補正処理手段29で積算し、積算後の確率が高い順に調査順序を割り振るようにしているので、調査順序が最適化され、ステップだけでなくチェーンも調査対象にすることで、調査対象の見落としを抑制し、結果として、長時間不稼動、繰返し故障を抑制することができる。 In contrast, in the present invention, the weighting coefficients calculated by the weighting coefficient calculating means (the relevant machine) 28 are integrated with respect to the probabilities of each causative device by the failure-causing device probability correction processing means 29, and the probabilities are sorted in descending order of the probabilities after the integration. Since the inspection order is allocated, the inspection order is optimized, and by inspecting not only steps but also chains, it is possible to prevent oversight of inspection targets, and as a result, to prevent long periods of non-operation and repeated failures. can do.

なお、本発明は、上述した実施例に限定するものではなく、様々な変形例が含まれる。上述した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定するものではない。 Note that the present invention is not limited to the embodiments described above, and includes various modifications. The embodiments described above are described in detail to explain the present invention in an easy-to-understand manner, and the present invention is not necessarily limited to those having all the configurations described.

1…昇降機、2…監視センター、3…住人・管理人、4…保守員、5…携帯端末、11…昇降機制御盤、12…昇降機通信端末、21…監視センター通信手段、22…故障履歴DB、23…昇降機情報DB、24…類似故障履歴検索手段、25…故障原因機器候補抽出手段、26…保全履歴DB、27…重み付け係数生成手段、28…重み付け係数算出手段(当該号機)、29…故障原因機器確率補正処理手段、30…調査作業位置順序最適化手段、40…長時間重み付け係数、41…繰り返し重み付け係数 1...Elevator, 2...Monitoring center, 3...Resident/manager, 4...Maintenance worker, 5...Mobile terminal, 11...Elevator control panel, 12...Elevator communication terminal, 21...Monitoring center communication means, 22...Failure history DB , 23...Elevator information DB, 24...Similar failure history search means, 25...Failure cause device candidate extraction means, 26...Maintenance history DB, 27...Weighting coefficient generation means, 28...Weighting coefficient calculation means (the relevant machine), 29... Failure cause equipment probability correction processing means, 30... Investigation work position order optimization means, 40... Long time weighting coefficient, 41... Repetition weighting coefficient

Claims (8)

昇降機の故障発生時に、保存された故障履歴情報から類似する過去の故障履歴群を抽出し、抽出した前記故障履歴群から故障原因機器別に分類し、前記故障原因機器別に故障確率を算出して故障原因機器を調査するようにした昇降機故障復旧方法において、
前記故障履歴情報に基づいて時系列的に長時間重み付け係数を算出し、保存された前記昇降機の保全履歴情報に基づいて時系列的に繰り返し重み付け係数を算出し、
時系列的に算出した前記長時間重み付け係数及び前記繰り返し重み付け係数から故障発生日の長時間重み付け係数及び繰り返し重み付け係数を抽出し、前記故障発生日の長時間重み付け係数及び繰り返し重み付け係数を用いて前記故障確率を補正することを特徴とする昇降機故障復旧方法。
When a failure occurs in an elevator, a similar past failure history group is extracted from the saved failure history information, the extracted failure history group is classified by failure-causing device, and the failure probability is calculated for each failure-causing device to detect a failure. In an elevator failure recovery method that involves investigating the device that caused the problem,
calculating a long-term weighting coefficient chronologically based on the failure history information; repeatedly calculating a weighting coefficient chronologically based on the saved maintenance history information of the elevator;
A long-term weighting coefficient and a repeated weighting coefficient on the failure occurrence date are extracted from the long-term weighting coefficient and the repetition weighting coefficient calculated in a time-series manner, and the long-term weighting coefficient and the repetition weighting coefficient on the failure occurrence date are used to calculate the An elevator failure recovery method characterized by correcting failure probability.
請求項1において、
前記保全履歴情報は、前記昇降機の点検機器、機器の交換履歴、機器の整備履歴であること特徴とする昇降機故障復旧方法。
In claim 1,
The elevator failure recovery method is characterized in that the maintenance history information includes inspection equipment, equipment replacement history, and equipment maintenance history of the elevator.
請求項1において、
補正した故障確率に基づいて調査する機器の調査順序の決定することを特徴とする昇降機故障復旧方法。
In claim 1,
An elevator failure recovery method characterized by determining an investigation order of equipment to be investigated based on a corrected failure probability.
請求項において
決定した前記調査順序を携帯端末に送信するようにしたことを特徴とする昇降機故障復旧方法。
4. The elevator failure recovery method according to claim 3 , wherein the determined investigation order is transmitted to a mobile terminal.
昇降機の故障履歴情報を保存する故障履歴データベースと、前記昇降機の故障発生時に、前記故障履歴データベースから類似する過去の故障履歴群を抽出する類似故障検索手段と、前記類似故障検索手段で抽出された故障履歴群から故障原因機器別に分類して故障確率を算出する故障原因機器候補抽出手段とを備えた昇降機故障復旧システムにおいて、
前記昇降機の保全履歴情報を保存する保全履歴データベースと、
前記故障履歴データベースに保存された前記故障履歴情報に基づいて長時間重み付け係数を時系列的に算出すると共に、前記保全履歴データベースに保存された前記保全履歴情報に基づいて繰り返し重み付け係数を時系列的に算出する重み付け係数生成手段と、
前記重み付け係数生成手段で時系列的に算出した前記長時間重み付け係数及び前記繰り返し重み付け係数から故障発生日の長時間重み付け係数及び繰り返し重み付け係数を抽出する重み付け係数算出手段と、
前記重み付け係数算出手段で算出された長時間重み付け係数及び繰り返し重み付け係数を用いて前記故障確率を補正する故障原因機器確率補正処理手段を備えたことを特徴とする昇降機故障復旧システム。
a failure history database for storing failure history information of elevators; a similar failure search means for extracting a similar past failure history group from the failure history database when a failure occurs in the elevator; In an elevator failure recovery system, the elevator failure recovery system includes a failure cause device candidate extraction means for classifying each failure cause device from a failure history group and calculating a failure probability.
a maintenance history database that stores maintenance history information of the elevator;
Calculating long-term weighting coefficients in time series based on the failure history information stored in the failure history database, and repeatedly calculating weighting coefficients in time series based on the maintenance history information stored in the maintenance history database. weighting coefficient generating means for calculating the weighting coefficient;
Weighting coefficient calculating means for extracting long-term weighting coefficients and repeated weighting coefficients on the day of failure from the long-term weighting coefficients and the repeated weighting coefficients calculated in time series by the weighting coefficient generating means;
An elevator failure recovery system characterized by comprising failure-causing equipment probability correction processing means for correcting the failure probability using the long-term weighting coefficient and the repeated weighting coefficient calculated by the weighting coefficient calculation means.
請求項において、
前記保全履歴情報は、前記昇降機の点検機器、機器の交換履歴、機器の整備履歴であること特徴とする昇降機故障復旧システム。
In claim 5 ,
The elevator failure recovery system is characterized in that the maintenance history information includes inspection equipment, equipment replacement history, and equipment maintenance history of the elevator.
請求項において、
補正した故障確率に基づいて調査する機器の調査順序の決定することを特徴とする昇降機故障復旧システム。
In claim 5 ,
An elevator failure recovery system characterized by determining an investigation order of equipment to be investigated based on a corrected failure probability.
請求項において
決定した前記調査順序を携帯端末に送信するようにしたことを特徴とする昇降機故障復旧システム。
The elevator failure recovery system according to claim 7 , wherein the determined investigation order is transmitted to a mobile terminal.
JP2020148848A 2020-09-04 2020-09-04 Elevator failure recovery method and elevator failure recovery support system Active JP7362573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020148848A JP7362573B2 (en) 2020-09-04 2020-09-04 Elevator failure recovery method and elevator failure recovery support system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020148848A JP7362573B2 (en) 2020-09-04 2020-09-04 Elevator failure recovery method and elevator failure recovery support system

Publications (2)

Publication Number Publication Date
JP2022043532A JP2022043532A (en) 2022-03-16
JP7362573B2 true JP7362573B2 (en) 2023-10-17

Family

ID=80668464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020148848A Active JP7362573B2 (en) 2020-09-04 2020-09-04 Elevator failure recovery method and elevator failure recovery support system

Country Status (1)

Country Link
JP (1) JP7362573B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010061569A (en) 2008-09-05 2010-03-18 Toshiba Corp Failure handling management server and failure handling management program
JP2016167194A (en) 2015-03-10 2016-09-15 三菱電機ビルテクノサービス株式会社 Facility inspection order setting device and program
JP2017187900A (en) 2016-04-04 2017-10-12 三菱電機株式会社 Information processing device, maintenance system, information processing method and information processing program
JP2018167957A (en) 2017-03-30 2018-11-01 株式会社日立ビルシステム Maintenance support system for elevator
US20190112151A1 (en) 2016-05-24 2019-04-18 Mitsubishi Electric Corporation Elevator preventive maintenance system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010061569A (en) 2008-09-05 2010-03-18 Toshiba Corp Failure handling management server and failure handling management program
JP2016167194A (en) 2015-03-10 2016-09-15 三菱電機ビルテクノサービス株式会社 Facility inspection order setting device and program
JP2017187900A (en) 2016-04-04 2017-10-12 三菱電機株式会社 Information processing device, maintenance system, information processing method and information processing program
US20190112151A1 (en) 2016-05-24 2019-04-18 Mitsubishi Electric Corporation Elevator preventive maintenance system
JP2018167957A (en) 2017-03-30 2018-11-01 株式会社日立ビルシステム Maintenance support system for elevator

Also Published As

Publication number Publication date
JP2022043532A (en) 2022-03-16

Similar Documents

Publication Publication Date Title
US11403160B2 (en) Fault predicting system and fault prediction method
CN110023862B (en) Diagnostic device, diagnostic method, and computer-readable recording medium
CN112162878B (en) Database fault discovery method and device, electronic equipment and storage medium
JP5129725B2 (en) Device abnormality diagnosis method and system
CN109146114B (en) Component replacement prediction device, component replacement prediction system, and component replacement prediction method
US8463485B2 (en) Process for service diagnostic and service procedures enhancement
JP6837427B2 (en) Elevator failure diagnosis system
US6650949B1 (en) Method and system for sorting incident log data from a plurality of machines
US8015134B2 (en) Determining a corrective action based on economic calculation
WO2011102039A1 (en) Failure diagnosis system, failure diagnosis apparatus and failure diagnosis program
US20220269259A1 (en) Predictive maintenance for a device in the food industry by means of a digital twin, and optimized production planning
WO2014117245A1 (en) Faults and performance issue prediction
CN110764474B (en) Method and system for monitoring running state of equipment
CN113168172B (en) Model generation device, model generation method, and program
US7350106B2 (en) Device for aiding the locating of failure of a complex system
US20160110653A1 (en) Method and apparatus for predicting a service call for digital printing equipment from a customer
JP7244406B2 (en) Monitoring center and elevator failure recovery support system
JP7362573B2 (en) Elevator failure recovery method and elevator failure recovery support system
RU2687848C1 (en) Method and system of vibration monitoring of industrial safety of dynamic equipment of hazardous production facilities
KR20220167008A (en) A system for predicting equipment failure in ship and a method of predicting thereof
US20210184916A1 (en) Node health prediction based on failure issues experienced prior to deployment in a cloud computing system
JP2021134027A (en) Failure recovery support system and method for elevator
CN115097764A (en) Industrial remote control system and method based on 5g
Syrotkina et al. Mathematical Methods for Detecting and Localizing Failures in Complex Hardware/Software Systems
CN113716438A (en) Escalator with distributed state sensors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231004

R150 Certificate of patent or registration of utility model

Ref document number: 7362573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150