JP7362433B2 - Additive manufacturing method - Google Patents

Additive manufacturing method Download PDF

Info

Publication number
JP7362433B2
JP7362433B2 JP2019204021A JP2019204021A JP7362433B2 JP 7362433 B2 JP7362433 B2 JP 7362433B2 JP 2019204021 A JP2019204021 A JP 2019204021A JP 2019204021 A JP2019204021 A JP 2019204021A JP 7362433 B2 JP7362433 B2 JP 7362433B2
Authority
JP
Japan
Prior art keywords
raw material
material powder
modeling
box
unsolidified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019204021A
Other languages
Japanese (ja)
Other versions
JP2021074976A (en
Inventor
和樹 高田
大介 瀬角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2019204021A priority Critical patent/JP7362433B2/en
Publication of JP2021074976A publication Critical patent/JP2021074976A/en
Application granted granted Critical
Publication of JP7362433B2 publication Critical patent/JP7362433B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Description

本発明は、積層造形方法に関する。 The present invention relates to an additive manufacturing method.

積層造形法は、造形ボックス内で原料粉末を積層しながら、一層を積層するごとにその層の所定領域を固化させることを繰り返すことにより、三次元形状の積層造形品を成形する方法である。 The additive manufacturing method is a method of forming a three-dimensional additive-molded product by repeatedly layering raw material powder in a modeling box and solidifying a predetermined area of the layer each time the layer is laminated.

造形ボックス内で積層造形品を形成した後、造形ボックスから積層造形品を取り出し、積層造形品の表面に付着した、固化していない原料粉末(以下、「未固化粉末」ともいう)を除去する必要がある。例えば下記の特許文献1では、造形ボックス内で積層造形品を形成した後、造形ボックスから積層造形品を取り出してジェットノズルを備えた金属粉末除去室に設置し、ジェットノズルから高圧の気体を噴射することで積層造形品に付着した金属粉末を除去している。 After forming the additively manufactured product in the modeling box, remove the additively manufactured product from the modeling box and remove unsolidified raw material powder (hereinafter also referred to as "unsolidified powder") that has adhered to the surface of the additively manufactured product. There is a need. For example, in Patent Document 1 listed below, after forming a layered product in a modeling box, the layered product is taken out from the modeling box and placed in a metal powder removal chamber equipped with a jet nozzle, and high-pressure gas is injected from the jet nozzle. By doing this, metal powder adhering to the additively manufactured product is removed.

特開2018-80356号公報Japanese Patent Application Publication No. 2018-80356

しかし、上記の方法では、金属粉末除去室を設置するためのスペースが必要となるため、積層造形設備が大型化する。また、積層造形品を造形ボックスから金属粉末除去室に移動させる必要があるため、手間がかかる上、積層造形品に付着した粉末の飛散や、移動中の積層造形品の破損のリスクがある。 However, the above method requires a space for installing a metal powder removal chamber, which increases the size of the additive manufacturing equipment. In addition, it is necessary to move the additively manufactured product from the modeling box to the metal powder removal chamber, which is time-consuming, and there is a risk of powder adhering to the additively manufactured product scattering and damage to the additively manufactured product during movement.

そこで、本発明は、積層造形設備を小型化すると共に、積層造形における工数の削減、原料粉末の飛散防止、及び、積層造形品の破損防止を目的とする。 Therefore, the present invention aims to downsize additive manufacturing equipment, reduce the number of man-hours in additive manufacturing, prevent scattering of raw material powder, and prevent damage to additively manufactured products.

前記課題を解決するために、本発明は、造形ボックス内に原料粉末層を積層しながら、前記原料粉末層を一層積層するごとに当該原料粉末層の所定領域を固めることにより、積層造形品を形成する造形工程と、前記造形ボックスから固化していない原料粉末を排出する排出工程と、前記造形ボックス内で、前記積層造形品の表面に付着した原料粉末を除去する清掃工程とを備えた積層造形方法を提供する。 In order to solve the above problems, the present invention creates an additively manufactured product by stacking raw material powder layers in a modeling box and solidifying a predetermined area of the raw material powder layers each time the raw material powder layers are laminated. A lamination process comprising: a modeling step of forming, a discharge step of discharging raw material powder that has not solidified from the modeling box, and a cleaning step of removing raw material powder adhering to the surface of the layered product in the modeling box. Provide a modeling method.

このように、本発明に係る積層造形方法では、造形ボックス内を、積層造形品の清掃工程を行うスペースとして活用した。これにより、清掃工程を行うための別途のスペースが不要となり、積層造形設備の小型化が図られる。また、積層造形品を造形ボックスから清掃エリアに移動させる必要がなくなるため、工数が削減されると共に、積層造形品の移動による原料粉末の飛散や積層造形品の破損を回避することができる。 In this way, in the additive manufacturing method according to the present invention, the inside of the modeling box is utilized as a space for performing the cleaning process of the additively manufactured product. This eliminates the need for a separate space for the cleaning process, allowing the additive manufacturing equipment to be downsized. Furthermore, since there is no need to move the additively manufactured product from the modeling box to the cleaning area, the number of man-hours is reduced, and it is possible to avoid scattering of raw material powder and damage to the additively manufactured product due to movement of the additively manufactured product.

排出工程において、造形ボックスの底部に設けた穴から未固化粉末を排出すれば、造形ボックス内に、清掃工程を行うためのスペースを容易に確保することができる。 In the discharge process, if the unsolidified powder is discharged from the hole provided at the bottom of the modeling box, a space for performing the cleaning process can be easily secured in the modeling box.

以上のように、本発明によれば、積層造形設備を小型化できると共に、積層造形における工数の削減、原料粉末の飛散防止、及び、積層造形品の破損防止を実現できる。 As described above, according to the present invention, it is possible to downsize additive manufacturing equipment, reduce the number of man-hours in additive manufacturing, prevent scattering of raw material powder, and prevent damage to additively manufactured products.

本発明の実施形態に係る積層造形装置の上面図である。FIG. 1 is a top view of an additive manufacturing apparatus according to an embodiment of the present invention. 図1の積層造形装置のII-II線断面図である。FIG. 2 is a sectional view taken along line II-II of the additive manufacturing apparatus in FIG. 1. FIG. 閉塞部材の断面図である。It is a sectional view of a closing member. 造形テーブル上に原料粉末層を形成する工程を示す上面図である。It is a top view showing the process of forming a raw material powder layer on a modeling table. 造形テーブル上に原料粉末層を形成する工程を示す断面図(図4のV-V線断面図)である。5 is a cross-sectional view (cross-sectional view taken along the line VV in FIG. 4) showing a process of forming a raw material powder layer on a modeling table. FIG. 上記原料粉末層の所定領域を固化させる工程を示す上面図である。It is a top view which shows the process of solidifying the predetermined area|region of the said raw material powder layer. 上記原料粉末層の所定領域を固化させる工程を示す断面図(図6のVII-VII線断面図)である。FIG. 7 is a cross-sectional view (cross-sectional view taken along the line VII-VII in FIG. 6) showing a step of solidifying a predetermined region of the raw material powder layer. 上記原料粉末層の上に、さらに原料粉末層を積層する工程を示す断面図である。It is a sectional view showing a process of further laminating a raw material powder layer on the raw material powder layer. 積層した原料粉末層の所定領域を固化させる工程を示す断面図である。FIG. 3 is a cross-sectional view showing a step of solidifying a predetermined region of stacked raw material powder layers. 積層造形品を形成した状態を示す断面図である。It is a sectional view showing a state where a layered product is formed. 造形ボックスから未固化粉末を排出する様子を示す断面図である。FIG. 3 is a cross-sectional view showing how unsolidified powder is discharged from the modeling box. 造形ボックス内で、積層造形品の表面に付着した未固化粉末を除去する様子を示す断面図である。FIG. 3 is a cross-sectional view showing how unsolidified powder adhering to the surface of a layered product is removed in the modeling box.

以下、本発明の実施の形態を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

本発明の一実施形態に係る積層造形装置は、図1及び図2に示すように、底部に造形テーブル11を有する造形ボックス10と、原料粉末供給部としてのリコータ20と、固化部としてのバインダ供給部30と、破壊手段40と、造形テーブル11、リコータ20、バインダ供給部30及び破壊手段40をそれぞれ駆動する駆動手段(図示省略)と、これらの駆動手段を制御する制御部(図示省略)とを備える。 As shown in FIGS. 1 and 2, the additive manufacturing apparatus according to an embodiment of the present invention includes a modeling box 10 having a modeling table 11 at the bottom, a recoater 20 as a raw material powder supply section, and a binder as a solidification section. Supply section 30, destruction means 40, modeling table 11, recoater 20, drive means (not shown) that drives the binder supply section 30 and destruction means 40, respectively, and a control section (not shown) that controls these drive means. Equipped with.

造形ボックス10は、造形テーブル11と、造形テーブル11の周囲を囲む側壁12とを備える。本実施形態では、造形テーブル11及び側壁12が、平面視で矩形状を成している(図1参照)。造形テーブル11は、電動シリンダ等の駆動手段で昇降される。 The modeling box 10 includes a modeling table 11 and a side wall 12 surrounding the modeling table 11. In this embodiment, the modeling table 11 and the side wall 12 have a rectangular shape in plan view (see FIG. 1). The modeling table 11 is raised and lowered by a driving means such as an electric cylinder.

造形テーブル11は、穴13aが形成されたテーブル本体13と、穴13aを閉塞する閉塞部材14とを有する。テーブル本体13に設けられる穴13aの数は特に限定されず、例えば複数の穴13aが設けられ、具体的には縦横複数列ずつ(図1に示す例では、縦3列、横4列)の穴13aが設けられる。閉塞部材14は、各穴13aに一つずつ設けられる。本実施形態では、穴13aの内周面及び閉塞部材14の外周面が、下方に向けて徐々に縮径したテーパ状を成し、両者がテーパ嵌合している(図2参照)。閉塞部材14の上面は、テーブル本体13の上面と同じ高さか、あるいはテーブル本体13の上面よりも僅かに下方に配される。 The modeling table 11 includes a table main body 13 in which a hole 13a is formed, and a closing member 14 that closes the hole 13a. The number of holes 13a provided in the table body 13 is not particularly limited, and for example, a plurality of holes 13a may be provided, specifically in multiple rows and rows (in the example shown in FIG. 1, three columns and four rows). A hole 13a is provided. One closing member 14 is provided in each hole 13a. In this embodiment, the inner circumferential surface of the hole 13a and the outer circumferential surface of the closing member 14 form a tapered shape whose diameter gradually decreases downward, and the two are tapered fitted (see FIG. 2). The upper surface of the closing member 14 is arranged at the same height as the upper surface of the table main body 13 or slightly below the upper surface of the table main body 13.

閉塞部材14は、積層造形品の原料粉末と同じ原料粉末で形成され、例えば後述する積層造形品Pと同様の方法で製造される。本実施形態の閉塞部材14は、図3に示すように、原料粉末を固化させた固化層14aが表面に形成され、固化層14aの内部に固化されていない原料粉末14bが密封されている。この場合、固化層14aの厚さによって、閉塞部材14の強度を調整することができる。尚、閉塞部材14を、積層造形品の原料粉末と異なる材料(好ましくは、原料粉末の再使用に影響を及ぼさない材料)で形成したり、積層造形品Pと異なる方法(例えば、圧縮成形等)で製造したりしてもよい。 The closing member 14 is formed of the same raw material powder as the raw material powder of the laminate-molded product, and is manufactured, for example, by the same method as the laminate-molded product P described later. As shown in FIG. 3, the closure member 14 of this embodiment has a solidified layer 14a formed by solidifying raw material powder formed on its surface, and an unsolidified raw material powder 14b sealed inside the solidified layer 14a. In this case, the strength of the closing member 14 can be adjusted depending on the thickness of the solidified layer 14a. It should be noted that the closing member 14 may be formed of a material different from the raw material powder of the additively manufactured product (preferably a material that does not affect the reuse of the raw material powder), or may be formed by a method different from that of the additively manufactured product P (for example, compression molding, etc.). ) may be manufactured.

破壊手段40は、例えば、昇降可能な複数のピン41で構成される(図2参照)。各ピン41は、それぞれ閉塞部材14の真下に配置される。破壊手段40は、電動シリンダ等の駆動手段により昇降される。 The destruction means 40 is composed of, for example, a plurality of pins 41 that can be raised and lowered (see FIG. 2). Each pin 41 is arranged directly below the closing member 14, respectively. The destruction means 40 is raised and lowered by a driving means such as an electric cylinder.

以下、上記の積層造形装置を用いて、積層造形品(例えば鋳造品の中子)を形成する手順を説明する。積層造形品は、造形工程、排出工程及び清掃工程を経て製造される。 Hereinafter, a procedure for forming a layered product (for example, a core of a cast product) using the layered layer manufacturing apparatus described above will be described. Laminated manufactured products are manufactured through a modeling process, a discharge process, and a cleaning process.

[造形工程]
造形工程では、まず、リコータ20の内部に原料粉末を投入する。原料粉末としては、積層造形に適用可能な公知の材料を使用することができ、例えば、鋳物砂、樹脂粉、セラミックス粉、ガラス粉、金属粉などを使用できる。本実施形態では、鋳物砂が使用され、具体的には、砂と酸触媒とがリコータ20に投入されて混合されることで原料粉末(鋳物砂)が作製される。砂としては、例えば、天然珪砂や人工砂を使用できる。酸触媒としては、例えば、脂肪族スルホン酸(例えば、メタンスルホン酸、エタンスルホン酸など)、芳香族スルホン酸(例えば、ベンゼンスルホン酸、パラトルエンスルホン酸、キシレンスルホン酸など)、無機酸(例えば、硫酸、リン酸、塩酸など)、カルボン酸(例えば、マレイン酸、シュウ酸など)などが使用できる。酸触媒は、単独使用または2種類以上併用することができる。
[Modeling process]
In the modeling process, raw material powder is first put into the recoater 20 . As the raw material powder, known materials applicable to additive manufacturing can be used, such as foundry sand, resin powder, ceramic powder, glass powder, metal powder, etc. In this embodiment, foundry sand is used, and specifically, raw material powder (foundry sand) is produced by putting sand and an acid catalyst into the recoater 20 and mixing them. As the sand, for example, natural silica sand or artificial sand can be used. Examples of acid catalysts include aliphatic sulfonic acids (for example, methanesulfonic acid, ethanesulfonic acid, etc.), aromatic sulfonic acids (for example, benzenesulfonic acid, p-toluenesulfonic acid, xylene sulfonic acid, etc.), inorganic acids (for example, , sulfuric acid, phosphoric acid, hydrochloric acid, etc.), carboxylic acids (for example, maleic acid, oxalic acid, etc.), etc. can be used. Acid catalysts can be used alone or in combination of two or more types.

そして、図4及び図5に示すように、造形ボックス10の上方でリコータ20を水平移動させながら、リコータ20から造形テーブル11の上に原料粉末を供給し、所定厚さの原料粉末層Mを形成する。具体的に、造形テーブル11上に原料粉末を供給し、この原料粉末の上面をリコータ20に設けられた摺り切り部材(図示省略)で摺り切ることで、原料粉末層Mの上面が平坦になる。その後、必要に応じて、上記と同様の工程を繰り返して、原料粉末層Mをさらに積層する。 Then, as shown in FIGS. 4 and 5, while horizontally moving the recoater 20 above the modeling box 10, raw material powder is supplied from the recoater 20 onto the modeling table 11 to form a raw material powder layer M of a predetermined thickness. Form. Specifically, the raw material powder is supplied onto the modeling table 11, and the upper surface of the raw material powder is rubbed off with a cutting member (not shown) provided on the recoater 20, so that the upper surface of the raw material powder layer M becomes flat. . Thereafter, if necessary, the same steps as above are repeated to further laminate the raw material powder layer M.

造形テーブル11上に所定数の原料粉末層Mが積層されたら、図6及び図7に示すように、造形ボックス10の上方でバインダ供給部30を水平移動させながら、バインダ供給部30から造形テーブル11上の原料粉末層Mの所定領域にバインダを供給する。バインダとしては、例えば、フラン樹脂、フェノール樹脂、エポキシ樹脂、シリコーン樹脂、レゾール型フェノール樹脂などを使用でき、本実施形態ではフラン樹脂が使用される。このフラン樹脂と、原料粉末に混合された酸触媒とが化学反応することで、原料粉末(砂)の粒子同士が結合される。これにより、最も上の原料粉末層Mの所定領域に、原料粉末が固化された固化領域P0が形成される。原料粉末層Mのうち、固化領域P0以外の領域は、未固化粉末M’として残る。 When a predetermined number of raw material powder layers M are stacked on the modeling table 11, as shown in FIGS. 6 and 7, while the binder supply unit 30 is horizontally moved above the modeling box 10, A binder is supplied to a predetermined region of the raw material powder layer M on 11. As the binder, for example, furan resin, phenol resin, epoxy resin, silicone resin, resol type phenol resin, etc. can be used, and in this embodiment, furan resin is used. The chemical reaction between this furan resin and the acid catalyst mixed with the raw material powder causes the particles of the raw material powder (sand) to be bonded to each other. As a result, a solidified region P0 in which the raw material powder is solidified is formed in a predetermined region of the uppermost raw material powder layer M. In the raw material powder layer M, regions other than the solidified region P0 remain as unsolidified powder M'.

その後、図8に示すように、造形テーブル11を僅かに降下させてから、造形ボックス10の上方でリコータ20を水平移動させながらリコータ20から原料粉末を供給して、造形テーブル11上に原料粉末層Mをさらに積層する。そして、図9に示すように、造形ボックス10の上方でバインダ供給部30を水平移動させながら、最も上の原料粉末層Mの所定領域にバインダ供給部30からバインダを供給し、当該領域の原料粉末を固化させて固化領域P0を形成すると共に、この固化領域P0を、下方に隣接する原料粉末層Mの固化領域P0と結合させる。以上を繰り返すことにより、図10に示すように、造形ボックス10の内部に積層造形品Pが形成される。 Thereafter, as shown in FIG. 8, the modeling table 11 is lowered slightly, and the raw material powder is supplied from the recoater 20 while horizontally moving the recoater 20 above the modeling box 10, and the raw material powder is placed on the modeling table 11. Layer M is further laminated. Then, as shown in FIG. 9, while horizontally moving the binder supply unit 30 above the modeling box 10, the binder is supplied from the binder supply unit 30 to a predetermined area of the uppermost raw material powder layer M, and the raw material in the area is The powder is solidified to form a solidified region P0, and this solidified region P0 is combined with the solidified region P0 of the raw material powder layer M adjacent below. By repeating the above steps, a layered product P is formed inside the modeling box 10, as shown in FIG.

[排出工程]
次に、造形ボックス10内の未固化粉末M’を排出する。本実施形態では、造形ボックス10の底部(造形テーブル11)に設けられた穴13aから未固化粉末M’を排出する。具体的には、図11に示すように破壊手段40のピン41を上昇させて、ピン41の上端で閉塞部材14を下方から突き刺すことにより、閉塞部材14を破壊する。これにより、テーブル本体13の穴13aが開放され、この穴13aを介して造形ボックス10内の未固化粉末M’が自重により落下し、造形ボックス10の下方に配された回収ボックス50に回収される。回収した未固化粉末M’は、リコータ20に投入する原料粉末として再利用される。
[Discharge process]
Next, the unsolidified powder M' in the modeling box 10 is discharged. In this embodiment, unsolidified powder M' is discharged from a hole 13a provided at the bottom of the modeling box 10 (modeling table 11). Specifically, as shown in FIG. 11, the pin 41 of the destroying means 40 is raised and the upper end of the pin 41 pierces the closing member 14 from below, thereby destroying the closing member 14. As a result, the hole 13a of the table body 13 is opened, and the unsolidified powder M' in the modeling box 10 falls through the hole 13a due to its own weight and is collected in the collection box 50 arranged below the modeling box 10. Ru. The recovered unsolidified powder M' is reused as raw material powder to be input into the recoater 20.

[清掃工程]
その後、図12に示すように、造形ボックス10の内部で、積層造形品Pの表面に付着した未固化粉末M’を除去する。例えば、造形ボックス10内に配置した積層造形品Pに対して、エアノズル60から噴射したエアを吹き付けることにより、積層造形品Pの表面に付着した未固化粉末M’を吹き飛ばして除去する。除去された未固化粉末M’は、造形テーブル11のテーブル本体13の穴13aを介して造形ボックス10から排出され、回収ボックス50(図11参照)に回収される。こうして表面の未固化粉末M’が除去された積層造形品Pが、造形ボックス10から取り出される。
[Cleaning process]
Thereafter, as shown in FIG. 12, unsolidified powder M' adhering to the surface of the layered product P is removed inside the modeling box 10. For example, by blowing air from the air nozzle 60 onto the layered product P placed in the modeling box 10, unsolidified powder M' adhering to the surface of the layered product P is blown off and removed. The removed unsolidified powder M' is discharged from the modeling box 10 through the hole 13a of the table body 13 of the modeling table 11, and collected in the collection box 50 (see FIG. 11). The layered product P from which the unsolidified powder M' on the surface has been removed in this way is taken out from the modeling box 10.

このように、造形ボックス10内のスペースを、積層造形品Pの清掃工程を行うためのスペースとして活用することで、清掃工程を行う別途のスペースが不要となるため、積層造形設備の小型化が図られる。また、積層造形品Pを、別途の清掃エリアに移動させる必要が無いため、工数が削減されると共に、積層造形品Pの移動による未固化粉末M’の飛散や積層造形品Pの破損を回避できる。さらに、上記のように、造形ボックス10の底部(造形テーブル11)の穴13aを介して造形ボックス10内の未固化粉末M’を排出することで、造形ボックス10内に、清掃工程を行うためのスペースを容易に確保することができる。 In this way, by utilizing the space inside the modeling box 10 as a space for performing the cleaning process of the additively manufactured product P, a separate space for the cleaning process is not required, so that the additive manufacturing equipment can be downsized. It will be planned. In addition, since there is no need to move the additively manufactured product P to a separate cleaning area, the number of man-hours is reduced, and scattering of unsolidified powder M' and damage to the additively manufactured product P due to the movement of the additively manufactured product P are avoided. can. Furthermore, as described above, by discharging the unsolidified powder M' inside the modeling box 10 through the hole 13a in the bottom of the modeling box 10 (the modeling table 11), a cleaning process is performed inside the modeling box 10. space can be easily secured.

本発明は上記の実施形態に限られない。例えば、上記の実施形態では、閉塞部材14をピン41で破壊する場合を示したが、これに限らず、ドリルで閉塞部材を破壊したり、閉塞部材を加熱して破壊したりしてもよい。あるいは、閉塞部材を破壊するのではなく、閉塞部材を昇降させて造形テーブルの穴を開閉してもよい。また、排出工程において、造形ボックス10の底部の穴13aから未固化粉末M’を排出するのではなく、例えば吸引手段により造形ボックス10内の未固化粉末M’を吸引してもよい。 The present invention is not limited to the above embodiments. For example, in the above embodiment, the case where the closure member 14 is destroyed with the pin 41 is shown, but the closure member is not limited to this, and the closure member may be destroyed with a drill or the closure member may be destroyed by heating. . Alternatively, instead of destroying the closing member, the hole in the modeling table may be opened and closed by raising and lowering the closing member. Furthermore, in the discharge step, instead of discharging the unsolidified powder M' from the hole 13a at the bottom of the modeling box 10, the unsolidified powder M' inside the modeling box 10 may be sucked, for example, by a suction means.

また、上記の実施形態では、原料粉末をバインダで固化することで積層造形品を形成する場合を示したが、これに限らず、原料粉末をレーザ等の他の手段で固化することで積層造形品を形成してもよい。 Further, in the above embodiment, a case is shown in which an additively manufactured product is formed by solidifying the raw material powder with a binder, but the invention is not limited to this, and the additively manufactured product is formed by solidifying the raw material powder with other means such as a laser. It may also be used to form products.

10 造形ボックス
11 造形テーブル
12 側壁
13 テーブル本体
13a 穴
14 閉塞部材
14a 固化層
20 リコータ(原料粉末供給部)
30 バインダ供給部(固化部)
40 破壊手段
41 ピン
50 回収ボックス
60 エアノズル
M 原料粉末層
M’ 未固化粉末
P 積層造形品
P0 固化領域
10 Modeling box 11 Modeling table 12 Side wall 13 Table main body 13a Hole 14 Closing member 14a Solidified layer 20 Recoater (raw material powder supply section)
30 Binder supply section (solidification section)
40 Destruction means 41 Pin 50 Collection box 60 Air nozzle M Raw material powder layer M' Unsolidified powder P Additively manufactured product P0 Solidified area

Claims (1)

造形ボックス内に原料粉末層を積層しながら、前記原料粉末層を一層積層するごとに当該原料粉末層の所定領域を固めることにより積層造形品を形成する造形工程と、前記積層造形品を形成した後、前記積層造形品を昇降させることなく前記造形ボックス内に収容した状態のまま、前記造形ボックスから固化していない原料粉末を排出する排出工程と、前記造形ボックス内で、前記積層造形品の表面に付着した原料粉末を除去する清掃工程とを備え
前記造形ボックスが、底部に設けられた穴と、前記穴を閉塞する閉塞部材とを有し、
前記閉塞部材が、原料粉末を固化させて表面に形成された固化層と、前記固化層の内部に密封された固化されていない原料粉末とを有し、
前記排出工程において、前記閉塞部材を破壊することにより、前記造形ボックスの穴から固化していない原料粉末を排出する積層造形方法。
a modeling step of forming a layered product by solidifying a predetermined area of the layer of raw material powder each time the layer of raw material powder is laminated in a modeling box; After that, a discharge step of discharging unsolidified raw material powder from the modeling box while the additively manufactured product is housed in the modeling box without raising or lowering the product, and a discharge step of discharging the raw material powder that has not been solidified from the manufacturing box; Equipped with a cleaning process to remove raw material powder adhering to the surface ,
The modeling box has a hole provided at the bottom and a closing member that closes the hole,
The closing member has a solidified layer formed on the surface by solidifying raw material powder, and unsolidified raw material powder sealed inside the solidified layer,
The additive manufacturing method includes, in the discharge step, discharging unsolidified raw material powder from the hole of the modeling box by destroying the closing member .
JP2019204021A 2019-11-11 2019-11-11 Additive manufacturing method Active JP7362433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019204021A JP7362433B2 (en) 2019-11-11 2019-11-11 Additive manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019204021A JP7362433B2 (en) 2019-11-11 2019-11-11 Additive manufacturing method

Publications (2)

Publication Number Publication Date
JP2021074976A JP2021074976A (en) 2021-05-20
JP7362433B2 true JP7362433B2 (en) 2023-10-17

Family

ID=75897814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019204021A Active JP7362433B2 (en) 2019-11-11 2019-11-11 Additive manufacturing method

Country Status (1)

Country Link
JP (1) JP7362433B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230390975A1 (en) * 2020-10-20 2023-12-07 Toyobo Co., Ltd. Foam molded product and method for producing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015527227A (en) 2012-07-09 2015-09-17 エクスワン ゲーエムベーハー Method and apparatus for unpacking components
JP2015214045A (en) 2014-05-08 2015-12-03 株式会社リコー Three-dimensional molding device, method for controlling three-dimensional molding device, and method for manufacturing three-dimensional article
US20190143597A1 (en) 2017-11-15 2019-05-16 National Chung-Shan Institute Of Science And Technology Additive manufacturing chamber, additive manufacturing module and additive manufacturing apparatus therewith
JP2019072967A (en) 2017-10-18 2019-05-16 ローランドディー.ジー.株式会社 Three-dimensional fabrication apparatus and fabrication method of three-dimensional object
US20190240913A1 (en) 2018-02-07 2019-08-08 Desktop Metal, Inc. Systems, devices, and methods for additive manufacturing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015527227A (en) 2012-07-09 2015-09-17 エクスワン ゲーエムベーハー Method and apparatus for unpacking components
JP2015214045A (en) 2014-05-08 2015-12-03 株式会社リコー Three-dimensional molding device, method for controlling three-dimensional molding device, and method for manufacturing three-dimensional article
JP2019072967A (en) 2017-10-18 2019-05-16 ローランドディー.ジー.株式会社 Three-dimensional fabrication apparatus and fabrication method of three-dimensional object
US20190143597A1 (en) 2017-11-15 2019-05-16 National Chung-Shan Institute Of Science And Technology Additive manufacturing chamber, additive manufacturing module and additive manufacturing apparatus therewith
US20190240913A1 (en) 2018-02-07 2019-08-08 Desktop Metal, Inc. Systems, devices, and methods for additive manufacturing

Also Published As

Publication number Publication date
JP2021074976A (en) 2021-05-20

Similar Documents

Publication Publication Date Title
US20200331200A1 (en) Methods and breakable supports for additive manufacturing
US10583606B2 (en) Method and supports with powder removal ports for additive manufacturing
US10661333B2 (en) Casting method using combined 3D printed shell mold and the combined shell mold used in the method
US10357828B2 (en) Methods and leading edge supports for additive manufacturing
JP5772668B2 (en) Three-dimensional modeling method, three-dimensional modeling complex, and three-dimensional modeling apparatus
JP2020508240A (en) Method and system for removing material
EP3205421A1 (en) Methods and surrounding supports for additive manufacturing
KR101913979B1 (en) Method for manufacturing three-dimensionally shaped molding
WO2014208743A1 (en) Three-dimensional shaped body and support formation method
JP2005171299A (en) Method for manufacturing three-dimensionally formed article
CN101448627A (en) Method for manufacturing composite structure by retractable die
JP7362433B2 (en) Additive manufacturing method
KR102145781B1 (en) Manufacturing method of 3D shape sculpture
CN101448626B (en) A method for making a composite material structure by a retractable mould
JP6385145B2 (en) Structure manufacturing method and manufacturing apparatus
KR102300955B1 (en) A casting mold applied conformal cooling cores
JP7327891B2 (en) Layered manufacturing method and layered manufacturing apparatus
JP6738116B2 (en) Method for manufacturing three-dimensional model
JP2001254107A (en) Three-dimensional model structure and molding structure by photo-molding, and molding method by photo-molding
JP4983768B2 (en) Modeling method by stereolithography
EP3476570A1 (en) Method and apparatus for making tangible products by layer wise manufacturing
JP2003275846A (en) Sand mold for casting
KR20200010625A (en) Light-weight 3d pattern structure for bidner-jet 3d printing, the 3d patterned molds for casting process and the casting process using them
KR102086322B1 (en) Method of manufacturing salt core
JP2002347126A (en) Optical molding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231004

R150 Certificate of patent or registration of utility model

Ref document number: 7362433

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150