JP7361467B2 - polishing composition - Google Patents

polishing composition Download PDF

Info

Publication number
JP7361467B2
JP7361467B2 JP2018241266A JP2018241266A JP7361467B2 JP 7361467 B2 JP7361467 B2 JP 7361467B2 JP 2018241266 A JP2018241266 A JP 2018241266A JP 2018241266 A JP2018241266 A JP 2018241266A JP 7361467 B2 JP7361467 B2 JP 7361467B2
Authority
JP
Japan
Prior art keywords
diol
polishing
structural unit
vinyl alcohol
pva
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018241266A
Other languages
Japanese (ja)
Other versions
JP2020100778A (en
Inventor
規章 杉田
隆幸 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitta DuPont Inc
Original Assignee
Nitta DuPont Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2018241266A priority Critical patent/JP7361467B2/en
Application filed by Nitta DuPont Inc filed Critical Nitta DuPont Inc
Priority to DE112019006394.4T priority patent/DE112019006394T5/en
Priority to CN201980084926.4A priority patent/CN113227309B/en
Priority to SG11202104414RA priority patent/SG11202104414RA/en
Priority to PCT/JP2019/045657 priority patent/WO2020137278A1/en
Priority to KR1020217018371A priority patent/KR20210106435A/en
Priority to TW108147365A priority patent/TWI833865B/en
Publication of JP2020100778A publication Critical patent/JP2020100778A/en
Application granted granted Critical
Publication of JP7361467B2 publication Critical patent/JP7361467B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02024Mirror polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

本発明は、研磨用組成物に関する。 The present invention relates to a polishing composition.

CMPによる半導体ウェーハの研磨は、3段階又は4段階の多段階の研磨を行うことで、高精度の平滑化・平坦化を実現している。最終段階で行われる仕上げ研磨工程は、微小欠陥やヘイズ(表面曇り)の低減を主な目的としている。 Polishing of semiconductor wafers by CMP achieves highly accurate smoothing and flattening by performing multi-stage polishing of three or four stages. The main purpose of the final polishing step is to reduce micro defects and haze (surface cloudiness).

半導体ウェーハの仕上げ研磨工程で使用される研磨用組成物は、一般に、ヒドロキシエチルセルロース(HEC)等の水溶性高分子を含有する。水溶性高分子は、半導体ウェーハ表面を親水化させる役割があり、表面への砥粒の付着、過度なケミカルエッチング、砥粒の凝集等による半導体ウェーハへのダメージを抑制する。これによって、微小欠陥やヘイズを低減できることが知られている。 Polishing compositions used in the final polishing process of semiconductor wafers generally contain a water-soluble polymer such as hydroxyethyl cellulose (HEC). The water-soluble polymer has the role of making the surface of the semiconductor wafer hydrophilic, thereby suppressing damage to the semiconductor wafer due to adhesion of abrasive grains to the surface, excessive chemical etching, aggregation of abrasive grains, etc. It is known that this can reduce micro defects and haze.

HECは天然原料のセルロースを原料としているため、セルロース由来の水不溶性の不純物が含まれる場合がある。そのため、HECを含有する研磨用組成物では、この不純物の影響で微少欠陥が発生する場合がある。また、HECは分子量が数十万から百万程度の分子量のものがよく用いられるが、分子量が高くなるほどフィルターの目詰まりが起こりやすく、孔径が小さいフィルターでは通液が困難になる。そのため、分子量の大きい水溶性高分子を使用した場合、粗大粒子を除去することが困難になる。また、砥粒の凝集も起こりやすくなるため、研磨用組成物の長期安定性においても懸念がある。 Since HEC is made from cellulose, a natural raw material, it may contain water-insoluble impurities derived from cellulose. Therefore, in a polishing composition containing HEC, minute defects may occur due to the influence of this impurity. Further, HEC with a molecular weight of several hundred thousand to one million is often used, but the higher the molecular weight, the more likely filter clogging occurs, and it becomes difficult to pass liquid through a filter with a small pore size. Therefore, when a water-soluble polymer with a large molecular weight is used, it becomes difficult to remove coarse particles. Furthermore, since agglomeration of abrasive grains is likely to occur, there is also concern about the long-term stability of the polishing composition.

特開2012-216723号公報には、1,2-ジオール構造単位を有するビニルアルコール系樹脂から選ばれた少なくとも1種類以上の水溶性高分子を含む研磨用組成物が開示されている。 JP-A-2012-216723 discloses a polishing composition containing at least one water-soluble polymer selected from vinyl alcohol resins having a 1,2-diol structural unit.

特許第6245939号公報には、側鎖にポリアルキレンオキシ基を有する変性ポリビニルアルコール系重合体を含むシリコンウェーハ研磨液組成物が開示されている。 Japanese Patent No. 6245939 discloses a silicon wafer polishing liquid composition containing a modified polyvinyl alcohol polymer having a polyalkyleneoxy group in its side chain.

特開2016-56220号公報には、ポリアルキレンオキシド構造単位及びポリビニルアルコール構造単位が幹又は側鎖を形成する水溶性重合体を含有するスラリー組成物が開示されている。 JP 2016-56220A discloses a slurry composition containing a water-soluble polymer in which a polyalkylene oxide structural unit and a polyvinyl alcohol structural unit form a trunk or a side chain.

特開2012-216723号公報JP2012-216723A 特許第6245939号公報Patent No. 6245939 特開2016-56220号公報JP2016-56220A

近年、半導体デバイスのデザインルールの微細化が進んでいることにともなって、半導体ウェーハの表面の微小欠陥やヘイズについても、より厳しい管理が求められている。 In recent years, as design rules for semiconductor devices have become increasingly finer, stricter control is also required for minute defects and haze on the surface of semiconductor wafers.

本発明の目的は、研磨後の半導体ウェーハの微小欠陥及びヘイズをさらに低減することができる研磨用組成物を提供することである。 An object of the present invention is to provide a polishing composition that can further reduce microdefects and haze in semiconductor wafers after polishing.

本発明の一実施形態による研磨用組成物は、砥粒と、塩基性化合物と、下記一般式(A)で表される1,2-ジオール構造単位を有するビニルアルコール系樹脂と、下記一般式(B)で表されるポリオキシエチレン構造単位を有するビニルアルコール系樹脂とを含む。

Figure 0007361467000001
但し、R、R、及びRはそれぞれ独立して水素原子又は有機基を示し、Xは単結合又は結合鎖を示し、R、R、及びRはそれぞれ独立して水素原子又は有機基を示す。mは1~1000の整数である。 A polishing composition according to an embodiment of the present invention includes abrasive grains, a basic compound, a vinyl alcohol resin having a 1,2-diol structural unit represented by the following general formula (A), and a vinyl alcohol-based resin having a 1,2-diol structural unit represented by the following general formula (A). (B) includes a vinyl alcohol resin having a polyoxyethylene structural unit represented by (B).
Figure 0007361467000001
However, R 1 , R 2 , and R 3 each independently represent a hydrogen atom or an organic group, X represents a single bond or a bonded chain, and R 4 , R 5 , and R 6 each independently represent a hydrogen atom. Or indicates an organic group. m is an integer from 1 to 1000.

本発明によれば、研磨後の半導体ウェーハの微小欠陥及びヘイズをさらに低減することができる。 According to the present invention, micro defects and haze in a semiconductor wafer after polishing can be further reduced.

図1は、PEG付加PVAの含有量を変えて研磨特性を比較したグラフである。FIG. 1 is a graph comparing polishing characteristics with varying contents of PEG-added PVA. 図2は、PEG付加PVAの含有量を変えて研磨特性を比較したグラフである。FIG. 2 is a graph comparing polishing characteristics with varying contents of PEG-added PVA. 図3は、PEG付加PVAの含有量を変えて研磨特性を比較したグラフである。FIG. 3 is a graph comparing polishing characteristics with varying contents of PEG-added PVA. 図4は、PEG付加PVAの含有量を変えて研磨特性を比較したグラフである。FIG. 4 is a graph comparing polishing characteristics with varying contents of PEG-added PVA. 図5は、PEG付加PVAの含有量を変えて研磨特性を比較したグラフである。FIG. 5 is a graph comparing polishing characteristics with varying contents of PEG-added PVA. 図6は、ジオール変性PVAの種類を変えて研磨特性を比較したグラフである。FIG. 6 is a graph comparing the polishing properties of different types of diol-modified PVA. 図7は、研磨用組成物中の高分子の総量を一定にしてその内訳を変えて研磨特性を比較したグラフである。FIG. 7 is a graph comparing the polishing properties with the total amount of polymer in the polishing composition being kept constant and the breakdown thereof being changed. 図8は、ジオール変性PVAを用いた研磨用組成物の研磨特性と、ジオール変性PVAではない通常のPVAを用いた研磨用組成物の研磨特性とを比較したグラフである。FIG. 8 is a graph comparing the polishing properties of a polishing composition using diol-modified PVA with the polishing properties of a polishing composition using ordinary PVA that is not diol-modified PVA. 図9は、ジオール変性PVAとPEG付加PVA以外の高分子とを併用した研磨用組成物の研磨特性を比較したグラフである。FIG. 9 is a graph comparing the polishing properties of polishing compositions using a combination of diol-modified PVA and a polymer other than PEG-added PVA. 図10は、PEG付加PVAの含有量を変えて研磨特性を比較したグラフである。FIG. 10 is a graph comparing polishing characteristics with varying contents of PEG-added PVA. 図11は、PEG付加PVAの含有量を変えて研磨特性を比較したグラフである。FIG. 11 is a graph comparing polishing characteristics with varying contents of PEG-added PVA.

本発明者らは、上記の課題を解決するため、種々の検討を行った。その結果、1,2-ジオール構造単位を有するビニルアルコール系樹脂と、側鎖にポリオキシエチレン基を有するビニルアルコール系樹脂とを併用することで、微小欠陥及びヘイズをさらに低減できることを知見した。そのメカニズムは明らかではないが、これら2種類の樹脂はウェーハに対する吸着性が異なっていると考えられ、両者が相補的に作用することによって微小欠陥が低減され、さらにエッチング防止効果の増加や段差解消性が大きくなることでヘイズも低減されると考えられる。 The present inventors conducted various studies in order to solve the above problems. As a result, it was found that micro defects and haze can be further reduced by using a vinyl alcohol resin having a 1,2-diol structural unit and a vinyl alcohol resin having a polyoxyethylene group in the side chain. The mechanism is not clear, but it is thought that these two types of resin have different adsorption properties to the wafer, and their complementary action reduces micro defects, increases the etching prevention effect, and eliminates the step difference. It is thought that haze is also reduced by increasing the viscosity.

本発明は、この知見に基づいて完成された。以下、本発明の一実施形態による研磨用組成物を詳述する。 The present invention was completed based on this knowledge. Hereinafter, a polishing composition according to an embodiment of the present invention will be described in detail.

本発明の一実施形態による研磨用組成物は、砥粒と、塩基性化合物と、1,2-ジオール構造単位を有するビニルアルコール系樹脂(以下「ジオール変性PVA」という。)と、側鎖にポリオキシエチレン基を有するビニルアルコール系樹脂(以下「PEG付加PVA」という。)とを含む。 A polishing composition according to an embodiment of the present invention includes abrasive grains, a basic compound, a vinyl alcohol resin having a 1,2-diol structural unit (hereinafter referred to as "diol-modified PVA"), and a side chain. A vinyl alcohol resin having a polyoxyethylene group (hereinafter referred to as "PEG-added PVA").

砥粒は、この分野で常用されるものを使用することができ、例えば、コロイダルシリカ、ヒュームドシリカ、コロイダルアルミナ、ヒュームドアルミナ及びセリア等が挙げられ、コロイダルシリカ又はヒュームドシリカが特に好ましい。砥粒の粒径は、特に限定されないが、例えば二次平均粒子径で30~100nmのものを用いることができる。 As the abrasive grains, those commonly used in this field can be used, and examples thereof include colloidal silica, fumed silica, colloidal alumina, fumed alumina, and ceria, with colloidal silica or fumed silica being particularly preferred. The particle size of the abrasive grains is not particularly limited, but for example, those having a secondary average particle size of 30 to 100 nm can be used.

砥粒の含有量は、特に限定されないが、例えば研磨用組成物全体の0.10~20質量%である。研磨用組成物は、研磨時に10~40倍に希釈されて使用される。本実施形態による研磨用組成物は、砥粒の濃度が100~5000ppm(質量ppm。以下同じ。)になるように希釈して用いることが好ましい。砥粒の濃度が高いほど、微小欠陥やヘイズが低減する傾向がある。希釈後の砥粒の濃度の下限は、好ましくは1000ppmであり、さらに好ましくは2000ppmである。希釈後の砥粒の濃度の上限は、好ましくは4000ppmであり、さらに好ましくは3000ppmである。 The content of abrasive grains is not particularly limited, but is, for example, 0.10 to 20% by mass of the entire polishing composition. The polishing composition is used after being diluted 10 to 40 times during polishing. The polishing composition according to the present embodiment is preferably used after being diluted so that the concentration of abrasive grains is 100 to 5000 ppm (mass ppm, the same applies hereinafter). As the concentration of abrasive grains increases, micro defects and haze tend to decrease. The lower limit of the abrasive grain concentration after dilution is preferably 1000 ppm, more preferably 2000 ppm. The upper limit of the abrasive grain concentration after dilution is preferably 4000 ppm, more preferably 3000 ppm.

塩基性化合物は、ウェーハ表面と効率よく反応し、化学機械研磨(CMP)の研磨特性に貢献する。塩基性化合物は、例えば、アミン化合物、無機アルカリ化合物等である。 Basic compounds react efficiently with the wafer surface and contribute to the polishing properties of chemical mechanical polishing (CMP). Examples of the basic compound include amine compounds and inorganic alkali compounds.

アミン化合物は、例えば、第一級アミン、第二級アミン、第三級アミン、第四級アンモニウム及びその水酸化物、複素環式アミン等である。具体的には、アンモニア、水酸化テトラメチルアンモニウム(TMAH)、水酸化テトラエチルアンモニウム(TEAH)、水酸化テトラブチルアンモニウム(TBAH)、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、ヘキシルアミン、シクロヘキシルアミン、エチレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン(DETA)、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、N-(β-アミノエチル)エタノールアミン、無水ピペラジン、ピペラジン六水和物、1-(2-アミノエチル)ピペラジン、N-メチルピペラジン、ピペラジン塩酸塩、炭酸グアニジン等が挙げられる。 Examples of amine compounds include primary amines, secondary amines, tertiary amines, quaternary ammonium and its hydroxides, and heterocyclic amines. Specifically, ammonia, tetramethylammonium hydroxide (TMAH), tetraethylammonium hydroxide (TEAH), tetrabutylammonium hydroxide (TBAH), methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, hexylamine, Cyclohexylamine, ethylenediamine, hexamethylenediamine, diethylenetriamine (DETA), triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, monoethanolamine, diethanolamine, triethanolamine, N-(β-aminoethyl)ethanolamine, anhydrous piperazine , piperazine hexahydrate, 1-(2-aminoethyl)piperazine, N-methylpiperazine, piperazine hydrochloride, guanidine carbonate, and the like.

無機アルカリ化合物は、例えば、アルカリ金属の水酸化物、アルカリ金属の塩、アルカリ土類金属の水酸化物、アルカリ土類金属の塩等が挙げられる。無機アルカリ化合物は、具体的には、水酸化カリウム、水酸化ナトリウム、炭酸水素カリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸ナトリウム等である。 Examples of the inorganic alkali compound include alkali metal hydroxides, alkali metal salts, alkaline earth metal hydroxides, and alkaline earth metal salts. Specifically, the inorganic alkali compound includes potassium hydroxide, sodium hydroxide, potassium hydrogen carbonate, potassium carbonate, sodium hydrogen carbonate, sodium carbonate, and the like.

上述した塩基性化合物は、一種を単独で使用してもよいし、二種以上を混合して使用してもよい。上述した塩基性化合物の中でも、アルカリ金属の水酸化物、アルカリ金属の塩、アンモニア、アミン、アンモニウム塩、及び第四級アンモニウム水酸化物類が特に好ましい。 The above-mentioned basic compounds may be used alone or in combination of two or more. Among the basic compounds mentioned above, alkali metal hydroxides, alkali metal salts, ammonia, amines, ammonium salts, and quaternary ammonium hydroxides are particularly preferred.

塩基性化合物の含有量(二種以上含有する場合は、その総量)は、特に限定されないが、例えば砥粒との質量比で、砥粒:塩基性化合物=1:0.001~1:0.10である。本実施形態による研磨用組成物は、塩基性化合物の濃度が5~200ppmになるように希釈して用いることが好ましい The content of the basic compound (if two or more types are contained, the total amount) is not particularly limited, but for example, the mass ratio with the abrasive grains, abrasive grains: basic compound = 1:0.001 to 1:0. .10. The polishing composition according to the present embodiment is preferably used after being diluted so that the concentration of the basic compound is 5 to 200 ppm.

ジオール変性PVAは、下記一般式(1)で表される1,2-ジオール構造単位を有するビニルアルコール系樹脂である。

Figure 0007361467000002
但し、R、R、及びRはそれぞれ独立して水素原子又は有機基を示し、Xは単結合又は結合鎖を示し、R、R、及びRはそれぞれ独立して水素原子又は有機基を示す。 Diol-modified PVA is a vinyl alcohol resin having a 1,2-diol structural unit represented by the following general formula (1).
Figure 0007361467000002
However, R 1 , R 2 , and R 3 each independently represent a hydrogen atom or an organic group, X represents a single bond or a bonded chain, and R 4 , R 5 , and R 6 each independently represent a hydrogen atom. Or indicates an organic group.

「ビニルアルコール系樹脂」とは、下記式(2)及び(3)で表される構造単位を含む水溶性高分子をいう。 "Vinyl alcohol resin" refers to a water-soluble polymer containing structural units represented by the following formulas (2) and (3).

Figure 0007361467000003
Figure 0007361467000003

ジオール変性PVAは、式(2)及び(3)で表される構造単位に加えて、式(1)で表される1,2-ジオール構造単位を有する。これによって、ポリビニルアルコールの結晶化が抑制され、研磨後の半導体ウェーハの微小欠陥やヘイズをより低減できる。高分子中の1,2-ジオール構造単位の変性量は、特に限定されないが、例えば1~20モル%である。 Diol-modified PVA has a 1,2-diol structural unit represented by formula (1) in addition to the structural units represented by formulas (2) and (3). Thereby, crystallization of polyvinyl alcohol is suppressed, and micro defects and haze in the semiconductor wafer after polishing can be further reduced. The amount of modification of the 1,2-diol structural unit in the polymer is not particularly limited, but is, for example, 1 to 20 mol%.

ジオール変性PVAは、一般式(1)で表される1,2-ジオール構造単位中のR~Rがすべて水素原子であり、Xが単結合であるものが特に好ましい。すなわち、下記の式(4)の構造単位を含むものが特に好ましい。

Figure 0007361467000004
Particularly preferred diol-modified PVA is one in which R 1 to R 6 in the 1,2-diol structural unit represented by general formula (1) are all hydrogen atoms, and X is a single bond. That is, those containing the structural unit of the following formula (4) are particularly preferred.
Figure 0007361467000004

ジオール変性PVAの平均重合度は、特に限定されないが、例えば200~3000である。ジオール変性PVAの平均重合度は、JIS K 6726に準拠して測定することができる。 The average degree of polymerization of diol-modified PVA is, for example, 200 to 3,000, although it is not particularly limited. The average degree of polymerization of diol-modified PVA can be measured in accordance with JIS K 6726.

ジオール変性PVAは、けん化度が80~95モル%のものが好ましい。研磨用組成物に用いられるポリビニルアルコール系樹脂は通常、完全けん化品(けん化度が98モル%以上のもの)が使用されるが、ジオール変性PVAでは、完全けん化品よりも部分けん化品を用いた方が、微小欠陥やヘイズをより低減できる。そのメカニズムは明らかではないが、一つ要因としては、部分けん化品を用いることで水酸基同士での水素結合が減り、分子同士の結合が弱まることによって高分子が水に溶けやすくなり、未溶解物やゲル状異物の生成が抑制されることが考えられる。他の要因としては、疎水基である酢酸ビニル基の含有量が多くなることで半導体ウェーハとの疎水性相互作用が強くなり、半導体ウェーハへの保護性が大きくなることが考えられる。 The diol-modified PVA preferably has a saponification degree of 80 to 95 mol%. The polyvinyl alcohol resin used in polishing compositions is usually a fully saponified product (with a degree of saponification of 98 mol% or more), but for diol-modified PVA, a partially saponified product is used rather than a completely saponified product. In this case, micro defects and haze can be further reduced. The mechanism is not clear, but one factor is that by using partially saponified products, the hydrogen bonds between hydroxyl groups are reduced, and the bonds between molecules are weakened, making it easier for the polymer to dissolve in water. It is thought that the formation of gel-like foreign substances is suppressed. Another factor is that as the content of vinyl acetate groups, which are hydrophobic groups, increases, the hydrophobic interaction with the semiconductor wafer becomes stronger, and the protection for the semiconductor wafer becomes greater.

ジオール変性PVAのけん化度は、より好ましくは85~90モル%である。なお、ジオール変性PVAのけん化度は、通常のポリビニルアルコールと同様に、JIS K 6726に準じて測定するものとする。 The saponification degree of diol-modified PVA is more preferably 85 to 90 mol%. In addition, the degree of saponification of diol-modified PVA shall be measured according to JIS K 6726 in the same manner as normal polyvinyl alcohol.

ジオール変性PVAの含有量(二種以上含有する場合は、その総量)は、特に限定されないが、例えば砥粒との質量比で、砥粒:ジオール変性PVA=1:0.001~1:0.40である。砥粒に対するジオール変性PVAの質量比の下限は、好ましくは0.004であり、さらに好ましくは0.008である。 The content of diol-modified PVA (if two or more types are included, the total amount) is not particularly limited, but for example, the mass ratio with abrasive grains: abrasive grains: diol-modified PVA = 1:0.001 to 1:0. It is .40. The lower limit of the mass ratio of diol-modified PVA to abrasive grains is preferably 0.004, more preferably 0.008.

本実施形態による研磨用組成物は、ジオール変性PVAの濃度が10~200ppmになるように希釈して用いることが好ましい。希釈後のジオール変性PVAの濃度が高いほど、微小欠陥やヘイズが低減する傾向がある。希釈後の変性PVAの濃度の下限は、好ましくは10ppmであり、さらに好ましくは20ppmである。 The polishing composition according to the present embodiment is preferably used after being diluted so that the concentration of diol-modified PVA is 10 to 200 ppm. The higher the concentration of diol-modified PVA after dilution, the more micro defects and haze tend to be reduced. The lower limit of the concentration of modified PVA after dilution is preferably 10 ppm, more preferably 20 ppm.

ジオール変性PVAは例えば、ビニルエステル系モノマーと下記一般式(5)で示される化合物との共重合体をけん化することで製造される。 Diol-modified PVA is produced, for example, by saponifying a copolymer of a vinyl ester monomer and a compound represented by the following general formula (5).

Figure 0007361467000005
但し、R、R、及びRはそれぞれ独立して水素原子又は有機基を示し、Xは単結合又は結合鎖を示し、R、R、及びRはそれぞれ独立して水素原子又は有機基を示し、R、及びRはそれぞれ独立して水素原子又はR-CO-(Rは炭素数1~4のアルキル基)を示す。
Figure 0007361467000005
However, R 1 , R 2 , and R 3 each independently represent a hydrogen atom or an organic group, X represents a single bond or a bonded chain, and R 4 , R 5 , and R 6 each independently represent a hydrogen atom. or an organic group, and R 7 and R 8 each independently represent a hydrogen atom or R 9 -CO- (R 9 is an alkyl group having 1 to 4 carbon atoms).

本実施形態による研磨用組成物は、上述したジオール変性PVAに加えて、PEG付加PVAをさらに含む。PEG付加PVAは、下記一般式(6)で表されるポリオキシエチレン構造単位を有するビニルアルコール系樹脂である。PEG付加PVAは、式(2)及び(3)で表される構造単位に加えて、式(6)で表されるポリオキシエチレン構造単位を有する。 The polishing composition according to the present embodiment further includes PEG-added PVA in addition to the diol-modified PVA described above. PEG-added PVA is a vinyl alcohol resin having a polyoxyethylene structural unit represented by the following general formula (6). PEG-added PVA has a polyoxyethylene structural unit represented by formula (6) in addition to the structural units represented by formulas (2) and (3).

Figure 0007361467000006
但し、mは1~1000の整数である。
Figure 0007361467000006
However, m is an integer from 1 to 1000.

ジオール変性PVAとPEG付加PVAとを併用することで、微小欠陥及びヘイズをさらに低減することができる。そのメカニズムは明らかではないが、これら2種類の樹脂はウェーハに対する吸着性が異なっていると考えられ、両者が相補的に作用することによって微小欠陥が低減され、さらにエッチング防止効果の増加や段差解消性が大きくなることでヘイズも低減されると考えられる。 By using diol-modified PVA and PEG-added PVA in combination, micro defects and haze can be further reduced. The mechanism is not clear, but it is thought that these two types of resin have different adsorption properties to the wafer, and their complementary action reduces micro defects, increases the etching prevention effect, and eliminates the step difference. It is thought that haze is also reduced by increasing the viscosity.

PEG付加PVAの平均重合度は、特に限定されないが、例えば200~3000である。PEG付加PVAの平均重合度は、JIS K 6726に準拠して測定することができる。 The average degree of polymerization of the PEG-added PVA is, for example, 200 to 3,000, although it is not particularly limited. The average degree of polymerization of PEG-added PVA can be measured in accordance with JIS K 6726.

PEG付加PVAにおけるポリオキシエチレン骨格とポリビニルアルコール骨格との存在比は、これに限定されないが、モル%で、例えば5:95~40:60であり、好ましくは10:90~30:70である。mは、好ましくは2~300であり、さらに好ましくは3~200である。 The abundance ratio of polyoxyethylene skeleton and polyvinyl alcohol skeleton in PEG-added PVA is, but not limited to, in terms of mol%, for example, 5:95 to 40:60, preferably 10:90 to 30:70. . m is preferably 2 to 300, more preferably 3 to 200.

PEG付加PVAの含有量(二種以上含有する場合は、その総量)は、特に限定されないが、例えば砥粒との質量比で、砥粒:PEG付加PVA=1:0.001~1:0.40である。砥粒に対するPEG付加PVAの質量比の下限は、好ましくは0.004であり、さらに好ましくは0.008である。 The content of PEG-added PVA (if two or more types are included, the total amount) is not particularly limited, but for example, the mass ratio with abrasive grains: abrasive grains: PEG-added PVA = 1:0.001 to 1:0. It is .40. The lower limit of the mass ratio of PEG-added PVA to abrasive grains is preferably 0.004, more preferably 0.008.

本実施形態による研磨用組成物は、PEG付加PVAの濃度が3~200ppmになるように希釈して用いることが好ましい。希釈後のPEG付加PVAの濃度が高いほど、微小欠陥やヘイズが低減する傾向がある。希釈後のPEG付加PVAの濃度の下限は、好ましくは10ppmであり、さらに好ましくは20ppmである。 The polishing composition according to the present embodiment is preferably used after being diluted so that the concentration of PEG-added PVA is 3 to 200 ppm. The higher the concentration of PEG-added PVA after dilution, the more micro defects and haze tend to be reduced. The lower limit of the concentration of PEG-added PVA after dilution is preferably 10 ppm, more preferably 20 ppm.

ジオール変性PVAの含有量に対するPEG付加PVAの含有量の比の下限は、好ましくはジオール変性PVA20質量部に対しPEG付加PVA3質量部であり、より好ましくはジオール変性PVA2質量部に対しPEG付加PVA1質量部であり、さらに好ましくはジオール変性PVA5質量部に対しPEG付加PVA3質量部である。また、ジオール変性PVAの含有量に対するPEG付加PVAの含有量の比の上限は、好ましくはジオール変性PVA1質量部に対しPEG付加PVA5質量部であり、より好ましくはジオール変性PVA1質量部に対しPEG付加PVA2質量部であり、さらに好ましくはジオール変性PVA2質量部に対しPEG付加PVA3質量部である。 The lower limit of the ratio of the content of PEG-added PVA to the content of diol-modified PVA is preferably 3 parts by weight of PEG-added PVA for 20 parts by weight of diol-modified PVA, more preferably 1 part by weight of PEG-added PVA for 2 parts by weight of diol-modified PVA. parts, and more preferably 3 parts by weight of PEG-added PVA per 5 parts by weight of diol-modified PVA. The upper limit of the ratio of the content of PEG-added PVA to the content of diol-modified PVA is preferably 5 parts by mass of PEG-added PVA to 1 part by mass of diol-modified PVA, and more preferably 5 parts by mass of PEG-added PVA to 1 part by mass of diol-modified PVA. 2 parts by mass of PVA, more preferably 3 parts by mass of PEG-added PVA per 2 parts by mass of diol-modified PVA.

本実施形態による研磨用組成物は、非イオン性界面活性剤をさらに含んでいてもよい。非イオン性界面活性剤を含むことで、微小欠陥やヘイズをさらに低減することができる。 The polishing composition according to this embodiment may further contain a nonionic surfactant. By including a nonionic surfactant, micro defects and haze can be further reduced.

本実施形態による研磨用組成物に好適な非イオン性界面活性剤は例えば、エチレンジアミンテトラポリオキシエチレンポリオキシプロピレン(ポロキサミン)、ポロキサマー、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレン脂肪酸エステル、ポリオキシアルキレンアルキルアミン、ポリオキシアルキレンメチルグルコシド等である。 Nonionic surfactants suitable for the polishing composition according to the present embodiment include, for example, ethylenediaminetetrapolyoxyethylenepolyoxypropylene (poloxamine), poloxamer, polyoxyalkylene alkyl ether, polyoxyalkylene fatty acid ester, polyoxyalkylene alkyl These include amines, polyoxyalkylene methyl glucosides, and the like.

ポリオキシアルキレンアルキルエーテルとしては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル等が挙げられる。ポリオキシアルキレン脂肪酸エステルとしては、例えば、ポリオキシエチレンモノラウレート、ポリオキシエチレンモノステアレート等が挙げられる。ポリオキシアルキレンアルキルアミンとしては、例えば、ポリオキシエチレンラウリルアミン、ポリオキシエチレンオレイルアミン等が挙げられる。ポリオキシアルキレンメチルグルコシドとしては、例えば、ポリオキシエチレンメチルグルコシド、ポリオキシプロピレンメチルグルコシド等が挙げられる。 Examples of the polyoxyalkylene alkyl ether include polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, and polyoxyethylene stearyl ether. Examples of the polyoxyalkylene fatty acid ester include polyoxyethylene monolaurate, polyoxyethylene monostearate, and the like. Examples of the polyoxyalkylene alkylamine include polyoxyethylene laurylamine, polyoxyethylene oleylamine, and the like. Examples of polyoxyalkylene methyl glucoside include polyoxyethylene methyl glucoside, polyoxypropylene methyl glucoside, and the like.

非イオン性界面活性剤の含有量(二種以上含有する場合は、その総量)は、特に限定されないが、例えば砥粒との質量比で、砥粒:非イオン性界面活性剤=1:0.0001~1:0.015である。本実施形態による研磨用組成物は、非イオン性界面活性剤の濃度が0.5~30ppmになるように希釈して用いることが好ましい。 The content of the nonionic surfactant (if two or more types are included, the total amount) is not particularly limited, but for example, the mass ratio with the abrasive grains: abrasive grains: nonionic surfactant = 1:0 .0001 to 1:0.015. The polishing composition according to the present embodiment is preferably used after being diluted so that the concentration of the nonionic surfactant is 0.5 to 30 ppm.

本実施形態による研磨用組成物は、pH調整剤をさらに含んでいてもよい。本実施形態による研磨用組成物のpHは、好ましくは8.0~12.0である。 The polishing composition according to this embodiment may further contain a pH adjuster. The pH of the polishing composition according to this embodiment is preferably 8.0 to 12.0.

本実施形態による研磨用組成物は、上記の他、研磨用組成物の分野で一般に知られた配合剤を任意に配合することができる。 In addition to the above, the polishing composition according to the present embodiment may optionally contain additives generally known in the field of polishing compositions.

本実施形態による研磨用組成物は、砥粒、塩基性化合物、ジオール変性PVA、PEG付加PVAその他の配合材料を適宜混合して水を加えることによって作製される。本実施形態による研磨用組成物は、あるいは、砥粒、塩基性化合物、ジオール変性PVA、PEG付加PVAその他の配合材料を、順次、水に混合することによって作製される。これらの成分を混合する手段としては、ホモジナイザー、超音波等、研磨用組成物の技術分野において常用される手段が用いられる。 The polishing composition according to the present embodiment is prepared by appropriately mixing abrasive grains, a basic compound, diol-modified PVA, PEG-added PVA, and other compounding materials, and adding water. Alternatively, the polishing composition according to the present embodiment can be prepared by sequentially mixing abrasive grains, a basic compound, diol-modified PVA, PEG-added PVA, and other compounding materials in water. As means for mixing these components, means commonly used in the technical field of polishing compositions, such as a homogenizer and ultrasonic waves, are used.

以上で説明した研磨用組成物は、適当な濃度となるように水で希釈した後、半導体ウェーハの研磨に用いられる。 The polishing composition described above is used for polishing semiconductor wafers after being diluted with water to an appropriate concentration.

本実施形態による研磨用組成物は、シリコンウェーハの仕上げ研磨に特に好適に用いることができる。 The polishing composition according to this embodiment can be particularly suitably used for final polishing of silicon wafers.

以下、実施例によって本発明をより具体的に説明する。本発明はこれらの実施例に限定されない。 Hereinafter, the present invention will be explained in more detail with reference to Examples. The invention is not limited to these examples.

[研磨例1]
表1に示す実施例1~11、及び比較例1~15の研磨用組成物を作製した。
[Polishing example 1]
Polishing compositions of Examples 1 to 11 and Comparative Examples 1 to 15 shown in Table 1 were prepared.

Figure 0007361467000007
Figure 0007361467000007

表1の含有量は、すべて希釈後の含有量である。砥粒は、平均二次粒子径が65nmのコロイダルシリカを使用した。「NHOH」はアンモニア水溶液を表す。 The contents in Table 1 are all contents after dilution. Colloidal silica having an average secondary particle diameter of 65 nm was used as the abrasive grain. "NH 4 OH" represents ammonia aqueous solution.

ジオール変性PVAは、3種類を使用した。「種類」の欄の「A」は、重合度:450、けん化度:99.0モル%以上のブテンジオールビニルアルコールポリマーを表す。「B」は、重合度:450、けん化度:86.0モル%のブテンジオールビニルアルコールポリマーを表す。「C」は、重合度:300、けん化度:89.0モル%のブテンジオールビニルアルコールポリマーを表す。 Three types of diol-modified PVA were used. "A" in the "Type" column represents a butenediol vinyl alcohol polymer having a degree of polymerization of 450 and a degree of saponification of 99.0 mol% or more. "B" represents a butenediol vinyl alcohol polymer with a degree of polymerization: 450 and a degree of saponification: 86.0 mol%. "C" represents a butenediol vinyl alcohol polymer with a degree of polymerization: 300 and a degree of saponification: 89.0 mol%.

PEG付加PVAとして、重合度:500、けん化度:98.5モル%以上のポリエチレングリコール導入ポリビニルアルコール(日本酢ビ・ポバール社製EF-05)を使用した。 As the PEG-added PVA, polyethylene glycol-introduced polyvinyl alcohol (EF-05, manufactured by Nippon Acety Vinyl Poval Co., Ltd.) having a degree of polymerization of 500 and a degree of saponification of 98.5 mol % or more was used.

「他の高分子」の欄の「PVA」は、重合度:500、けん化度:98.5モル%のポリビニルアルコールを表す。「HEC」は、重量平均分子量が80万のヒドロキシエチルセルロースを表す。「PVP」は、重量平均分子量が2500のポリビニルピロリドンを表す。 "PVA" in the "Other polymers" column represents polyvinyl alcohol with a degree of polymerization: 500 and a degree of saponification: 98.5 mol%. "HEC" represents hydroxyethylcellulose with a weight average molecular weight of 800,000. "PVP" represents polyvinylpyrrolidone with a weight average molecular weight of 2500.

これら実施例及び比較例の研磨用組成物を使用して、12インチのシリコンウェーハの研磨を行った。シリコンウェーハの導電型はP型で、抵抗率が0.1Ωcm以上100Ωcm未満のものを使用した。研磨面は<100>面とした。研磨装置は、株式会社岡本工作機械製作所製のSPP800S片面研磨装置を使用した。研磨パッドは、スエードパッドを使用した。研磨用組成物を31倍に希釈して、1L/分の供給速度で供給した。定盤の回転速度は40rpm、キャリアの回転速度は39rpm、研磨荷重は100gf/cmとして、2分間の研磨を行った。なお、実施例及び比較例の研磨用組成物で研磨する前に、研磨スラリーNanopure(登録商標)NP7050S(ニッタハース株式会社製)を用いて3分間の予備研磨を実施した。 A 12-inch silicon wafer was polished using the polishing compositions of these Examples and Comparative Examples. The conductivity type of the silicon wafer used was P type, and the resistivity was 0.1 Ωcm or more and less than 100 Ωcm. The polished surface was a <100> surface. As the polishing device, an SPP800S single-sided polishing device manufactured by Okamoto Machine Tool Works Co., Ltd. was used. A suede pad was used as the polishing pad. The polishing composition was diluted 31 times and supplied at a supply rate of 1 L/min. Polishing was performed for 2 minutes at a rotation speed of the surface plate of 40 rpm, a rotation speed of the carrier of 39 rpm, and a polishing load of 100 gf/cm 2 . Note that before polishing with the polishing compositions of Examples and Comparative Examples, preliminary polishing was performed for 3 minutes using polishing slurry Nanopure (registered trademark) NP7050S (manufactured by Nitta Haas Co., Ltd.).

研磨後のシリコンウェーハの微少欠陥及びヘイズを測定した。微少欠陥は、ウェーハ表面検査装置MAGICS M5640(Lasertec社製)を用いて測定した。ヘイズは、ウェーハ表面検査装置LS6600(日立エンジニアリング株式会社製)を用いて測定した。結果を前掲の表1の「Defect」、「Haze」の欄に示す。 Micro defects and haze of the silicon wafer after polishing were measured. Micro defects were measured using a wafer surface inspection device MAGICS M5640 (manufactured by Lasertec). Haze was measured using a wafer surface inspection device LS6600 (manufactured by Hitachi Engineering Co., Ltd.). The results are shown in the "Defect" and "Haze" columns of Table 1 above.

図1~図5は、PEG付加PVAの含有量を変えて研磨特性を比較したグラフである。 FIGS. 1 to 5 are graphs comparing polishing characteristics with varying contents of PEG-added PVA.

具体的には、図1は、砥粒の含有量を2300ppm、NHOHの含有量を20ppm、ジオール変性PVAの種類を「A」、ジオール変性PVAの含有量を20ppmに固定し、PEG付加PVAの含有量を無添加(比較例1)、3ppm(実施例1)、10ppm(実施例2)、20ppm(実施例3)に変えて研磨特性を比較したグラフである。 Specifically, in Figure 1, the content of abrasive grains is fixed at 2300 ppm, the content of NH 4 OH is fixed at 20 ppm, the type of diol-modified PVA is "A", the content of diol-modified PVA is fixed at 20 ppm, and PEG addition It is a graph comparing polishing properties when the PVA content is changed to no additive (Comparative Example 1), 3 ppm (Example 1), 10 ppm (Example 2), and 20 ppm (Example 3).

図2は、砥粒の含有量を1100ppm、NHOHの含有量を20ppm、ジオール変性PVAの種類を「A」、ジオール変性PVAの含有量を20ppmに固定し、PEG付加PVAの含有量を無添加(比較例2)、3ppm(実施例4)、20ppm(実施例5)に変えて研磨特性を比較したグラフである。 In Figure 2, the content of abrasive grains is fixed at 1100 ppm, the content of NH 4 OH is fixed at 20 ppm, the type of diol-modified PVA is "A", the content of diol-modified PVA is fixed at 20 ppm, and the content of PEG-added PVA is fixed at 20 ppm. It is a graph comparing the polishing properties of additive-free (Comparative Example 2), 3 ppm (Example 4), and 20 ppm (Example 5).

図3は、砥粒の含有量を2300ppm、NHOHの含有量を20ppm、ジオール変性PVAの種類を「B」、ジオール変性PVAの含有量を20ppmに固定し、PEG付加PVAの含有量を無添加(比較例3)、3ppm(実施例6)、10ppm(実施例7)、20ppm(実施例8)に変えて研磨特性を比較したグラフである。 In Figure 3, the content of abrasive grains is fixed at 2300 ppm, the content of NH 4 OH is 20 ppm, the type of diol-modified PVA is "B", the content of diol-modified PVA is fixed at 20 ppm, and the content of PEG-added PVA is fixed. It is a graph comparing the polishing properties of additive-free (Comparative Example 3), 3 ppm (Example 6), 10 ppm (Example 7), and 20 ppm (Example 8).

図4は、砥粒の含有量を1100ppm、NHOHの含有量を20ppm、ジオール変性PVAの種類を「B」、ジオール変性PVAの含有量を20ppmに固定し、PEG付加PVAの含有量を無添加(比較例4)、3ppm(実施例9)、20ppm(実施例10)に変えて研磨特性を比較したグラフである。 Figure 4 shows that the content of abrasive grains is fixed at 1100 ppm, the content of NH 4 OH is 20 ppm, the type of diol-modified PVA is "B", the content of diol-modified PVA is fixed at 20 ppm, and the content of PEG-added PVA is It is a graph comparing the polishing properties of additive-free (Comparative Example 4), 3 ppm (Example 9), and 20 ppm (Example 10).

図5は、砥粒の含有量を1100ppm、NHOHの含有量を20ppm、ジオール変性PVAの種類を「C」、ジオール変性PVAの含有量を20ppmに固定し、PEG付加PVAの含有量を無添加(比較例5)、10ppm(実施例11)に変えて研磨特性を比較したグラフである。 Figure 5 shows that the content of abrasive grains is fixed at 1100 ppm, the content of NH 4 OH is 20 ppm, the type of diol-modified PVA is "C", the content of diol-modified PVA is fixed at 20 ppm, and the content of PEG-added PVA is fixed at 20 ppm. It is a graph comparing the polishing properties with no additive (Comparative Example 5) and with 10 ppm (Example 11).

図1~図5から、今回用いたジオール変性PVAのいずれにおいても、PEG付加PVAと併用することで、微小欠陥及びヘイズをさらに低減できることが分かる。また、図1~図4から、PEG付加PVAの含有量が多いほど、微小欠陥及びヘイズが低減する傾向があることがわかる。 From FIGS. 1 to 5, it can be seen that in any of the diol-modified PVAs used this time, micro defects and haze can be further reduced by using them together with PEG-added PVA. Furthermore, from FIGS. 1 to 4, it can be seen that the higher the content of PEG-added PVA, the more micro defects and haze tend to be reduced.

図6は、ジオール変性PVAの種類を変えて研磨特性を比較したグラフである。具体的には、ジオール変性PVAなし(比較例6)、「A」を20ppm(実施例5)、「B」を20ppm(実施例10)、「C」を20ppm(実施例11)に変えて研磨特性を比較したグラフである。なお、ジオール変性PVAが「C」のもの(実施例11)のみPEG付加PVAの含有量を10ppmとし、他はPEG付加PVAの含有量を20ppmとした。 FIG. 6 is a graph comparing the polishing properties of different types of diol-modified PVA. Specifically, without diol-modified PVA (Comparative Example 6), "A" was changed to 20 ppm (Example 5), "B" was changed to 20 ppm (Example 10), and "C" was changed to 20 ppm (Example 11). It is a graph comparing polishing characteristics. In addition, the content of PEG-added PVA was set to 10 ppm only in the diol-modified PVA of "C" (Example 11), and the content of PEG-added PVA was set to 20 ppm in the others.

図6からも、ジオール変性PVAとPEG付加PVAとを併用することで、微小欠陥及びヘイズをさらに低減できることが分かる。また、今回使用したジオール変性PVAの中では、けん化度の低い「B」及び「C」の研磨特性が「A」と比較して優れていた。 It can also be seen from FIG. 6 that micro defects and haze can be further reduced by using diol-modified PVA and PEG-added PVA in combination. Furthermore, among the diol-modified PVAs used this time, "B" and "C", which have a low degree of saponification, had better polishing properties than "A".

図7は、研磨用組成物中の高分子の総量を一定にしてその内訳を変えて研磨特性を比較したグラフである。具体的にはジオール変性PVAだけを40ppm含有させた研磨用組成物(比較例7及び比較例8)の研磨特性と、ジオール変性PVAとPEG付加PVAとを20ppmずつ含有させた研磨用組成物(実施例3及び実施例5)の研磨特性とを比較したグラフである。図7からも、ジオール変性PVAとPEG付加PVAとを併用することで、微小欠陥及びヘイズをさらに低減できることが分かる。 FIG. 7 is a graph comparing the polishing properties with the total amount of polymer in the polishing composition being kept constant and the breakdown thereof being changed. Specifically, the polishing properties of polishing compositions containing only diol-modified PVA at 40 ppm (Comparative Examples 7 and 8) and polishing compositions containing 20 ppm each of diol-modified PVA and PEG-added PVA ( It is a graph comparing the polishing characteristics of Example 3 and Example 5). It can also be seen from FIG. 7 that micro defects and haze can be further reduced by using diol-modified PVA and PEG-added PVA in combination.

図8は、ジオール変性PVAを用いた研磨用組成物(実施例3及び実施例8)の研磨特性と、ジオール変性PVAではない通常のPVAを用いた研磨用組成物(比較例10)の研磨特性とを比較したグラフである。図8から、PEG付加PVAと併用することで研磨特性が向上するのは、ジオール変性PVAに特有の効果であり、通常のPVAでは同様の効果が得られないことが分かる。 Figure 8 shows the polishing properties of polishing compositions (Example 3 and Example 8) using diol-modified PVA and the polishing properties of a polishing composition (Comparative Example 10) using normal PVA, which is not diol-modified PVA. This is a graph comparing the characteristics. From FIG. 8, it can be seen that the improvement in polishing properties when used in combination with PEG-added PVA is an effect specific to diol-modified PVA, and that a similar effect cannot be obtained with ordinary PVA.

また、図示していないが、PEG付加PVAとHECとを併用した研磨用組成物(比較例11及び比較例12)では、微小欠陥が検出限界を超えて多くなった。このことからも、PEG付加PVAと併用することで研磨性能が向上するのは、ジオール変性PVAに特有の効果であることが分かる。 Further, although not shown, in the polishing compositions (Comparative Examples 11 and 12) that used PEG-added PVA and HEC in combination, the number of micro defects exceeded the detection limit. This also shows that the improvement in polishing performance when used in combination with PEG-added PVA is an effect unique to diol-modified PVA.

図9は、ジオール変性PVAとPEG付加PVA以外の高分子とを併用した研磨用組成物の研磨特性を比較したグラフである。具体的には、ジオール変性PVAだけを用いた研磨用組成物(比較例1)、ジオール変性PVAにHECを3ppm加えた研磨用組成物(比較例13)、ジオール変性PVAにHECを20ppm加えた研磨用組成物(比較例14)、及びジオール変性PVAにPVPを3ppm加えた研磨用組成物(比較例15)の研磨特性を比較したグラフである。ジオール変性PVAにPEG付加PVA以外の高分子を添加した場合、研磨特性は却って悪化していることが分かる。 FIG. 9 is a graph comparing the polishing properties of polishing compositions using a combination of diol-modified PVA and a polymer other than PEG-added PVA. Specifically, a polishing composition using only diol-modified PVA (Comparative Example 1), a polishing composition using diol-modified PVA with 3 ppm of HEC added (Comparative Example 13), and a polishing composition using diol-modified PVA with 20 ppm of HEC added. It is a graph comparing the polishing properties of a polishing composition (Comparative Example 14) and a polishing composition in which 3 ppm of PVP is added to diol-modified PVA (Comparative Example 15). It can be seen that when a polymer other than PEG-added PVA is added to diol-modified PVA, the polishing properties are rather deteriorated.

[研磨例2]
表2に示す実施例12及び13、並びに比較例16及び17の研磨用組成物を作製した。表2の含有量も、すべて希釈後の含有量である。研磨例2では、表2に示す成分に加えて、非イオン性界面活性剤として、重量平均分子量7240のエチレンジアミンテトラポリオキシエチレンポリオキシプロピレン、及び重量平均分子量775のポリオキシプロピレンメチルグルコシドを、希釈後の含有量でそれぞれ2.9ppm及び2.4ppm含有させた。砥粒、NHOH、ジオール変性PVA、及びPEG付加PVAは、研磨例1と同様である。
[Polishing example 2]
Polishing compositions of Examples 12 and 13 and Comparative Examples 16 and 17 shown in Table 2 were prepared. The contents in Table 2 are also all contents after dilution. In polishing example 2, in addition to the components shown in Table 2, ethylenediaminetetrapolyoxyethylene polyoxypropylene with a weight average molecular weight of 7240 and polyoxypropylene methyl glucoside with a weight average molecular weight of 775 were diluted as nonionic surfactants. The latter contents were 2.9 ppm and 2.4 ppm, respectively. The abrasive grains, NH 4 OH, diol-modified PVA, and PEG-added PVA are the same as in Polishing Example 1.

Figure 0007361467000008
Figure 0007361467000008

実施例12及び13、並びに比較例16及び17の研磨用組成物を用いて、研磨例1と同様にシリコンウェーハの研磨を行い、微小欠陥及びヘイズを測定した。結果を表2に示す。 Using the polishing compositions of Examples 12 and 13 and Comparative Examples 16 and 17, silicon wafers were polished in the same manner as in Polishing Example 1, and micro defects and haze were measured. The results are shown in Table 2.

研磨例1との比較から、非イオン性界面活性剤を含有させることで、微小欠陥及びヘイズを顕著に低減できることが分かる。 A comparison with Polishing Example 1 shows that micro defects and haze can be significantly reduced by containing a nonionic surfactant.

図10は、砥粒の含有量を1100ppm、NHOHの含有量を20ppm、ジオール変性PVAの種類を「A」、ジオール変性PVAの含有量を20ppmに固定し、PEG付加PVAの含有量を無添加(比較例16)、20ppm(実施例12)に変えて研磨特性を比較したグラフである。 In Figure 10, the content of abrasive grains is fixed at 1100 ppm, the content of NH 4 OH is fixed at 20 ppm, the type of diol-modified PVA is fixed at "A", the content of diol-modified PVA is fixed at 20 ppm, and the content of PEG-added PVA is fixed at 20 ppm. It is a graph comparing the polishing properties of additive-free (Comparative Example 16) and 20 ppm (Example 12).

図11は、砥粒の含有量を1100ppm、NHOHの含有量を20ppm、ジオール変性PVAの種類を「C」、ジオール変性PVAの含有量を20ppmに固定し、PEG付加PVAの含有量を無添加(比較例17)、10ppm(実施例13)に変えて研磨特性を比較したグラフである。 Figure 11 shows that the content of abrasive grains is fixed at 1100 ppm, the content of NH 4 OH is 20 ppm, the type of diol-modified PVA is fixed at "C", the content of diol-modified PVA is fixed at 20 ppm, and the content of PEG-added PVA is fixed at 20 ppm. It is a graph comparing the polishing properties of additive-free (Comparative Example 17) and 10 ppm (Example 13).

図10及び図11から、非イオン界面活性剤を含有させた研磨用組成物においても、ジオール変性PVAとPEG付加PVAとを併用することで、研磨特性を向上できることが分かる。具体的には、ヘイズを良好な水準に保ったまま、微小欠陥をさらに低減することができている。 10 and 11 show that even in a polishing composition containing a nonionic surfactant, the polishing properties can be improved by using diol-modified PVA and PEG-added PVA together. Specifically, micro defects can be further reduced while maintaining haze at a good level.

以上、本発明の実施の形態を説明した。上述した実施の形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。 The embodiments of the present invention have been described above. The embodiments described above are merely examples for implementing the present invention. Therefore, the present invention is not limited to the embodiments described above, and can be implemented by appropriately modifying the embodiments described above without departing from the spirit thereof.

Claims (3)

砥粒と、
塩基性化合物と、
下記一般式(A)で表される1,2-ジオール構造単位を有するビニルアルコール系樹脂と、
下記一般式(B)で表されるポリオキシエチレン構造単位を有するビニルアルコール系樹脂とを含み、
前記1,2-ジオール構造単位を有するビニルアルコール系樹脂は、平均重合度が200~3000であり、けん化度が80モル%以上であり、
前記砥粒の含有量に対する前記1,2-ジオール構造単位を有するビニルアルコール系樹脂の含有量が、質量比で、前記砥粒:前記1,2-ジオール構造単位を有するビニルアルコール系樹脂=1:0.001~1:0.40であり、
前記ポリオキシエチレン構造単位を有するビニルアルコール系樹脂は、平均重合度が200~3000であり、
前記砥粒の含有量に対する前記ポリオキシエチレン構造単位を有するビニルアルコール系樹脂の含有量が、質量比で、前記砥粒:前記ポリオキシエチレン構造単位を有するビニルアルコール系樹脂=1:0.001~1:0.40であり、
前記1,2-ジオール構造単位を有するビニルアルコール系樹脂の含有量に対する前記ポリオキシエチレン構造単位を有するビニルアルコール系樹脂の含有量の比が、前記1,2-ジオール構造単位を有するビニルアルコール系樹脂20質量部に対し前記ポリオキシエチレン構造単位を有するビニルアルコール系樹脂3質量部以上である、研磨用組成物。
Figure 0007361467000009
但し、R、R、及びRはそれぞれ独立して水素原子又は有機基を示し、Xは単結合又は結合鎖を示し、R、R、及びRはそれぞれ独立して水素原子又は有機基を示す。mは1~1000の整数である。
Abrasive grains and
a basic compound;
A vinyl alcohol resin having a 1,2-diol structural unit represented by the following general formula (A),
A vinyl alcohol resin having a polyoxyethylene structural unit represented by the following general formula (B) ,
The vinyl alcohol resin having the 1,2-diol structural unit has an average degree of polymerization of 200 to 3000 and a saponification degree of 80 mol% or more,
The content of the vinyl alcohol resin having the 1,2-diol structural unit with respect to the content of the abrasive grains is such that the mass ratio is such that the abrasive grain: the vinyl alcohol resin having the 1,2-diol structural unit = 1. :0.001 to 1:0.40,
The vinyl alcohol resin having a polyoxyethylene structural unit has an average degree of polymerization of 200 to 3000,
The content of the vinyl alcohol resin having the polyoxyethylene structural unit with respect to the content of the abrasive grains is a mass ratio of the abrasive grains: the vinyl alcohol resin having the polyoxyethylene structural unit = 1:0.001. ~1:0.40,
The ratio of the content of the vinyl alcohol resin having the polyoxyethylene structural unit to the content of the vinyl alcohol resin having the 1,2-diol structural unit is the vinyl alcohol resin having the 1,2-diol structural unit. A polishing composition comprising 3 parts by mass or more of a vinyl alcohol resin having the polyoxyethylene structural unit based on 20 parts by mass of the resin .
Figure 0007361467000009
However, R 1 , R 2 , and R 3 each independently represent a hydrogen atom or an organic group, X represents a single bond or a bonded chain, and R 4 , R 5 , and R 6 each independently represent a hydrogen atom. Or indicates an organic group. m is an integer from 1 to 1000.
請求項1に記載の研磨用組成物であって、
非イオン性界面活性剤をさらに含む、研磨用組成物。
The polishing composition according to claim 1,
A polishing composition further comprising a nonionic surfactant.
請求項1又は2に記載の研磨用組成物であって、
前記塩基性化合物は、アルカリ金属水酸化物、アルカリ金属塩、アンモニア、アミン、アンモニウム塩、及び第四級アンモニウム水酸化物類からなる群から選択される1種以上である、研磨用組成物。
The polishing composition according to claim 1 or 2,
The polishing composition wherein the basic compound is one or more selected from the group consisting of alkali metal hydroxides, alkali metal salts, ammonia, amines, ammonium salts, and quaternary ammonium hydroxides.
JP2018241266A 2018-12-25 2018-12-25 polishing composition Active JP7361467B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2018241266A JP7361467B2 (en) 2018-12-25 2018-12-25 polishing composition
CN201980084926.4A CN113227309B (en) 2018-12-25 2019-11-21 Polishing composition
SG11202104414RA SG11202104414RA (en) 2018-12-25 2019-11-21 Polishing composition
PCT/JP2019/045657 WO2020137278A1 (en) 2018-12-25 2019-11-21 Polishing composition
DE112019006394.4T DE112019006394T5 (en) 2018-12-25 2019-11-21 POLISHING COMPOSITION
KR1020217018371A KR20210106435A (en) 2018-12-25 2019-11-21 polishing composition
TW108147365A TWI833865B (en) 2018-12-25 2019-12-24 Grinding composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018241266A JP7361467B2 (en) 2018-12-25 2018-12-25 polishing composition

Publications (2)

Publication Number Publication Date
JP2020100778A JP2020100778A (en) 2020-07-02
JP7361467B2 true JP7361467B2 (en) 2023-10-16

Family

ID=71127941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018241266A Active JP7361467B2 (en) 2018-12-25 2018-12-25 polishing composition

Country Status (7)

Country Link
JP (1) JP7361467B2 (en)
KR (1) KR20210106435A (en)
CN (1) CN113227309B (en)
DE (1) DE112019006394T5 (en)
SG (1) SG11202104414RA (en)
TW (1) TWI833865B (en)
WO (1) WO2020137278A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012216723A (en) 2011-04-01 2012-11-08 Nitta Haas Inc Polishing composition
JP2015084379A (en) 2013-10-25 2015-04-30 花王株式会社 Polishing liquid composition for silicon wafers
JP2016056220A (en) 2014-09-05 2016-04-21 日本キャボット・マイクロエレクトロニクス株式会社 Slurry composition, rinse composition, substrate polishing method and substrate rinsing method
JP2016213216A (en) 2015-04-28 2016-12-15 花王株式会社 Polishing liquid composition for silicon wafers
WO2017069253A1 (en) 2015-10-23 2017-04-27 ニッタ・ハース株式会社 Polishing composition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5931355A (en) 1982-08-13 1984-02-20 ワイケイケイ株式会社 Remodeling of cap handrail of existing handrail
JPH11140427A (en) * 1997-11-13 1999-05-25 Kobe Steel Ltd Polishing liquid and polishing
KR102123906B1 (en) * 2012-05-25 2020-06-17 닛산 가가쿠 가부시키가이샤 Polishing solution composition for wafers
JP5732601B2 (en) * 2012-11-30 2015-06-10 ニッタ・ハース株式会社 Polishing composition
US10435588B2 (en) * 2015-10-23 2019-10-08 Nitta Haas Incorporated Polishing composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012216723A (en) 2011-04-01 2012-11-08 Nitta Haas Inc Polishing composition
JP2015084379A (en) 2013-10-25 2015-04-30 花王株式会社 Polishing liquid composition for silicon wafers
JP2016056220A (en) 2014-09-05 2016-04-21 日本キャボット・マイクロエレクトロニクス株式会社 Slurry composition, rinse composition, substrate polishing method and substrate rinsing method
JP2016213216A (en) 2015-04-28 2016-12-15 花王株式会社 Polishing liquid composition for silicon wafers
WO2017069253A1 (en) 2015-10-23 2017-04-27 ニッタ・ハース株式会社 Polishing composition

Also Published As

Publication number Publication date
CN113227309A (en) 2021-08-06
TWI833865B (en) 2024-03-01
SG11202104414RA (en) 2021-05-28
CN113227309B (en) 2022-10-11
WO2020137278A1 (en) 2020-07-02
TW202033689A (en) 2020-09-16
KR20210106435A (en) 2021-08-30
JP2020100778A (en) 2020-07-02
DE112019006394T5 (en) 2021-09-02

Similar Documents

Publication Publication Date Title
JP6978933B2 (en) Polishing composition
JP6387032B2 (en) Polishing composition, polishing composition manufacturing method and polishing product manufacturing method
TWI650410B (en) 矽 wafer honing composition
JP7061969B2 (en) Polishing composition and polishing method
JP7340335B2 (en) polishing composition
JP6350861B2 (en) Colloidal silica and semiconductor wafer polishing composition containing the same
JP7361467B2 (en) polishing composition
JP2021057467A (en) Polishing composition for silicon wafer
JPWO2018124226A1 (en) Polishing composition and polishing method
CN111512419B (en) Polishing composition
JP7512035B2 (en) Polishing composition
EP4083153B1 (en) Polishing composition, and method of polishing silicon wafer
TW202240683A (en) Polishing composition and method for polishing silicon wafer
JP2021100085A (en) Polishing composition
JP2022099607A (en) Polishing composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230804

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231003

R150 Certificate of patent or registration of utility model

Ref document number: 7361467

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150