JP7356956B2 - Abnormality sign diagnostic device and its diagnostic method - Google Patents

Abnormality sign diagnostic device and its diagnostic method Download PDF

Info

Publication number
JP7356956B2
JP7356956B2 JP2020143046A JP2020143046A JP7356956B2 JP 7356956 B2 JP7356956 B2 JP 7356956B2 JP 2020143046 A JP2020143046 A JP 2020143046A JP 2020143046 A JP2020143046 A JP 2020143046A JP 7356956 B2 JP7356956 B2 JP 7356956B2
Authority
JP
Japan
Prior art keywords
sliding
valve
operations
sliding part
sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020143046A
Other languages
Japanese (ja)
Other versions
JP2022038500A5 (en
JP2022038500A (en
Inventor
優治 杉谷
亮 久保田
賢司 小野寺
大助 平澤
芳久 清時
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2020143046A priority Critical patent/JP7356956B2/en
Publication of JP2022038500A publication Critical patent/JP2022038500A/en
Publication of JP2022038500A5 publication Critical patent/JP2022038500A5/ja
Application granted granted Critical
Publication of JP7356956B2 publication Critical patent/JP7356956B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Indication Of The Valve Opening Or Closing Status (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Description

本発明は、弁摺動部の異常予兆診断装置およびその診断方法に関する。 The present invention relates to an abnormality symptom diagnostic device for a valve sliding part and a diagnostic method thereof.

流体の流れを閉止する機能を持つ弁は、駆動部により弁体と弁座の間の流路を閉じることで、流体の流れを止めると共に、弁から流体が漏れ出ることを防いでいる。 A valve that has the function of closing the flow of fluid uses a driving part to close the flow path between the valve body and the valve seat, thereby stopping the flow of fluid and preventing fluid from leaking from the valve.

例えば、電動弁では、モータの回転駆動力の方向を90°変化させるウォームギア、回転駆動力を直進駆動力に変換する弁棒のネジ部、直進運動する軸表面からの流体の漏洩を防止するグランドパッキン部、弁体と弁座の接触面であるシート部等から構成される要素が連動することで流体の流れを止めるが、それぞれの要素において摺動が発生している。これらの摺動部では、摩擦による摺動部の劣化が生じ、シート部からの漏洩のリスクおよび駆動力の損失が大きくなる。
また、空気作動弁では、ウォームギアの代わりに、ピストンシール部の摺動劣化が生じる。
For example, in an electric valve, there is a worm gear that changes the direction of the motor's rotational driving force by 90 degrees, a threaded part of the valve stem that converts the rotational driving force into linear driving force, and a gland that prevents fluid leakage from the shaft surface that moves linearly. Elements such as the packing part and the seat part, which is the contact surface between the valve body and the valve seat, work together to stop the flow of fluid, but sliding occurs in each element. In these sliding parts, deterioration of the sliding parts occurs due to friction, increasing the risk of leakage from the seat part and the loss of driving force.
In addition, in an air-operated valve, sliding deterioration occurs in the piston seal portion instead of the worm gear.

上記の摺動部は作動回数に応じて摺動劣化が生じるため、分解点検により、摺動劣化が進む弁を抽出し、部品交換および整備を実施することで、弁の不具合発生を防止している。しかし、分解点検には多くの労力と費用が必要となる。 The sliding parts mentioned above will deteriorate depending on the number of times they are operated, so by disassembling and inspecting the valves, you can identify valves where sliding deterioration is progressing, replace parts, and perform maintenance to prevent valve malfunctions. There is. However, disassembly and inspection requires a lot of effort and cost.

原子力発電設備においても、事故を未然に防止するために定期検査において、弁の分解点検が実施されているが、大口径弁の分解点検はクレーンを必要とし、膨大な労力、コストが必要となる。また、放射線量が高い系統に設置される弁の分解点検においては被ばく量が高くなる場合がある。 Even in nuclear power generation facilities, valves are overhauled during periodic inspections to prevent accidents, but overhauling large-diameter valves requires a crane, which requires a huge amount of labor and cost. . In addition, the amount of radiation exposure may be high when overhauling and inspecting valves installed in systems with high radiation levels.

このため、駆動部のモータの電流値計測により弁の動作性を診断する装置(特許文献1)や、音響センサにより流体力による弁棒の損傷および疲労を診断する装置(特許文献2)が開発され、定期検査の工数や実施回数を減らしている。 For this reason, a device that diagnoses the operability of the valve by measuring the current value of the motor in the drive section (Patent Document 1) and a device that uses an acoustic sensor to diagnose damage and fatigue of the valve stem due to fluid force (Patent Document 2) have been developed. This reduces the man-hours and frequency of periodic inspections.

特開2006-083928号公報JP2006-083928A 特開2014-521045号公報Japanese Patent Application Publication No. 2014-521045

上記の先行技術では、音響センサによる弁の異常検知または状態監視のシステムが、流量調節弁において流体の作用による振動や亀裂、変形に起因する音響放出を利用し、正常状態からの逸脱や疲労を検知することにより弁の故障について診断する。そのため、流量調節機能および弁の構造的欠陥の発生については診断できるが、弁(流体を閉止する機能)の診断は完全ではない。 In the above-mentioned prior art, a system for detecting abnormality or monitoring the condition of a valve using an acoustic sensor utilizes acoustic emissions caused by vibration, cracks, or deformation caused by the action of fluid in a flow control valve, and detects deviation from the normal state or fatigue. Diagnose valve failure by detection. Therefore, although it is possible to diagnose the occurrence of structural defects in the flow control function and valves, diagnosis of valves (functions that close fluid) is not complete.

本発明の目的は、弁を分解することなく、高い精度で弁の動的機能および流体を閉止する機能の劣化予兆診断を行えるようにすることにある。 An object of the present invention is to enable highly accurate deterioration sign diagnosis of a valve's dynamic function and fluid closing function without disassembling the valve.

前記課題を解決するため、本発明の異常予兆診断装置は、弁体と弁座の閉止時の接触面の摺動音を検出する少なくともひとつの音響センサの信号を処理する信号処理部と、前記信号処理部で処理され、前記音響センサにより検出した摺動音のスペクトル強度から前記摺動音を発する摺動部の漏洩量、面粗さ、または摩擦係数の状態を求める分析部と、前記分析部で求めた摺動部の漏洩量、面粗さ、または摩擦係数から弁の流体を閉止する機能および動的機能に関する正常か否かを含む劣化の予兆を判定して弁の分解を含むメンテナンス時期を予測する判定部と、を備え、前記分析部は、摺動部のそれぞれについて、実測した摺動音のスペクトル強度と摺動部の作動回数の相関関係、実測した漏洩量と面粗さの相関関係、実測した摩擦係数と作動回数の相関関係、及び実測した面粗さと作動回数の相関関係を予め記憶しておき、摺動音のスペクトル強度から前記摺動部の漏洩量、面粗さ、または摩擦係数の状態を求めるようにした。 In order to solve the above problems, the abnormality sign diagnosis device of the present invention includes a signal processing section that processes a signal of at least one acoustic sensor that detects the sliding sound of the contact surface of the valve body and the valve seat when the valve seat is closed ; an analysis unit that determines the state of leakage, surface roughness, or friction coefficient of the sliding part that generates the sliding sound from the spectral intensity of the sliding sound that is processed by the signal processing unit and detected by the acoustic sensor; Maintenance, including valve disassembly, by determining signs of deterioration, including whether or not the valve's fluid-closing function and dynamic function are normal, based on the amount of leakage, surface roughness, or friction coefficient of the sliding part determined by the section. a determination unit that predicts the timing, and the analysis unit determines, for each of the sliding parts, the correlation between the spectral intensity of the actually measured sliding sound and the number of times the sliding part operates, and the amount of leakage and surface roughness that were actually measured. The correlation between the measured friction coefficient and the number of operations, and the correlation between the actually measured surface roughness and the number of operations are memorized in advance, and the leakage amount and surface roughness of the sliding part are determined from the spectral intensity of the sliding sound. The state of friction coefficient or friction coefficient can now be determined .

また、本発明の弁の摺動部の状態を診断する異常予兆診断装置の診断方法は、弁体と弁座の閉止時の接触面の摺動音を検出する少なくともひとつの音響センサの信号を処理するステップと、弁体と弁座の摺動部のそれぞれについて、実測した摺動音のスペクトル強度と摺動部の作動回数の相関関係、実測した漏洩量と面粗さの相関関係、実測した摩擦係数と作動回数の相関関係、及び実測した面粗さと作動回数の相関関係を予め記憶しておき、処理した摺動音のスペクトル強度から前記摺動音を発する摺動部の漏洩量、面粗さ、または摩擦係数の状態を求めるステップと、求めた摺動部の漏洩量、面粗さ、または摩擦係数から弁の流体を閉止する機能および動的機能に関する正常か否かを含む劣化の予兆を判定して弁の分解を含むメンテナンス時期を予測するステップと、を含むようにした。 Further, the diagnosis method of the abnormality sign diagnosis device for diagnosing the state of the sliding part of the valve according to the present invention includes a signal from at least one acoustic sensor that detects the sliding sound of the contact surface between the valve body and the valve seat when the valve body and the valve seat are closed. For each processing step and the sliding parts of the valve body and valve seat, the correlation between the spectral intensity of the measured sliding sound and the number of operations of the sliding part, the correlation between the measured leakage amount and the surface roughness, and the actual measurement The correlation between the measured friction coefficient and the number of operations is stored in advance, and the correlation between the measured surface roughness and the number of operations is stored in advance, and from the spectral intensity of the processed sliding sound, the leakage amount of the sliding part that generates the sliding sound, The step of determining the state of the surface roughness or friction coefficient, and the deterioration including whether the valve's fluid closing function and dynamic function are normal or not from the determined leakage amount, surface roughness, or friction coefficient of the sliding part. The present invention includes a step of predicting the timing of maintenance including disassembly of the valve by determining the sign of the problem.

本発明によれば、弁を分解することなく、高い精度で弁の動的機能および流体を閉止する機能の劣化予兆診断することができるので、弁および弁が組み込まれたプラントや機器の運用・保全の精度を向上できる。 According to the present invention, it is possible to diagnose signs of deterioration of the valve's dynamic function and fluid-closing function with high accuracy without disassembling the valve. The accuracy of maintenance can be improved.

電動仕切弁の断面と音響センサの設置位置を示す図である。FIG. 3 is a diagram showing a cross section of an electric gate valve and an installation position of an acoustic sensor. 実施形態の異常予兆診断装置の構成を示す図である。FIG. 1 is a diagram showing the configuration of an abnormality sign diagnosis device according to an embodiment. 音響センサの検出信号の一例を示す図である。It is a figure which shows an example of the detection signal of an acoustic sensor. 波形抽出・分割部の処理フローを示す図である。FIG. 3 is a diagram showing a processing flow of a waveform extraction/division section. 摺動音のスペクトル強度と摺動部の作動回数の相関関係を示す図である。FIG. 3 is a diagram showing the correlation between the spectral intensity of sliding sound and the number of times the sliding portion is operated. 面粗さと作動回数の相関関係を示す図である。It is a figure showing the correlation between surface roughness and number of operations. 摩擦係数と作動回数の相関関係を示す図である。It is a figure showing the correlation between a friction coefficient and the number of operations. 漏洩量と面粗さの相関関係を示す図である。FIG. 3 is a diagram showing the correlation between leakage amount and surface roughness. 保温材を装着したまま診断する音響センサの取付方法を示す図である。It is a figure which shows the attachment method of the acoustic sensor which diagnoses with the heat insulating material attached.

以下、本発明の実施形態について、図面を参照しながら詳細に説明する。
実施形態の異常予兆診断装置は、電動仕切弁のウォームギア、弁棒ネジ部、弁棒とグランドパッキンの接触面、弁体と弁座の接触面等の摺動部のそれぞれについて、弁の開閉作動により発生するアコースティックエミッション(弾性波)を摺動音として音響センサにより測定し、測定した摺動音に基づいて、摺動部の面粗さ、摩擦係数、漏洩量を取得し、異常予兆、メンテナンス時期、および欠損を含む摺動部の状態を診断する。流体の流動音は、測定する摺動音のノイズとなるため、電動仕切弁が設置された設備の稼働を止めた状態で、実施形態の異常予兆診断装置は、診断を行うようにする。
Embodiments of the present invention will be described in detail below with reference to the drawings.
The abnormality sign diagnosis device of the embodiment performs valve opening/closing operations on each of the sliding parts of the electric gate valve, such as the worm gear, the threaded part of the valve stem, the contact surface between the valve stem and the gland packing, and the contact surface between the valve body and the valve seat. Acoustic emissions (elastic waves) generated by the sliding sound are measured by an acoustic sensor as sliding sound.Based on the measured sliding sound, the surface roughness, friction coefficient, and leakage amount of the sliding part are obtained, and abnormality signs and maintenance can be detected. Diagnose the timing and condition of the sliding parts, including defects. Since the fluid flow sound becomes the noise of the sliding sound to be measured, the abnormality sign diagnostic device of the embodiment performs the diagnosis while the equipment in which the electric gate valve is installed is stopped.

実施形態の異常予兆診断装置の説明にあたり、まず、図1により診断対象の電動仕切弁への音響センサの設置について説明する。
図1は、電動仕切弁1(以下、弁1と記す)の断面と音響センサ2の設置位置を示す図である。
In explaining the abnormality sign diagnosis device according to the embodiment, first, the installation of an acoustic sensor on an electric gate valve to be diagnosed will be explained with reference to FIG.
FIG. 1 is a diagram showing a cross section of an electric gate valve 1 (hereinafter referred to as valve 1) and the installation position of an acoustic sensor 2.

弁1のウォームギア24、弁棒ネジ部25、弁棒4とグランドパッキン28の接触面、および弁体29と弁座30の接触面では、弁1の開閉動作時に、摺動が発生する。このため、これらの摺動部近傍の、摺動音の直接波の伝播経路となる弁1の外表面の位置に、直接または聴針棒31を介して、音響センサ2をそれぞれ設置する。 Sliding occurs on the worm gear 24 of the valve 1, the valve stem threaded portion 25, the contact surface between the valve stem 4 and the gland packing 28, and the contact surface between the valve body 29 and the valve seat 30 when the valve 1 is opened and closed. For this reason, the acoustic sensors 2 are respectively installed directly or via the listening needle bar 31 at positions on the outer surface of the valve 1 that are the propagation path of the direct wave of the sliding sound near these sliding parts.

また、弁1の開閉動作の際には、弁1の駆動部5であるモータ22または手動ハンドル23に音響センサ2を設置して、駆動部5の駆動状態の判定を行う。また、他の音響センサ2の検出時の雑音低減に利用する。 Further, when opening and closing the valve 1, the acoustic sensor 2 is installed on the motor 22 or the manual handle 23, which is the drive section 5 of the valve 1, to determine the drive state of the drive section 5. It is also used to reduce noise during detection by other acoustic sensors 2.

音響センサ2を摺動部近傍に直接設置する際には、音響センサ2と検出面の間に、音響伝達媒質としてカプラント21を介在させる。
音響センサ2を、聴針棒31を介して設置する場合には、音響センサ2と聴針棒31の間にカプラント21を介在させる。
カプラント21の材質は、グリス、ワックス、または接着剤等である。
When the acoustic sensor 2 is installed directly near the sliding part, the couplant 21 is interposed as an acoustic transmission medium between the acoustic sensor 2 and the detection surface.
When installing the acoustic sensor 2 via the listening needle bar 31, the couplant 21 is interposed between the acoustic sensor 2 and the listening needle bar 31.
The material of the couplant 21 is grease, wax, adhesive, or the like.

音響センサ2、または、音響センサ2および聴針棒31の固定は、手持ちで押し当てる、または固定治具を用いて行う。この固定治具は、検出表面に対して磁石、接着剤、溶接、はんだによって取り付けられていても、地面に設置したアーム、三脚により固定されていてもよい。空気相を介することにより音の伝播が小さくなるため、同一部品に音響センサ2を取り付けることが好ましい。 The acoustic sensor 2 or the acoustic sensor 2 and listening needle bar 31 are fixed by hand-held pressing or by using a fixing jig. This fixture may be attached to the detection surface by a magnet, adhesive, welding, or solder, or may be fixed by an arm or tripod set on the ground. Since the propagation of sound is reduced through the air phase, it is preferable to attach the acoustic sensor 2 to the same component.

音響センサ2には、アコースティックエミッションセンサまたは圧電センサ、超音波センサを適用することができる。 As the acoustic sensor 2, an acoustic emission sensor, a piezoelectric sensor, or an ultrasonic sensor can be applied.

つぎに、実施形態の異常予兆診断装置20の構成を図2により説明する。
図2の異常予兆診断装置20は、図1において、弁1の駆動部5に設けた音響センサ2aによりウォームギア24の摺動音を検出し、音響センサ2bにより弁棒4とグランドパッキン28の接触面の摺動音を検出し、音響センサ2cにより弁体29と弁座30の接触面の摺動音を検出して、異常予兆診断を行う。なお、異常予兆診断装置20は、図2の音響センサ2a、2b、2cに限定されず、他の場所に設置した音響センサ2により検出した摺動音により異常予兆診断を行えることは言うまでもない。
Next, the configuration of the abnormality sign diagnosis device 20 according to the embodiment will be explained with reference to FIG. 2.
The abnormality sign diagnosis device 20 in FIG. 2 detects the sliding sound of the worm gear 24 with an acoustic sensor 2a provided in the drive unit 5 of the valve 1 in FIG. The sliding sound of the surface is detected, and the sliding sound of the contact surface between the valve body 29 and the valve seat 30 is detected by the acoustic sensor 2c, and an abnormality sign diagnosis is performed. It goes without saying that the abnormality sign diagnosis device 20 is not limited to the acoustic sensors 2a, 2b, and 2c shown in FIG. 2, and can perform abnormality sign diagnosis using sliding sounds detected by the acoustic sensors 2 installed at other locations.

異常予兆診断装置20は、少なくともひとつの音響センサ2で検出した摺動音の信号を処理する信号処理部9と、信号処理部9で取得した摺動部の摺動音に基づいて、摺動部の漏洩量値・面粗さ値・摩擦係数値等を求める分析部11と、分析部11に求めた分析結果に基づいて、弁1の漏洩発生までの作動回数・仕切能力の推定、および、異常判定を行う判定部16と、から構成される。 The abnormality sign diagnosis device 20 includes a signal processing unit 9 that processes a signal of sliding sound detected by at least one acoustic sensor 2, and a sliding sound detection unit 9 based on the sliding sound of the sliding part acquired by the signal processing unit 9. Based on the analysis results obtained from the analysis section 11, the analysis section 11 calculates the leakage amount value, surface roughness value, friction coefficient value, etc. , and a determination unit 16 that performs abnormality determination.

信号処理部9は、異常予兆診断装置20に接続する音響センサ2のそれぞれの検出信号を処理する処理部であり、検出信号を所定のレベルに増幅する増幅部6と、10~100kHz以下の周波数領域の弾性波をカットするハイパスフィルタ7と、音響センサ2の検出信号をデジタル変換するA/D変換器8と、から構成される。
また、信号処理部9は、さらにローパスフィルタや包絡線検波回路を備えて弾性波の信号弁別を高めるようにしてもよい。
The signal processing unit 9 is a processing unit that processes each detection signal of the acoustic sensor 2 connected to the abnormality sign diagnosis device 20, and includes an amplification unit 6 that amplifies the detection signal to a predetermined level and a frequency of 10 to 100 kHz or less. It is comprised of a high-pass filter 7 that cuts out elastic waves in the region, and an A/D converter 8 that converts the detection signal of the acoustic sensor 2 into digital data.
Further, the signal processing section 9 may further include a low-pass filter or an envelope detection circuit to enhance signal discrimination of elastic waves.

分析部11は、信号処理部9で処理した少なくともひとつの音響センサ2で検出した摺動音から所定の摺動部の摺動音の波形を抽出あるいは分離する摺動音の波形抽出・分割部10と、摺動音の波形を周波数領域で解析するスペクトル分析部15と、スペクトル分析部15で求めた摺動音のスペクトル強度の時間変化から、漏洩量値、面粗さ値、摩擦係数値のそれぞれを求める漏洩量値取得部12と面粗さ値取得部13と摩擦係数値取得部14とを有する。
摺動音の波形抽出・分割部10と漏洩量値取得部12と面粗さ値取得部13と摩擦係数値取得部14の詳細については後述する。
The analysis unit 11 is a sliding sound waveform extraction/splitting unit that extracts or separates the waveform of the sliding sound of a predetermined sliding part from the sliding sound detected by at least one acoustic sensor 2 processed by the signal processing unit 9. 10, a spectrum analysis section 15 that analyzes the waveform of the sliding sound in the frequency domain, and a leakage amount value, surface roughness value, and friction coefficient value from the time change of the spectral intensity of the sliding sound obtained by the spectrum analysis section 15. It has a leak amount value acquisition section 12, a surface roughness value acquisition section 13, and a friction coefficient value acquisition section 14, which obtain each of the following.
The details of the sliding sound waveform extraction and division section 10, the leakage value acquisition section 12, the surface roughness value acquisition section 13, and the friction coefficient value acquisition section 14 will be described later.

判定部16は、漏洩量値取得部12と面粗さ値取得部13と摩擦係数値取得部14で取得した漏洩量、面粗さ、摩擦係数およびこれらの変化率に基づいて、摩擦損失の増大を含む異常の判定を行う異常判定部19と、漏洩発生までの作動回数を推定する漏洩発生までの作動回数推定部17と、駆動部の操作力情報とを組み合わせることで仕切能力を推定する仕切能力の推定部18と、を有する。 The determination unit 16 determines the friction loss based on the leakage amount, surface roughness, friction coefficient, and rate of change of these acquired by the leakage value acquisition unit 12, surface roughness value acquisition unit 13, and friction coefficient value acquisition unit 14. The partitioning capacity is estimated by combining the abnormality determination unit 19 that determines abnormalities including increases, the number of operations until leakage estimating unit 17 that estimates the number of operations until leakage occurs, and the operating force information of the drive unit. It has a partitioning capacity estimating unit 18.

より具体的には、異常予兆診断装置20は、アンプやA/D変換器等のアナログ信号回路、内蔵するプログラムにより音響分析・判定を行うマイクロコンピュータ回路、分析結果や判定結果を表示する表示デバイス等から構成する。 More specifically, the abnormality sign diagnosis device 20 includes an analog signal circuit such as an amplifier and an A/D converter, a microcomputer circuit that performs acoustic analysis and judgment using a built-in program, and a display device that displays analysis results and judgment results. Consists of etc.

異常予兆診断装置20は、弁1の点検時に、作動流体の流れを止めた状態で、弁1の駆動部5を駆動させ、弁棒4を上下または回転させることにより、弁1のウォームギア24、弁棒4とグランドパッキン28の接触面、および弁体29と弁座30の接触面を摺動する。異常予兆診断装置20は、音響センサ2a、2b、2cにより摺動音を検出して、異常の判定、仕切能力の推定、漏洩発生までの作動回数の推定を行う。 When inspecting the valve 1, the abnormality sign diagnosis device 20 drives the drive unit 5 of the valve 1 and moves the valve rod 4 up and down or rotates the worm gear 24 of the valve 1, with the flow of working fluid stopped. It slides on the contact surface between the valve stem 4 and the gland packing 28, and the contact surface between the valve body 29 and the valve seat 30. The abnormality sign diagnosis device 20 detects sliding sounds using acoustic sensors 2a, 2b, and 2c, and determines abnormality, estimates partitioning capacity, and estimates the number of operations until leakage occurs.

つぎに、摺動音の波形抽出・分割部10の処理の詳細を図3により説明する。
図3は、音響センサ2a、2b、2cのそれぞれの検出信号の時間変化の一例を示す図である。
音響センサ2aはウォームギア24の摺動音を検出し、音響センサ2bは弁棒4とグランドパッキン28の接触面の摺動音を検出し、音響センサ2cは弁体29と弁座30の接触面の摺動音をそれぞれ同期して検出する。
Next, details of the processing of the sliding sound waveform extraction/dividing section 10 will be explained with reference to FIG.
FIG. 3 is a diagram showing an example of temporal changes in detection signals of the acoustic sensors 2a, 2b, and 2c.
The acoustic sensor 2a detects the sliding sound of the worm gear 24, the acoustic sensor 2b detects the sliding sound of the contact surface between the valve stem 4 and the gland packing 28, and the acoustic sensor 2c detects the sliding sound of the contact surface between the valve body 29 and the valve seat 30. The sliding sounds of each are detected in synchronization.

ウォームギア24の摺動音、弁棒4とグランドパッキン28の接触面の摺動音、弁体29と弁座30の接触面の摺動音のそれぞれの信号波形は、固有の特徴を持つ。例えば、音響センサ2aが検出するウォームギア24では、摺動音がハンマリングにより発生し、鋭く立ち上がりその後減衰する突発型の信号波形となる。音響センサ2cが検出する弁体29と弁座30の接触面の閉弁時の摺動音もハンマリングによる突発型の信号波形となる。また、音響センサ2bが検出する弁棒4とグランドパッキン28の摺動音は、駆動時に常時発生する連続型の信号波形となる。 The signal waveforms of the sliding sound of the worm gear 24, the sliding sound of the contact surface between the valve stem 4 and the gland packing 28, and the sliding sound of the contact surface between the valve body 29 and the valve seat 30 have unique characteristics. For example, in the worm gear 24 detected by the acoustic sensor 2a, sliding noise is generated by hammering, and has a sudden signal waveform that rises sharply and then decays. The sliding sound of the contact surface between the valve body 29 and the valve seat 30 when the valve is closed, which is detected by the acoustic sensor 2c, also has a sudden signal waveform due to hammering. Furthermore, the sliding sound between the valve stem 4 and the gland packing 28 detected by the acoustic sensor 2b has a continuous signal waveform that is constantly generated during driving.

また、駆動するモータ音またはエアの音の信号、一定の周期で発生するギアおよびネジ部に発生する摺動音の信号、閉止直前の弁体のぐらつきによる衝撃パルス、閉止時の弁体と弁座のシート部に発生する摺動音の信号、その他噛みこみなどによる異常なパルスは、それぞれ特有の発生音のパターンである。したがって、摺動音のパターンを分類することによって摺動部を判別することができる。 In addition, signals of driving motor sound or air sound, signals of sliding noise generated in gears and threads that occur at regular intervals, shock pulses due to wobbling of the valve body just before closing, and the valve body and valve at the time of closing. The sliding sound signals generated in the seat part of the seat and other abnormal pulses caused by jamming, etc., each have their own unique sound patterns. Therefore, the sliding portion can be identified by classifying the sliding sound patterns.

ところで、摺動音は、設置された音響センサ2だけでなく、他の音響センサ2にも伝播する。このため、音響センサ2は目的の摺動音だけでなく、他の摺動音も検出する。例えば、音響センサ2cは、弁体29と弁座30の接触面の摺動音だけでなく、弁棒4とグランドパッキン28の接触面の摺動音と、ウォームギア24の摺動音を検出する。つまり、音響センサ2cの検出信号には、弁棒4とグランドパッキン28の接触面の摺動音と、ウォームギア24の摺動音とが重畳している。 By the way, the sliding sound propagates not only to the installed acoustic sensor 2 but also to other acoustic sensors 2. Therefore, the acoustic sensor 2 detects not only the target sliding sound but also other sliding sounds. For example, the acoustic sensor 2c detects not only the sliding sound of the contact surface between the valve body 29 and the valve seat 30, but also the sliding sound of the contact surface of the valve stem 4 and the gland packing 28, and the sliding sound of the worm gear 24. . In other words, the sliding sound of the contact surface between the valve stem 4 and the gland packing 28 and the sliding sound of the worm gear 24 are superimposed on the detection signal of the acoustic sensor 2c.

音響センサ2cが検出する弁体29と弁座30の接触面の摺動音は突発型の信号波形であり、信号の振幅期間が短い。これに対して、音響センサ2cが検出する弁棒4とグランドパッキン28の接触面の摺動音と、ウォームギア24の摺動音は、それぞれ、所定の遅延時間後の信号であり、また、伝播により、信号が減衰している。なお、図3は音響センサ2cの伝播信号を説明する図であり、全ての伝播信号を説明するものではない。 The sliding sound of the contact surface between the valve body 29 and the valve seat 30 detected by the acoustic sensor 2c has a sudden signal waveform, and the amplitude period of the signal is short. On the other hand, the sliding sound of the contact surface between the valve stem 4 and the gland packing 28 and the sliding sound of the worm gear 24 detected by the acoustic sensor 2c are signals after a predetermined delay time, and the propagation As a result, the signal is attenuated. Note that FIG. 3 is a diagram for explaining propagation signals of the acoustic sensor 2c, and does not explain all propagation signals.

そこで、音響センサ2cが検出した信号においては、比較的振幅の大きい信号波形の所定期間を、弁棒4とグランドパッキン28の接触面の摺動音に特定し、他の期間の信号は、雑音として除去する。 Therefore, in the signal detected by the acoustic sensor 2c, a predetermined period of the signal waveform with a relatively large amplitude is identified as the sliding sound of the contact surface between the valve stem 4 and the gland packing 28, and signals in other periods are noise. Remove as.

より詳しくは、上記の弁体29と弁座30の閉止時の接触面の摺動音は、弁の設置状態によって変わる。
弁棒が直立している正立の状態では、弁体の自重による調心が行われるため、弁体の着座時に発生する摺動は調心による挙動のため複数回発生した後にシート面全体で摺動しながら着座し、流路を閉止する。このため、最後の着座による摺動音に着目することが好ましい。
More specifically, the sliding sound of the contact surface between the valve body 29 and the valve seat 30 when they are closed changes depending on the installation state of the valve.
When the valve stem is in an upright position, the valve body is aligned by its own weight, so the sliding that occurs when the valve body is seated occurs multiple times due to alignment, and then the entire seat surface It slides into place and closes the flow path. For this reason, it is preferable to pay attention to the sliding noise caused by the final seating.

また、正立の状態でない弁では、弁体と弁座の調心が行われず偏った着座面による摺動音が発生し、取得される摺動音の前半は偏った着座面の摺動であり、後半はシート部全体の摺動である。したがって、後半の摺動音に着目し、漏洩のポテンシャルを診断することが好ましい。 In addition, in a valve that is not in an upright position, the valve body and valve seat are not aligned and a sliding sound is generated due to the uneven seating surface, and the first half of the acquired sliding sound is due to the sliding of the uneven seating surface. Yes, the latter half involves sliding of the entire seat part. Therefore, it is preferable to focus on the latter half of the sliding sound and diagnose the potential for leakage.

図4は、上記の処理を行う波形抽出・分割部10の処理フローを示す図である。
ステップS41で、波形抽出・分割部10は、A/D変換器8によりデジタル変換した音響センサ2の信号毎に、ステップS42からステップS46を繰り返す。
FIG. 4 is a diagram showing a processing flow of the waveform extracting/dividing section 10 that performs the above processing.
In step S41, the waveform extracting/dividing unit 10 repeats steps S42 to S46 for each signal of the acoustic sensor 2 digitally converted by the A/D converter 8.

ステップS42で、波形抽出・分割部10は、信号波形は突発型の波形パターンか否かを判定し、突発型の場合にはステップS43に進み(S42のYes)、連続型等の突発型と異なる波形パターンの場合にはステップS44に進む(S42のNo)。 In step S42, the waveform extracting/dividing unit 10 determines whether the signal waveform is a sudden type waveform pattern, and if it is a sudden type, the process proceeds to step S43 (Yes in S42), and the signal waveform is a sudden type such as a continuous type. If the waveform patterns are different, the process advances to step S44 (No in S42).

ステップS43で、波形抽出・分割部10は、音響センサ2の信号において、振幅が大きい所定期間の信号波形を抽出し、摺動音の信号波形に特定する(S45)。そして、ステップS46に進む。 In step S43, the waveform extracting/dividing unit 10 extracts a signal waveform of a predetermined period with large amplitude from the signal of the acoustic sensor 2, and specifies it as a signal waveform of sliding sound (S45). Then, the process advances to step S46.

ステップS44で、波形抽出・分割部10は、音響センサ2の信号において、全期間の信号波形を抽出し、摺動音の信号波形に特定する(S45)。そして、ステップS46に進む。 In step S44, the waveform extracting/dividing unit 10 extracts the signal waveform of the entire period from the signal of the acoustic sensor 2, and specifies it as the signal waveform of sliding sound (S45). Then, the process advances to step S46.

ステップS46で、波形抽出・分割部10は、ステップS42からステップS45を音響センサ2の数分繰り返す。 In step S46, the waveform extracting/dividing unit 10 repeats steps S42 to S45 for the number of acoustic sensors 2.

以後、実施形態の異常予兆診断装置20の分析部11における漏洩量値取得部12と面粗さ値取得部13と摩擦係数値取得部14の処理内容を説明する。 Hereinafter, the processing contents of the leak amount value acquisition section 12, the surface roughness value acquisition section 13, and the friction coefficient value acquisition section 14 in the analysis section 11 of the abnormality sign diagnosis device 20 of the embodiment will be explained.

図5は、ウォームギア24の摺動音、弁棒4とグランドパッキン28の接触面の摺動音、弁体29と弁座30の接触面の摺動音のそれぞれにおける、摺動音のスペクトル強度と摺動部の作動回数の相関関係を示す図である。 FIG. 5 shows the spectral intensities of the sliding sounds of the worm gear 24, the sliding sound of the contact surface between the valve stem 4 and the gland packing 28, and the sliding sound of the contact surface of the valve body 29 and the valve seat 30. FIG. 4 is a diagram showing the correlation between the number of operations of the sliding part and the number of operations of the sliding part.

異常予兆診断装置20の分析部11は、摺動部のそれぞれについて、実測した摺動音のスペクトル強度と摺動部の作動回数の相関関係を予め記憶しておく。
そして、分析部11は、摺動音を周波数分析するスペクトル分析部15により算出した、所定の音響センサ2で検出した摺動音のスペクトル強度に基づいて、図5に示した摺動音のスペクトル強度と摺動部の作動回数の相関関係から、摺動音を検出した際の摺動部の使用開始時からの作動による劣化と流体力や経年等による劣化が加味された作動回数を求める。ここで、検出された摺動音のスペクトル強度から求められた作動回数は、実際の作動回数とは一致せず、求められた作動回数に相当する劣化を検出していることに留意する。
The analysis unit 11 of the abnormality sign diagnosis device 20 stores in advance the correlation between the actually measured spectrum intensity of the sliding sound and the number of operations of the sliding portion for each sliding portion.
Then, the analysis unit 11 calculates the spectrum of the sliding sound shown in FIG. From the correlation between the strength and the number of times the sliding part operates, the number of times the sliding part is operated is determined, taking into account the deterioration due to the operation of the sliding part from the beginning of use when the sliding sound is detected, and the deterioration due to fluid force, age, etc. Here, it should be noted that the number of actuations determined from the spectral intensity of the detected sliding sound does not match the actual number of actuations, and that deterioration corresponding to the determined number of actuations is detected.

図6Aは、摺動部のそれぞれにおける、面粗さと作動回数の相関関係を示す図である。
分析部11は、実測した面粗さと作動回数の相関関係を予め記憶しておく。
FIG. 6A is a diagram showing the correlation between the surface roughness and the number of operations in each of the sliding parts.
The analysis unit 11 stores in advance the correlation between the actually measured surface roughness and the number of operations.

面粗さ値取得部13は、音響センサ2で検出した摺動音に基づいて、摺動音を発する摺動部の面粗さ値を取得する。
詳しくは、面粗さ値取得部13は、まず、先に説明したように、音響センサ2で検出した摺動音のスペクトル強度に基づいて、摺動部の使用開始時からの作動回数を求める(図5)。そして、図6Aに示した面粗さと作動回数の相関関係から、作動回数に相当する摺動部の面粗さ値を取得する。
The surface roughness value acquisition unit 13 acquires the surface roughness value of the sliding portion that generates the sliding sound based on the sliding sound detected by the acoustic sensor 2.
Specifically, as described above, the surface roughness value acquisition unit 13 first calculates the number of times the sliding part has operated since the start of use, based on the spectral intensity of the sliding sound detected by the acoustic sensor 2. (Figure 5). Then, from the correlation between the surface roughness and the number of operations shown in FIG. 6A, the surface roughness value of the sliding portion corresponding to the number of operations is obtained.

図6Bは、摺動部のそれぞれにおける、摩擦係数と作動回数の相関関係を示す図である。
分析部11は、実測した摩擦係数と作動回数の相関関係を予め記憶しておく。
FIG. 6B is a diagram showing the correlation between the friction coefficient and the number of operations in each of the sliding parts.
The analysis unit 11 stores in advance the correlation between the actually measured coefficient of friction and the number of operations.

摩擦係数値取得部14は、音響センサ2で検出した摺動音に基づいて、摺動音を発する摺動部の摩擦係数値を取得する。
詳しくは、摩擦係数値取得部14は、まず、先に説明したように、音響センサ2で検出した摺動音のスペクトル強度に基づいて、摺動部の使用開始時からの作動回数を求める(図5)。そして、図6Bに示した摩擦係数と作動回数の相関関係から、作動回数に相当する摺動部の摩擦係数値を取得する。
Based on the sliding sound detected by the acoustic sensor 2, the friction coefficient value acquisition unit 14 acquires the friction coefficient value of the sliding part that emits the sliding sound.
Specifically, as described above, the friction coefficient value acquisition unit 14 first calculates the number of times the sliding part has operated since the start of use, based on the spectral intensity of the sliding sound detected by the acoustic sensor 2 ( Figure 5). Then, from the correlation between the friction coefficient and the number of operations shown in FIG. 6B, the friction coefficient value of the sliding portion corresponding to the number of operations is obtained.

図6Cは、流体を封止する摺動部における、漏洩量と面粗さの相関関係を示す図である。
分析部11は、実測した漏洩量と面粗さの相関関係を予め記憶しておく。
FIG. 6C is a diagram showing the correlation between leakage amount and surface roughness in a sliding portion that seals fluid.
The analysis unit 11 stores in advance the correlation between the measured leakage amount and the surface roughness.

漏洩量値取得部12は、音響センサ2で検出した摺動音に基づいて、摺動音を発する摺動部の漏洩量を取得する。
詳しくは、漏洩量値取得部12は、まず、先に説明したように、音響センサ2で検出した摺動音のスペクトル強度に基づいて、摺動部の使用開始時からの作動回数を求める(図5)。そして、図6Aに示した面粗さと作動回数の相関関係から、作動回数に相当する摺動部の面粗さ値を取得する。その後、図6Cに示した漏洩量と面粗さの相関関係から、取得した摺動部の面粗さ値に対応する漏洩量値を取得する。
The leakage amount value acquisition unit 12 acquires the leakage amount of the sliding portion that emits the sliding sound based on the sliding sound detected by the acoustic sensor 2.
Specifically, as described above, the leakage value acquisition unit 12 first calculates the number of times the sliding part has operated since the start of use, based on the spectral intensity of the sliding sound detected by the acoustic sensor 2. Figure 5). Then, from the correlation between the surface roughness and the number of operations shown in FIG. 6A, the surface roughness value of the sliding portion corresponding to the number of operations is obtained. Thereafter, from the correlation between the leakage amount and the surface roughness shown in FIG. 6C, a leakage amount value corresponding to the obtained surface roughness value of the sliding portion is obtained.

つぎに、判定部16における漏洩発生までの作動回数推定部17と仕切能力の推定部18と異常判定部19とについて詳細に説明する。実施形態の異常予兆診断装置20は、この構成により、弁1の分解を含むメンテナンス時期を予測するか、または、弁1の流体を閉止する機能および動的機能に関する正常か否かを含む劣化の予兆の判定を行う。 Next, the number of operations estimating section 17 until leakage occurs in the determining section 16, the partitioning capacity estimating section 18, and the abnormality determining section 19 will be explained in detail. With this configuration, the abnormality sign diagnosis device 20 of the embodiment predicts the maintenance timing including disassembly of the valve 1, or predicts deterioration including whether or not the fluid closing function and dynamic function of the valve 1 are normal. Determine the signs.

漏洩発生までの作動回数推定部17は、漏洩量値取得部12で取得した漏洩量と、漏洩量と面粗さの相関関係と、面粗さと作動回数の相関関係とから、漏洩発生までの作動回数を推定する。 The number of operations until leakage estimating section 17 estimates the number of operations until leakage occurs from the leakage amount acquired by the leakage amount value acquisition section 12, the correlation between the leakage amount and surface roughness, and the correlation between surface roughness and the number of operations. Estimate the number of activations.

詳しくは、漏洩発生までの作動回数推定部17は、漏洩量値取得部12で取得した漏洩量が「0」の場合、つまり、漏洩していない場合に、漏洩量と面粗さの相関関係(図6C)から漏洩量が「0」より大きくなる摺動部の面粗さを求める。そして、面粗さと作動回数の相関関係(図6A)から漏洩量が「0」より大きくなる摺動部の面粗さに相当する作動回数を求める。漏洩発生までの作動回数推定部17は、上記で求めた作動回数から摺動音を検出した際の作動回数を減じて、漏洩発生までの作動回数とする。 Specifically, when the leakage amount acquired by the leakage amount value acquisition section 12 is "0", that is, when there is no leakage, the operation number estimation unit 17 until the leakage occurs calculates the correlation between the leakage amount and the surface roughness. (FIG. 6C), find the surface roughness of the sliding part where the amount of leakage is greater than "0". Then, from the correlation between the surface roughness and the number of operations (FIG. 6A), the number of operations corresponding to the surface roughness of the sliding portion at which the amount of leakage is greater than "0" is determined. The number of operations until a leak occurs estimating section 17 subtracts the number of operations when the sliding sound is detected from the number of operations determined above to obtain the number of operations until a leak occurs.

漏洩発生までの作動回数推定部17は、算出した漏洩発生までの作動回数が所定の作動回数になるタイミングを弁1の分解を含むメンテナンス時期と予測する。 The number of operations until a leak occurs estimating unit 17 predicts the timing when the calculated number of operations until a leak occurs reaches a predetermined number of operations as a maintenance period including disassembly of the valve 1.

また、漏洩発生までの作動回数推定部17は、漏洩量値取得部12で取得した漏洩量が「0」の場合には、弁の流体を閉止する機能が「正常」と判定し、漏洩量が「0」より大きい場合には、弁の流体を閉止する機能が「正常でない(異常)」と判定する。
また、漏洩発生までの作動回数推定部17は、求めた漏洩発生までの作動回数が所定の作動回数より小さい場合に、弁の流体を閉止する機能に関する劣化の予兆があると判定する。
In addition, when the leakage amount acquired by the leakage amount value acquisition section 12 is "0", the operation number estimating section 17 until the occurrence of leakage determines that the function of closing the fluid of the valve is "normal", and the leakage amount is determined to be "normal". is larger than "0", it is determined that the function of the valve to close the fluid is "not normal (abnormal)".
In addition, when the calculated number of operations until leakage occurs is smaller than a predetermined number of operations, the unit 17 determines that there is a sign of deterioration regarding the valve's fluid closing function.

仕切能力の推定部18は、駆動部の操作力情報を組み合わせることで、仕切弁の弁体の閉止および開放を行う仕切能力を推定する。 The gate capacity estimating unit 18 estimates the gate capacity for closing and opening the valve body of the gate valve by combining the operating force information of the drive unit.

詳しくは、仕切能力の推定部18は、摺動音の検出と同期して弁1の駆動部5の駆動電流を計測し、駆動力の変化率を求める。そして、摩擦係数値取得部14で取得した各摺動部の摩擦係数値の変化率を求める。仕切能力の推定部18は、駆動力の変化率と各摺動部の摩擦係数値の変化率を対比して、駆動力の変化率が大きくなった際に、摩擦係数値の変化率が大きくなった摺動部を、駆動力増加の原因箇所と予測する。
また、仕切能力の推定部18は、駆動力と作動回数の相関関係から駆動部5の最大駆動力に到達する作動回数を求め、弁仕切能力の限界の作動回数を予測する。この際の作動回数は、実測した摺動音のスペクトル強度と摺動部の作動回数の相関関係から求めた作動回数を適用する。
Specifically, the partitioning capacity estimation unit 18 measures the drive current of the drive unit 5 of the valve 1 in synchronization with the detection of the sliding sound, and calculates the rate of change in the drive force. Then, the rate of change in the friction coefficient value of each sliding portion acquired by the friction coefficient value acquisition unit 14 is determined. The partitioning capacity estimation unit 18 compares the rate of change in the driving force with the rate of change in the friction coefficient value of each sliding part, and determines whether the rate of change in the friction coefficient value increases when the rate of change in the driving force increases. It is predicted that the sliding part that has become damaged is the cause of the increase in driving force.
Furthermore, the partitioning capacity estimating unit 18 calculates the number of operations to reach the maximum driving force of the drive unit 5 from the correlation between the driving force and the number of operations, and predicts the number of operations at the limit of the valve partitioning ability. As the number of operations at this time, the number of operations determined from the correlation between the spectral intensity of the actually measured sliding sound and the number of operations of the sliding part is applied.

異常判定部19は、摩擦係数値取得部14で取得した摩擦係数およびこれらの変化率に基づいて、摩擦損失の増大を含む異常の判定を行うか、または、面粗さ値取得部13で取得した面粗さおよびこれらの変化率に基づいて、面粗さ損失の増大を含む異常の判定を行う。 The abnormality determination unit 19 determines an abnormality including an increase in friction loss based on the friction coefficients acquired by the friction coefficient value acquisition unit 14 and their rate of change, or the abnormality determination unit 19 determines an abnormality including an increase in friction loss. Based on the surface roughness and the rate of change thereof, an abnormality including an increase in surface roughness loss is determined.

詳しくは、異常判定部19は、摩擦係数値取得部14で取得した摺動音から求めた各摺動部の摩擦係数値を取得する。また、面粗さ値取得部13で取得した摺動音から求めた各摺動部の面粗さを取得する。
そして、異常判定部19は、取得した各摺動部の摩擦係数の変化量と面粗さの変化量を算出する。
Specifically, the abnormality determination unit 19 acquires the friction coefficient value of each sliding portion obtained from the sliding sound acquired by the friction coefficient value acquisition unit 14. Furthermore, the surface roughness of each sliding portion obtained from the sliding sound obtained by the surface roughness value obtaining section 13 is obtained.
Then, the abnormality determination unit 19 calculates the obtained amount of change in the coefficient of friction and the amount of change in surface roughness of each sliding portion.

異常判定部19は、各摺動部における摩擦係数と作動回数の相関関係から摩擦係数が許容される最大値に達する作動回数を求め、摩擦係数の最大値に達する作動回数の所定値を弁1の分解を含むメンテナンスのタイミングと予測する。そして、各摺動部で最も早いタイミングをメンテナンス時期とする。さらに、各摺動部の摩擦係数の変化量のうち最大の値となる摺動部を異常が予測される摺動部とする。 The abnormality determination unit 19 calculates the number of operations at which the friction coefficient reaches the maximum allowable value from the correlation between the friction coefficient and the number of operations at each sliding part, and determines the predetermined number of operations at which the maximum value of the friction coefficient is reached at the valve 1. Anticipate the timing of maintenance, including disassembly. Then, the earliest timing for each sliding part is set as the maintenance time. Furthermore, the sliding portion having the largest value among the amount of change in the coefficient of friction of each sliding portion is determined to be the sliding portion where an abnormality is predicted.

また、異常判定部19は、各摺動部の面粗さと作動回数の相関関係から面粗さが許容される最大値に達する作動回数を求め、面粗さの最大値に達する作動回数の所定値を弁1の分解を含むメンテナンスのタイミングと予測する。そして、各摺動部で最も早いタイミングをメンテナンス時期とする。さらに、各摺動部の面粗さの変化量のうち最大の値となる摺動部を異常が予測される摺動部とする。 In addition, the abnormality determination unit 19 determines the number of operations at which the surface roughness reaches the maximum allowable value from the correlation between the surface roughness of each sliding part and the number of operations, and determines a predetermined number of operations at which the maximum surface roughness is reached. The value is predicted to be the timing of maintenance including disassembly of valve 1. Then, the earliest timing for each sliding part is set as the maintenance time. Further, the sliding portion having the maximum value among the amount of change in surface roughness of each sliding portion is determined as the sliding portion where an abnormality is predicted.

さらに、異常判定部19は、摩擦係数値取得部14で取得した摩擦係数が正常時の摩擦係数より大きい場合に、摩擦係数の変化量に応じて、弁の流体を閉止する機能および動的機能に関して正常か否かを判定すると共に、異常判定部19は、摩擦係数の変化量が所定値より大きい場合に、摺動部の劣化の予兆があると判定する。 Furthermore, when the friction coefficient acquired by the friction coefficient value acquisition unit 14 is larger than the normal friction coefficient, the abnormality determination unit 19 has a function and a dynamic function to close the fluid of the valve according to the amount of change in the friction coefficient. The abnormality determining unit 19 determines whether the friction coefficient is normal or not, and determines that there is a sign of deterioration of the sliding portion when the amount of change in the friction coefficient is larger than a predetermined value.

また、異常判定部19は、面粗さ値取得部13で取得した面粗さが正常時の面粗さより大きい場合に、面粗さの変化量に応じて、弁の流体を閉止する機能および動的機能に関して正常か否かを判定すると共に、異常判定部19は、面粗さの変化量が所定値より大きい場合に、摺動部の劣化の予兆があると判定する。 The abnormality determination unit 19 also has a function of closing the fluid in the valve according to the amount of change in surface roughness when the surface roughness acquired by the surface roughness value acquisition unit 13 is larger than the normal surface roughness. In addition to determining whether the dynamic function is normal or not, the abnormality determination unit 19 determines that there is a sign of deterioration of the sliding portion when the amount of change in surface roughness is larger than a predetermined value.

異常判定部19は、弁の流体を閉止する機能および動的機能に関して正常か否かを判定する際、または、摺動部の劣化の予兆を判定する際に、少なくとも摩擦係数値取得部14で取得した摩擦係数と面粗さ値取得部13で取得した面粗さの一方により、判定すればよい。 The abnormality determination unit 19 uses at least the friction coefficient value acquisition unit 14 when determining whether or not the fluid closing function and dynamic function of the valve are normal or when determining a sign of deterioration of the sliding part. The determination may be made based on either the acquired friction coefficient or the surface roughness acquired by the surface roughness value acquisition unit 13.

上記の実施形態の異常予兆診断装置20では、複数の摺動部のそれぞれ摺動音を複数の音響センサ2で検出し、音響センサ2が検出した目的の摺動音以外の摺動音を摺動音の波形抽出・分割部10で除去して劣化予兆診断を行うことを説明した。 In the abnormality sign diagnosis device 20 of the embodiment described above, each of the sliding sounds of a plurality of sliding parts is detected by a plurality of acoustic sensors 2, and the sliding sounds other than the target sliding sound detected by the acoustic sensor 2 are detected. It has been explained that the moving sound is removed by the waveform extracting/dividing unit 10 and a deterioration sign diagnosis is performed.

しかし、これに替えて、波形抽出・分割部10で音響センサ2が検出した摺動音のパターンを分析して摺動部毎に分類するようにしてもよい。この際に、摺動音は伝播減衰するため、劣化予兆診断する摺動部の近くに音響センサを配置する。 However, instead of this, the waveform extracting/dividing unit 10 may analyze the pattern of the sliding sound detected by the acoustic sensor 2 and classify it into each sliding part. At this time, since the sliding sound propagates and attenuates, an acoustic sensor is placed near the sliding part where signs of deterioration are to be diagnosed.

具体的には、図1において弁棒4とグランドパッキン28の摺動音を検出する音響センサ2を設け、波形抽出・分割部10により摺動音を抽出すると共に、伝播信号として、弁1の駆動部5であるモータ22、弁1のウォームギア24、弁棒ネジ部25、および弁体29と弁座30の摺動面の摺動音を音響センサ2で検出して波形抽出・分割部10により波形パターンに応じてそれぞれの摺動音を分割する。 Specifically, as shown in FIG. 1, an acoustic sensor 2 is provided to detect the sliding sound of the valve stem 4 and the gland packing 28, and the waveform extraction/splitting unit 10 extracts the sliding sound, and as a propagation signal, the acoustic sensor 2 detects the sliding sound of the valve stem 4 and the gland packing 28. The acoustic sensor 2 detects the sliding sound of the motor 22 which is the driving part 5, the worm gear 24 of the valve 1, the valve stem screw part 25, and the sliding surfaces of the valve body 29 and the valve seat 30, and the waveform extraction/dividing part 10 Each sliding sound is divided according to the waveform pattern.

ところで、モータ22を駆動している場合には、モータにより連続音が発生し、他の摺動音が埋もれてしまう可能性がある。このため、手動ハンドル23により弁1を操作して摺動音を検出するとよい。 By the way, when the motor 22 is being driven, continuous noise may be generated by the motor and other sliding sounds may be buried. For this reason, it is preferable to operate the valve 1 using the manual handle 23 and detect the sliding sound.

また、弁1の操作開始時には、ハンマリングによるパルスが発生するため、弁体29と弁座30との摺動音と混同しないように、開操作よりも閉操作の方が好ましい。
この場合には、初期のハンマリングによる摺動音、駆動時に常時発生するグランドパッキン28の摺動音、一定の周期で発生する手動ハンドル23のギア(不図示)の摺動音、ウォームギア24および弁棒ネジ部25に発生する摺動音、閉止直前の弁体29のぐらつきによる衝撃音、閉止時の弁体29と弁座30のシート部に発生する摺動音、その他噛みこみなどによる異常なパルス音が異なるパターンの摺動音として取得できる。
Further, since a pulse is generated due to hammering when the valve 1 starts operating, a closing operation is preferable to an opening operation so as not to be confused with the sliding noise between the valve body 29 and the valve seat 30.
In this case, the sliding noise caused by the initial hammering, the sliding noise of the gland packing 28 that always occurs during driving, the sliding noise of the gear (not shown) of the manual handle 23 that occurs at a constant cycle, the worm gear 24, and Sliding noise generated in the threaded portion of the valve stem 25, impact noise due to wobbling of the valve body 29 just before closing, sliding noise generated between the valve body 29 and the seat portion of the valve seat 30 during closing, and other abnormalities due to jamming, etc. Pulse sounds can be obtained as different patterns of sliding sounds.

波形抽出・分割部10が、摺動音の信号パターンに応じて摺動音を分類することにより、異常予兆診断装置20は、単一の音響センサ2においても、複数の摺動部の状態を診断することができる。
なお、音響センサ2は、最も診断を優先するべき摺動箇所の近傍、または摺動音の振幅が小さいグランドパッキン28の近傍に設置することが好ましい。
The waveform extracting/dividing unit 10 classifies the sliding sound according to the signal pattern of the sliding sound, so that the abnormality sign diagnosis device 20 can detect the states of multiple sliding parts even in a single acoustic sensor 2. can be diagnosed.
Note that it is preferable that the acoustic sensor 2 be installed near the sliding location where diagnosis should be given the highest priority, or near the gland packing 28 where the amplitude of sliding sound is small.

上記の実施形態では、仕切弁を有する弁1について説明したが、弁の型式はこれに限定されず、玉弁、バタフライ弁、ボール弁においても同様の診断が可能である。
弁では、仕切弁と同様に弁体と弁座の接触面であるシート部において、開閉作動時に摺動が生じる。仕切弁と比較して、作動時間および摺動距離が短いが、衝突音が発生した後に短い摺動音の信号を得ることができる。この摺動音の信号により、シート部の状態の診断が可能となる。
また、バタフライ弁、ボール弁では、弁棒および弁体が回転することで、流路を閉止しているが、上記の仕切弁と同様の摺動が発生するため、摺動音の信号による診断が可能となる。
In the above embodiment, the valve 1 having a gate valve has been described, but the valve type is not limited to this, and the same diagnosis can be performed for a globe valve , a butterfly valve, and a ball valve.
In a globe valve , like a gate valve, sliding occurs in the seat portion, which is the contact surface between the valve body and the valve seat, during opening and closing operations. Compared to a gate valve, the operating time and sliding distance are short, but a short sliding sound signal can be obtained after the collision sound occurs. This sliding sound signal makes it possible to diagnose the condition of the seat portion.
In addition, butterfly valves and ball valves close the flow path by rotating the valve stem and valve body, but since sliding occurs similar to the gate valve described above, diagnostics can be made using the sliding sound signal. becomes possible.

さらに、上記の実施形態では、弁1の駆動方式が電動弁の場合を説明したが、空気作動弁においても同様の診断を行うことができる。空気作動弁においては、電動弁の駆動部5の摺動に代わり、ピストンの上下運動により、摺動が発生する。この摺動音を音響センサ2によって取得することにより、電動弁の場合と同様の診断を行う。 Further, in the above embodiment, the case where the valve 1 is driven by an electric valve is explained, but the same diagnosis can be performed for an air-operated valve as well. In the air-operated valve, the sliding movement is caused by the vertical movement of the piston instead of the sliding movement of the drive unit 5 of the electric valve. By acquiring this sliding sound with the acoustic sensor 2, the same diagnosis as in the case of an electric valve is performed.

つぎに、実施形態の異常予兆診断装置20を原子力発電設備に適用する場合について説明する。
原子力発電設備に設置される弁は、高温な弁、流体が常時弁内部を通過している弁、雰囲気の放射線量が高い場所に設置される弁、運転中の騒音が大きい場所に設置される弁など様々存在する。そのため、原子力発電設備へ適用する場合には定期検査時のような常温であり、系統が停止しており、放射線量が高くなく、静かな状態にて実施することが好ましい。
Next, a case will be described in which the abnormality sign diagnosis device 20 of the embodiment is applied to nuclear power generation equipment.
Valves installed in nuclear power generation equipment are high-temperature valves, valves where fluid is constantly passing through the valve, valves installed in areas with high radiation levels in the atmosphere, and valves installed in areas where there is a lot of noise during operation. There are various types of valves. Therefore, when applying to nuclear power generation equipment, it is preferable to carry out the test in quiet conditions, such as during regular inspections, at room temperature, when the system is stopped, and the radiation dose is not high.

原子力発電設備の運転時に高温になる弁は保温材33に覆われているものが多く、図1に示した弁体29と弁座30の接触面近傍への音響センサ2の設置が困難である。保温材33は通常取り外せる仕様になっているが、検査期間を短くする目的もあるため、保温材33を装着したまま診断することが望ましい。 Many of the valves that become hot during operation of nuclear power generation equipment are covered with a heat insulating material 33, making it difficult to install the acoustic sensor 2 near the contact surface between the valve body 29 and the valve seat 30 shown in FIG. . Although the heat insulating material 33 is normally designed to be removable, it is desirable to carry out the diagnosis with the heat insulating material 33 attached because the purpose is to shorten the examination period.

図7は、保温材33を装着したまま診断する音響センサ2の取付方法を示す図である。
弁箱3の保温材33には、保温効果に影響が出ない程度の筒状のアクセス通路が備えており、診断の際には、そのアクセス通路に筒状の取付治具34が備わった聴針棒31を差し込む。ここで、保温材33の綿等の内部物質と聴針棒31が接触しないようになっていることが重要であり、これが達成される構造であれば、他の構造であってもよい。
FIG. 7 is a diagram showing a method of attaching the acoustic sensor 2 for diagnosis with the heat insulating material 33 attached.
The heat insulating material 33 of the valve box 3 is provided with a cylindrical access passage that does not affect the heat retention effect. Insert the needle bar 31. Here, it is important that the listening needle bar 31 does not come into contact with internal substances such as cotton of the heat insulating material 33, and other structures may be used as long as this is achieved.

聴針棒31は、音響センサ2と弁箱3以外接触しない構造であるため、弁体29と弁座30の摺動部から発生する信号が聴針棒31中で分散することなく、また、聴針棒31中でノイズが発生することもないため、より精度の高い診断が可能となる。
これにより、原子力発電設備おいて、弁の分解点検の物量、労力、コスト、被ばく量の低減および検査期間の縮小による稼働率の向上を実現できる。
Since the listening needle bar 31 has a structure that does not come into contact with anything other than the acoustic sensor 2 and the valve box 3, the signal generated from the sliding portion of the valve body 29 and the valve seat 30 is not dispersed in the listening needle bar 31. Since no noise is generated in the listening needle bar 31, more accurate diagnosis is possible.
As a result, in nuclear power generation equipment, it is possible to reduce the amount of material, labor, cost, and radiation exposure for disassembling and inspecting valves, and to improve the operating rate by shortening the inspection period.

また、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。上記の実施例は本発明で分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。 Further, the present invention is not limited to the above-described embodiments, and includes various modifications. The above embodiments have been described in detail to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. Furthermore, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.

1 電動仕切弁(弁)
2、2a、2b、2c 音響センサ
6 増幅部(信号処理部)
7 ハイパスフィルタ(信号処理部)
8 A/D変換器(信号処理部)
9 信号処理部
10 摺動音の波形抽出・分割部(分析部)
11 分析部
12 漏洩量値取得部(分析部)
13 面粗さ値取得部(分析部)
14 摩擦係数値取得部(分析部)
15 スペクトル分析部(分析部)
16 判定部
17 漏洩発生までの作動回数推定部(判定部)
18 仕切能力の推定部(判定部)
19 異常判定部(判定部)
20 異常予兆診断装置
1 Electric gate valve (valve)
2, 2a, 2b, 2c acoustic sensor 6 amplification section (signal processing section)
7 High-pass filter (signal processing section)
8 A/D converter (signal processing section)
9 Signal processing section 10 Sliding sound waveform extraction and division section (analysis section)
11 Analysis section 12 Leakage amount value acquisition section (Analysis section)
13 Surface roughness value acquisition section (analysis section)
14 Friction coefficient value acquisition section (analysis section)
15 Spectrum analysis section (analysis section)
16 Judgment unit 17 Estimation unit of number of operations until leakage occurs (judgment unit)
18 Partitioning capacity estimation section (judgment section)
19 Abnormality judgment section (judgment section)
20 Abnormal sign diagnostic device

Claims (15)

弁体と弁座の閉止時の接触面の摺動音を検出する少なくともひとつの音響センサの信号を処理する信号処理部と、
前記信号処理部で処理され、前記音響センサにより検出した摺動音のスペクトル強度から前記摺動音を発する摺動部の漏洩量、面粗さ、または摩擦係数の状態を求める分析部と、
前記分析部で求めた摺動部の漏洩量、面粗さ、または摩擦係数から弁の流体を閉止する機能および動的機能に関する正常か否かを含む劣化の予兆を判定して弁の分解を含むメンテナンス時期を予測する判定部と、
を備え
前記分析部は、摺動部のそれぞれについて、実測した摺動音のスペクトル強度と摺動部の作動回数の相関関係、実測した漏洩量と面粗さの相関関係、実測した摩擦係数と作動回数の相関関係、及び実測した面粗さと作動回数の相関関係を予め記憶しておき、摺動音のスペクトル強度から前記摺動部の漏洩量、面粗さ、または摩擦係数の状態を求める
ことを特徴とする異常予兆診断装置。
a signal processing unit that processes a signal from at least one acoustic sensor that detects the sliding sound of the contact surface between the valve body and the valve seat when the valve body is closed ;
an analysis unit that determines the state of the leakage amount, surface roughness, or friction coefficient of the sliding part that generates the sliding sound from the spectral intensity of the sliding sound processed by the signal processing unit and detected by the acoustic sensor;
The valve is disassembled by determining signs of deterioration, including whether or not the valve's fluid-closing function and dynamic function are normal, based on the amount of leakage, surface roughness, or friction coefficient of the sliding part determined by the analysis section. a determination unit that predicts maintenance timing including;
Equipped with
The analysis section calculates, for each sliding part, the correlation between the actually measured spectral intensity of sliding sound and the number of operations of the sliding part, the correlation between the actually measured leakage amount and surface roughness, and the actually measured coefficient of friction and the number of operations. and the correlation between the measured surface roughness and the number of operations are stored in advance, and the state of the leakage amount, surface roughness, or friction coefficient of the sliding part is determined from the spectral intensity of the sliding sound.
An abnormality sign diagnostic device characterized by:
請求項1に記載の異常予兆診断装置において、
前記信号処理部は、弁の弁体と弁座との摺動部、グランドパッキンと弁棒との摺動部、弁棒のネジ部の摺動部、電動弁のウォームギアの摺動部、または空気作動弁のピストン部の摺動部で発生する摺動音を検出した音響センサの信号を処理する
ことを特徴とする異常予兆診断装置。
The abnormality sign diagnostic device according to claim 1,
The signal processing unit is a sliding part between a valve body and a valve seat of a valve, a sliding part between a gland packing and a valve stem, a sliding part of a threaded part of a valve stem, a sliding part of a worm gear of an electric valve, or An abnormality sign diagnostic device characterized by processing a signal from an acoustic sensor that detects sliding noise generated in a sliding portion of a piston portion of an air-operated valve.
請求項2に記載の異常予兆診断装置において、
前記分析部が、弁棒が直立している正立の状態の前記弁の弁体と弁座との摺動部においては、弁体の着座時に複数回発生する摺動音のうち最後の摺動音に基づいてメンテナンス時期を予測し、正立していない前記弁の弁体と弁座との摺動部においては、前半の偏った着座面の摺動音と後半の着座面全体の摺動音に基づいてメンテナンス時期を予測する
ことを特徴とする異常予兆診断装置。
The abnormality sign diagnostic device according to claim 2,
In the sliding part between the valve body and the valve seat of the valve in the upright state where the valve stem is upright, the analysis unit detects the last of the sliding sounds that occur multiple times when the valve body is seated. The timing of maintenance is predicted based on the movement noise, and in the sliding part between the valve body and valve seat of the valve that is not upright, the sliding sound of the uneven seating surface in the first half and the sliding sound of the entire seating surface in the second half are detected. An abnormality sign diagnostic device that predicts maintenance timing based on moving sounds.
請求項1に記載の異常予兆診断装置において、
前記信号処理部は、アコースティックエミッションセンサ、圧電センサ、または超音波センサのいずれかの音響センサの信号を処理する
ことを特徴とする異常予兆診断装置。
The abnormality sign diagnostic device according to claim 1,
The abnormality sign diagnostic device is characterized in that the signal processing unit processes a signal from an acoustic sensor such as an acoustic emission sensor, a piezoelectric sensor, or an ultrasonic sensor.
請求項2に記載の異常予兆診断装置において、
前記信号処理部は、前記弁体と弁座の摺動部、前記弁棒とグランドパッキンの摺動面、前記弁棒のネジ部の摺動部、前記電動弁のウォームギアの摺動部、または前記空気作動弁のピストン部の摺動部の摺動音の直接波の伝播経路となる弁外表面の位置に直接または聴針棒を介して設置される音響センサの信号を処理する
ことを特徴とする異常予兆診断装置。
The abnormality sign diagnostic device according to claim 2,
The signal processing section includes a sliding part between the valve body and the valve seat, a sliding surface between the valve stem and the gland packing, a sliding part of the threaded part of the valve stem, a sliding part of the worm gear of the electric valve, or Processing the signal of an acoustic sensor installed directly or via a listening needle at a position on the outer surface of the valve, which is a propagation path of a direct wave of the sliding sound of the sliding part of the piston part of the air-operated valve. Abnormality predictive diagnostic device.
請求項5に記載の異常予兆診断装置において、
前記音響センサは、組込みまたは取り外し可能な設置治具または接着剤またははんだ付けまたは手持ちにより設置され、
前記取り外し可能な設置治具は磁石、吸盤、万力、ボルトのうちひとつまたは複数により、弁外表面に直接設置されるか、または地面に設置された三脚または柱や他の機器から伸びたアームにより設置される
ことを特徴とする異常予兆診断装置。
The abnormality sign diagnostic device according to claim 5,
The acoustic sensor is installed by a built-in or removable installation jig or by adhesive or soldering or hand-held;
The removable mounting fixture may be mounted directly to the outer surface of the valve by one or more of magnets, suction cups, vises, bolts, or an arm extending from a tripod or pole or other equipment mounted on the ground. An abnormality sign diagnosis device characterized in that it is installed by.
請求項5に記載の異常予兆診断装置において、
前記弁が断熱材や壁で覆われている場合、前記断熱材や壁に開閉可能な筒状のアクセス通路を確保し、そこに前記聴針棒と一体となった筒状の取付治具が差し込まれ、前記聴針棒が前記音響センサおよび前記弁以外に接触しないよう設置される
ことを特徴とする異常予兆診断装置。
The abnormality sign diagnostic device according to claim 5,
If the valve is covered with a heat insulating material or wall, a cylindrical access passage that can be opened and closed is secured in the heat insulating material or wall, and a cylindrical mounting jig integrated with the listening needle bar is installed there. An abnormality sign diagnostic device, wherein the listening needle bar is inserted so as not to come into contact with anything other than the acoustic sensor and the valve.
請求項2に記載の異常予兆診断装置において、
前記分析部は、前記弁の閉操作時における音響センサの信号を、信号パターンに応じて、ハンマリングの摺動音、グランドパッキンの摺動部の摺動音、駆動部のモータ音もしくはエア音、ギアおよびネジ部の摺動音、閉止直前の弁体のぐらつきによる衝撃音、閉止時の弁体と弁座の摺動音、またはその他噛みこみなどによる異常音に分類する摺動音の波形抽出・分割部を有する
ことを特徴とする異常予兆診断装置。
The abnormality sign diagnostic device according to claim 2,
The analysis section converts the signal of the acoustic sensor during the closing operation of the valve into a hammering sliding sound, a sliding sound of a gland packing sliding part, a motor sound of a drive part, or an air sound, depending on the signal pattern. , sliding sound of gears and threads, impact noise due to wobbling of the valve just before closing, sliding sound of the valve body and valve seat during closing, and other abnormal noises due to jamming etc. An abnormality sign diagnostic device characterized by having an extraction/dividing section.
弁体と弁座の閉止時の接触面の摺動音を検出する少なくともひとつの音響センサの信号を処理する信号処理部と、
摺動部のそれぞれについて、実測した摺動音のスペクトル強度と摺動部の作動回数の相関関係、及び実測した摩擦係数と作動回数の相関関係を予め記憶しておき、前記信号処理部で処理され、前記音響センサにより検出した摺動音のスペクトル強度から前記摺動音を発する摺動部の摩擦係数の状態を求める分析部と
記分析部で取得した摺動部の摩擦係数が正常時の摩擦係数より大きい場合に、摩擦係数の変化量に応じて、弁の流体を閉止する機能および動的機能に関して正常か否かを判定すると共に、摩擦係数の変化量が所定値より大きい場合に、摺動部の劣化の予兆があると判定する判定部と、
を備えることを特徴とする異常予兆診断装置。
a signal processing unit that processes a signal from at least one acoustic sensor that detects the sliding sound of the contact surface between the valve body and the valve seat when the valve body is closed;
For each sliding part, the correlation between the actually measured spectral intensity of the sliding sound and the number of operations of the sliding part, and the correlation between the actually measured coefficient of friction and the number of operations are stored in advance and processed by the signal processing section. an analysis unit that determines the state of the friction coefficient of the sliding part that generates the sliding sound from the spectral intensity of the sliding sound detected by the acoustic sensor;
When the friction coefficient of the sliding part obtained by the analysis section is larger than the normal friction coefficient, it is determined whether the valve's fluid closing function and dynamic function are normal, depending on the amount of change in the friction coefficient. a determination unit that determines that there is a sign of deterioration of the sliding part when the amount of change in the coefficient of friction is larger than a predetermined value;
An abnormality sign diagnostic device comprising :
弁体と弁座の閉止時の接触面の摺動音を検出する少なくともひとつの音響センサの信号を処理する信号処理部と、
摺動部のそれぞれについて、実測した摺動音のスペクトル強度と摺動部の作動回数の相関関係、及び実測した面粗さと作動回数の相関関係を予め記憶しておき、前記信号処理部で処理され、前記音響センサにより検出した摺動音のスペクトル強度から前記摺動音を発する摺動部の面粗さの状態を求める分析部と、
記分析部で取得した面粗さが正常時の面粗さより大きい場合に、面粗さの変化量に応じて、弁の流体を閉止する機能および動的機能に関して正常か否かを判定すると共に、面粗さ値の変化量が所定値より大きい場合に、摺動部の劣化の予兆があると判定する判定部とを備える
ことを特徴とする異常予兆診断装置。
a signal processing unit that processes a signal from at least one acoustic sensor that detects the sliding sound of the contact surface between the valve body and the valve seat when the valve body is closed;
For each sliding part, the correlation between the actually measured spectral intensity of the sliding sound and the number of operations of the sliding part, and the correlation between the actually measured surface roughness and the number of operations are stored in advance and processed by the signal processing section. an analysis unit that determines the state of surface roughness of the sliding part that generates the sliding sound from the spectral intensity of the sliding sound detected by the acoustic sensor;
When the surface roughness obtained by the analysis section is larger than the normal surface roughness, it is determined whether the valve's fluid closing function and dynamic function are normal according to the amount of change in the surface roughness. and a determination unit that determines that there is a sign of deterioration of the sliding part when the amount of change in the surface roughness value is larger than a predetermined value.
An abnormality sign diagnostic device characterized by:
弁体と弁座の閉止時の接触面の摺動音を検出する少なくともひとつの音響センサの信号を処理する信号処理部と、
摺動部のそれぞれについて、実測した摺動音のスペクトル強度と摺動部の作動回数の相関関係、実測した摩擦係数と作動回数の相関関係、及び実測した面粗さと作動回数の相関関係を予め記憶しておき、摺動音のスペクトル強度から前記摺動部の面粗さ、または摩擦係数の状態を求める分析部と、
記分析部で取得した摺動部の摩擦係数が正常時の摩擦係数より大きい場合に、摩擦係数の変化量に応じて、弁の流体を閉止する機能および動的機能に関して正常か否かを判定すると共に、摩擦係数の変化量が所定値より大きい場合に、摺動部の劣化の予兆があると判定するか、または、
前記分析部で取得した面粗さが正常時の面粗さより大きい場合に、面粗さの変化量に応じて、弁の流体を閉止する機能および動的機能に関して正常か否かを判定すると共に、面粗さ値の変化量が所定値より大きい場合に、摺動部の劣化の予兆があると判定する判定部とを備える
ことを特徴とする異常予兆診断装置。
a signal processing unit that processes a signal from at least one acoustic sensor that detects the sliding sound of the contact surface between the valve body and the valve seat when the valve body is closed;
For each sliding part, the correlation between the actually measured spectral intensity of sliding sound and the number of operations of the sliding part, the correlation between the actually measured coefficient of friction and the number of operations, and the correlation between the actually measured surface roughness and the number of operations were determined in advance. an analysis unit that stores the information and determines the surface roughness or friction coefficient of the sliding portion from the spectral intensity of the sliding sound;
When the friction coefficient of the sliding part obtained by the analysis section is larger than the normal friction coefficient, it is determined whether the valve's fluid closing function and dynamic function are normal, depending on the amount of change in the friction coefficient. In addition, if the amount of change in the coefficient of friction is larger than a predetermined value, it is determined that there is a sign of deterioration of the sliding part, or
When the surface roughness obtained by the analysis section is larger than the normal surface roughness, it is determined whether or not the valve's fluid closing function and dynamic function are normal according to the amount of change in the surface roughness. and a determination unit that determines that there is a sign of deterioration of the sliding part when the amount of change in the surface roughness value is larger than a predetermined value.
An abnormality sign diagnostic device characterized by:
弁体と弁座の閉止時の接触面の摺動音を検出する少なくともひとつの音響センサの信号を処理する信号処理部と、
摺動部のそれぞれについて、実測した摺動音のスペクトル強度と摺動部の作動回数または/かつ経過時間の相関関係、及び実測した摩擦係数と作動回数または/かつ経過時間の相関関係を予め記憶しておき、摺動音のスペクトル強度から前記摺動部の摩擦係数の状態を求める分析部と、
記分析部で取得した摺動部の摩擦係数と作動回数または/かつ経過時間との相関関係から摩擦係数が許容される最大値に達する作動回数または/かつ経過時間を求め、摩擦係数の最大値に達するまでの作動回数または/かつ経過時間が所定の作動回数または/かつ経過時間になるタイミングを弁の分解を含むメンテナンス時期と予測する判定部とを備える
ことを特徴とする異常予兆診断装置。
a signal processing unit that processes a signal from at least one acoustic sensor that detects the sliding sound of the contact surface between the valve body and the valve seat when the valve body is closed;
For each sliding part, the correlation between the actually measured spectral intensity of sliding sound and the number of operations and/or elapsed time of the sliding part, and the correlation between the actually measured coefficient of friction and the number of operations and/or elapsed time are memorized in advance. an analysis unit that determines the state of the friction coefficient of the sliding part from the spectral intensity of the sliding sound;
From the correlation between the friction coefficient of the sliding part obtained by the analysis section and the number of operations and/or the elapsed time, the number of operations and/or elapsed time at which the friction coefficient reaches the maximum allowable value is determined, and the maximum friction coefficient is determined. and a determination unit that predicts the timing for maintenance including valve disassembly when the number of operations and/or elapsed time reaches a predetermined number of operations and/or elapsed time until the value is reached.
An abnormality sign diagnostic device characterized by:
弁体と弁座の閉止時の接触面の摺動音を検出する少なくともひとつの音響センサの信号を処理する信号処理部と、
摺動部のそれぞれについて、実測した摺動音のスペクトル強度と摺動部の作動回数の相関関係、及び実測した摩擦係数と作動回数の相関関係を予め記憶しておき、摺動音のスペクトル強度から前記摺動部の摩擦係数の状態を求める分析部と、
動音の検出と同期して弁の駆動部の駆動電流を計測し、駆動力の変化率を求めると共に前記分析部で取得した各摺動部の摩擦係数値の変化率を求め、前記駆動力の変化率と各摺動部の摩擦係数値の変化率を対比して、駆動力の変化率が大きくなった際に、摩擦係数値の変化率が大きくなった摺動部を、駆動力低下の原因箇所と予測するとともに、
動力と作動回数の相関関係から駆動部の最大駆動力に到達する作動回数を求め、弁仕切能力の限界の作動回数を予測する判定部とを備える
ことを特徴とする異常予兆診断装置。
a signal processing unit that processes a signal from at least one acoustic sensor that detects the sliding sound of the contact surface between the valve body and the valve seat when the valve body is closed;
For each sliding part, the correlation between the actually measured spectral intensity of the sliding sound and the number of operations of the sliding part, and the correlation between the actually measured coefficient of friction and the number of operations are memorized in advance, and the spectral intensity of the sliding sound is calculated. an analysis unit that determines the state of the friction coefficient of the sliding part from
In synchronization with the detection of the sliding sound, the drive current of the drive section of the valve is measured, the rate of change in the driving force is determined, and the rate of change in the friction coefficient value of each sliding section acquired by the analysis section is determined, and the drive current of the drive section of the valve is determined. By comparing the rate of change of force and the rate of change of the friction coefficient value of each sliding part, when the rate of change of the driving force increases, the sliding part whose rate of change of the friction coefficient value increases becomes the driving force. In addition to predicting the cause of the decline,
and a determination unit that calculates the number of operations to reach the maximum driving force of the drive unit from the correlation between the driving force and the number of operations, and predicts the number of operations at the limit of the valve gate ability.
An abnormality sign diagnostic device characterized by:
弁体と弁座の閉止時の接触面の摺動音を検出する少なくともひとつの音響センサの信号を処理する信号処理部と、
摺動部のそれぞれについて、実測した摺動音のスペクトル強度と摺動部の作動回数または/かつ経過時間の相関関係、実測した漏洩量と面粗さの相関関係、及び実測した面粗さと作動回数または/かつ経過時間の相関関係を予め記憶しておき、前記信号処理部で処理され、前記音響センサにより検出した摺動音のスペクトル強度から前記摺動部の漏洩量、及び面粗さの状態を求める分析部と、
動部の漏洩量と面粗さの相関関係から漏洩が発生する面粗さを求め、面粗さと作動回数または/かつ経過時間との相関関係から前記漏洩が発生する面粗さに相当する作動回数または/かつ経過時間を求め、前記漏洩が発生する作動回数または/かつ経過時間から漏洩が無い状態において摺動音を検出した際の作動回数または/かつ経過時間を減じて漏洩発生までの作動回数または/かつ経過時間を算出し、算出した漏洩発生までの作動回数または/かつ経過時間が所定の作動回数または/かつ経過時間になるタイミングを弁の分解を含むメンテナンス時期と予測する判定部とを備える
ことを特徴とする異常予兆診断装置。
a signal processing unit that processes a signal from at least one acoustic sensor that detects the sliding sound of the contact surface between the valve body and the valve seat when the valve body is closed;
For each sliding part, the correlation between the measured spectral intensity of sliding sound and the number of operations and/or elapsed time of the sliding part, the correlation between the measured leakage amount and surface roughness, and the correlation between the actually measured surface roughness and operation. The correlation between the number of times and/or the elapsed time is stored in advance, and the amount of leakage of the sliding part and the surface roughness are determined from the spectral intensity of the sliding sound processed by the signal processing unit and detected by the acoustic sensor. An analysis department that determines the state,
The surface roughness at which leakage occurs is determined from the correlation between the amount of leakage of the sliding part and the surface roughness, and the surface roughness at which leakage occurs is determined from the correlation between the surface roughness and the number of operations and/or the elapsed time. Calculate the number of operations and/or elapsed time, and subtract the number of operations and/or elapsed time when a sliding sound is detected in the absence of leakage from the number of operations and/or elapsed time at which leakage occurs, and calculate the number of operations and/or elapsed time until leakage occurs. A determination unit that calculates the number of operations and/or the elapsed time and predicts the timing at which the calculated number of operations and/or elapsed time until the occurrence of a leak reaches a predetermined number of operations or/and elapsed time as the maintenance period including disassembly of the valve. and
An abnormality sign diagnostic device characterized by:
弁の摺動部の状態を診断する異常予兆診断装置の診断方法であって、
弁体と弁座の閉止時の接触面の摺動音を検出する少なくともひとつの音響センサの信号を処理するステップと、
弁体と弁座の摺動部のそれぞれについて、実測した摺動音のスペクトル強度と摺動部の作動回数の相関関係、実測した漏洩量と面粗さの相関関係、実測した摩擦係数と作動回数の相関関係、及び実測した面粗さと作動回数の相関関係を予め記憶しておき、処理した摺動音のスペクトル強度から前記摺動音を発する摺動部の漏洩量、面粗さ、または摩擦係数の状態を求めるステップと、
求めた摺動部の漏洩量、面粗さ、または摩擦係数から弁の流体を閉止する機能および動的機能に関する正常か否かを含む劣化の予兆を判定して弁の分解を含むメンテナンス時期を予測するステップと、
を含むことを特徴とする診断方法。
A diagnostic method for an abnormality sign diagnostic device for diagnosing the state of a sliding part of a valve, the method comprising:
processing a signal from at least one acoustic sensor that detects a sliding sound of a contact surface between the valve body and the valve seat when the valve body is closed ;
For each of the sliding parts of the valve body and valve seat, the correlation between the measured sliding sound spectral intensity and the number of times the sliding part operated, the correlation between the measured leakage amount and surface roughness, and the measured friction coefficient and operation. The correlation between the number of operations and the correlation between the measured surface roughness and the number of operations is stored in advance, and the leakage amount, surface roughness, or a step of determining the state of the friction coefficient;
Based on the leakage amount, surface roughness, or coefficient of friction of the sliding parts, we can determine signs of deterioration, including whether the valve's fluid-closing function and dynamic function are normal, and determine when it is time for maintenance, including valve disassembly. a step of predicting;
A diagnostic method characterized by comprising:
JP2020143046A 2020-08-26 2020-08-26 Abnormality sign diagnostic device and its diagnostic method Active JP7356956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020143046A JP7356956B2 (en) 2020-08-26 2020-08-26 Abnormality sign diagnostic device and its diagnostic method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020143046A JP7356956B2 (en) 2020-08-26 2020-08-26 Abnormality sign diagnostic device and its diagnostic method

Publications (3)

Publication Number Publication Date
JP2022038500A JP2022038500A (en) 2022-03-10
JP2022038500A5 JP2022038500A5 (en) 2022-08-17
JP7356956B2 true JP7356956B2 (en) 2023-10-05

Family

ID=80498966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020143046A Active JP7356956B2 (en) 2020-08-26 2020-08-26 Abnormality sign diagnostic device and its diagnostic method

Country Status (1)

Country Link
JP (1) JP7356956B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001050493A (en) 1999-08-04 2001-02-23 Miyawaki Inc Steam trap performance detection device
JP3277938B2 (en) 1991-02-21 2002-04-22 ミサワホーム株式会社 Roof panel unit
JP2010117330A (en) 2008-11-14 2010-05-27 Kanto Chem Co Inc Method of diagnosing air operation valve, air operation valve diagnosis device, and air operation valve
JP2013029422A (en) 2011-07-28 2013-02-07 Air Liquide Japan Ltd Abnormality diagnostic device for moving body
JP2015175732A (en) 2014-03-14 2015-10-05 三菱重工業株式会社 Acoustic evaluation system and acoustic evaluation method
JP2015184029A (en) 2014-03-20 2015-10-22 原子燃料工業株式会社 Diagnostic method for swing check valve
US20200132222A1 (en) 2017-06-30 2020-04-30 Vat Holding Ag Vacuum valve with acoustic sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3277938B2 (en) 1991-02-21 2002-04-22 ミサワホーム株式会社 Roof panel unit
JP2001050493A (en) 1999-08-04 2001-02-23 Miyawaki Inc Steam trap performance detection device
JP2010117330A (en) 2008-11-14 2010-05-27 Kanto Chem Co Inc Method of diagnosing air operation valve, air operation valve diagnosis device, and air operation valve
JP2013029422A (en) 2011-07-28 2013-02-07 Air Liquide Japan Ltd Abnormality diagnostic device for moving body
JP2015175732A (en) 2014-03-14 2015-10-05 三菱重工業株式会社 Acoustic evaluation system and acoustic evaluation method
JP2015184029A (en) 2014-03-20 2015-10-22 原子燃料工業株式会社 Diagnostic method for swing check valve
US20200132222A1 (en) 2017-06-30 2020-04-30 Vat Holding Ag Vacuum valve with acoustic sensor

Also Published As

Publication number Publication date
JP2022038500A (en) 2022-03-10

Similar Documents

Publication Publication Date Title
EP0410317B1 (en) A non-invasive system and method for inspection of valves
JP4430316B2 (en) Status detection apparatus, status detection method, status detection program, and information recording medium
JP4771334B2 (en) Status detection device, status detection method, status detection program and information recording medium, status display device, status display method, status display program and information recording medium
JP4695185B2 (en) Status detection apparatus, status detection method, status detection program, and information recording medium
US5154080A (en) Integrated check valve testing system
US7366590B2 (en) Impending failure and failure annunciation systems for actuators and drive train components
JP5399687B2 (en) Air operated valve diagnosis method and air operated valve
JP2010054434A (en) Valve diagnostic method and valve diagnostic device
JP6714806B2 (en) Status monitoring device and status monitoring method
JP6508017B2 (en) Evaluation method of machinery and equipment
US4571994A (en) Acoustical testing of hydraulic actuators
JPH10281859A (en) Abnormality diagnostic method and device
JP6289196B2 (en) Swing check valve diagnosis method
JP7356956B2 (en) Abnormality sign diagnostic device and its diagnostic method
US20090048806A1 (en) Method and apparatus for diagnosis of motor-operated valve
JP2002181038A (en) Abnormality diagnosis device
JPH02307033A (en) Abnormality diagnostic device for motor-driven valve
JP2011027615A (en) Integrity monitoring evaluation support system and method of valve device
JP5476413B2 (en) Diagnostic method for soundness of rotating machinery
JP2002188411A (en) Abnormality diagnosing apparatus
JP2713967B2 (en) Diagnostic equipment for pneumatic equipment
JP2023115776A (en) Abnormality sign diagnosis system, abnormality sign diagnosis device and diagnostic method of the same
JP2023124723A (en) Abnormality sign diagnosis system
Alekseev et al. Data measurement system of compressor units defect diagnosis by vibration value
JP2022038500A5 (en)

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220808

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230925

R150 Certificate of patent or registration of utility model

Ref document number: 7356956

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150