JP7362066B2 - Titanium parts and methods for manufacturing titanium parts - Google Patents

Titanium parts and methods for manufacturing titanium parts Download PDF

Info

Publication number
JP7362066B2
JP7362066B2 JP2019132272A JP2019132272A JP7362066B2 JP 7362066 B2 JP7362066 B2 JP 7362066B2 JP 2019132272 A JP2019132272 A JP 2019132272A JP 2019132272 A JP2019132272 A JP 2019132272A JP 7362066 B2 JP7362066 B2 JP 7362066B2
Authority
JP
Japan
Prior art keywords
titanium
powder
manufacturing
cnf
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019132272A
Other languages
Japanese (ja)
Other versions
JP2021017611A (en
Inventor
大樹 栗田
史生 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2019132272A priority Critical patent/JP7362066B2/en
Publication of JP2021017611A publication Critical patent/JP2021017611A/en
Application granted granted Critical
Publication of JP7362066B2 publication Critical patent/JP7362066B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、チタン部材およびチタン部材の製造方法に関する。 The present invention relates to a titanium member and a method for manufacturing a titanium member.

従来、純チタンやチタン合金は、強度が高く、耐食性に優れているため、航空機や各種機械等の材料として広く利用されている。代表的なチタン合金としては、例えば、汎用のTi-6Al-4V(64チタン合金)がある。また、Ti粉末にTiB粒子を混合し、焼結することにより製造される強化チタンも開発されている(例えば、特許文献1または2参照)。 Conventionally, pure titanium and titanium alloys have been widely used as materials for aircraft and various machines because of their high strength and excellent corrosion resistance. A typical titanium alloy is, for example, the general-purpose Ti-6Al-4V (64 titanium alloy). Further, reinforced titanium produced by mixing Ti powder with two TiB particles and sintering the mixture has also been developed (see, for example, Patent Document 1 or 2).

しかし、このようなチタン合金や強化チタンには、VやCr、Mo、Nb、Bなどの希少金属が使用されているため、材料費が嵩むという問題があった。そこで、それらの希少金属の代わりに、酸素や窒素、炭素などの安価に入手可能な元素を利用したチタン部材の開発が行われている(例えば、非特許文献1乃至5参照)。なお、400℃や600℃で24時間の熱処理を行うことにより、チタン中に固溶した酸素が分散することが知られている(例えば、非特許文献1参照)。 However, since rare metals such as V, Cr, Mo, Nb, and B are used in such titanium alloys and reinforced titanium, there is a problem in that material costs increase. Therefore, instead of these rare metals, titanium members using inexpensively available elements such as oxygen, nitrogen, and carbon are being developed (see, for example, Non-Patent Documents 1 to 5). It is known that oxygen dissolved in titanium is dispersed by heat treatment at 400° C. or 600° C. for 24 hours (for example, see Non-Patent Document 1).

特開平5-171214号公報Japanese Patent Application Publication No. 5-171214 特開2001-107163号公報Japanese Patent Application Publication No. 2001-107163

刈屋翔太、梅田純子、Ma Qian、近藤勝義、「急冷処理による酸素過剰添加チタン材の延性向上とその機構解明」、日本金属学会誌、2018年10月、第82巻、第10号、p.390-395Shota Kariya, Junko Umeda, Ma Qian, Katsuyoshi Kondo, “Improvement of ductility of oxygen-added titanium material by rapid cooling treatment and elucidation of its mechanism”, Journal of the Japan Institute of Metals, October 2018, Vol. 82, No. 10, p. 390-395 Bin SUM、李樹豊、今井久志、三本嵩哲、梅田純子、近藤勝義、「酸素固溶強化による高強度チタン粉末焼結材の創製」、スマートプロセス学会誌、2012年11月、第1巻、第6号、p.283-287Bin SUM, Shufeng Li, Hisashi Imai, Takatetsu Mimoto, Junko Umeda, Katsuyoshi Kondo, “Creation of high-strength titanium powder sintered material by solid solution strengthening with oxygen”, Smart Process Society Journal, November 2012, No. 1 Volume, No. 6, p.283-287 B. Chen, J. Shen, X. Ye, J. Umeda, K. Kondoh, “Advanced mechanical properties of powder metallurgy commercially pure titanium with a high oxygen concentration”, J. Mater. Res., 16 October 2017, Vol. 32, No. 19, p.3769-3776B. Chen, J. Shen, X. Ye, J. Umeda, K. Kondoh, “Advanced mechanical properties of powder metallurgy commercially pure titanium with a high oxygen concentration”, J. Mater. Res., 16 October 2017, Vol. 32, No. 19, p.3769-3776 S. Li, B. Sun, H. Imai, T. Mimoto, K. Kondoh, “Powder metallurgy titanium metal matrix composites reinforced with carbon nanotubes and graphite”, Composites Part A, May 2013, Vol. 48, p.57-66S. Li, B. Sun, H. Imai, T. Mimoto, K. Kondoh, “Powder metallurgy titanium metal matrix composites reinforced with carbon nanotubes and graphite”, Composites Part A, May 2013, Vol. 48, p.57- 66 X. Zhang, F. Song, Z. Wei, W. Yang, Z. Dai, “Microstructural and mechanical characterization of in-situ TiC/Ti titanium matrix composites fabricated by graphene/Ti sintering reaction”, Mater. Sci. Eng. A, 29 September 2017, Vol. 705, p.153-159X. Zhang, F. Song, Z. Wei, W. Yang, Z. Dai, “Microstructural and mechanical characterization of in-situ TiC/Ti titanium matrix composites fabricated by graphene/Ti sintering reaction”, Mater. Sci. Eng. A, 29 September 2017, Vol. 705, p.153-159

チタンやチタン合金などの金属部材を使用する際には、その用途に応じて必要とされる強度や延性があり、その強度や延性に適したものを使用する必要がある。従来のチタン合金や、特許文献1や2に記載の強化チタン、非特許文献1乃至5に記載のチタン部材では、強度を高くすること、あるいは、延性を高くすることはできるが、強度と延性とのバランスを考慮して、強度および延性の双方を比較的高い値で両立させることはできないという課題があった。 When using a metal member such as titanium or a titanium alloy, it has the strength and ductility required depending on its use, and it is necessary to use a metal member that is suitable for the strength and ductility. With conventional titanium alloys, reinforced titanium described in Patent Documents 1 and 2, and titanium members described in Non-Patent Documents 1 to 5, it is possible to increase the strength or ductility, but the strength and ductility are There was a problem in that it was not possible to achieve both strength and ductility at relatively high values in consideration of the balance between the two.

本発明は、このような課題に着目してなされたもので、強度および延性の双方を比較的高い値で両立させることができるチタン部材およびチタン部材の製造方法を提供することを目的とする。 The present invention was made with attention to such problems, and an object of the present invention is to provide a titanium member and a method for manufacturing a titanium member that can achieve both relatively high values of both strength and ductility.

上記目的を達成するために、本発明に係るチタン部材は、チタンら成るマトリクス中に、酸素原子が拡散すると共に、TiC粒子が分散した組織を有し、X線解析法で測定したとき、前記チタン及び前記TiCのピークが出現し、各前記ピークが、高角側にシフトしていることを特徴とする
In order to achieve the above object, the titanium member according to the present invention is made of titaniummosquitoIt has a structure in which oxygen atoms are diffused and TiC particles are dispersed in the matrix.However, when measured by X-ray analysis, the peaks of the titanium and the TiC appear, and each of the peaks is shifted to the high angle side.characterized by.

本発明に係るチタン部材の製造方法は、チタン粉末、セルロースナノファイバーとを混合した後、その混合物を焼結することを特徴とする。本発明に係るチタン部材の製造方法は、チタン粉末、セルロースナノファイバーの分散液に入れて混合し、乾燥させた後、その混合物を焼結してもよい。
The method for manufacturing a titanium member according to the present invention is characterized by mixing titanium powder and cellulose nanofibers and then sintering the mixture. In the method for manufacturing a titanium member according to the present invention, titanium powder may be mixed in a dispersion of cellulose nanofibers, dried, and then the mixture may be sintered.

本発明に係るチタン部材の製造方法は、本発明に係るチタン部材を好適に製造することができる。本発明に係るチタン部材は、チタから成るマトリクス中に、酸素原子が拡散すると共に、TiC粒子が分散した組織を有しているため、チタンやチタン合金のみから成る部材と比べて、強度を高めることができる。また、比較的高い延性を有しており、強度および延性の双方を比較的高い値で両立させることができる。
The method for manufacturing a titanium member according to the present invention can suitably manufacture the titanium member according to the present invention. The titanium member according to the present invention has a structure in which oxygen atoms are diffused and TiC particles are dispersed in a matrix made of titanium , so it has higher strength than a member made only of titanium or a titanium alloy. can be increased. It also has relatively high ductility, and can achieve both strength and ductility at relatively high values.

本発明に係るチタン部材の製造方法および本発明に係るチタン部材の製造方法で、チタン合金は、いかなる合金であってもよく、例えば、Ti-6Al-4V(64チタン合金)やTi-3Al-2.5V合金、Ti-6Al-2Sn―4Zr―2Mo合金などである。 In the method for manufacturing a titanium member according to the present invention and the method for manufacturing a titanium member according to the present invention, the titanium alloy may be any alloy, such as Ti-6Al-4V (64 titanium alloy) or Ti-3Al- 2.5V alloy, Ti-6Al-2Sn-4Zr-2Mo alloy, etc.

本発明に係るチタン部材で、前記マトリクスはチタンから成り、炭素の含有率が0.12~0.6wt%であることが好ましい。本発明に係るチタン部材の製造方法は、前記チタン粉末と前記セルロースナノファイバーとを合わせた重量に対して、前記セルロースナノファイバーを1.2~6wt%の割合で混合することが好ましい。この場合、強度および/または延性を、より高い値で両立させることができる。 In the titanium member according to the present invention, the matrix is preferably made of titanium and has a carbon content of 0.12 to 0.6 wt%. In the method for manufacturing a titanium member according to the present invention, it is preferable that the cellulose nanofibers are mixed in a proportion of 1.2 to 6 wt% based on the combined weight of the titanium powder and the cellulose nanofibers. In this case, both strength and/or ductility can be achieved at higher values.

本発明に係るチタン部材の製造方法は、前記混合物を、1000℃~1200℃で30分~2時間焼結することが好ましい。この場合、強度および/または延性が、より高い値で両立した、本発明に係るチタン部材を得ることができる。 In the method for manufacturing a titanium member according to the present invention, the mixture is preferably sintered at 1000° C. to 1200° C. for 30 minutes to 2 hours. In this case, it is possible to obtain a titanium member according to the present invention that has both higher strength and/or ductility.

本発明によれば、強度および延性の双方を比較的高い値で両立させることができるチタン部材およびチタン部材の製造方法を提供することができる。 According to the present invention, it is possible to provide a titanium member and a method for manufacturing a titanium member that can achieve both relatively high strength and ductility.

(a)原料としてチタン(Ti)粉末を用いた本発明の実施の形態のチタン部材、(b)原料としてチタン合金(64Ti)粉末を用いた本発明の実施の形態のチタン部材の、引張試験結果を示す応力(Tensile stress)-ひずみ(Strain)曲線である。(a) Tensile test of a titanium member according to an embodiment of the present invention using titanium (Ti) powder as a raw material, (b) a titanium member according to an embodiment of the present invention using titanium alloy (64Ti) powder as a raw material. It is a stress (Tensile stress)-strain (Strain) curve showing the results. 図1(a)および(b)に示す各チタン部材の、セルロースナノファイバー(CNF)の添加量と、(a)ヤング率(Young’s modulus)、(b)最大引張強度(Ultimate tensile strength)、(c)破断伸び(Fracture elongation)との関係を示すグラフである。The amount of cellulose nanofibers (CNF) added and (a) Young's modulus, (b) ultimate tensile strength, ( c) It is a graph showing the relationship with fracture elongation. 本発明の実施の形態のチタン部材、純チタンを焼結した部材、および強化チタンの、引張試験結果を示す応力(Tensile stress)-ひずみ(Strain)曲線である。1 is a stress-strain curve showing tensile test results of a titanium member, a member made of sintered pure titanium, and reinforced titanium according to an embodiment of the present invention. 本発明の実施の形態のチタン部材および純チタンを焼結した部材の、(a)X線回折(XRD)法による測定結果を示すXRDスペクトル、(b) (a)の2θ=39.5°~41°の範囲を拡大したXRDスペクトルである。(a) XRD spectra showing measurement results by X-ray diffraction (XRD) method of titanium members and pure titanium sintered members according to embodiments of the present invention, (b) 2θ = 39.5° to 41 in (a) This is an XRD spectrum with an expanded range of °. 本発明の実施の形態のチタン部材の、走査型電子顕微鏡(SEM)による観察結果を示す(a)SEM写真、(b) (a)の一部を拡大したSEM写真、(c) (b)の一部を拡大したSEM写真、(d) (c)の一部を拡大したSEM写真である。(a) SEM photograph showing the observation results of the titanium member according to the embodiment of the present invention using a scanning electron microscope (SEM), (b) SEM photograph showing a part of (a) enlarged, (c) (b) (d) is an enlarged SEM photograph of a part of (c). 本発明の実施の形態のチタン部材の、(a)SEM写真、(b) (a)の丸印の部分(マトリクス部分)のエネルギー分散型X線分析(EDX)結果を示すEDXスペクトルである。2A is an SEM photograph of a titanium member according to an embodiment of the present invention; FIG. 本発明の実施の形態のチタン部材の、エネルギー分散型X線分析(EDX)結果を示す(a)分析範囲のSEM写真、(b)Oの元素マッピング、(c)Tiの元素マッピング、(d)Cの元素マッピングである。Energy dispersive X-ray analysis (EDX) results of a titanium member according to an embodiment of the present invention are shown (a) SEM photograph of the analysis range, (b) elemental mapping of O, (c) elemental mapping of Ti, (d ) is the elemental mapping of C. 本発明の実施の形態のチタン部材の、引張試験後の破断面の走査型電子顕微鏡(SEM)による観察結果を示す(a)SEM写真、(b) (a)の一部を拡大したSEM写真、(c) (b)の一部を拡大したSEM写真である。(a) SEM photograph showing the observation results of the fractured surface of the titanium member according to the embodiment of the present invention using a scanning electron microscope (SEM) after a tensile test; (b) SEM photograph showing an enlarged part of (a) , (c) is an enlarged SEM photograph of a part of (b).

以下、実施例等に基づいて、本発明の実施の形態について説明する。
本発明の実施の形態のチタン部材は、チタンまたはチタン合金から成るマトリクス中に、酸素原子が拡散すると共に、TiC粒子が分散した組織を有している。
Embodiments of the present invention will be described below based on examples and the like.
The titanium member according to the embodiment of the present invention has a structure in which oxygen atoms are diffused and TiC particles are dispersed in a matrix made of titanium or a titanium alloy.

本発明の実施の形態のチタン部材は、チタンまたはチタン合金から成るマトリクス中に、酸素原子が拡散すると共に、TiC粒子が分散した組織を有しているため、チタンやチタン合金のみから成る部材と比べて、強度を高めることができる。また、比較的高い延性を有しており、強度および延性の双方を比較的高い値で両立させることができる。なお、チタン合金は、例えば、Ti-6Al-4V(64チタン合金)やTi-3Al-2.5V合金、Ti-6Al-2Sn―4Zr―2Mo合金である。 The titanium member according to the embodiment of the present invention has a structure in which oxygen atoms are diffused and TiC particles are dispersed in a matrix made of titanium or a titanium alloy, so it is different from a member made only of titanium or a titanium alloy. Comparatively, the strength can be increased. It also has relatively high ductility, and can achieve both strength and ductility at relatively high values. Note that the titanium alloy is, for example, Ti-6Al-4V (64 titanium alloy), Ti-3Al-2.5V alloy, or Ti-6Al-2Sn-4Zr-2Mo alloy.

本発明の実施の形態のチタン部材は、本発明の実施の形態のチタン部材の製造方法により好適に製造される。本発明の実施の形態のチタン部材の製造方法は、チタン粉末またはチタン合金粉末と、セルロースナノファイバーとを混合した後、その混合物を焼結することにより、本発明の実施の形態のチタン部材を製造することができる。 The titanium member according to the embodiment of the present invention is suitably manufactured by the method for manufacturing a titanium member according to the embodiment of the present invention. A method for manufacturing a titanium member according to an embodiment of the present invention includes mixing titanium powder or titanium alloy powder and cellulose nanofibers and then sintering the mixture. can be manufactured.

本発明の実施の形態のチタン部材の製造方法は、チタン粉末を用いる場合、チタン粉末とセルロースナノファイバーとを合わせた重量に対して、セルロースナノファイバーを1.2~6wt%の割合で混合することが好ましい。チタン合金を用いる場合、チタン合金粉末とセルロースナノファイバーとを合わせた重量に対して、セルロースナノファイバーを3wt%以下の割合で混合することが好ましい。また、より高い強度および/または延性を得るために、混合物を、1000℃~1200℃で30分~2時間焼結することが好ましい。焼結は、放電プラズマ焼結法やホットプレス法など、いかなる方法であってもよい。 In the method for manufacturing a titanium member according to an embodiment of the present invention, when using titanium powder, cellulose nanofibers are mixed at a ratio of 1.2 to 6 wt% with respect to the combined weight of titanium powder and cellulose nanofibers. It is preferable. When using a titanium alloy, it is preferable to mix cellulose nanofibers at a ratio of 3 wt % or less based on the combined weight of titanium alloy powder and cellulose nanofibers. Also, in order to obtain higher strength and/or ductility, the mixture is preferably sintered at 1000° C. to 1200° C. for 30 minutes to 2 hours. The sintering may be performed by any method such as a discharge plasma sintering method or a hot press method.

本発明の実施の形態のチタン部材の製造方法を用いて、チタン部材を製造した。まず、セルロースナノファイバー(CNF)を500mlの水に入れてCNF分散液を調製し、そのCNF分散液に50gのチタン(純チタン)粉末またはチタン合金粉末を入れ、市販のミキサーで10000rpmの回転数で1分間混合した。その混合物を乾燥させた後、50℃/分で1100℃まで昇温し、1100℃で1時間の放電プラズマ焼結を行った。焼結した後、炉冷してチタン部材を得た。 A titanium member was manufactured using the method for manufacturing a titanium member according to an embodiment of the present invention. First, add cellulose nanofibers (CNF) to 500 ml of water to prepare a CNF dispersion, add 50 g of titanium (pure titanium) powder or titanium alloy powder to the CNF dispersion, and use a commercially available mixer at a rotation speed of 10,000 rpm. and mixed for 1 minute. After drying the mixture, the temperature was raised to 1100°C at a rate of 50°C/min, and discharge plasma sintering was performed at 1100°C for 1 hour. After sintering, it was cooled in a furnace to obtain a titanium member.

チタン部材は、チタン粉末およびチタン合金粉末に対して、それぞれCNFの量を変えたものを複数種類ずつ製造した。チタン粉末を用いたとき、CNFの量が、原料のチタン粉末とCNFとを合わせた重量に対して、1.08wt%、2.16wt%、3.25wt%、6.5wt%となるようCNF分散液を調製して、チタン部材(それぞれ、「Ti-1」、「Ti-2」、「Ti-3」、「Ti-4」とする)を製造した。チタン合金粉末を用いたとき、CNFの量が、原料のチタン合金粉末とCNFとを合わせた重量に対して、1.08wt%、2.16wt%、3.25wt%となるようCNF分散液を調製して、チタン部材(それぞれ、「64Ti-1」、「64Ti-2」、「64Ti-3」とする)を製造した。また、チタン合金として、Ti-6Al-4V(64チタン合金)を用いた。 A plurality of types of titanium members were manufactured using titanium powder and titanium alloy powder, each with a different amount of CNF. When titanium powder is used, CNF is adjusted so that the amount of CNF is 1.08 wt%, 2.16 wt%, 3.25 wt%, and 6.5 wt% with respect to the combined weight of the raw material titanium powder and CNF. A dispersion liquid was prepared, and titanium members (referred to as "Ti-1", "Ti-2", "Ti-3", and "Ti-4", respectively) were manufactured. When titanium alloy powder is used, the CNF dispersion is prepared so that the amount of CNF is 1.08 wt%, 2.16 wt%, and 3.25 wt% based on the combined weight of the raw material titanium alloy powder and CNF. and titanium members (referred to as "64Ti-1", "64Ti-2", and "64Ti-3", respectively) were manufactured. Furthermore, Ti-6Al-4V (64 titanium alloy) was used as the titanium alloy.

得られた各チタン部材に対して、引張試験を行った。引張試験により得られた、各チタン部材の応力(Tensile stress)-ひずみ(Strain)曲線を、図1に示す。図1(a)には、原料としてチタン(Ti)粉末を用いたチタン部材の試験結果を示し、比較例として、純チタンを焼結した部材(図1(a)中では「Ti」)の試験結果も示す。また、図1(b)には、原料としてチタン合金(64Ti)粉末を用いたチタン部材の試験結果を示し、比較例として、チタン合金を焼結した部材(図1(b)中では「64Ti」)の試験結果も示す。また、図1(a)および(b)から、各チタン部材のヤング率(Young’s modulus)、最大引張強度(Ultimate tensile strength)、破断伸び(Fracture elongation)を求め、それぞれ図2(a)~(c)に示す。 A tensile test was conducted on each of the obtained titanium members. Figure 1 shows the tensile stress-strain curves of each titanium member obtained from the tensile test. Figure 1(a) shows the test results of a titanium member using titanium (Ti) powder as a raw material, and as a comparative example, a member made of sintered pure titanium ("Ti" in Figure 1(a)). Test results are also shown. In addition, FIG. 1(b) shows the test results of a titanium member using titanium alloy (64Ti) powder as a raw material, and as a comparative example, a member made of sintered titanium alloy ("64Ti" ”) test results are also shown. In addition, the Young's modulus, ultimate tensile strength, and fracture elongation of each titanium member were determined from Figs. 1(a) and (b), and Figs. 2(a) to (b), respectively. Shown in c).

図1(a)に示すように、チタン粉末を用いたチタン部材では、CNFの添加量が増えるに従って、強度が向上し、破断伸びが低下することが確認された。しかし、CNFの添加量を3.25wt%(Ti-3)から6.5wt%(Ti-4)に増やしたときには、強度がほとんど変わらず、破断伸びだけが低下することが確認された。図2(b)および(c)に示すように、CNFの添加量が2.16wt%および3.25wt%のチタン部材が、最大引張強度が600MPa以上、かつ、破断伸びが10%以上を示し、強度および破断伸び(延性)の双方を、比較的高い値で、バランス良く両立しているといえる。 As shown in FIG. 1(a), it was confirmed that in a titanium member using titanium powder, the strength improved and the elongation at break decreased as the amount of CNF added increased. However, when the amount of CNF added was increased from 3.25 wt% (Ti-3) to 6.5 wt% (Ti-4), it was confirmed that the strength remained almost unchanged and only the elongation at break decreased. As shown in Figures 2(b) and (c), titanium members containing 2.16 wt% and 3.25 wt% of CNF exhibited maximum tensile strength of 600 MPa or more and elongation at break of 10% or more. It can be said that both strength and elongation at break (ductility) are relatively high and well-balanced.

また、図1(b)に示すように、チタン合金粉末を用いたチタン部材では、CNFを添加することにより、強度がわずかに向上するが、CNFの添加量と共に強度が向上する傾向は認められなかった。これは、CNF添加によるTiの強化機構が、合金の元素添加による強化機構と同じためであると考えられる。また、CNFの添加により、破断伸びは低下することが確認された。図2(b)および(c)に示すように、CNFの添加量が1.08wt%および2.16wt%のチタン部材が、最大引張強度が800MPa以上、かつ、破断伸びが10%以上を示し、強度および破断伸び(延性)の双方を、比較的高い値で、バランス良く両立しているといえる。なお、図2(a)に示すように、各チタン合金のヤング率は、ほとんど変わらないことが確認された。 Furthermore, as shown in Figure 1(b), the strength of titanium members using titanium alloy powder is slightly improved by adding CNF, but there is no tendency for the strength to improve with the amount of CNF added. There wasn't. This is considered to be because the mechanism of strengthening Ti by adding CNF is the same as the mechanism of strengthening Ti by adding elements to the alloy. It was also confirmed that the elongation at break was reduced by the addition of CNF. As shown in Figures 2(b) and (c), titanium members containing 1.08 wt% and 2.16 wt% of CNF exhibited maximum tensile strength of 800 MPa or more and elongation at break of 10% or more. It can be said that both strength and elongation at break (ductility) are relatively high and well-balanced. In addition, as shown in FIG. 2(a), it was confirmed that the Young's modulus of each titanium alloy was almost the same.

図3(a)に、チタン粉末に3.25wt%のCNFを添加したチタン部材(Ti-3)、並びに、比較のため、純チタンを焼結した部材(図3(a)中の「Ti」)および強化チタンの引張試験の結果を示す。強化チタンは、3種類であり、Ti粉末に、TiB粒子をそれぞれ1vol%、5vol%、10vol%混合し、焼結して得られたもの(それぞれ、図3(a)中の「TiB-1」、「TiB-2」、「TiB-3」)である。図3(a)に示すように、破断伸びが10%以上で、強度に優れたものは、3.25wt%のCNFを添加したチタン部材のみであり、このチタン部材が、強度および破断伸び(延性)の双方を、比較的高い値で両立していることがわかる。 Figure 3(a) shows a titanium member (Ti-3) made by adding 3.25 wt% CNF to titanium powder, and for comparison, a member made by sintering pure titanium ("Ti-3" in Fig. 3(a)). ”) and tensile test results of reinforced titanium. There are three types of reinforced titanium: those obtained by mixing Ti powder with 2 TiB particles at 1 vol%, 5 vol%, and 10 vol%, respectively, and sintering them (respectively, "TiB-" in Figure 3(a)). 1'', ``TiB-2'', ``TiB-3''). As shown in Figure 3(a), the only titanium member with an elongation at break of 10% or more and excellent strength is the titanium member with 3.25 wt% of CNF added. It can be seen that both properties (ductility) are achieved at relatively high values.

熱重量・示差熱分析(TG-DTA)装置を用いて、CNFを加熱したときの熱重量(TG)の測定を行った。その測定結果を、図3(b)に示す。図3(b)に示すように、室温から1000℃まで加熱する間に、CNFの重量がほぼ10分の1に減少していることが確認された。このことから、製造された各チタン部材では、焼結前に添加したCNFの重量が、焼結後には約1/10になっていると考えられる。このため、例えば、CNFを1.08wt%、2.16wt%、3.25wt%、6.5wt%添加して製造された各チタン部材では、炭素の重量がそれぞれ約0.108wt%、約0.216wt%、約0.325wt%、約0.65wt%程度になっていると考えられる。 Using a thermogravimetric/differential thermal analysis (TG-DTA) device, thermogravimetry (TG) was measured when CNF was heated. The measurement results are shown in FIG. 3(b). As shown in FIG. 3(b), it was confirmed that the weight of CNF decreased by approximately one-tenth during heating from room temperature to 1000°C. From this, it is considered that in each manufactured titanium member, the weight of CNF added before sintering is reduced to about 1/10 after sintering. Therefore, for example, in each titanium member manufactured by adding 1.08 wt%, 2.16 wt%, 3.25 wt%, and 6.5 wt% of CNF, the weight of carbon is approximately 0.108 wt% and approximately 0. It is thought that they are about .216 wt%, about 0.325 wt%, and about 0.65 wt%.

次に、チタン粉末に3.25wt%のCNFを添加したチタン部材(Ti-3)に対して、X線回折(XRD)法による測定、走査型電子顕微鏡(SEM)観察、エネルギー分散型X線分析(EDX)を行った。X線回折(XRD)法による測定結果を、図4に示す。図4には、比較のため、純チタンを焼結した部材(図4中の「Ti」)の測定結果も示す。図4に示すように、Ti、TiCのピークが確認された。また、CNFを添加することにより、各ピークが右にシフトしていることが確認された。 Next, a titanium member (Ti-3) made by adding 3.25 wt% CNF to titanium powder was subjected to measurements using X-ray diffraction (XRD), observation using a scanning electron microscope (SEM), and energy-dispersive X-ray Analysis (EDX) was performed. The measurement results by the X-ray diffraction (XRD) method are shown in FIG. For comparison, FIG. 4 also shows the measurement results of a member made of sintered pure titanium ("Ti" in FIG. 4). As shown in FIG. 4, peaks of Ti and TiC were confirmed. Furthermore, it was confirmed that each peak was shifted to the right by adding CNF.

走査型電子顕微鏡(SEM)による観察結果を、図5(a)~(d)に示す。図5(a)~(d)に示すように、マトリクス部分(図中の薄い灰色の部分;例えば、図5(b)および(c)のAの部分)や、マトリクス中に分散した粒子状の部分(図中の濃い灰色の部分;例えば、図5(b)中のBの部分)、結晶粒界(例えば、図5(c)および(d)のCの部分)、空洞部分(図中の黒い部分;例えば、図5(d)のDの部分)が確認された。なお、図中のやや濃い灰色の部分(例えば、図5(a)中のEの部分)は、SEM観察用の試料作製時の研磨により発生したひずみであると考えられる。 The results of observation using a scanning electron microscope (SEM) are shown in FIGS. 5(a) to 5(d). As shown in Figures 5(a) to (d), the matrix portion (the light gray area in the figure; for example, the portion A in Figures 5(b) and (c)) and the particles dispersed in the matrix. (the dark gray part in the figure; for example, the part B in Figure 5(b)), the grain boundary (for example, the part C in Figures 5(c) and (d)), and the cavity part (the part B in Figure 5(c) and (d)). The black part inside (for example, part D in FIG. 5(d)) was confirmed. Note that the slightly dark gray portion in the figure (for example, the portion E in FIG. 5(a)) is considered to be the strain generated by polishing during preparation of the sample for SEM observation.

マトリクス部分、および、マトリクス中に分散した粒子状の部分に対して、エネルギー分散型X線分析(EDX)を行った結果を、それぞれ図6および図7に示す。図6に示すように、マトリクス部分には、Tiが多く分布しているが、CおよびOも存在していることが確認された。この結果から、純チタンのマトリクス中に、CおよびOが拡散していると考えられる。 The results of energy dispersive X-ray analysis (EDX) performed on the matrix portion and the particulate portions dispersed in the matrix are shown in FIGS. 6 and 7, respectively. As shown in FIG. 6, it was confirmed that Ti was widely distributed in the matrix portion, but C and O were also present. From this result, it is considered that C and O are diffused into the pure titanium matrix.

図7に示すように、粒子状の部分には、C、O、Tiが存在していることが確認された。また、この粒子状の部分は、角が取れていることも確認された(例えば、図5(d)中のBの部分)。これらの結果から、この粒子状の部分は、CNFを前駆体とする硬いTiC粒子であると考えられる。また、この粒子状の部分の近傍(例えば、図5(c)中のBの部分)は、やや濃い灰色を示していることから、ここにはCやOが高濃度で拡散していると考えられる。この結果から、従来のチタンやチタン合金に炭素を添加したもの(例えば、非特許文献4または5参照)では、TiC粒子の分散により強度を高めているが、本発明の実施の形態のチタン部材は、TiC粒子の分散だけでなく、酸素原子の拡散も、強度の向上に寄与していると考えられる。 As shown in FIG. 7, it was confirmed that C, O, and Ti were present in the particulate portion. It was also confirmed that this particulate portion had rounded corners (for example, portion B1 in FIG. 5(d)). From these results, it is considered that the particulate portions are hard TiC particles using CNF as a precursor. In addition, the vicinity of this particulate part (for example, part B2 in Figure 5(c)) shows a slightly dark gray color, indicating that C and O are diffused here at a high concentration. it is conceivable that. From this result, in conventional titanium or titanium alloys with carbon added (for example, see Non-Patent Documents 4 or 5), the strength is increased by dispersing TiC particles, but the titanium member of the embodiment of the present invention It is thought that not only the dispersion of TiC particles but also the diffusion of oxygen atoms contributes to the improvement in strength.

引張試験後の破断面の走査型電子顕微鏡(SEM)による観察結果を、図8(a)~(c)に示す。図8(a)~(c)に示すように、CNFを前駆体とするTiC粒子が確認された(例えば、図8(b)中のFの部分)。また、延性破壊の際に現れるディンプル状の破断面形状も確認された(例えば、図8(c)中のGの部分)ことから、このチタン部材は、優れた破断伸びを有しているといえる。
The results of scanning electron microscopy (SEM) observation of the fractured surface after the tensile test are shown in FIGS. 8(a) to 8(c). As shown in FIGS. 8(a) to (c), TiC particles using CNF as a precursor were confirmed (for example, the portion F in FIG. 8(b)). In addition, a dimple-like fracture surface shape that appears during ductile fracture was also confirmed (for example, the part G in Fig. 8(c)), which suggests that this titanium member has excellent elongation at break. I can say that.

Claims (5)

チタンら成るマトリクス中に、酸素原子が拡散すると共に、TiC粒子が分散した組織を有し、
X線解析法で測定したとき、前記チタン及び前記TiCのピークが出現し、各前記ピークが、高角側にシフトしていることを特徴とするチタン部材。
It has a structure in which oxygen atoms are diffused and TiC particles are dispersed in a matrix made of titanium ,
A titanium member characterized in that, when measured by X-ray analysis, peaks of the titanium and the TiC appear, and each of the peaks is shifted to a higher angle side.
チタン粉末、セルロースナノファイバーとを混合した後、その混合物を焼結し、チタンから成るマトリクス中に、酸素原子が拡散すると共に、TiC粒子が分散した組織を有し、X線解析法で測定したとき、前記チタン及び前記TiCのピークが出現し、各前記ピークが、高角側にシフトするチタン部材を得ることを特徴とするチタン部材の製造方法。 After mixing titanium powder and cellulose nanofibers, the mixture is sintered, and a matrix consisting of titanium has a structure in which oxygen atoms are diffused and TiC particles are dispersed, which is measured by X-ray analysis. A method for manufacturing a titanium member , characterized in that, when doing so, peaks of the titanium and the TiC appear, and a titanium member is obtained in which each of the peaks shifts to a higher angle side. チタン粉末、セルロースナノファイバーの分散液に入れて混合し、乾燥させた後、その混合物を焼結し、チタンから成るマトリクス中に、酸素原子が拡散すると共に、TiC粒子が分散した組織を有し、X線解析法で測定したとき、前記チタン及び前記TiCのピークが出現し、各前記ピークが、高角側にシフトするチタン部材を得ることを特徴とするチタン部材の製造方法。 Titanium powder is mixed in a dispersion of cellulose nanofibers, dried, and then the mixture is sintered to create a matrix made of titanium that has a structure in which oxygen atoms are diffused and TiC particles are dispersed. A method for manufacturing a titanium member, characterized in that a titanium member is obtained in which peaks of the titanium and the TiC appear and each of the peaks shifts to a higher angle side when measured by X-ray analysis. 前記チタン粉末と前記セルロースナノファイバーとを合わせた重量に対して、前記セルロースナノファイバーを1.2~6wt%の割合で混合することを特徴とする請求項または記載のチタン部材の製造方法。 The method for manufacturing a titanium member according to claim 2 or 3 , characterized in that the cellulose nanofibers are mixed at a ratio of 1.2 to 6 wt% with respect to the combined weight of the titanium powder and the cellulose nanofibers. . 前記混合物を、1000℃~1200℃で30分~2時間焼結することを特徴とする請求項乃至のいずれか1項に記載のチタン部材の製造方法。
The method for manufacturing a titanium member according to any one of claims 2 to 4, characterized in that the mixture is sintered at 1000° C. to 1200° C. for 30 minutes to 2 hours.
JP2019132272A 2019-07-17 2019-07-17 Titanium parts and methods for manufacturing titanium parts Active JP7362066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019132272A JP7362066B2 (en) 2019-07-17 2019-07-17 Titanium parts and methods for manufacturing titanium parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019132272A JP7362066B2 (en) 2019-07-17 2019-07-17 Titanium parts and methods for manufacturing titanium parts

Publications (2)

Publication Number Publication Date
JP2021017611A JP2021017611A (en) 2021-02-15
JP7362066B2 true JP7362066B2 (en) 2023-10-17

Family

ID=74563048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019132272A Active JP7362066B2 (en) 2019-07-17 2019-07-17 Titanium parts and methods for manufacturing titanium parts

Country Status (1)

Country Link
JP (1) JP7362066B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000005425A1 (en) 1998-07-21 2000-02-03 Kabushiki Kaisha Toyota Chuo Kenkyusho Titanium-based composite material, method for producing the same and engine valve
JP2015048488A (en) 2013-08-30 2015-03-16 昭和電工株式会社 Ti/TiC COMPOSITE MATERIAL AND PRODUCTION METHOD AND USE OF THE SAME
JP2018104803A (en) 2016-12-28 2018-07-05 セイコーエプソン株式会社 Granulated powder, manufacturing method of granulated powder and manufacturing method of sintered body
JP2018104778A (en) 2016-12-27 2018-07-05 勝義 近藤 Sintered cutter material and manufacturing method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000005425A1 (en) 1998-07-21 2000-02-03 Kabushiki Kaisha Toyota Chuo Kenkyusho Titanium-based composite material, method for producing the same and engine valve
JP2015048488A (en) 2013-08-30 2015-03-16 昭和電工株式会社 Ti/TiC COMPOSITE MATERIAL AND PRODUCTION METHOD AND USE OF THE SAME
JP2018104778A (en) 2016-12-27 2018-07-05 勝義 近藤 Sintered cutter material and manufacturing method therefor
JP2018104803A (en) 2016-12-28 2018-07-05 セイコーエプソン株式会社 Granulated powder, manufacturing method of granulated powder and manufacturing method of sintered body

Also Published As

Publication number Publication date
JP2021017611A (en) 2021-02-15

Similar Documents

Publication Publication Date Title
Firestein et al. High-strength aluminum-based composites reinforced with BN, AlB2 and AlN particles fabricated via reactive spark plasma sintering of Al-BN powder mixtures
Li et al. Microstructure and properties of Ti (C, N)–TiB2–FeCoCrNiAl high-entropy alloys composite cermets
Geng et al. Hybrid effect of TiBw and TiCp on tensile properties of in situ titanium matrix composites
Li et al. Interfacial/intragranular reinforcement of titanium-matrix composites produced by a novel process involving core-shell structured powder
Hu et al. Secondary phases strengthening-toughening effects in the Mo–TiC–La2O3 alloys
Zheng et al. Preparation and properties of graphene nanoplatelets reinforced aluminum composites
Falodun et al. Characterization of spark plasma sintered TiN nanoparticle strengthened titanium alloy using EBSD and TKD
Vidyasagar et al. Improvement of mechanical properties of 2024 AA by reinforcing yttrium and processing through spark plasma sintering
WO2017045146A1 (en) Powder metallurgy titanium alloys
Xu et al. Influence of TaC content on microstructure and mechanical performance of Ti (C, N)-based cermets fabricated by mechanical activation and subsequent in situ carbothermal reduction
Yang et al. Preparation of low binder WC-Co-Ni cemented carbides with fine WC grains and homogeneous distribution of Co/Ni
Awotunde et al. Reactive synthesis of CNTs reinforced nickel aluminide composites by spark plasma sintering
WO2013058338A1 (en) Nickel-based intermetallic compound composite sintered material, and method for producing same
Xu et al. In situ Al4C3 nanorods and carbon nanotubes hybrid-reinforced aluminum matrix composites prepared by a novel two-step ball milling
Yu et al. Microstructure and properties of titanium matrix composites synergistically reinforced by graphene oxide and alloying elements
WO2019169744A1 (en) (wmo)c-based cemented carbide material and preparation method therefor
JP7362066B2 (en) Titanium parts and methods for manufacturing titanium parts
US11084093B2 (en) Ti—Fe-based sintered alloy material and method for producing same
WO2005092542A1 (en) High carbon nano crystalline iron alloy powder and bulk material having high hardness, and method for production thereof
Larionova et al. Fullerene Soot-Reinforced Al-Based Composites and Their Densification Via Copper Addition
Kurapova et al. Tensile properties, hardness and phase formation of the nickel aluminides based composites doped with reduced graphene oxide (Al-Ni-rGO)
Li et al. Effect of nano-Al2O3 addition on microstructure and mechanical properties of Ti2AlNb-based composites prepared by powder metallurgy
CN112662918A (en) Al2O3-TiC particle reinforced aluminum matrix composite material and preparation method thereof
Carvajal et al. Influence of the milling conditions on the compressive strength of Ti/TiC composite materials sintered at atmospheric pressure
Zhao et al. Doping N/O impurities into a MoNbTiWZr refractory multi-principal element alloy and the strengthening mechanism

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190718

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230926

R150 Certificate of patent or registration of utility model

Ref document number: 7362066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150