JP7355713B2 - Pretreatment method for recovering valuable elements from secondary batteries and method for recovering valuable elements from secondary batteries - Google Patents

Pretreatment method for recovering valuable elements from secondary batteries and method for recovering valuable elements from secondary batteries Download PDF

Info

Publication number
JP7355713B2
JP7355713B2 JP2020121847A JP2020121847A JP7355713B2 JP 7355713 B2 JP7355713 B2 JP 7355713B2 JP 2020121847 A JP2020121847 A JP 2020121847A JP 2020121847 A JP2020121847 A JP 2020121847A JP 7355713 B2 JP7355713 B2 JP 7355713B2
Authority
JP
Japan
Prior art keywords
magnetic
drum
formula
collected
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020121847A
Other languages
Japanese (ja)
Other versions
JP2022018616A5 (en
JP2022018616A (en
Inventor
昌麟 王
健太郎 浦田
眞澄 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2020121847A priority Critical patent/JP7355713B2/en
Priority to CN202110725412.1A priority patent/CN113943857A/en
Publication of JP2022018616A publication Critical patent/JP2022018616A/en
Publication of JP2022018616A5 publication Critical patent/JP2022018616A5/en
Application granted granted Critical
Publication of JP7355713B2 publication Critical patent/JP7355713B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/005Preliminary treatment of scrap
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/10Magnetic separation acting directly on the substance being separated with cylindrical material carriers
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)
  • Secondary Cells (AREA)

Description

本発明は、二次電池からCo、Ni、Feといった有価元素を回収する際の前処理方法及び二次電池から有価元素を回収する方法に関するものである。 The present invention relates to a pretreatment method for recovering valuable elements such as Co, Ni, and Fe from secondary batteries, and a method for recovering valuable elements from secondary batteries .

近年、環境規制が厳しくなる中、今後再生可能エネルギーは増加すると考えられており、自動車燃費向上に向けた電動化が進む中で、二次電池はますます重要性を増していくと考えられている。例えば、現在使用されている二次電池はリチウムイオンバッテリ(LIB)やニッケル水素電池(Ni-MH)が主流であり、これらの二次電池については今後も需要増が予想される。 In recent years, as environmental regulations have become stricter, renewable energy is expected to increase in the future, and as electrification advances to improve vehicle fuel efficiency, secondary batteries are expected to become even more important. There is. For example, the mainstream secondary batteries currently in use are lithium ion batteries (LIB) and nickel metal hydride batteries (Ni-MH), and demand for these secondary batteries is expected to increase in the future.

ここで、LIBやNi-MHなどの二次電池にはコバルトやニッケルなどのレアメタル(有価金属)が使用されているが、これらレアメタルについては、資源が世界的に遍在化しているといった問題や資源枯渇のリスクが指摘されている。また、コバルトについても、鉱山での不当な労働実態が取り沙汰されており、採掘のみでは需要を十分に満たせない可能性がある。 Here, secondary batteries such as LIB and Ni-MH use rare metals (valuable metals) such as cobalt and nickel, but these rare metals have problems such as the global ubiquity of their resources. The risk of resource depletion has been pointed out. Furthermore, with regard to cobalt, there have been rumors of unfair labor conditions in mines, and there is a possibility that mining alone will not be able to fully meet the demand.

これらの観点から、コバルトやニッケルなどのレアメタルのリサイクル技術が注目されている。ただ、現行は湿式の溶媒抽出が中心であり、コスト的な問題から大量処理技術確立に至っていない。そこで、コバルトやニッケルを使用するLIBから、安価に、且つ、効率良く有価金属を回収する技術が要望されている。製鉄プロセスで利用される高温精錬技術(以下、乾式精錬技術)は、比較的安価な処理が可能で、社会的な再資源化の課題に応えるためにも、また自動車や電気機器などさまざまな産業分野で利用が可能であるという面でも技術の確立が急務であると考えられている。 From these viewpoints, recycling technology for rare metals such as cobalt and nickel is attracting attention. However, currently, wet solvent extraction is the main method, and large-scale processing technology has not been established due to cost issues. Therefore, there is a need for a technology that can inexpensively and efficiently recover valuable metals from LIBs that use cobalt and nickel. High-temperature refining technology (hereinafter referred to as pyrometallurgical refining technology) used in the steelmaking process is relatively inexpensive, and is used in various industries such as automobiles and electrical equipment to meet social recycling issues. It is considered that there is an urgent need to establish the technology so that it can be used in various fields.

例えば、特許文献1には、回収した有価物を非酸化性雰囲気で加熱して実質的に有価物中の有価金属を酸化することなく、炭素を除去する技術が開示されている。
また、特許文献2には、リチウム電池からリチウム並びにコバルトとその他金属を回収する技術が開示されている。
さらに、特許文献3には、破砕物を分別し、分別された回収物を磁選する技術が開示されている。
For example, Patent Document 1 discloses a technique for heating recovered valuables in a non-oxidizing atmosphere to remove carbon without substantially oxidizing valuable metals in the valuables.
Additionally, Patent Document 2 discloses a technique for recovering lithium, cobalt, and other metals from lithium batteries.
Further, Patent Document 3 discloses a technique for separating crushed materials and magnetically separating the separated collected materials.

さらにまた、特許文献4には、Cu、Al、Feと正負極の活物質を分別し、分別された回収物を磁選する技術が開示されている。 Furthermore, Patent Document 4 discloses a technique in which Cu, Al, Fe and active materials of positive and negative electrodes are separated, and the separated recovered materials are subjected to magnetic separation.

特開2002-32715号公報Japanese Patent Application Publication No. 2002-32715 特開2012-112027号公報Japanese Patent Application Publication No. 2012-112027 特開2014-199774号公報Japanese Patent Application Publication No. 2014-199774 特開2012-229481号公報JP2012-229481A

ところで、LIBの回収物からコバルトやニッケルなどを回収する技術には、実際にコバルトやニッケルなどを回収する前に、LIBの回収物に含まれるCuなどの余計な金属元素を取り除く工程が必要となる。これは、コバルトやニッケルなどを回収する際には、酸化物を還元等する工程が行われることになるが、このとき回収しようとするコバルトやニッケル以外の元素が含まれていると、金属に戻ったコバルトやニッケルに他の金属が混じることになり、回収効率が悪くなるためである。そのため、LIBの回収物からコバルトやニッケルなどを回収する工程には、前処理工程として回収物からCuなどを取り除く工程が行われる。 By the way, the technology for recovering cobalt, nickel, etc. from LIB recovered materials requires a process to remove unnecessary metal elements such as Cu contained in LIB recovered materials before actually recovering cobalt, nickel, etc. Become. This is because when recovering cobalt, nickel, etc., a process such as reducing oxides is performed, but if the metal contains elements other than cobalt or nickel, the metal may This is because the returned cobalt and nickel will be mixed with other metals, reducing recovery efficiency. Therefore, in the process of recovering cobalt, nickel, etc. from LIB recovered materials, a step of removing Cu etc. from the recovered materials is performed as a pre-treatment step.

ところが、特許文献1には、加熱前に前処理工程を行う点について全く記載されていない。
また、特許文献2には、Cuの除去については記載がなく、物理的分選として磁選が例
示されているものの、Cuを除去対象とする最適な磁選条件について、全く開示されていない。
However, Patent Document 1 does not describe at all that a pretreatment step is performed before heating.
Further, Patent Document 2 does not describe the removal of Cu, and although magnetic separation is exemplified as a physical separation, it does not disclose at all the optimal magnetic separation conditions for removing Cu.

さらに、特許文献3や特許文献4にも、特許文献2と同様にCuを除去対象とする最適な磁選条件について、全く開示されていない。
つまり、LIBリサイクル工程全体を通じて、有価元素の歩留まり向上および有害元素の低減が必要なところ、上述した特許文献1~4は有価元素リサイクル前に前処理として行う磁選条件を何ら規定するものとはなっていない。また、特許文献1~4には、磁場の強さ(磁束密度)の記載はあるものの、遠心加速度などのような詳細な条件の記載は無く、このまま用いてもLIBからのCu除去は到底実現できない。
Furthermore, Patent Document 3 and Patent Document 4 do not disclose at all the optimum magnetic separation conditions for removing Cu, similar to Patent Document 2.
In other words, although it is necessary to improve the yield of valuable elements and reduce harmful elements throughout the entire LIB recycling process, the above-mentioned Patent Documents 1 to 4 do not stipulate the magnetic separation conditions to be performed as a pretreatment before recycling valuable elements. Not yet. Furthermore, although Patent Documents 1 to 4 describe the strength of the magnetic field (magnetic flux density), they do not describe detailed conditions such as centrifugal acceleration, and it is highly unlikely that Cu will be removed from LIB even if used as is. Can not.

本発明は、上述の問題に鑑みてなされたものであり、還元前の廃LIB粉末を含む回収物に対して磁力選別をすることで、回収物からCuを事前に確実に除去し、Cuが除去された回収物からCoやNiを高歩留で回収することができる二次電池から有価元素を回収する際の前処理方法及び二次電池から有価元素を回収する方法を提供することを目的とする。 The present invention was made in view of the above-mentioned problems, and by magnetically sorting the recovered material containing waste LIB powder before reduction, Cu is reliably removed from the recovered material in advance, and the Cu is removed. The purpose of the present invention is to provide a pretreatment method for recovering valuable elements from a secondary battery and a method for recovering valuable elements from a secondary battery, which can recover Co and Ni from the removed recovered material with a high yield. shall be.

上記課題を解決するため、本発明の二次電池から有価元素を回収する際の前処理方法は以下の技術的手段を講じている。
即ち、本発明の二次電池から有価元素を回収する際の前処理方法は、二次電池に対して、少なくとも破砕、篩別の処理を経て得られた、ニッケルまたはコバルトの少なくとも一方、及びアルミニウムまたは銅の少なくとも一方を含む回収物に対して、ニッケルやコバルトを還元処理し回収するに当たり、前処理としてドラム式の磁選機で磁選を行うものであって、ドラム表面の磁束密度B[G]、回収物が受ける遠心加速度a[m/s]の関係が、以下の式(1)~(4)を満たすような条件下で磁力選別することを特徴とする。
In order to solve the above problems, the pretreatment method for recovering valuable elements from the secondary battery of the present invention takes the following technical measures.
That is, the pretreatment method for recovering valuable elements from a secondary battery of the present invention involves treating a secondary battery with at least one of nickel or cobalt and aluminum obtained through at least crushing and sieving treatments. Alternatively, when recovering nickel and cobalt by reducing nickel and cobalt on recovered materials containing at least one of copper, magnetic separation is performed in a drum-type magnetic separator as a pretreatment, and the magnetic flux density on the drum surface is B[G] The method is characterized in that magnetic separation is carried out under conditions such that the relationship between the centrifugal acceleration a [m/s 2 ] that the recovered material receives satisfies the following equations (1) to (4).

B≦198.9a+1085.7 ・・・式(1)
B≦-764.4a+16912.3 ・・・式(2)
B≦3000 ・・・式(3)
B≧1170 ・・・式(4)
また、本発明の二次電池から有価元素を回収する方法は、二次電池に対して、少なくとも破砕の処理を経て得られた、ニッケル及びコバルトの1種以上を含む磁着物とアルミニウム及び銅の1種以上を含む非磁性物とを含む回収物から、磁着物をドラム式の磁選機で磁選し、この磁着物を化学反応させてニッケル及びコバルトの1種以上を回収する方法であって、前記磁選機は、ドラム表面の磁束密度B[G]、回収物が受ける遠心加速度a[m/s]の関係が、以下の式(1)~(4)を満たすような条件下で磁力選別することを特徴とする。
B≦198.9a+1085.7...Formula (1)
B≦-764.4a+16912.3...Formula (2)
B≦3000...Formula (3)
B≧1170...Formula (4)
In addition, the method for recovering valuable elements from a secondary battery of the present invention includes a method for collecting a magnetic material containing at least one of nickel and cobalt, which has been obtained through at least a crushing process, and aluminum and This is a method in which magnetic materials are magnetically separated from recovered materials containing non-magnetic materials containing one or more types of copper using a drum-type magnetic separator, and the magnetic materials are subjected to a chemical reaction to recover one or more types of nickel and cobalt. The magnetic separator is operated under conditions such that the relationship between the magnetic flux density B [G] on the drum surface and the centrifugal acceleration a [m/s 2 ] that the collected material receives satisfies the following equations (1) to (4). It is characterized by magnetic separation.

B≦198.9a+1085.7 ・・・式(1)
B≦-764.4a+16912.3 ・・・式(2)
B≦3000 ・・・式(3)
B≧1170 ・・・式(4)
B≦198.9a+1085.7...Formula (1)
B≦-764.4a+16912.3...Formula (2)
B≦3000...Formula (3)
B≧1170...Formula (4)

本発明の二次電池から有価元素を回収する際の前処理方法によれば、還元前の廃LIB粉末を含む回収物に対して磁力選別をすることで、回収物からCuを事前に確実に除去し、Cuが除去された回収物からCoやNiを高歩留で回収することができる。 According to the pretreatment method for recovering valuable elements from secondary batteries of the present invention, by magnetically sorting the recovered material containing waste LIB powder before reduction, Cu can be reliably removed from the recovered material in advance. Co and Ni can be recovered at a high yield from the recovered material from which Cu has been removed.

本発明の前処理方法で用いる磁選機を示した模式図である。FIG. 1 is a schematic diagram showing a magnetic separator used in the pretreatment method of the present invention. 回収物が受ける遠心加速度aと、磁選ドラム表面の磁束密度Bと、の関係を示した図である。FIG. 3 is a diagram showing the relationship between centrifugal acceleration a that the recovered material receives and magnetic flux density B on the surface of the magnetic separation drum.

以下、本発明に係る二次電池から有価元素を回収する際の前処理方法(以下、単に前処理方法という)の実施形態を、図面に基づき詳しく説明する。
図1に示すように、本実施形態の前処理方法は、二次電池の回収物から化学反応を利用
して有価金属を単体金属や合金、あるいは塩の状態で回収する有価元素の回収方法に対して、この回収方法の前処理を行うものであり、回収方法で処理される原料を調整するものとなっている。
EMBODIMENT OF THE INVENTION Hereinafter, the embodiment of the pretreatment method (hereinafter simply referred to as pretreatment method) for recovering valuable elements from a secondary battery according to the present invention will be described in detail based on the drawings.
As shown in FIG. 1, the pretreatment method of this embodiment is a method for recovering valuable elements in which valuable metals are recovered in the form of single metals, alloys, or salts from recovered secondary batteries using chemical reactions. On the other hand, it performs pretreatment for this recovery method, and adjusts the raw materials to be processed in the recovery method.

具体的には、本実施形態の回収方法は、二次電池に対して、加熱、破砕、篩別、磁選の処理を加えることで得られる有価元素を含む回収物を回収するものである。そして、上記化学反応は、還元剤と混合して加熱することにより、有価元素を還元し金属化すると共に溶融することで、混合物から金属と酸化物とを分離し、冷却後金属を酸化物から選別して回収する方法でも良いし、回収物を酸へ溶解して作成した水溶液に対して、電析を行う方法であっても良い。 Specifically, the recovery method of this embodiment is to recover a recovered material containing valuable elements obtained by subjecting a secondary battery to heating, crushing, sieving, and magnetic separation. In the above chemical reaction, the metal and oxide are separated from the mixture by mixing with a reducing agent and heating to reduce and metalize the valuable elements and melting, and after cooling, the metal is separated from the oxide. A method may be used in which the material is sorted and collected, or a method in which an aqueous solution prepared by dissolving the collected material in an acid is subjected to electrodeposition may be used.

そして、本発明の前処理方法は、二次電池に対して、少なくとも破砕の処理、より具体的な例として、加熱、破砕、篩別の処理を経て得られた、ニッケル及びコバルトの1種以上を含む回収物に対して、ニッケルまたは/およびコバルトを還元処理し回収するに当たり、前処理として、磁選ドラム2の表面における磁束密度B[G]、回収物が受ける遠心加速度a[m/s]の関係が、以下の式(1)~(4)を満たすような条件下で磁力選別するものとなっている。 In the pretreatment method of the present invention, one or more of nickel and cobalt is obtained by subjecting a secondary battery to at least a crushing treatment, and more specifically, a heating, crushing, and sieving treatment. When reducing and recovering nickel and / or cobalt from a recovered material containing ] Magnetic separation is performed under conditions such that the following equations (1) to (4) are satisfied.

ここで、廃LiイオンバッテリーにはNi、Co、Li等の酸化物が使用されている。これらのNi、Co、Li等の元素は、希少価値の高いものであるため、可能な限り回収することが望ましい。例えば、Ni、Co、Li等の酸化物の回収方法としては、ガス/炭材還元などの乾式精錬と、電解/抽出等の湿式精錬とがある。これらのうち、乾式精錬は、湿式精錬に比べて、一般に操業コストが安いため、今後も更なる開発が期待されている。 Here, oxides such as Ni, Co, and Li are used in waste Li-ion batteries. Since these elements such as Ni, Co, and Li are rare and valuable, it is desirable to recover them as much as possible. For example, methods for recovering oxides such as Ni, Co, and Li include pyrometallurgy such as gas/charcoal reduction, and hydrometallurgy such as electrolysis/extraction. Among these, pyrometallurgical refining generally has lower operating costs than hydrometallurgical refining, and further development is expected in the future.

ただ、乾式精錬で有価金属を回収する場合の課題としては、LIB(リチウムイオンバッテリー)の負極箔に用いられるCuや正極箔に用いられるAl等の分離が挙げられる。つまり、還元の際にLIBの回収物にCu等が残っていると、還元工程の後で金属が混じり合い、Cu等だけを除去することが難しくなる。そのため、還元工程の前に回収物から予めCu等だけを除去しておくのが望ましい。 However, one of the challenges when recovering valuable metals through pyrometallurgy is the separation of Cu, which is used in the negative electrode foil of LIBs (lithium-ion batteries), and Al, which is used in the positive electrode foil. In other words, if Cu and the like remain in the LIB recovered material during reduction, the metals will be mixed together after the reduction process, making it difficult to remove only Cu and the like. Therefore, it is desirable to remove only Cu and the like from the recovered material before the reduction step.

なお、湿式精錬におけるCu等の分離回収は、乾式精錬に比べて容易である。しかし、一般に湿式精錬の操業コストは乾式精錬よりも高いため、湿式精錬で処理される回収物の量をできる限り削減するのが好ましい。この点においても、予めCu等を分離しておけば、湿式精錬に持ち込まれる回収物の量を低減することができ、湿式精錬の操業コストを相対的に削減することが可能となる。 Note that separation and recovery of Cu and the like in hydrometallurgical refining is easier than in pyrometallurgy. However, since the operating cost of hydrometallurgical refining is generally higher than that of pyrometallurgy, it is preferable to reduce the amount of recovered material processed by hydrometallurgy as much as possible. In this respect as well, if Cu and the like are separated in advance, it is possible to reduce the amount of recovered material brought into hydrometallurgy, and it is possible to relatively reduce the operating cost of hydrometallurgy.

そこで、本発明の前処理方法では、二次電池に対して、少なくとも破砕の処理を経て得られた、ニッケル及びコバルトの1種以上を含む磁性物とアルミニウム及び銅の1種以上を含む非磁性物とを含む回収物から、磁着物を化学反応 させてニッケル及びコバルトの1種以上を回収するに当たり、前処理として、ドラム表面の磁束密度B[G]、回収物が受ける遠心加速度a[m/s]の関係が、以下の式(1)~(4)を満たすような条件下で磁力選別することで、Ni、Coを回収する前にCu、Alを効率的に除去し、前処理としてCu、Alのみを選択除去することで乾式処理や湿式処理での回収効率や回収される有価元素の価値(純度)の低下を抑制しているのである。 Therefore, in the pretreatment method of the present invention, a secondary battery is treated with a magnetic material containing at least one of nickel and cobalt and a non-magnetic material containing at least one of aluminum and copper, which are obtained through at least a crushing process. In order to recover one or more of nickel and cobalt from the collected materials containing the magnetic materials by chemically reacting the magnetic materials, as a pretreatment, the magnetic flux density B [G] on the drum surface and the centrifugal acceleration a [m /s 2 ] under conditions that satisfy the following equations (1) to (4), Cu and Al can be efficiently removed before recovering Ni and Co. By selectively removing only Cu and Al as a process, the reduction in recovery efficiency and value (purity) of recovered valuable elements in dry or wet processes is suppressed.

B≦198.9a+1085.7 ・・・式(1)
B≦-764.4a+16912.3 ・・・式(2)
B≦3000 ・・・式(3)
B≧1170 ・・・式(4)
次に、本実施形態の前処理方法に用いられる回収物、前処理方法に用いられる設備(磁選機1)、またこの設備を用いて行われる前処理工程の内容について詳しく説明する。
B≦198.9a+1085.7...Formula (1)
B≦-764.4a+16912.3...Formula (2)
B≦3000...Formula (3)
B≧1170...Formula (4)
Next, the recovered material used in the pretreatment method of this embodiment, the equipment (magnetic separator 1) used in the pretreatment method, and the contents of the pretreatment step performed using this equipment will be described in detail.

上述したNi、Coは、磁性を有する(強磁性の)元素であるため、前処理方法で磁場の存在下に置けば、磁力を受ける。一方、Cu、Alは、Ni、Coと違い磁性を持たない元素であるため、磁場の存在下でも磁力は発生しない。つまり、磁力の有無を利用して、磁性を有するNiやCoなどの成分と、非磁性のCu等を主に含む成分とを選択的に分離することが可能である。上述した前処理方法は、この成分間や元素間での磁性の違いを利用したものとなっている。 Since Ni and Co mentioned above are magnetic (ferromagnetic) elements, if they are placed in the presence of a magnetic field in a pretreatment method, they will receive magnetic force. On the other hand, unlike Ni and Co, Cu and Al are elements that do not have magnetism, so they do not generate magnetic force even in the presence of a magnetic field. That is, by utilizing the presence or absence of magnetic force, it is possible to selectively separate magnetic components such as Ni and Co from components mainly containing non-magnetic Cu and the like. The above-mentioned pretreatment method utilizes this difference in magnetism between components or elements.

なお、磁力による選別には、ベルト式、吊り下げ式、筒式、及びドラム式などのさまざまな方式が知られているが、本実施形態の前処理方法ではドラム式を採用している。ドラム式の磁選機1は、磁力と遠心力とを併用して、回収物から高い回収効率で磁着物4を回収可能となっている。
図1示すように、上述したドラム式の磁選機1は、水平方向を向く軸回りに回転する磁選ドラム2と、磁選ドラム2上に回収物を供給するフィーダ3と、磁選ドラム2で分離された磁着物4を回収する磁着物捕集部5と、磁選ドラム2で分離された非磁着物6を回収する非磁着物捕集部7と、を有している。
Note that various methods are known for sorting by magnetic force, such as a belt method, a hanging method, a cylinder method, and a drum method, and the drum method is adopted in the pretreatment method of this embodiment. The drum-type magnetic separator 1 uses both magnetic force and centrifugal force to collect the magnetic material 4 from the collected material with high collection efficiency.
As shown in FIG. 1, the above-mentioned drum-type magnetic separator 1 includes a magnetic separator drum 2 that rotates around an axis facing in the horizontal direction, a feeder 3 that supplies collected materials onto the magnetic separator drum 2, and a magnetic separator drum 2 that are separated from each other. It has a magnetic material collecting section 5 that collects the magnetic material 4 that has been collected, and a non-magnetic material collecting section 7 that collects the non-magnetic material 6 separated by the magnetic separation drum 2.

フィーダ3は、破砕や篩別の処理を経て得られたニッケル及びコバルトを含む回収物を投入可能とするホッパ8と、このホッパ8から投入された回収物を磁選ドラム2まで運搬するコンベア部9と、を有している。具体的には、上述したホッパ8は、上方に向かって末広がりのテーパ状に形成されており、上方と下方との双方に開口していて、上方から投入された回収物を集積し、集積された回収物をコンベア部9の上に供給できるようになっている。また、コンベア部9は、水平方向に沿うようにほぼ平行に配備されており、水平方向に回収物を運搬できるようになっている。つまり、コンベア部9には、水平方向に距離をあけて設けられたヘッドプーリー及びテールプーリーと、これら2つのプーリー間に掛け回されたベルトと、を有している。コンベア部9は、テールプーリーからヘッドプーリーに向かって水平移動するベルトの上に、フィーダ3から投入された回収物を載せて移動させ、磁選ドラム2の上部、より詳しくは回転軸心の上側に位置する磁選ドラム2の表面に、回収物を搬送できるようになっている。 The feeder 3 includes a hopper 8 into which recovered materials containing nickel and cobalt obtained through crushing and sieving processes can be input, and a conveyor section 9 that conveys the recovered materials introduced from the hopper 8 to the magnetic separation drum 2. It has . Specifically, the above-mentioned hopper 8 is formed in a tapered shape that widens toward the top, and is open both above and below, and collects collected materials input from above. The recovered materials can be fed onto the conveyor section 9. Further, the conveyor section 9 is arranged substantially parallel to the horizontal direction, so that the collected items can be transported in the horizontal direction. In other words, the conveyor section 9 includes a head pulley and a tail pulley that are spaced apart from each other in the horizontal direction, and a belt that is passed around between these two pulleys. The conveyor section 9 places the collected material inputted from the feeder 3 on a belt that moves horizontally from the tail pulley toward the head pulley, and moves it to the upper part of the magnetic separation drum 2, more specifically, to the upper side of the rotation axis. Collected materials can be conveyed to the surface of the magnetic separation drum 2 located there.

上述した磁選ドラム2は、内部が空洞とされた円筒状の部材であり、水平方向を向く軸回りに回転自在に配備されている。磁選ドラム2の空洞とされた内部には、磁石10が配備されており、磁選ドラム2の表面に供給された原料に磁力を作用できるようになっている。また、磁選ドラム2には、図示しないモータが取り付けられており、水平方向を向く軸回りに回転駆動できるようになっている。 The magnetic selection drum 2 described above is a cylindrical member with a hollow interior, and is arranged rotatably around an axis facing in the horizontal direction. A magnet 10 is disposed inside the hollow part of the magnetic separation drum 2, so that a magnetic force can be applied to the raw material supplied to the surface of the magnetic separation drum 2. Further, a motor (not shown) is attached to the magnetic separation drum 2 so that it can be driven to rotate around an axis facing in the horizontal direction.

上述した磁選ドラム2の内部に設けられる磁石10は、表面から軸心方向に向かって等しい距離になるように複数配備されている。これら複数の磁石10は、軸心を中心とする円弧状に並んで配備されており、磁選ドラム2の表面に均等に同じ強さの磁力を発生可能となっている。
これらの磁石10は、回収物が供給される磁選ドラム2の最も上側(最上部)から、磁選ドラム2の回転方向に向かって、磁選ドラム2の最も下側(最下部)までの半周(角度でいえば180度)範囲に亘って半円の円弧状に並んで配備されている。また、これらの磁石10は、磁選ドラム2に対して同伴回転しないように、回転不可な状態で固定されている。なお、これらの磁石10は、永久磁石でも良いし、電磁石でも良い。
A plurality of magnets 10 provided inside the magnetic separation drum 2 described above are arranged at equal distances from the surface in the axial direction. These plurality of magnets 10 are arranged in a circular arc shape centered on the axis, and can generate magnetic force of the same strength evenly on the surface of the magnetic selection drum 2.
These magnets 10 extend half a circumference (angle They are arranged in a semicircular arc over a range of 180 degrees. Further, these magnets 10 are fixed in a non-rotatable state so as not to rotate together with the magnetic selection drum 2. Note that these magnets 10 may be permanent magnets or electromagnets.

磁着物捕集部5は、磁選ドラム2の表面から落下してくる磁着物4を捕集する磁着物捕集ホッパ11と、磁着物捕集ホッパ11で捕集された磁着物4を貯留する磁着物貯留部12と、を有している。非磁着物捕集部7は、磁選ドラム2の表面から落下してくる非磁着物6を捕集する非磁着物捕集ホッパ13と、非磁着物捕集ホッパ13で捕集された非磁着物6を貯留する非磁着物貯留部14と、を有している。 The magnetic material collection unit 5 includes a magnetic material collection hopper 11 that collects the magnetic material 4 falling from the surface of the magnetic separation drum 2, and stores the magnetic material 4 collected by the magnetic material collection hopper 11. It has a magnetic object storage section 12. The non-magnetic material collecting section 7 includes a non-magnetic material collection hopper 13 that collects the non-magnetic material 6 falling from the surface of the magnetic separation drum 2, and a non-magnetic material collection hopper 13 that collects the non-magnetic material 6 falling from the surface of the magnetic separation drum 2. It has a non-magnetized article storage section 14 that stores the kimono 6.

具体的には、磁着物捕集部は、磁選ドラム2の回転軸心から見て、回転方向側の側方に位置する外周面の下方に設けられており、下方に向かって鉛直に落下してくる磁着物を捕集している。また、磁着物捕集部は、磁選ドラム2の回転軸心から見て、回転軸心のちょうど下方に位置しており、回転軸心に向かって戻る方向に近接しつつ落下してくる磁着物を捕集している。 Specifically, the non- magnetic material collecting section 7 is provided below the outer circumferential surface located on the side in the direction of rotation when viewed from the rotation axis of the magnetic separation drum 2, and extends vertically downward. Falling non- magnetic objects 6 are collected. Also , the magnetic object collecting section 5 is located just below the rotation axis when viewed from the rotation axis of the magnetic separation drum 2, and the magnetic material collecting section 5 is located just below the rotation axis when viewed from the rotation axis of the magnetic separation drum 2 . Collecting Kimono 4 .

具体的には、上述した磁選機1では、以下のようにして磁選が行われる。
すなわち、磁選ドラム2の表面に供給された回収物のうち、磁性を有するNi、Co、Feなどの金属または金属酸化物(金属化合物)を含む成分(磁着物4)には、上述した磁石10の磁場の影響で磁力が発生し、これらの磁着物4は磁選ドラム2の表面に磁着する。一方、磁性を有さないCuなどの金属または金属酸化物(金属化合物)を含む成分(
非磁着物6)には、上述した磁力は発生せず、これらの非磁着物6は磁選ドラム2の表面に載せられただけの状態(磁着していないため、逆さまにすれば離脱可能な状態)となる。
Specifically, in the magnetic separator 1 described above, magnetic separation is performed as follows.
That is, among the collected materials supplied to the surface of the magnetic separation drum 2, components (magnetic materials 4) containing magnetic metals such as Ni, Co, and Fe or metal oxides (metal compounds) are treated with the magnet 10 described above. A magnetic force is generated under the influence of the magnetic field, and these magnetic objects 4 are magnetically attached to the surface of the magnetic selection drum 2. On the other hand, components containing non-magnetic metals such as Cu or metal oxides (metal compounds) (
The above-mentioned magnetic force is not generated in the non-magnetic objects 6), and these non-magnetic objects 6 are simply placed on the surface of the magnetic separation drum 2 (because they are not magnetically attached, they can be removed by turning them upside down). state).

なお、磁選ドラム2の表面に載せられただけであっても、非磁着物6が下側に位置する磁選ドラム2の表面で支えられている限りは、非磁着物6は磁選ドラム2の表面から離脱することはない。
しかし、磁選ドラム2が回転し、磁選ドラム2上での磁着物4や非磁着物6の位置が、下方に移動するにつれ、磁着物4や非磁着物6の位置と磁選ドラム2との位置関係が変化し、磁着物4や非磁着物6を下側に位置する磁選ドラム2の表面で支えることが困難になる。例えば、磁選ドラム2の回転軸心の側方に、磁着物4や非磁着物6の位置が変化した場合を考える。この場合、磁着物4や非磁着物6を下側に、これらを支えるべき磁選ドラム2の表面が存在しなくなる。加えて、磁着物4や非磁着物6には下側に向かって重力が作用し、磁着物4や非磁着物6を磁選ドラム2の表面から引き剥がす方向に力が作用する。
Note that even if the non-magnetic material 6 is only placed on the surface of the magnetic separation drum 2, as long as the non-magnetic material 6 is supported by the surface of the magnetic separation drum 2 located below, the non-magnetic material 6 will be placed on the surface of the magnetic separation drum 2. There will be no departure from.
However, as the magnetic separation drum 2 rotates and the positions of the magnetic objects 4 and non-magnetic objects 6 on the magnetic separation drum 2 move downward, the positions of the magnetic objects 4 and non-magnetic objects 6 and the position of the magnetic separation drum 2 change. The relationship changes, and it becomes difficult to support the magnetic objects 4 and non-magnetized objects 6 on the surface of the magnetic separation drum 2 located below. For example, consider a case where the position of the magnetic object 4 or the non-magnetic object 6 changes to the side of the rotation axis of the magnetic separation drum 2. In this case, there is no surface of the magnetic separation drum 2 that should support the magnetic objects 4 and non-magnetized objects 6 on the lower side. In addition, gravity acts downward on the magnetic material 4 and non-magnetic material 6, and force acts in a direction to peel off the magnetic material 4 and non-magnetic material 6 from the surface of the magnetic selection drum 2.

なお、重力が作用しても、磁着物4には磁力が作用しているので、簡単に磁選ドラム2の表面から剥がれることはない。しかし、磁力が作用していない非磁着物6は、磁選ドラム2の表面から重力により簡単に剥がれてしまう。
そのため、磁選ドラム2の回転軸心から見て、回転方向側の側方の位置で、非磁着物6は磁選ドラム2の表面から脱離し、下方に(法線方向に)向かって落下する。一方、磁着物4には、上述したように磁力が作用しているので、磁選ドラム2がさらに回転し、重力が磁力を上回る位置になるまで、磁着物4は磁選ドラム2の表面から脱離することはない。
In addition, even if gravity acts, since the magnetic force acts on the magnetic object 4, it will not be easily peeled off from the surface of the magnetic selection drum 2. However, the non-magnetized material 6 on which no magnetic force is applied is easily peeled off from the surface of the magnetic separation drum 2 due to gravity.
Therefore, the non-magnetic material 6 detaches from the surface of the magnetic separation drum 2 at a lateral position on the rotation direction side when viewed from the rotation axis of the magnetic separation drum 2, and falls downward (in the normal direction). On the other hand, since the magnetic force acts on the magnetic object 4 as described above, the magnetic object 4 is detached from the surface of the magnetic separation drum 2 until the magnetic separation drum 2 rotates further and reaches a position where the gravity exceeds the magnetic force. There's nothing to do.

具体的には、回転軸心から見て、回転方向側の側方下側の位置(時計の時針で4時~5時ぐらいの位置)で、磁着物4は磁選ドラム2の表面から脱離し、回転軸心に向かって戻る方向に近接しつつ落下する。
このようにして本実施形態の磁選機1では、磁着物4、つまりNi、Co、Feなどの金属または金属酸化物(金属化合物)を含む成分が、磁着物捕集部5に捕集される。また、非磁着物6、つまりCuなどの金属または金属酸化物(金属化合物)を含む成分が、非磁着物捕集部7に捕集される。
Specifically, the magnetic material 4 is detached from the surface of the magnetic separation drum 2 at a position on the lower side in the direction of rotation (about 4 o'clock to 5 o'clock on the hour hand of a clock) when viewed from the rotation axis. , it falls while approaching in the direction returning toward the rotation axis.
In this way, in the magnetic separator 1 of the present embodiment, the magnetically attracted material 4, that is, components containing metals such as Ni, Co, and Fe or metal oxides (metal compounds), are collected in the magnetically attracted material collecting section 5. . Further, non-magnetized matter 6, that is, a component containing a metal such as Cu or a metal oxide (metal compound), is collected in the non-magnetized matter collecting section 7.

上述した磁選機1を用いて磁選を行う場合、磁着物4と非磁着物6とが効率良く選別されるかは、磁選ドラム2の表面に供給された回収物が受ける遠心加速度a、及びドラム表面の磁束密度Bなどに影響を受ける。
例えば、回収物が受ける遠心加速度aが大きい場合、回収物に加わる遠心力も大きくなり、回収物が磁選ドラム2の表面から離脱しやすくなる。また、ドラム表面の磁束密度Bが小さい場合も、回収物を磁選ドラム2に引き寄せる磁力が小さくなり、遠心加速度aの場合と同様に回収物が磁選ドラム2の表面から離脱しやすくなる。
When performing magnetic separation using the magnetic separator 1 described above, whether the magnetic materials 4 and the non-magnetic materials 6 are efficiently separated depends on the centrifugal acceleration a that the collected materials supplied to the surface of the magnetic separation drum 2 receive, and the drum It is affected by the surface magnetic flux density B, etc.
For example, when the centrifugal acceleration a to which the collected material is subjected is large, the centrifugal force applied to the collected material also becomes large, making it easier for the collected material to separate from the surface of the magnetic separation drum 2. Also, when the magnetic flux density B on the drum surface is small, the magnetic force that attracts the recovered material to the magnetic separation drum 2 becomes small, and the recovered material becomes easier to separate from the surface of the magnetic separation drum 2, as in the case of centrifugal acceleration a.

一方、回収物が受ける遠心加速度aが小さい場合、回収物に加わる遠心力も小さくなり、回収物が磁選ドラム2の表面から離脱し難くなる。また、ドラム表面の磁束密度Bが大きい場合も、回収物を磁選ドラム2に引き寄せる磁力が大きくなり、遠心加速度aの場合と同様に回収物が磁選ドラム2の表面から離脱し難くなる。
そこで、本発明の前処理方法(磁選方法)では、前処理としてドラム式の磁選機1で磁選を行うものであって、ドラム表面の磁束密度B[G]、回収物が受ける遠心加速度a[m/s]の関係が、以下の式(1)~(4)を満たすような条件下で磁力選別することとしている。
On the other hand, when the centrifugal acceleration a applied to the collected material is small, the centrifugal force applied to the collected material also becomes small, making it difficult for the collected material to separate from the surface of the magnetic separation drum 2. Also, when the magnetic flux density B on the drum surface is large, the magnetic force that attracts the collected materials to the magnetic separation drum 2 becomes large, making it difficult for the collected materials to separate from the surface of the magnetic separation drum 2, as in the case of centrifugal acceleration a.
Therefore, in the pretreatment method (magnetic separation method) of the present invention, magnetic separation is performed in a drum-type magnetic separator 1 as a pretreatment, and the magnetic flux density B [G] on the drum surface, the centrifugal acceleration a [ m/s 2 ] under conditions that satisfy the following equations (1) to (4).

B≦198.9a+1085.7 ・・・式(1)
B≦-764.4a+16912.3 ・・・式(2)
B≦3000 ・・・式(3)
B≧1170 ・・・式(4)
具体的には、上述した式(1)~式(4)をすべて満足する条件とは、回収物が受ける遠心加速度a[m/s]を横軸にとり、ドラム表面の磁束密度B[G]を縦軸にとった場合に、式()~式()の各直線で囲まれた台形の範囲に、磁束密度B[G]及び遠心加速度a[m/s]の値を設定することに他ならない。
B≦198.9a+1085.7...Formula (1)
B≦-764.4a+16912.3...Formula (2)
B≦3000...Formula (3)
B≧1170...Formula (4)
Specifically, the condition that satisfies all of the above-mentioned formulas (1) to (4) means that the horizontal axis is the centrifugal acceleration a [m/s 2 ] that the collected material receives, and the magnetic flux density B [G ] is taken as the vertical axis, the values of magnetic flux density B [G] and centrifugal acceleration a [m/s 2 ] are expressed in the trapezoidal range surrounded by the straight lines of equations ( 1 ) to ( 4 ). It's nothing but setting.

なお、上述した回収物については、どのような粒径のものでも磁選できるわけではないので、磁選が実施可能になるという観点で、粒径が最大でも5mm、好ましくは2mm以下のものを回収物として選択するのが好ましい。
上述した式(1)~式(4)をすべて満足する条件で磁選を行えば、磁着物捕集部5に回収された磁着物4のCu濃度を1.6wt%以下にすることができ、また有価金属であるCo及びNiの回収率(歩留まり)を90%以上とすることができ、回収物からCuを事前に確実に除去し、且つCuが除去された回収物からCoやNiを高歩留で回収することが可能となる。
Regarding the above-mentioned recovered materials, it is not possible to perform magnetic separation on particles of any particle size, so from the viewpoint that magnetic separation can be carried out, recovered materials with a maximum particle size of 5 mm, preferably 2 mm or less, should be selected. It is preferable to select it as
If magnetic separation is performed under conditions that satisfy all of the above-mentioned formulas (1) to (4), the Cu concentration of the magnetic material 4 collected in the magnetic material collection section 5 can be reduced to 1.6 wt% or less, In addition, the recovery rate (yield) of Co and Ni, which are valuable metals, can be increased to 90% or more, and Cu can be reliably removed from the recovered material in advance, and Co and Ni can be highly recovered from the recovered material from which Cu has been removed. It becomes possible to recover the amount at a yield rate.

次に、実施例及び比較例を用いて、本発明の前処理方法が有する作用効果について詳しく説明する。
実施例及び比較例は、ニッケル、コバルト、アルミニウム、及び銅を含むリチウムイオンバッテリ(LIB)の廃電池に対して粉砕、篩分を行い、篩下に分別されたものを回収物として、有価金属の回収を行うと共に、回収率の算出を行ったものである。より詳しくは、実施例及び比較例は、永久磁石(磁石10)を用いたドラム式の磁選機1(エリーズ製)を用いて、上述した回収物を、磁選ドラム2が10rpm、20rpm、27rpm、36rpm、40rpm、48rpm、60rpm、66rpm、72rpm、80rpmの回転数で回転している磁選機1に投入し、磁選機1において磁着物4と非磁着物6とに磁選(分級)したものである。磁選された実施例及び比較例の磁着物4及び非磁着物6は、それぞれ重量を秤量後、ICP分析法によりCu、Co、Niを分析した。なお、磁選前の元原料に対しても、ICP分析法によりCu、Co、Niを分析し、重量比率(重量パーセント)の濃度[wt%]を磁選の前後でそれぞれ求めた。
Next, the effects of the pretreatment method of the present invention will be explained in detail using Examples and Comparative Examples.
In the Examples and Comparative Examples, waste lithium-ion batteries (LIB) containing nickel, cobalt, aluminum, and copper are crushed and sieved, and the material separated under the sieve is recovered and valuable metals are recovered. , and calculated the recovery rate. More specifically, in the Examples and Comparative Examples, the above-mentioned recovered material was collected using a drum-type magnetic separator 1 (manufactured by Eriez) using a permanent magnet (magnet 10), and the magnetic separator drum 2 was rotated at 10 rpm, 20 rpm, 27 rpm, It is fed into a magnetic separator 1 rotating at rotation speeds of 36 rpm, 40 rpm, 48 rpm, 60 rpm, 66 rpm, 72 rpm, and 80 rpm, and magnetically separated (classified) into magnetic materials 4 and non-magnetic materials 6 in the magnetic separator 1. . The magnetically selected magnetic materials 4 and non-magnetized materials 6 of Examples and Comparative Examples were weighed and then analyzed for Cu, Co, and Ni by ICP analysis. Note that the raw materials before magnetic separation were also analyzed for Cu, Co, and Ni by ICP analysis, and the concentration [wt%] in weight ratio (weight percent) was determined before and after magnetic separation.

また、実施例及び比較例で評価に用いたCo及びNiの総歩留り(有価金属の総歩留まり)は、以下の式(5)によって算出した。このCo及びNiの総歩留りとは、表1中で「Co+Ni歩留まり」のことであり、「Niの歩留り」と「Coの歩留まり」との和に他ならない。
総歩留り(Co+Ni歩留まり)=
(100×磁着物4重量[g]×磁着物4中のCo濃度[wt%]
+ 100×磁着物4重量[g]×磁着物4中のNi濃度[wt%])
÷(磁選機1に投入した原料重量[g]×元原料中Co濃度[wt%]
+磁選機1に投入した原料重量[g]×Ni濃度[wt%]) ・・・(5)
また、表1の実施例及び比較例において得られたCu濃度[wt%]は、磁選後に得られた磁着物4に含まれるCuを、CoやNiと同様にICP分析して得られたものである。
Further, the total yield of Co and Ni (total yield of valuable metals) used for evaluation in the Examples and Comparative Examples was calculated by the following formula (5). The total yield of Co and Ni refers to "Co+Ni yield" in Table 1, and is nothing but the sum of "Ni yield" and "Co yield".
Total yield (Co+Ni yield) =
(100 x weight of magnetized material 4 [g] x Co concentration in magnetized material 4 [wt%]
+ 100 x weight of magnetized material 4 [g] x Ni concentration in magnetized material 4 [wt%])
÷(Weight of raw material fed into magnetic separator 1 [g] x Co concentration in original raw material [wt%]
+ Weight of raw material fed into magnetic separator 1 [g] × Ni concentration [wt%]) ... (5)
In addition, the Cu concentration [wt%] obtained in the Examples and Comparative Examples in Table 1 was obtained by ICP analysis of Cu contained in the magnetic material 4 obtained after magnetic separation in the same manner as Co and Ni. It is.

計測で得られたCu濃度については、1.6wt%以下の場合を合格、1.6wt%より大きくなる場合を不合格とした。また、算出された総歩留りについては、90%以上の場合を合格、90%より低くなる場合を不合格とした。Cu濃度の結果、及び総歩留りの結果がいずれも合格の場合に、総合的な判断の結果を「合格」とした。さらに、Cu濃度の結果、及び総歩留りの結果がいずれかが不合格の場合に、総合的な判断の結果を「不合格」とした。 Regarding the Cu concentration obtained by measurement, if it was 1.6wt% or less, it was considered a pass, and if it was greater than 1.6wt%, it was considered a fail. Regarding the calculated total yield, a case of 90% or more was judged as a pass, and a case of lower than 90% was judged as a fail. If both the Cu concentration result and the total yield result were passed, the overall judgment result was determined to be "pass". Furthermore, if either the Cu concentration result or the total yield result was a failure, the overall judgment result was determined to be a "fail".

Cuの計測結果、総歩留り(Co+Ni歩留まり)、及び総合的な判断の結果を、表1に示す。 Table 1 shows the Cu measurement results, total yield (Co+Ni yield), and comprehensive judgment results.

上述した表1の実施例1~実施例8は、式(1)~式(4)の結果をいずれも満足し、また「Cu濃度」が0.75wt%~1.56wt%となっていて、1.6wt%以下という基準を満足する。さらに、「総歩留り」が92.0%~99.9%となっていて、90%以上という基準を満足する。つまり、式(1)~式(4)の結果をいずれも満足する実施例1~実施例8は、「回収物からCuを事前に確実に除去する」という効果と、「回収物からCoやNiを高歩留で回収する」という効果とを、双方満足できるものとなり、合格の判断となった。 Examples 1 to 8 in Table 1 above satisfy the results of formulas (1) to (4), and the "Cu concentration" is 0.75wt% to 1.56wt%, which is 1.6%. Satisfies the standard of wt% or less. Furthermore, the "total yield" is 92.0% to 99.9%, satisfying the standard of 90% or higher. In other words, Examples 1 to 8, which satisfy all of the results of formulas (1) to (4), have the effect of "reliably removing Cu from the recovered material in advance" and the effect of "reliably removing Cu from the recovered material." The effect of "recovering Ni at a high yield" was satisfactory for both parties, and the test was passed.

一方、比較例1~比較例3は、磁束密度Bが960[G]であり、いずれも式(4)を明らかに満足していない。また、比較例4は、磁束密度Bが1170[G]であるのに対して、式(2)の右辺が「-3849.68」となり、式(2)を満足しない。さらに、比較例5は、磁束密度Bが3000[G]であるのに対して、式(1)の右辺が「2162.72」となり、式(1)を満足しない。最後に、比較例6は、磁束密度Bが6500[G]であり、式(3)を明らかに満足していない。 On the other hand, in Comparative Examples 1 to 3, the magnetic flux density B is 960 [G], and none of them clearly satisfy Equation (4). Furthermore, in Comparative Example 4, although the magnetic flux density B is 1170 [G], the right side of equation (2) is "-3849.68", and equation (2) is not satisfied. Furthermore, in Comparative Example 5, although the magnetic flux density B is 3000 [G], the right side of equation (1) is "2162.72", which does not satisfy equation (1). Finally, Comparative Example 6 has a magnetic flux density B of 6500 [G], which clearly does not satisfy equation (3).

つまり、式(1)~式(4)のいずれかを満足できない比較例1~比較例6は、「回収物からCuを事前に確実に除去する」という効果と、「回収物からCoやNiを高歩留で回収する」という効果との、一方しか満足できず、不合格の判断となった。
以上の結果から、上述した式(1)~式(4)をすべて満足する条件で磁選を行えば、磁着物捕集部5に回収された磁着物4のCu濃度を1.6wt%以下にすることができ、また有価金属であるCo及びNiの回収率(歩留まり)を90%以上とすることができ、回収物からCuを事前に確実に除去し、且つCuが除去された回収物からCoやNiを高歩留で回収することが可能となる。
In other words, Comparative Examples 1 to 6, which cannot satisfy any of Equations (1) to (4), have the effect of "reliably removing Cu from the recovered material in advance" and the effect of "reliably removing Co and Ni from the recovered material." Only one of the two effects was satisfied, namely, "recovery at a high yield rate."
From the above results, if magnetic separation is performed under conditions that satisfy all of the above-mentioned formulas (1) to (4), the Cu concentration of the magnetic material 4 collected in the magnetic material collection section 5 can be reduced to 1.6 wt% or less. It is also possible to increase the recovery rate (yield) of valuable metals Co and Ni to 90% or more. It becomes possible to recover Co and Ni at a high yield.

なお、今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。特に、今回開示された実施形態において、明示的に開示されていない事項、例えば、運転条件や操業条件、各種パラメータ、構成物の寸法、重量、体積などは、当業者が通常実施する範囲を逸脱するものではなく、通常の当業者であれば、容易に想定することが可能な値を採用している。 It should be noted that the embodiments disclosed herein are illustrative in all respects and should not be considered restrictive. In particular, in the embodiments disclosed herein, matters that are not explicitly disclosed, such as operating conditions, operating conditions, various parameters, dimensions, weights, and volumes of components, are beyond the scope of those skilled in the art. Rather, values that can be easily assumed by a person skilled in the art are used.

1 磁選機
2 磁選ドラム
3 フィーダ
4 磁着物
5 磁着物捕集部
6 非磁着物
7 非磁着物捕集部
8 ホッパ
9 コンベア部
10 磁石
11 磁着物捕集ホッパ
12 磁着物貯留部
13 非磁着物捕集ホッパ
14 非磁着物貯留部
1 Magnetic separator 2 Magnetic separation drum 3 Feeder 4 Magnetized material 5 Magnetized material collection section 6 Non-magnetized material 7 Non-magnetized material collection section 8 Hopper 9 Conveyor section 10 Magnet 11 Magnetized material collection hopper 12 Magnetized material storage section 13 Non-magnetized material Collection hopper 14 Non-magnetized material storage section

Claims (2)

二次電池に対して、少なくとも破砕の処理を経て得られた、ニッケル及びコバルトの1種以上を含む磁着物とアルミニウム及び銅の1種以上を含む非磁着物とを含む回収物から、磁着物を化学反応させてニッケル及びコバルトの1種以上を回収するに当たり、前処理としてドラム式の磁選機で回収物から磁着物を得るものであって、ドラム表面の磁束密度B[G]、回収物が受ける遠心加速度a[m/s]の関係が、以下の式(1)~(4)を満たすような条件下で磁力選別する
ことを特徴とした二次電池から有価元素を回収する際の前処理方法。
B≦198.9a+1085.7 ・・・式(1)
B≦-764.4a+16912.3 ・・・式(2)
B≦3000 ・・・式(3)
B≧1170 ・・・式(4)
For secondary batteries, magnetic materials are collected from collected materials obtained through at least crushing treatment that include magnetic materials containing one or more of nickel and cobalt and non-magnetic materials containing one or more of aluminum and copper. In recovering one or more of nickel and cobalt through a chemical reaction, a magnetic substance is obtained from the recovered material using a drum-type magnetic separator as a pretreatment, and the magnetic flux density B [G] on the drum surface, the recovered material When recovering valuable elements from a secondary battery, magnetic separation is performed under conditions such that the relationship between the centrifugal acceleration a [m/s 2 ] that the element receives satisfies the following formulas (1) to (4). Pretreatment method.
B≦198.9a+1085.7...Formula (1)
B≦-764.4a+16912.3...Formula (2)
B≦3000...Formula (3)
B≧1170...Formula (4)
二次電池に対して、少なくとも破砕の処理を経て得られた、ニッケル及びコバルトの1種以上を含む磁着物とアルミニウム及び銅の1種以上を含む非磁性物とを含む回収物から、磁着物をドラム式の磁選機で磁選し、この磁着物を化学反応させてニッケル及びコバルトの1種以上を回収する方法であって、
前記磁選機は、ドラム表面の磁束密度B[G]、回収物が受ける遠心加速度a[m/s]の関係が、以下の式(1)~(4)を満たすような条件下で磁力選別する
ことを特徴とした二次電池から有価元素を回収する方法。
B≦198.9a+1085.7 ・・・式(1)
B≦-764.4a+16912.3 ・・・式(2)
B≦3000 ・・・式(3)
B≧1170 ・・・式(4)
For secondary batteries, magnetic materials are collected from collected materials that are obtained through at least crushing treatment and include magnetic materials containing one or more of nickel and cobalt and non-magnetic materials containing one or more of aluminum and copper. A method for recovering one or more types of nickel and cobalt by magnetically separating them using a drum-type magnetic separator and chemically reacting the magnetic substances, the method comprising:
The magnetic separator operates under conditions such that the relationship between the magnetic flux density B [G] on the drum surface and the centrifugal acceleration a [m/s 2 ] that the collected material receives satisfies the following equations (1) to (4). A method for recovering valuable elements from secondary batteries, which is characterized by sorting.
B≦198.9a+1085.7...Formula (1)
B≦-764.4a+16912.3...Formula (2)
B≦3000...Formula (3)
B≧1170...Formula (4)
JP2020121847A 2020-07-16 2020-07-16 Pretreatment method for recovering valuable elements from secondary batteries and method for recovering valuable elements from secondary batteries Active JP7355713B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020121847A JP7355713B2 (en) 2020-07-16 2020-07-16 Pretreatment method for recovering valuable elements from secondary batteries and method for recovering valuable elements from secondary batteries
CN202110725412.1A CN113943857A (en) 2020-07-16 2021-06-29 Pretreatment method for recovering valuable elements from secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020121847A JP7355713B2 (en) 2020-07-16 2020-07-16 Pretreatment method for recovering valuable elements from secondary batteries and method for recovering valuable elements from secondary batteries

Publications (3)

Publication Number Publication Date
JP2022018616A JP2022018616A (en) 2022-01-27
JP2022018616A5 JP2022018616A5 (en) 2023-03-07
JP7355713B2 true JP7355713B2 (en) 2023-10-03

Family

ID=79327427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020121847A Active JP7355713B2 (en) 2020-07-16 2020-07-16 Pretreatment method for recovering valuable elements from secondary batteries and method for recovering valuable elements from secondary batteries

Country Status (2)

Country Link
JP (1) JP7355713B2 (en)
CN (1) CN113943857A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017037807A (en) 2015-08-11 2017-02-16 学校法人早稲田大学 Processing method of lithium ion battery
JP2017113744A (en) 2015-12-17 2017-06-29 公立大学法人県立広島大学 Magnetic force selector, method of application of magnetic force selector, and dry processing system of pollutant
JP2017140555A (en) 2016-02-08 2017-08-17 株式会社エコネコル Method and apparatus for recovering noble metal from incineration ash
CN108212520A (en) 2017-12-19 2018-06-29 郭民 Centrifugal cylinder magnetic separator
JP2018120716A (en) 2017-01-24 2018-08-02 三菱マテリアル株式会社 Method for recovering valuables from used lithium ion batteries

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2087203C1 (en) * 1994-05-31 1997-08-20 Алтайский государственный технический университет им.И.И.Ползунова Magnetic separator
CN100449011C (en) * 2007-05-18 2009-01-07 北京矿冶研究总院 Method for recovering valuable metal in invalid lithium ion battery
CN201231178Y (en) * 2008-07-07 2009-05-06 潍坊华新自动化设备有限公司 Permanent magnetism separation roller
CN101632959A (en) * 2009-08-19 2010-01-27 山西太钢不锈钢股份有限公司 Method for reducing phosphorus in fly ash
CN201529568U (en) * 2009-10-09 2010-07-21 潍坊恒基磁电机械有限公司 Automatic magnetic separator of dry powder
EP2574405A1 (en) * 2011-09-27 2013-04-03 Siemens Aktiengesellschaft Magnetic separator, method for operating and use of same
CN103846158B (en) * 2014-02-27 2016-05-11 中国地质科学院郑州矿产综合利用研究所 Power magnetic suspension separation and enrichment method and equipment
CN104984823B (en) * 2015-07-21 2017-03-01 西安建筑科技大学 Annular movement magnetic system dry Type fines material magnetic separator
CN106111323B (en) * 2016-08-29 2018-03-09 上海交通大学 The half reverse-flow concentration equipment for reclaiming Magnaglo in ultra-fine mixed-powder
CN106733162B (en) * 2017-01-19 2019-01-22 安徽科技学院 A kind of method and its magnetic separator carrying out classification magnetic separation by quartz sand size size
CN109046765A (en) * 2018-07-18 2018-12-21 内蒙古科技大学 A kind of dry magnetic separation technology experimental provision
CN109244578B (en) * 2018-09-10 2020-02-28 江西睿达新能源科技有限公司 Method for recovering valuable metals from waste lithium batteries
CN109248776B (en) * 2018-10-16 2021-08-17 何双江 High-grade magnetic separation process
CN110694794A (en) * 2019-11-05 2020-01-17 重庆科技学院 Electromagnetic magnetic separation device for treating solid garbage

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017037807A (en) 2015-08-11 2017-02-16 学校法人早稲田大学 Processing method of lithium ion battery
JP2017113744A (en) 2015-12-17 2017-06-29 公立大学法人県立広島大学 Magnetic force selector, method of application of magnetic force selector, and dry processing system of pollutant
JP2017140555A (en) 2016-02-08 2017-08-17 株式会社エコネコル Method and apparatus for recovering noble metal from incineration ash
JP2018120716A (en) 2017-01-24 2018-08-02 三菱マテリアル株式会社 Method for recovering valuables from used lithium ion batteries
CN108212520A (en) 2017-12-19 2018-06-29 郭民 Centrifugal cylinder magnetic separator

Also Published As

Publication number Publication date
CN113943857A (en) 2022-01-18
JP2022018616A (en) 2022-01-27

Similar Documents

Publication Publication Date Title
Huang et al. Recycling of lithium-ion batteries: Recent advances and perspectives
US11919010B2 (en) Magnetic separation of electrochemical cell materials
JP6469362B2 (en) Method for recovering valuable materials from lithium ion secondary batteries
Ekberg et al. Lithium batteries recycling
CN100449011C (en) Method for recovering valuable metal in invalid lithium ion battery
JP6378502B2 (en) Method for recovering valuable materials from lithium ion secondary batteries
Hu et al. High-intensity magnetic separation for recovery of LiFePO4 and graphite from spent lithium-ion batteries
CN106935923B (en) The method of valuable metal is recycled from waste nickel hydrogen battery
RU2768719C1 (en) Method of recycling spent lithium-ion batteries
CN111180821B (en) Harmless recycling and sorting method for waste lithium ion batteries
Marinos et al. An Approach to processing of lithium-ion batteries for the zero-waste recovery of materials
Çuhadar et al. Characterization and recycling of lithium nickel manganese cobalt oxide type spent mobile phone batteries based on mineral processing technology
Sun Lithium-Ion Battery Recycling: Challenges and Opportunities
JP7355713B2 (en) Pretreatment method for recovering valuable elements from secondary batteries and method for recovering valuable elements from secondary batteries
Werner et al. Mechanical and physical processes of battery recycling
US20230411719A1 (en) Method for recovering valuable materials from lithium ion secondary battery
CA3094156C (en) Method for processing electronic and electrical device component scrap
JPH08287967A (en) Method of recovering cobalt, copper, and lithium from used lithium secondary battery
Farghal et al. Exploitation of spent nickel-metal hydride (Ni-MH) batteries as a source of value-added products
Marinos et al. Processing of lithium-ion batteries for zero-waste materials recovery
JP7236524B2 (en) Method for collecting valuables from lithium ion secondary battery
Jha et al. Recovery of Rare Earth Metals (REMs) from Nickel Metal Hydride Batteries of Electric Vehicles. Minerals 2022, 12, 34
JP7316411B1 (en) Method for collecting valuables from lithium ion secondary battery
VASILE et al. Physical separation and recycling-oriented characterization of metallic material contained in spent NiMH batteries
JP7123600B2 (en) Processing method of electronic and electrical equipment parts waste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230227

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230921

R150 Certificate of patent or registration of utility model

Ref document number: 7355713

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150