JP2021017611A - Titanium member and manufacturing method of titanium member - Google Patents

Titanium member and manufacturing method of titanium member Download PDF

Info

Publication number
JP2021017611A
JP2021017611A JP2019132272A JP2019132272A JP2021017611A JP 2021017611 A JP2021017611 A JP 2021017611A JP 2019132272 A JP2019132272 A JP 2019132272A JP 2019132272 A JP2019132272 A JP 2019132272A JP 2021017611 A JP2021017611 A JP 2021017611A
Authority
JP
Japan
Prior art keywords
titanium
powder
titanium member
member according
titanium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019132272A
Other languages
Japanese (ja)
Other versions
JP7362066B2 (en
Inventor
大樹 栗田
Daiki Kurita
大樹 栗田
史生 成田
Fumio Narita
史生 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2019132272A priority Critical patent/JP7362066B2/en
Publication of JP2021017611A publication Critical patent/JP2021017611A/en
Application granted granted Critical
Publication of JP7362066B2 publication Critical patent/JP7362066B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a titanium member capable of achieving both strength and extensibility with a relatively high value, and to provide a manufacturing method of the titanium member.SOLUTION: A titanium member has a constitution in which oxygen atoms are diffused in a matrix comprising titanium or titanium alloy, and TiC particles are dispersed. The titanium member is manufactured by mixing titanium powder or titanium alloy powder with cellulose nanofiber followed by sintering the mixture. When using the titanium powder, the cellulose nanofiber is mixed preferably at a ratio of 1.2-6 wt.% based on the total weight of the titanium powder and the cellulose nanofiber. When using the titanium alloy, the cellulose nanofiber is mixed preferably at a ratio of 3 wt.% or less based on the total weight of the titanium alloy powder and the cellulose nanofiber.SELECTED DRAWING: Figure 1

Description

本発明は、チタン部材およびチタン部材の製造方法に関する。 The present invention relates to a titanium member and a method for manufacturing a titanium member.

従来、純チタンやチタン合金は、強度が高く、耐食性に優れているため、航空機や各種機械等の材料として広く利用されている。代表的なチタン合金としては、例えば、汎用のTi−6Al−4V(64チタン合金)がある。また、Ti粉末にTiB粒子を混合し、焼結することにより製造される強化チタンも開発されている(例えば、特許文献1または2参照)。 Conventionally, pure titanium and titanium alloys have high strength and excellent corrosion resistance, and are therefore widely used as materials for aircraft and various machines. As a typical titanium alloy, for example, there is a general-purpose Ti-6Al-4V (64 titanium alloy). Further, reinforced titanium produced by mixing TiB 2 particles with Ti powder and sintering them has also been developed (see, for example, Patent Document 1 or 2).

しかし、このようなチタン合金や強化チタンには、VやCr、Mo、Nb、Bなどの希少金属が使用されているため、材料費が嵩むという問題があった。そこで、それらの希少金属の代わりに、酸素や窒素、炭素などの安価に入手可能な元素を利用したチタン部材の開発が行われている(例えば、非特許文献1乃至5参照)。なお、400℃や600℃で24時間の熱処理を行うことにより、チタン中に固溶した酸素が分散することが知られている(例えば、非特許文献1参照)。 However, since rare metals such as V, Cr, Mo, Nb, and B are used in such titanium alloys and reinforced titanium, there is a problem that the material cost increases. Therefore, instead of these rare metals, titanium members using inexpensively available elements such as oxygen, nitrogen, and carbon have been developed (see, for example, Non-Patent Documents 1 to 5). It is known that oxygen dissolved in titanium is dispersed by performing heat treatment at 400 ° C. or 600 ° C. for 24 hours (see, for example, Non-Patent Document 1).

特開平5−171214号公報Japanese Unexamined Patent Publication No. 5-171214 特開2001−107163号公報Japanese Unexamined Patent Publication No. 2001-107163

刈屋翔太、梅田純子、Ma Qian、近藤勝義、「急冷処理による酸素過剰添加チタン材の延性向上とその機構解明」、日本金属学会誌、2018年10月、第82巻、第10号、p.390-395Shota Kariya, Junko Umeda, Ma Qian, Katsuyoshi Kondo, "Improvement of ductility of titanium material with excessive oxygen addition by quenching treatment and elucidation of its mechanism", Journal of the Japan Institute of Metals, October 2018, Vol. 82, No. 10, p. 390-395 Bin SUM、李樹豊、今井久志、三本嵩哲、梅田純子、近藤勝義、「酸素固溶強化による高強度チタン粉末焼結材の創製」、スマートプロセス学会誌、2012年11月、第1巻、第6号、p.283-287Bin SUM, Yutaka Lee, Hisashi Imai, Takatetsu Mimoto, Junko Umeda, Katsuyoshi Kondo, "Creation of High Strength Titanium Powder Sintered Material by Strengthening Oxygen Solid Solution", Journal of Smart Process Society, November 2012, No. 1 Volume 6, No. 6, p.283-287 B. Chen, J. Shen, X. Ye, J. Umeda, K. Kondoh, “Advanced mechanical properties of powder metallurgy commercially pure titanium with a high oxygen concentration”, J. Mater. Res., 16 October 2017, Vol. 32, No. 19, p.3769-3776B. Chen, J. Shen, X. Ye, J. Umeda, K. Kondoh, “Advanced mechanical properties of powder metallurgy commercially pure titanium with a high oxygen concentration”, J. Mater. Res., 16 October 2017, Vol. 32, No. 19, p.3769-3776 S. Li, B. Sun, H. Imai, T. Mimoto, K. Kondoh, “Powder metallurgy titanium metal matrix composites reinforced with carbon nanotubes and graphite”, Composites Part A, May 2013, Vol. 48, p.57-66S. Li, B. Sun, H. Imai, T. Mimoto, K. Kondoh, “Powder metallurgy titanium metal matrix composites reinforced with carbon nanotubes and graphite”, Composites Part A, May 2013, Vol. 48, p.57- 66 X. Zhang, F. Song, Z. Wei, W. Yang, Z. Dai, “Microstructural and mechanical characterization of in-situ TiC/Ti titanium matrix composites fabricated by graphene/Ti sintering reaction”, Mater. Sci. Eng. A, 29 September 2017, Vol. 705, p.153-159X. Zhang, F. Song, Z. Wei, W. Yang, Z. Dai, “Microstructural and mechanical characterization of in-situ TiC / Ti titanium matrix composites sintered by graphene / Ti sintering reaction”, Mater. Sci. Eng. A, 29 September 2017, Vol. 705, p.153-159

チタンやチタン合金などの金属部材を使用する際には、その用途に応じて必要とされる強度や延性があり、その強度や延性に適したものを使用する必要がある。従来のチタン合金や、特許文献1や2に記載の強化チタン、非特許文献1乃至5に記載のチタン部材では、強度を高くすること、あるいは、延性を高くすることはできるが、強度と延性とのバランスを考慮して、強度および延性の双方を比較的高い値で両立させることはできないという課題があった。 When using a metal member such as titanium or a titanium alloy, it has the strength and ductility required according to the application, and it is necessary to use the one suitable for the strength and ductility. With the conventional titanium alloy, the reinforced titanium described in Patent Documents 1 and 2, and the titanium member described in Non-Patent Documents 1 to 5, the strength or ductility can be increased, but the strength and ductility can be increased. In consideration of the balance with the above, there is a problem that both strength and ductility cannot be achieved at a relatively high value.

本発明は、このような課題に着目してなされたもので、強度および延性の双方を比較的高い値で両立させることができるチタン部材およびチタン部材の製造方法を提供することを目的とする。 The present invention has been made in view of such problems, and an object of the present invention is to provide a titanium member and a method for manufacturing a titanium member, which can achieve both strength and ductility at relatively high values.

上記目的を達成するために、本発明に係るチタン部材は、チタンまたはチタン合金から成るマトリクス中に、酸素原子が拡散すると共に、TiC粒子が分散した組織を有することを特徴とする。特に、本発明に係るチタン部材は、前記チタンの粉末または前記チタン合金の粉末と、セルロースナノファイバーとの混合物を焼結した焼結体から成ることが好ましい。 In order to achieve the above object, the titanium member according to the present invention is characterized by having a structure in which oxygen atoms are diffused and TiC particles are dispersed in a matrix made of titanium or a titanium alloy. In particular, the titanium member according to the present invention preferably comprises a sintered body obtained by sintering a mixture of the titanium powder or the titanium alloy powder and cellulose nanofibers.

本発明に係るチタン部材の製造方法は、チタン粉末またはチタン合金粉末と、セルロースナノファイバーとを混合した後、その混合物を焼結することを特徴とする。本発明に係るチタン部材の製造方法は、チタン粉末またはチタン合金粉末を、セルロースナノファイバーの分散液に入れて混合し、乾燥させた後、その混合物を焼結してもよい。 The method for producing a titanium member according to the present invention is characterized in that titanium powder or titanium alloy powder is mixed with cellulose nanofibers, and then the mixture is sintered. In the method for producing a titanium member according to the present invention, titanium powder or titanium alloy powder may be placed in a dispersion of cellulose nanofibers, mixed, dried, and then the mixture may be sintered.

本発明に係るチタン部材の製造方法は、本発明に係るチタン部材を好適に製造することができる。本発明に係るチタン部材は、チタンまたはチタン合金から成るマトリクス中に、酸素原子が拡散すると共に、TiC粒子が分散した組織を有しているため、チタンやチタン合金のみから成る部材と比べて、強度を高めることができる。また、比較的高い延性を有しており、強度および延性の双方を比較的高い値で両立させることができる。 The method for producing a titanium member according to the present invention can preferably produce the titanium member according to the present invention. Since the titanium member according to the present invention has a structure in which oxygen atoms are diffused and TiC particles are dispersed in a matrix made of titanium or a titanium alloy, compared with a member made of titanium or a titanium alloy alone, The strength can be increased. In addition, it has a relatively high ductility, and both strength and ductility can be compatible with each other at a relatively high value.

本発明に係るチタン部材の製造方法および本発明に係るチタン部材の製造方法で、チタン合金は、いかなる合金であってもよく、例えば、Ti−6Al−4V(64チタン合金)やTi−3Al−2.5V合金、Ti−6Al−2Sn―4Zr―2Mo合金などである。 In the method for manufacturing a titanium member according to the present invention and the method for manufacturing a titanium member according to the present invention, the titanium alloy may be any alloy, for example, Ti-6Al-4V (64 titanium alloy) or Ti-3Al-. 2.5V alloy, Ti-6Al-2Sn-4Zr-2Mo alloy and the like.

本発明に係るチタン部材で、前記マトリクスはチタンから成り、炭素の含有率が0.12〜0.6wt%であることが好ましい。本発明に係るチタン部材の製造方法は、前記チタン粉末と前記セルロースナノファイバーとを合わせた重量に対して、前記セルロースナノファイバーを1.2〜6wt%の割合で混合することが好ましい。この場合、強度および/または延性を、より高い値で両立させることができる。 In the titanium member according to the present invention, the matrix is preferably made of titanium and has a carbon content of 0.12 to 0.6 wt%. In the method for producing a titanium member according to the present invention, it is preferable to mix the cellulose nanofibers at a ratio of 1.2 to 6 wt% with respect to the combined weight of the titanium powder and the cellulose nanofibers. In this case, strength and / or ductility can be compatible with higher values.

また、本発明に係るチタン部材で、前記マトリクスはチタン合金から成り、炭素の含有率が0.3wt%以下であることが好ましい。本発明に係るチタン部材の製造方法は、前記チタン合金粉末と前記セルロースナノファイバーとを合わせた重量に対して、前記セルロースナノファイバーを3wt%以下の割合で混合することが好ましい。この場合にも、強度および/または延性を、より高い値で両立させることができる。 Further, in the titanium member according to the present invention, it is preferable that the matrix is made of a titanium alloy and the carbon content is 0.3 wt% or less. In the method for producing a titanium member according to the present invention, it is preferable to mix the cellulose nanofibers at a ratio of 3 wt% or less with respect to the combined weight of the titanium alloy powder and the cellulose nanofibers. In this case as well, strength and / or ductility can be compatible with higher values.

本発明に係るチタン部材の製造方法は、前記混合物を、1000℃〜1200℃で30分〜2時間焼結することが好ましい。この場合、強度および/または延性が、より高い値で両立した、本発明に係るチタン部材を得ることができる。 In the method for producing a titanium member according to the present invention, it is preferable to sinter the mixture at 1000 ° C. to 1200 ° C. for 30 minutes to 2 hours. In this case, it is possible to obtain the titanium member according to the present invention, which has both strength and / or ductility at a higher value.

本発明によれば、強度および延性の双方を比較的高い値で両立させることができるチタン部材およびチタン部材の製造方法を提供することができる。 According to the present invention, it is possible to provide a titanium member and a method for manufacturing a titanium member, which can achieve both strength and ductility at a relatively high value.

(a)原料としてチタン(Ti)粉末を用いた本発明の実施の形態のチタン部材、(b)原料としてチタン合金(64Ti)粉末を用いた本発明の実施の形態のチタン部材の、引張試験結果を示す応力(Tensile stress)−ひずみ(Strain)曲線である。Tensile test of (a) the titanium member of the embodiment of the present invention using titanium (Ti) powder as a raw material, and (b) the titanium member of the embodiment of the present invention using a titanium alloy (64Ti) powder as a raw material. It is a stress (Tensile stress) -strain (Strain) curve showing the result. 図1(a)および(b)に示す各チタン部材の、セルロースナノファイバー(CNF)の添加量と、(a)ヤング率(Young’s modulus)、(b)最大引張強度(Ultimate tensile strength)、(c)破断伸び(Fracture elongation)との関係を示すグラフである。The amount of cellulose nanofiber (CNF) added to each of the titanium members shown in FIGS. 1 (a) and 1 (b), (a) Young's modulus, (b) Ultimate tensile strength, and ( c) It is a graph which shows the relationship with fracture elongation. 本発明の実施の形態のチタン部材、純チタンを焼結した部材、および強化チタンの、引張試験結果を示す応力(Tensile stress)−ひずみ(Strain)曲線である。It is a stress (Tensile stress) -strain (Strain) curve which shows the tensile test result of the titanium member, the member which sintered pure titanium, and the reinforced titanium of the embodiment of this invention. 本発明の実施の形態のチタン部材および純チタンを焼結した部材の、(a)X線回折(XRD)法による測定結果を示すXRDスペクトル、(b) (a)の2θ=39.5°〜41°の範囲を拡大したXRDスペクトルである。XRD spectrum showing the measurement result by (a) X-ray diffraction (XRD) method of the titanium member and the member obtained by sintering pure titanium according to the embodiment of the present invention, (b) 2θ = 39.5 ° to 41 in (a). It is an XRD spectrum which expanded the range of °. 本発明の実施の形態のチタン部材の、走査型電子顕微鏡(SEM)による観察結果を示す(a)SEM写真、(b) (a)の一部を拡大したSEM写真、(c) (b)の一部を拡大したSEM写真、(d) (c)の一部を拡大したSEM写真である。(A) SEM photograph showing the observation result of the titanium member of the embodiment of the present invention with a scanning electron microscope (SEM), (b) (a) a partially enlarged SEM photograph, (c) (b). It is an enlarged SEM photograph of a part of (d) and (c). 本発明の実施の形態のチタン部材の、(a)SEM写真、(b) (a)の丸印の部分(マトリクス部分)のエネルギー分散型X線分析(EDX)結果を示すEDXスペクトルである。It is an EDX spectrum which shows the energy dispersive X-ray analysis (EDX) result of (a) SEM photograph, (b) (a) circle part (matrix part) of the titanium member of embodiment of this invention. 本発明の実施の形態のチタン部材の、エネルギー分散型X線分析(EDX)結果を示す(a)分析範囲のSEM写真、(b)Oの元素マッピング、(c)Tiの元素マッピング、(d)Cの元素マッピングである。(A) SEM photograph of the analysis range, (b) elemental mapping of O, (c) elemental mapping of Ti, (d) showing the results of energy dispersive X-ray analysis (EDX) of the titanium member according to the embodiment of the present invention. ) C element mapping. 本発明の実施の形態のチタン部材の、引張試験後の破断面の走査型電子顕微鏡(SEM)による観察結果を示す(a)SEM写真、(b) (a)の一部を拡大したSEM写真、(c) (b)の一部を拡大したSEM写真である。(A) SEM photograph showing the observation result of the fracture surface of the titanium member according to the embodiment of the present invention by a scanning electron microscope (SEM) after the tensile test, and (b) (a) a partially enlarged SEM photograph. , (C) is an enlarged SEM photograph of a part of (b).

以下、実施例等に基づいて、本発明の実施の形態について説明する。
本発明の実施の形態のチタン部材は、チタンまたはチタン合金から成るマトリクス中に、酸素原子が拡散すると共に、TiC粒子が分散した組織を有している。
Hereinafter, embodiments of the present invention will be described based on examples and the like.
The titanium member of the embodiment of the present invention has a structure in which oxygen atoms are diffused and TiC particles are dispersed in a matrix made of titanium or a titanium alloy.

本発明の実施の形態のチタン部材は、チタンまたはチタン合金から成るマトリクス中に、酸素原子が拡散すると共に、TiC粒子が分散した組織を有しているため、チタンやチタン合金のみから成る部材と比べて、強度を高めることができる。また、比較的高い延性を有しており、強度および延性の双方を比較的高い値で両立させることができる。なお、チタン合金は、例えば、Ti−6Al−4V(64チタン合金)やTi−3Al−2.5V合金、Ti−6Al−2Sn―4Zr―2Mo合金である。 Since the titanium member of the embodiment of the present invention has a structure in which oxygen atoms are diffused and TiC particles are dispersed in a matrix made of titanium or a titanium alloy, the member is made of only titanium or a titanium alloy. In comparison, the strength can be increased. In addition, it has a relatively high ductility, and both strength and ductility can be compatible with each other at a relatively high value. The titanium alloy is, for example, Ti-6Al-4V (64 titanium alloy), Ti-3Al-2.5V alloy, or Ti-6Al-2Sn-4Zr-2Mo alloy.

本発明の実施の形態のチタン部材は、本発明の実施の形態のチタン部材の製造方法により好適に製造される。本発明の実施の形態のチタン部材の製造方法は、チタン粉末またはチタン合金粉末と、セルロースナノファイバーとを混合した後、その混合物を焼結することにより、本発明の実施の形態のチタン部材を製造することができる。 The titanium member according to the embodiment of the present invention is suitably manufactured by the method for manufacturing the titanium member according to the embodiment of the present invention. In the method for producing a titanium member according to an embodiment of the present invention, a titanium powder or a titanium alloy powder is mixed with cellulose nanofibers, and then the mixture is sintered to obtain the titanium member according to the embodiment of the present invention. Can be manufactured.

本発明の実施の形態のチタン部材の製造方法は、チタン粉末を用いる場合、チタン粉末とセルロースナノファイバーとを合わせた重量に対して、セルロースナノファイバーを1.2〜6wt%の割合で混合することが好ましい。チタン合金を用いる場合、チタン合金粉末とセルロースナノファイバーとを合わせた重量に対して、セルロースナノファイバーを3wt%以下の割合で混合することが好ましい。また、より高い強度および/または延性を得るために、混合物を、1000℃〜1200℃で30分〜2時間焼結することが好ましい。焼結は、放電プラズマ焼結法やホットプレス法など、いかなる方法であってもよい。 In the method for producing a titanium member according to the embodiment of the present invention, when titanium powder is used, the cellulose nanofibers are mixed at a ratio of 1.2 to 6 wt% with respect to the combined weight of the titanium powder and the cellulose nanofibers. Is preferable. When a titanium alloy is used, it is preferable to mix the cellulose nanofibers at a ratio of 3 wt% or less with respect to the combined weight of the titanium alloy powder and the cellulose nanofibers. Also, in order to obtain higher strength and / or ductility, it is preferable to sinter the mixture at 1000 ° C to 1200 ° C for 30 minutes to 2 hours. The sintering may be any method such as a discharge plasma sintering method or a hot press method.

本発明の実施の形態のチタン部材の製造方法を用いて、チタン部材を製造した。まず、セルロースナノファイバー(CNF)を500mlの水に入れてCNF分散液を調製し、そのCNF分散液に50gのチタン(純チタン)粉末またはチタン合金粉末を入れ、市販のミキサーで10000rpmの回転数で1分間混合した。その混合物を乾燥させた後、50℃/分で1100℃まで昇温し、1100℃で1時間の放電プラズマ焼結を行った。焼結した後、炉冷してチタン部材を得た。 A titanium member was manufactured using the method for manufacturing a titanium member according to the embodiment of the present invention. First, cellulose nanofibers (CNF) are put into 500 ml of water to prepare a CNF dispersion, 50 g of titanium (pure titanium) powder or titanium alloy powder is put into the CNF dispersion, and the rotation speed is 10,000 rpm with a commercially available mixer. Was mixed for 1 minute. After the mixture was dried, the temperature was raised to 1100 ° C. at 50 ° C./min, and discharge plasma sintering was performed at 1100 ° C. for 1 hour. After sintering, it was cooled in a furnace to obtain a titanium member.

チタン部材は、チタン粉末およびチタン合金粉末に対して、それぞれCNFの量を変えたものを複数種類ずつ製造した。チタン粉末を用いたとき、CNFの量が、原料のチタン粉末とCNFとを合わせた重量に対して、1.08wt%、2.16wt%、3.25wt%、6.5wt%となるようCNF分散液を調製して、チタン部材(それぞれ、「Ti-1」、「Ti-2」、「Ti-3」、「Ti-4」とする)を製造した。チタン合金粉末を用いたとき、CNFの量が、原料のチタン合金粉末とCNFとを合わせた重量に対して、1.08wt%、2.16wt%、3.25wt%となるようCNF分散液を調製して、チタン部材(それぞれ、「64Ti-1」、「64Ti-2」、「64Ti-3」とする)を製造した。また、チタン合金として、Ti−6Al−4V(64チタン合金)を用いた。 As the titanium member, a plurality of types of titanium powder and titanium alloy powder were produced in which the amount of CNF was changed. When titanium powder is used, the amount of CNF is 1.08 wt%, 2.16 wt%, 3.25 wt%, 6.5 wt% with respect to the total weight of the raw material titanium powder and CNF. The dispersion was prepared to produce titanium members (referred to as "Ti-1", "Ti-2", "Ti-3", and "Ti-4", respectively). When the titanium alloy powder is used, the CNF dispersion is prepared so that the amount of CNF is 1.08 wt%, 2.16 wt%, and 3.25 wt% with respect to the total weight of the raw material titanium alloy powder and CNF. Titanium members (referred to as "64Ti-1", "64Ti-2", and "64Ti-3", respectively) were produced by preparation. Further, as the titanium alloy, Ti-6Al-4V (64 titanium alloy) was used.

得られた各チタン部材に対して、引張試験を行った。引張試験により得られた、各チタン部材の応力(Tensile stress)−ひずみ(Strain)曲線を、図1に示す。図1(a)には、原料としてチタン(Ti)粉末を用いたチタン部材の試験結果を示し、比較例として、純チタンを焼結した部材(図1(a)中では「Ti」)の試験結果も示す。また、図1(b)には、原料としてチタン合金(64Ti)粉末を用いたチタン部材の試験結果を示し、比較例として、チタン合金を焼結した部材(図1(b)中では「64Ti」)の試験結果も示す。また、図1(a)および(b)から、各チタン部材のヤング率(Young’s modulus)、最大引張強度(Ultimate tensile strength)、破断伸び(Fracture elongation)を求め、それぞれ図2(a)〜(c)に示す。 A tensile test was performed on each of the obtained titanium members. The stress-strain curve of each titanium member obtained by the tensile test is shown in FIG. FIG. 1 (a) shows the test results of a titanium member using titanium (Ti) powder as a raw material, and as a comparative example, a member obtained by sintering pure titanium (“Ti” in FIG. 1 (a)). The test results are also shown. Further, FIG. 1 (b) shows the test results of a titanium member using titanium alloy (64Ti) powder as a raw material, and as a comparative example, a member obtained by sintering a titanium alloy (in FIG. 1 (b), "64Ti" is shown. ”) Test results are also shown. Further, from FIGS. 1 (a) and 1 (b), the Young's modulus, the maximum tensile strength, and the fracture elongation of each titanium member were obtained, and FIGS. Shown in c).

図1(a)に示すように、チタン粉末を用いたチタン部材では、CNFの添加量が増えるに従って、強度が向上し、破断伸びが低下することが確認された。しかし、CNFの添加量を3.25wt%(Ti-3)から6.5wt%(Ti-4)に増やしたときには、強度がほとんど変わらず、破断伸びだけが低下することが確認された。図2(b)および(c)に示すように、CNFの添加量が2.16wt%および3.25wt%のチタン部材が、最大引張強度が600MPa以上、かつ、破断伸びが10%以上を示し、強度および破断伸び(延性)の双方を、比較的高い値で、バランス良く両立しているといえる。 As shown in FIG. 1A, it was confirmed that in the titanium member using the titanium powder, the strength was improved and the elongation at break decreased as the amount of CNF added increased. However, it was confirmed that when the amount of CNF added was increased from 3.25 wt% (Ti-3) to 6.5 wt% (Ti-4), the strength hardly changed and only the elongation at break decreased. As shown in FIGS. 2 (b) and 2 (c), the titanium members to which the amount of CNF added was 2.16 wt% and 3.25 wt% showed a maximum tensile strength of 600 MPa or more and a breaking elongation of 10% or more. It can be said that both strength and elongation at break (ductility) are well-balanced at relatively high values.

また、図1(b)に示すように、チタン合金粉末を用いたチタン部材では、CNFを添加することにより、強度がわずかに向上するが、CNFの添加量と共に強度が向上する傾向は認められなかった。これは、CNF添加によるTiの強化機構が、合金の元素添加による強化機構と同じためであると考えられる。また、CNFの添加により、破断伸びは低下することが確認された。図2(b)および(c)に示すように、CNFの添加量が1.08wt%および2.16wt%のチタン部材が、最大引張強度が800MPa以上、かつ、破断伸びが10%以上を示し、強度および破断伸び(延性)の双方を、比較的高い値で、バランス良く両立しているといえる。なお、図2(a)に示すように、各チタン合金のヤング率は、ほとんど変わらないことが確認された。 Further, as shown in FIG. 1 (b), in the titanium member using the titanium alloy powder, the strength is slightly improved by adding CNF, but the strength tends to increase with the addition amount of CNF. There wasn't. It is considered that this is because the strengthening mechanism of Ti by adding CNF is the same as the strengthening mechanism by adding elements of the alloy. It was also confirmed that the addition of CNF reduced the elongation at break. As shown in FIGS. 2B and 2C, the titanium members to which the amount of CNF added is 1.08 wt% and 2.16 wt% show a maximum tensile strength of 800 MPa or more and a breaking elongation of 10% or more. It can be said that both strength and elongation at break (ductility) are well-balanced at relatively high values. As shown in FIG. 2A, it was confirmed that the Young's modulus of each titanium alloy was almost unchanged.

図3(a)に、チタン粉末に3.25wt%のCNFを添加したチタン部材(Ti-3)、並びに、比較のため、純チタンを焼結した部材(図3(a)中の「Ti」)および強化チタンの引張試験の結果を示す。強化チタンは、3種類であり、Ti粉末に、TiB粒子をそれぞれ1vol%、5vol%、10vol%混合し、焼結して得られたもの(それぞれ、図3(a)中の「TiB-1」、「TiB-2」、「TiB-3」)である。図3(a)に示すように、破断伸びが10%以上で、強度に優れたものは、3.25wt%のCNFを添加したチタン部材のみであり、このチタン部材が、強度および破断伸び(延性)の双方を、比較的高い値で両立していることがわかる。 FIG. 3A shows a titanium member (Ti-3) in which 3.25 wt% CNF is added to titanium powder, and a member obtained by sintering pure titanium for comparison (“Ti” in FIG. 3A). ”) And the results of the tensile test of reinforced titanium are shown. There are three types of reinforced titanium, which are obtained by mixing 1 vol%, 5 vol%, and 10 vol% of 2 TiB particles with Ti powder and sintering them (each of which is "TiB-" in FIG. 3 (a). 1 ”,“ TiB-2 ”,“ TiB-3 ”). As shown in FIG. 3A, only the titanium member to which 3.25 wt% CNF is added has an elongation at break of 10% or more and excellent strength, and this titanium member has strength and elongation at break ( It can be seen that both ductility) are compatible at relatively high values.

熱重量・示差熱分析(TG−DTA)装置を用いて、CNFを加熱したときの熱重量(TG)の測定を行った。その測定結果を、図3(b)に示す。図3(b)に示すように、室温から1000℃まで加熱する間に、CNFの重量がほぼ10分の1に減少していることが確認された。このことから、製造された各チタン部材では、焼結前に添加したCNFの重量が、焼結後には約1/10になっていると考えられる。このため、例えば、CNFを1.08wt%、2.16wt%、3.25wt%、6.5wt%添加して製造された各チタン部材では、炭素の重量がそれぞれ約0.108wt%、約0.216wt%、約0.325wt%、約0.65wt%程度になっていると考えられる。 A thermogravimetric / differential thermal analysis (TG-DTA) apparatus was used to measure the thermogravimetric analysis (TG) when the CNF was heated. The measurement result is shown in FIG. 3 (b). As shown in FIG. 3 (b), it was confirmed that the weight of CNF was reduced to about 1/10 during heating from room temperature to 1000 ° C. From this, it is considered that the weight of CNF added before sintering is about 1/10 after sintering in each of the manufactured titanium members. Therefore, for example, in each titanium member manufactured by adding 1.08 wt%, 2.16 wt%, 3.25 wt%, and 6.5 wt% of CNF, the weight of carbon is about 0.108 wt% and about 0, respectively. It is considered that it is about 216 wt%, about 0.325 wt%, and about 0.65 wt%.

次に、チタン粉末に3.25wt%のCNFを添加したチタン部材(Ti-3)に対して、X線回折(XRD)法による測定、走査型電子顕微鏡(SEM)観察、エネルギー分散型X線分析(EDX)を行った。X線回折(XRD)法による測定結果を、図4に示す。図4には、比較のため、純チタンを焼結した部材(図4中の「Ti」)の測定結果も示す。図4に示すように、Ti、TiCのピークが確認された。また、CNFを添加することにより、各ピークが右にシフトしていることが確認された。 Next, the titanium member (Ti-3) to which 3.25 wt% CNF was added to the titanium powder was measured by the X-ray diffraction (XRD) method, observed by a scanning electron microscope (SEM), and energy dispersive X-ray. Analysis (EDX) was performed. The measurement result by the X-ray diffraction (XRD) method is shown in FIG. FIG. 4 also shows the measurement results of a member obtained by sintering pure titanium (“Ti” in FIG. 4) for comparison. As shown in FIG. 4, peaks of Ti and TiC were confirmed. It was also confirmed that each peak was shifted to the right by adding CNF.

走査型電子顕微鏡(SEM)による観察結果を、図5(a)〜(d)に示す。図5(a)〜(d)に示すように、マトリクス部分(図中の薄い灰色の部分;例えば、図5(b)および(c)のAの部分)や、マトリクス中に分散した粒子状の部分(図中の濃い灰色の部分;例えば、図5(b)中のBの部分)、結晶粒界(例えば、図5(c)および(d)のCの部分)、空洞部分(図中の黒い部分;例えば、図5(d)のDの部分)が確認された。なお、図中のやや濃い灰色の部分(例えば、図5(a)中のEの部分)は、SEM観察用の試料作製時の研磨により発生したひずみであると考えられる。 The observation results by the scanning electron microscope (SEM) are shown in FIGS. 5 (a) to 5 (d). As shown in FIGS. 5 (a) to 5 (d), a matrix portion (a light gray portion in the figure; for example, a portion A in FIGS. 5 (b) and (c)) and particles dispersed in the matrix. Part (dark gray part in the figure; for example, part B in FIG. 5 (b)), grain boundary (for example, part C in FIGS. 5 (c) and (d)), hollow part (figure). The black part inside (for example, the part D in FIG. 5D) was confirmed. The slightly dark gray portion in the figure (for example, the portion E in FIG. 5A) is considered to be the strain generated by polishing during preparation of the sample for SEM observation.

マトリクス部分、および、マトリクス中に分散した粒子状の部分に対して、エネルギー分散型X線分析(EDX)を行った結果を、それぞれ図6および図7に示す。図6に示すように、マトリクス部分には、Tiが多く分布しているが、CおよびOも存在していることが確認された。この結果から、純チタンのマトリクス中に、CおよびOが拡散していると考えられる。 The results of energy dispersive X-ray analysis (EDX) performed on the matrix portion and the particulate portions dispersed in the matrix are shown in FIGS. 6 and 7, respectively. As shown in FIG. 6, it was confirmed that although a large amount of Ti was distributed in the matrix portion, C and O were also present. From this result, it is considered that C and O are diffused in the matrix of pure titanium.

図7に示すように、粒子状の部分には、C、O、Tiが存在していることが確認された。また、この粒子状の部分は、角が取れていることも確認された(例えば、図5(d)中のBの部分)。これらの結果から、この粒子状の部分は、CNFを前駆体とする硬いTiC粒子であると考えられる。また、この粒子状の部分の近傍(例えば、図5(c)中のBの部分)は、やや濃い灰色を示していることから、ここにはCやOが高濃度で拡散していると考えられる。この結果から、従来のチタンやチタン合金に炭素を添加したもの(例えば、非特許文献4または5参照)では、TiC粒子の分散により強度を高めているが、本発明の実施の形態のチタン部材は、TiC粒子の分散だけでなく、酸素原子の拡散も、強度の向上に寄与していると考えられる。 As shown in FIG. 7, it was confirmed that C, O, and Ti were present in the particulate portion. Further, the particulate portion, the corner was also confirmed that 0.00 (e.g., B 1 part in FIG. 5 (d)). From these results, it is considered that this particulate portion is a hard TiC particle having CNF as a precursor. Further, since the vicinity of this particulate portion (for example, the portion of B 2 in FIG. 5C) shows a slightly dark gray color, C and O are diffused at a high concentration here. it is conceivable that. From this result, in the conventional titanium or titanium alloy to which carbon is added (see, for example, Non-Patent Document 4 or 5), the strength is increased by dispersing TiC particles, but the titanium member according to the embodiment of the present invention. It is considered that not only the dispersion of TiC particles but also the diffusion of oxygen atoms contributes to the improvement of strength.

引張試験後の破断面の走査型電子顕微鏡(SEM)による観察結果を、図8(a)〜(c)に示す。図8(a)〜(c)に示すように、CNFを前駆体とするTiC粒子が確認された(例えば、図8(b)中のFの部分)。また、延性破壊の際に現れるディンプル状の破断面形状も確認された(例えば、図8(c)中のGの部分)ことから、このチタン部材は、優れた破断伸びを有しているといえる。
The observation results of the fracture surface after the tensile test by a scanning electron microscope (SEM) are shown in FIGS. 8 (a) to 8 (c). As shown in FIGS. 8 (a) to 8 (c), TiC particles using CNF as a precursor were confirmed (for example, the portion F in FIG. 8 (b)). In addition, a dimple-shaped fracture surface shape that appears during ductile fracture was also confirmed (for example, the portion G in FIG. 8C), indicating that this titanium member has excellent fracture elongation. I can say.

Claims (9)

チタンまたはチタン合金から成るマトリクス中に、酸素原子が拡散すると共に、TiC粒子が分散した組織を有することを特徴とするチタン部材。 A titanium member characterized by having a structure in which oxygen atoms are diffused and TiC particles are dispersed in a matrix made of titanium or a titanium alloy. 前記チタンの粉末または前記チタン合金の粉末と、セルロースナノファイバーとの混合物を焼結した焼結体から成ることを特徴とする請求項1記載のチタン部材。 The titanium member according to claim 1, further comprising a sintered body obtained by sintering a mixture of the titanium powder or the titanium alloy powder and cellulose nanofibers. 前記マトリクスはチタンから成り、炭素の含有率が0.12〜0.6wt%であることを特徴とする請求項1または2記載のチタン部材。 The titanium member according to claim 1 or 2, wherein the matrix is made of titanium and has a carbon content of 0.12 to 0.6 wt%. 前記マトリクスはチタン合金から成り、炭素の含有率が0.3wt%以下であることを特徴とする請求項1または2記載のチタン部材。 The titanium member according to claim 1 or 2, wherein the matrix is made of a titanium alloy and has a carbon content of 0.3 wt% or less. チタン粉末またはチタン合金粉末と、セルロースナノファイバーとを混合した後、その混合物を焼結することを特徴とするチタン部材の製造方法。 A method for producing a titanium member, which comprises mixing titanium powder or titanium alloy powder with cellulose nanofibers, and then sintering the mixture. チタン粉末またはチタン合金粉末を、セルロースナノファイバーの分散液に入れて混合し、乾燥させた後、その混合物を焼結することを特徴とするチタン部材の製造方法。 A method for producing a titanium member, which comprises putting titanium powder or titanium alloy powder in a dispersion of cellulose nanofibers, mixing them, drying them, and then sintering the mixture. 前記チタン粉末と前記セルロースナノファイバーとを合わせた重量に対して、前記セルロースナノファイバーを1.2〜6wt%の割合で混合することを特徴とする請求項5または6記載のチタン部材の製造方法。 The method for producing a titanium member according to claim 5 or 6, wherein the cellulose nanofibers are mixed at a ratio of 1.2 to 6 wt% with respect to the combined weight of the titanium powder and the cellulose nanofibers. .. 前記チタン合金粉末と前記セルロースナノファイバーとを合わせた重量に対して、前記セルロースナノファイバーを3wt%以下の割合で混合することを特徴とする請求項5または6記載のチタン部材の製造方法。 The method for producing a titanium member according to claim 5 or 6, wherein the cellulose nanofibers are mixed at a ratio of 3 wt% or less with respect to the combined weight of the titanium alloy powder and the cellulose nanofibers. 前記混合物を、1000℃〜1200℃で30分〜2時間焼結することを特徴とする請求項5乃至8のいずれか1項に記載のチタン部材の製造方法。
The method for producing a titanium member according to any one of claims 5 to 8, wherein the mixture is sintered at 1000 ° C. to 1200 ° C. for 30 minutes to 2 hours.
JP2019132272A 2019-07-17 2019-07-17 Titanium parts and methods for manufacturing titanium parts Active JP7362066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019132272A JP7362066B2 (en) 2019-07-17 2019-07-17 Titanium parts and methods for manufacturing titanium parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019132272A JP7362066B2 (en) 2019-07-17 2019-07-17 Titanium parts and methods for manufacturing titanium parts

Publications (2)

Publication Number Publication Date
JP2021017611A true JP2021017611A (en) 2021-02-15
JP7362066B2 JP7362066B2 (en) 2023-10-17

Family

ID=74563048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019132272A Active JP7362066B2 (en) 2019-07-17 2019-07-17 Titanium parts and methods for manufacturing titanium parts

Country Status (1)

Country Link
JP (1) JP7362066B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000005425A1 (en) 1998-07-21 2000-02-03 Kabushiki Kaisha Toyota Chuo Kenkyusho Titanium-based composite material, method for producing the same and engine valve
JP2015048488A (en) 2013-08-30 2015-03-16 昭和電工株式会社 Ti/TiC COMPOSITE MATERIAL AND PRODUCTION METHOD AND USE OF THE SAME
JP6564763B2 (en) 2016-12-27 2019-08-21 勝義 近藤 Sintered blade material and manufacturing method thereof
JP6855790B2 (en) 2016-12-28 2021-04-07 セイコーエプソン株式会社 Granulation powder, manufacturing method of granulated powder and manufacturing method of sintered body

Also Published As

Publication number Publication date
JP7362066B2 (en) 2023-10-17

Similar Documents

Publication Publication Date Title
Li et al. Microstructure and properties of Ti (C, N)–TiB2–FeCoCrNiAl high-entropy alloys composite cermets
EP2394952A2 (en) Nanoparticles prepared using carbon nanotube and preparation method therefor
WO2010021314A1 (en) Oxide-dispersion-strengthened alloy
JP3271040B2 (en) Molybdenum alloy and method for producing the same
JP6011946B2 (en) Nickel-based intermetallic compound composite sintered material and method for producing the same
WO2005092543A1 (en) Nano crystalline white cast iron powder having high hardness and nano crystalline white cast iron bulk material having high hardness, high strength and high toughness, and method for production thereof
Chen et al. Fabrication and Mechanical Properties of Mo-Al 2 O 3 Cermets by Using Ultrafine Molybdenum and Nano-sized Alumina Powders
JP2014019945A (en) Titanium alloy and method for producing the same
Chang et al. Evaluation of the microstructures, strengthening mechanisms and corrosion behaviors of TiB2 powder added to Ti–8Ta–6Ni alloys through the vacuum sintering process
Zhang et al. Alloying behavior and properties of Al-based composites reinforced with Al 85 Fe 15 metallic glass particles fabricated by mechanical alloying and hot pressing consolidation
JP4413549B2 (en) Method for producing martensitic oxide dispersion strengthened steel with excellent high temperature strength
Yu et al. Microstructure and properties of titanium matrix composites synergistically reinforced by graphene oxide and alloying elements
CN113430417A (en) High-performance titanium alloy added with rare earth oxide and preparation method thereof
JP7362066B2 (en) Titanium parts and methods for manufacturing titanium parts
CN110449580B (en) High-strength and high-toughness boron-containing high-entropy alloy material for powder metallurgy and preparation method and application thereof
JP6885900B2 (en) Ti-Fe-based sintered alloy material and its manufacturing method
JP5618364B2 (en) Method for producing ultrafine and homogeneous titanium carbonitride solid solution powder
JP2004142993A (en) Hexagonal composite carbide, and production method therefor
JP2004263251A (en) Group 7a element-containing cemented carbide
Zhang et al. Oxide dispersion strengthening mediated ultra-high strength at wide temperature range in NbTaTiV refractory high-entropy alloys
Zhao et al. Doping N/O impurities into a MoNbTiWZr refractory multi-principal element alloy and the strengthening mechanism
JP5170560B2 (en) Method to improve ductility and strength of lightweight heat-resistant intermetallic compound by adding third element particles
JPH083601A (en) Aluminum-aluminum nitride composite material and its production
CN117737496B (en) Heat-resistant aluminum alloy and preparation method thereof
JP2852414B2 (en) Particle-reinforced titanium-based composite material and method for producing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190718

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230926

R150 Certificate of patent or registration of utility model

Ref document number: 7362066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150