JP7352301B2 - How to remove electrodeposited photoresist coating - Google Patents
How to remove electrodeposited photoresist coating Download PDFInfo
- Publication number
- JP7352301B2 JP7352301B2 JP2021210168A JP2021210168A JP7352301B2 JP 7352301 B2 JP7352301 B2 JP 7352301B2 JP 2021210168 A JP2021210168 A JP 2021210168A JP 2021210168 A JP2021210168 A JP 2021210168A JP 7352301 B2 JP7352301 B2 JP 7352301B2
- Authority
- JP
- Japan
- Prior art keywords
- electrodeposited
- photoresist coating
- electrodeposited photoresist
- stripping solution
- photoresist
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920002120 photoresistant polymer Polymers 0.000 title claims description 166
- 238000000576 coating method Methods 0.000 title claims description 133
- 239000011248 coating agent Substances 0.000 title claims description 124
- 229910052751 metal Inorganic materials 0.000 claims description 59
- 239000002184 metal Substances 0.000 claims description 59
- 238000000034 method Methods 0.000 claims description 58
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 57
- 239000003960 organic solvent Substances 0.000 claims description 50
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 41
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 claims description 39
- 238000004070 electrodeposition Methods 0.000 claims description 39
- 125000002091 cationic group Chemical group 0.000 claims description 21
- 150000007524 organic acids Chemical class 0.000 claims description 19
- 239000004094 surface-active agent Substances 0.000 claims description 19
- 125000000129 anionic group Chemical group 0.000 claims description 16
- 235000019445 benzyl alcohol Nutrition 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 11
- 239000002736 nonionic surfactant Substances 0.000 claims description 8
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 claims description 6
- 239000003945 anionic surfactant Substances 0.000 claims description 6
- QCDWFXQBSFUVSP-UHFFFAOYSA-N 2-phenoxyethanol Chemical compound OCCOC1=CC=CC=C1 QCDWFXQBSFUVSP-UHFFFAOYSA-N 0.000 claims description 5
- 229960005323 phenoxyethanol Drugs 0.000 claims description 5
- LDMRLRNXHLPZJN-UHFFFAOYSA-N 3-propoxypropan-1-ol Chemical compound CCCOCCCO LDMRLRNXHLPZJN-UHFFFAOYSA-N 0.000 claims description 4
- 150000001735 carboxylic acids Chemical class 0.000 claims description 4
- 150000001991 dicarboxylic acids Chemical class 0.000 claims description 4
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 claims description 3
- 125000004432 carbon atom Chemical group C* 0.000 claims description 3
- 239000000243 solution Substances 0.000 description 68
- 229910052802 copper Inorganic materials 0.000 description 32
- 239000010949 copper Substances 0.000 description 32
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 31
- 206010040844 Skin exfoliation Diseases 0.000 description 29
- 238000002845 discoloration Methods 0.000 description 18
- 239000000463 material Substances 0.000 description 17
- 238000007747 plating Methods 0.000 description 15
- 239000002585 base Substances 0.000 description 14
- 238000011282 treatment Methods 0.000 description 13
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 12
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 10
- 239000000758 substrate Substances 0.000 description 10
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 9
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 8
- 239000008367 deionised water Substances 0.000 description 8
- 229910021641 deionized water Inorganic materials 0.000 description 8
- 238000011161 development Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 238000005868 electrolysis reaction Methods 0.000 description 8
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 8
- 239000011347 resin Substances 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- 238000005530 etching Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 5
- 239000003093 cationic surfactant Substances 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 239000004310 lactic acid Substances 0.000 description 5
- 235000014655 lactic acid Nutrition 0.000 description 5
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 5
- 229910001220 stainless steel Inorganic materials 0.000 description 5
- 239000010935 stainless steel Substances 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 5
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 4
- 102000018779 Replication Protein C Human genes 0.000 description 4
- 108010027647 Replication Protein C Proteins 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 235000019253 formic acid Nutrition 0.000 description 4
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 235000005985 organic acids Nutrition 0.000 description 3
- 235000006408 oxalic acid Nutrition 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000011975 tartaric acid Substances 0.000 description 3
- 235000002906 tartaric acid Nutrition 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 2
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 235000011054 acetic acid Nutrition 0.000 description 2
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229910000000 metal hydroxide Inorganic materials 0.000 description 2
- 150000004692 metal hydroxides Chemical class 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 2
- RWNUSVWFHDHRCJ-UHFFFAOYSA-N 1-butoxypropan-2-ol Chemical compound CCCCOCC(C)O RWNUSVWFHDHRCJ-UHFFFAOYSA-N 0.000 description 1
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 1
- IBLKWZIFZMJLFL-UHFFFAOYSA-N 1-phenoxypropan-2-ol Chemical compound CC(O)COC1=CC=CC=C1 IBLKWZIFZMJLFL-UHFFFAOYSA-N 0.000 description 1
- OHJYHAOODFPJOD-UHFFFAOYSA-N 2-(2-ethylhexoxy)ethanol Chemical compound CCCCC(CC)COCCO OHJYHAOODFPJOD-UHFFFAOYSA-N 0.000 description 1
- CUZKCNWZBXLAJX-UHFFFAOYSA-N 2-phenylmethoxyethanol Chemical compound OCCOCC1=CC=CC=C1 CUZKCNWZBXLAJX-UHFFFAOYSA-N 0.000 description 1
- YEYKMVJDLWJFOA-UHFFFAOYSA-N 2-propoxyethanol Chemical compound CCCOCCO YEYKMVJDLWJFOA-UHFFFAOYSA-N 0.000 description 1
- DQYSALLXMHVJAV-UHFFFAOYSA-M 3-heptyl-2-[(3-heptyl-4-methyl-1,3-thiazol-3-ium-2-yl)methylidene]-4-methyl-1,3-thiazole;iodide Chemical compound [I-].CCCCCCCN1C(C)=CS\C1=C\C1=[N+](CCCCCCC)C(C)=CS1 DQYSALLXMHVJAV-UHFFFAOYSA-M 0.000 description 1
- MFKRHJVUCZRDTF-UHFFFAOYSA-N 3-methoxy-3-methylbutan-1-ol Chemical compound COC(C)(C)CCO MFKRHJVUCZRDTF-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- MMCOUVMKNAHQOY-UHFFFAOYSA-N carbonoperoxoic acid Chemical class OOC(O)=O MMCOUVMKNAHQOY-UHFFFAOYSA-N 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 229940028356 diethylene glycol monobutyl ether Drugs 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000004299 exfoliation Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- VIJUZNJJLALGNJ-UHFFFAOYSA-N n,n-dimethylbutanamide Chemical compound CCCC(=O)N(C)C VIJUZNJJLALGNJ-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- JCGNDDUYTRNOFT-UHFFFAOYSA-N oxolane-2,4-dione Chemical compound O=C1COC(=O)C1 JCGNDDUYTRNOFT-UHFFFAOYSA-N 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000007592 spray painting technique Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229940005605 valeric acid Drugs 0.000 description 1
Images
Landscapes
- Photosensitive Polymer And Photoresist Processing (AREA)
Description
本発明は、電着フォトレジスト塗膜が金属部の表面に電着されている被処理物において、該フォトレジスト塗膜を該金属部の表面から電解剥離するための、電着フォトレジスト塗膜剥離方法に関する。 The present invention provides an electrodeposited photoresist coating film for electrolytically peeling off the photoresist coating film from the surface of the metal part in a workpiece in which the electrodeposited photoresist coating film is electrodeposited on the surface of the metal part. Regarding a peeling method.
リードフレーム、バスバー、電子回路基板などを部分めっきする際には、フォトレジストをめっきマスキング剤として用いることができる。
その中でも、電着フォトレジストを用いた電着法が、めっき漏れを抑えられる点で、他のフォトレジストに比べて、基材への密着性や、基材の表裏および側面に対する付き回り性が有利であり、均一なフォトレジスト塗膜を形成が出来る。
ネガ型電着フォトレジストは電子部品のリードフレームやバスバー用途や水晶デバイス用途などで広く用いられており、使用する用途により様々なタイプのネガ型電着フォトレジストが使い分けられているが、電子回路基板のさらなる微細化に伴い、高耐めっき薬品性、耐エッチング性が求められ金属表面との高密着性への要望が高い。
When partially plating lead frames, bus bars, electronic circuit boards, etc., photoresist can be used as a plating masking agent.
Among these, the electrodeposition method using electrodeposited photoresist has the advantage of suppressing plating leakage, and has better adhesion to the substrate and coverage on the front, back, and sides of the substrate than other photoresists. Advantageously, uniform photoresist coatings can be formed.
Negative-tone electrodeposited photoresists are widely used in lead frames, busbars, crystal devices, etc. of electronic components, and various types of negative-tone electrodeposited photoresists are used depending on the intended use. With the further miniaturization of substrates, high plating chemical resistance and etching resistance are required, and there is a high demand for high adhesion to metal surfaces.
金属表面との高い密着性が要求される一方で、電着フォトレジスト塗料はめっき処理を施した後に電着フォトレジスト塗膜を剥離する工程を含み、良好な剥離性を有することも求められる。従来、この剥離工程では溶剤や酸乃至アルカリを有した水系剥離剤が使用されており、剥離剤への浸漬乃至スプレー処理などで剥離している。しかしながら、電着フォトレジストと金属表面との高い密着性により、これらの処理では完全に剥離されずに金属表面上に電着フォトレジストが残留し、残留した電着フォトレジスト塗膜に起因する不良品が発生する。また、浸漬やスプレーによる処理では、剥離する際に硬化膜が被膜のまま剥離することがあるため、剥離した被膜が剥離液中に漂い、それが再付着することがあり、リードフレーム製品等の品質が損なわれる場合もあった。 While high adhesion to metal surfaces is required, electrodeposition photoresist paints are also required to have good releasability, as they include a step of peeling off the electrodeposition photoresist coating after plating. Conventionally, in this stripping process, a water-based stripping agent containing a solvent or an acid or alkali is used, and stripping is performed by dipping in the stripping agent or spraying. However, due to the high adhesion between the electrodeposited photoresist and the metal surface, these treatments do not completely remove the electrodeposited photoresist and leave the electrodeposited photoresist on the metal surface, resulting in defects caused by the remaining electrodeposited photoresist coating. Good products are produced. In addition, when treating with immersion or spraying, the cured film may peel off as a film when it is peeled off, so the peeled off film may float in the stripping solution and re-adhere, causing damage to lead frame products, etc. In some cases, quality was compromised.
レジスト剥離に関する従来の技術においては、レジストを構成する樹脂中に基材との離型性に優れるシリコン含有レジストを用いる手法(特許文献1)や、有機溶剤に容易に溶解するポリマーを用いることで、溶解剥離を促進させる方法(特許文献2)が挙げられる。
また、アルカリ金属の水酸化物及びアミンを含有するアルカリ性の剥離液中にて通電を行うことで樹脂の剥離を促進させる手法(特許文献3)や、塗膜と基材との間に電極を挿入させ、挿入した電極に通電することで塗膜を剥離する工具を用いる手法(特許文献4)といった、レジスト組成を変更することなく、塗膜を剥離させる方法も用いられている。
しかしながら、特許文献1および特許文献2に記載のようなレジストの組成に変更すると、耐めっき液耐性や基材との密着性が低下する恐れがある。また、特許文献3に記載のようなアルカリ性の剥離液はカチオン性のネガ型フォトレジスト電着塗膜では剥離性が劣るので用いることが出来ない。更に、特許文献4に記載のような工具は、細い部分を有する金属基材を容易に変形させる恐れがある。
Conventional techniques for resist peeling include a method using a silicon-containing resist that has excellent releasability from the base material in the resin constituting the resist (Patent Document 1), and a method using a polymer that easily dissolves in organic solvents. , a method of promoting dissolution and peeling (Patent Document 2).
In addition, there is a method that promotes resin peeling by applying electricity in an alkaline peeling solution containing an alkali metal hydroxide and an amine (Patent Document 3), and a method that uses electrodes between the coating film and the base material. A method of peeling off the coating film without changing the resist composition is also used, such as a method using a tool that peels off the coating film by inserting an electrode and energizing the inserted electrode (Patent Document 4).
However, if the composition of the resist is changed to the one described in Patent Document 1 and Patent Document 2, there is a possibility that the resistance to plating solution and the adhesion with the base material may decrease. Furthermore, an alkaline stripping solution such as that described in Patent Document 3 cannot be used for a cationic negative photoresist electrodeposited coating because its stripping properties are poor. Furthermore, the tool described in Patent Document 4 may easily deform a metal base material having a thin portion.
以上のように、金属表面との密着性が良好なネガ型電着フォトレジスト塗膜を、レジスト剥離工程において処理基材を変形させることなく良好に電着フォトレジストを剥離する手法はこれまでに提供されていなかった。 As described above, there has been no method to successfully remove negative-tone electrodeposited photoresist coatings that have good adhesion to metal surfaces without deforming the treated substrate during the resist stripping process. It wasn't provided.
本発明は、上記のような従来技術における問題を解決したものであり、電着フォトレジスト塗膜が金属部の表面に形成されている被処理物において、電着フォトレジスト塗膜を金属表面から、短時間で剥離することができ、一旦剥離して電解剥離処理に漂った電着レジスト片が金属表面に再付着することを低減でき、金属表面の変色を抑制することができる、剥離方法を提供することを課題とする。 The present invention solves the above-mentioned problems in the prior art, and in a workpiece in which an electrodeposited photoresist coating is formed on the surface of a metal part, the electrodeposition photoresist coating is removed from the metal surface. , a peeling method that can be peeled off in a short time, reduces the possibility that electrodeposited resist pieces that have been peeled off and drifted during electrolytic peeling will re-adhere to the metal surface, and can suppress discoloration of the metal surface. The challenge is to provide.
本発明者らは、鋭意研究の結果、剥離液に浸漬された被処理物に特定の印加を行って、剥離液に含有される水を電気分解して泡を発生させて電着フォトレジスト塗膜を電解剥離することにより、上記問題を克服できることを見出して、本発明に至った。
すなわち、本発明は、以下の点を特徴とする。
1.電着フォトレジスト塗膜が金属部の表面に電着されている被処理物において、該電着フォトレジスト塗膜を該金属部の表面から電解剥離するための、電着フォトレジスト塗膜剥離方法であって、
該被処理物を剥離液に浸漬して、該被処理物の該金属部に電圧を印加し、
該印加は、電流密度が0.5~45A/dm2になるように電圧を調整し、
該剥離液は、水を含有する水系の剥離液であり、
該剥離液に含有される水を電気分解して、電着フォトレジスト塗膜と該金属部との界面に気体を発生させて、該電着フォトレジスト塗膜を該金属部から剥離する
ことを特徴とする、電着フォトレジスト塗膜剥離方法。
2.前記剥離液は、少なくとも、水、有機溶剤、水溶性の有機酸、および水溶性の界面活性剤を含むことを特徴とする、上記1に記載の電着フォトレジスト塗膜剥離方法。
3.前記有機溶剤は、少なくとも、1種または2種以上の有機溶剤を含有することを特徴とする、上記2に記載の電着フォトレジスト塗膜剥離方法。
4.前記有機溶剤は、少なくとも、芳香族アルコール系有機溶剤、グリコール系有機溶剤、グリコールモノエーテル系有機溶剤からなる群から選ばれる1種または2種以上を含有することを特徴とする、上記2または3に記載の電着フォトレジスト塗膜剥離方法。
5.前記有機溶剤は、ベンジルアルコール/エチレングリコールモノ-ノルマル-ブチルエーテル、ベンジルアルコール/エチレングリコール、ベンジルアルコール/プロピレングリコールモノプロピルエーテル、またはエチレングリコールモノフェニルエーテル/エチレングリコールモノ-ノルマル-ブチルエーテルの、質量比が20/80~80/20の混合物であることを特徴とする、上記2~4の何れかに記載の電着フォトレジスト塗膜剥離方法。
6.前記有機酸は、少なくとも、1種または2種以上の、炭素数が10以下のカルボン酸類またはジカルボン酸類を含有することを特徴とする、上記2~5の何れかに記載の電着フォトレジスト塗膜剥離方法。
7.前記界面活性剤は、少なくとも、陰イオン系界面活性剤、および/または非イオン系界面活性剤を含むことを特徴とする、上記1~6の何れかに記載の電着フォトレジスト塗膜剥離方法。
8.該印加は、該被処理物の該金属部を陰極にして行うことを特徴とする、上記1~7の何れかに記載の電着フォトレジスト塗膜剥離方法。
9.前記電着フォトレジスト塗膜が、ポジ型カチオン性電着フォトレジスト、ネガ型カチオン性電着フォトレジスト、ポジ型アニオン性電着フォトレジスト、ネガ型アニオン性電着フォトレジストからなる群から選ばれる1種の電着フォトレジストから形成されている
ことを特徴とする、上記1~8の何れかに記載の電着フォトレジスト塗膜剥離方法。
As a result of extensive research, the present inventors applied a specific voltage to the workpiece immersed in a stripping solution to electrolyze the water contained in the stripping solution and generate bubbles to coat the electrodeposited photoresist. The inventors have discovered that the above problems can be overcome by electrolytically peeling the membrane, leading to the present invention.
That is, the present invention is characterized by the following points.
1. A method for removing an electrodeposited photoresist coating for electrolytically removing the electrodeposited photoresist coating from the surface of the metal part in a workpiece in which the electrodeposition photoresist coating is electrodeposited on the surface of the metal part. And,
immersing the object to be treated in a stripping solution and applying a voltage to the metal part of the object,
The voltage is adjusted so that the current density is 0.5 to 45 A/dm 2 , and
The stripping solution is an aqueous stripping solution containing water,
The water contained in the stripping solution is electrolyzed to generate gas at the interface between the electrodeposited photoresist coating and the metal portion, and the electrodeposition photoresist coating is peeled from the metal portion. Characteristic method for removing electrodeposited photoresist coatings.
2. 2. The method for removing an electrodeposited photoresist coating as described in 1 above, wherein the stripping solution contains at least water, an organic solvent, a water-soluble organic acid, and a water-soluble surfactant.
3. 2. The method for removing an electrodeposited photoresist coating as described in 2 above, wherein the organic solvent contains at least one or more organic solvents.
4. 2 or 3 above, wherein the organic solvent contains at least one or two or more selected from the group consisting of aromatic alcohol organic solvents, glycol organic solvents, and glycol monoether organic solvents. The method for removing an electrodeposited photoresist coating described in .
5. The organic solvent has a mass ratio of benzyl alcohol/ethylene glycol mono-normal-butyl ether, benzyl alcohol/ethylene glycol, benzyl alcohol/propylene glycol monopropyl ether, or ethylene glycol monophenyl ether/ethylene glycol mono-normal-butyl ether. 5. The method for removing an electrodeposited photoresist coating according to any one of 2 to 4 above, which is a mixture of 20/80 to 80/20.
6. The electrodeposited photoresist coating according to any one of items 2 to 5 above, wherein the organic acid contains at least one or more carboxylic acids or dicarboxylic acids having 10 or less carbon atoms. Membrane peeling method.
7. 7. The method for removing an electrodeposited photoresist coating according to any one of 1 to 6 above, wherein the surfactant contains at least an anionic surfactant and/or a nonionic surfactant. .
8. 8. The method for removing an electrodeposited photoresist coating according to any one of items 1 to 7 above, wherein the application is performed using the metal portion of the object to be treated as a cathode.
9. The electrodeposited photoresist coating film is selected from the group consisting of a positive-type cationic electrodeposited photoresist, a negative-type cationic electrodeposited photoresist, a positive-type anionic electrodeposited photoresist, and a negative-type anionic electrodeposited photoresist. 9. The method for removing an electrodeposited photoresist coating according to any one of items 1 to 8 above, which is formed from one type of electrodeposited photoresist.
本発明によれば、電着フォトレジスト塗膜が金属部の表面に形成されている被処理物において、電着フォトレジスト塗膜を金属表面から、短時間で剥離することができ、一旦剥離して電解剥離処理に漂った電着レジスト片が金属表面に再付着することを低減でき、金属表面の変色を抑制することができる、電着フォトレジスト塗膜の剥離方法を提供することができる。
また、本発明の電着フォトレジスト塗膜の剥離方法は、ポジ型カチオン性電着フォトレジスト、ネガ型カチオン性電着フォトレジスト、ポジ型アニオン性電着フォトレジスト、ネガ型アニオン性電着フォトレジストからなる電着フォトレジスト塗膜の何れにも適用できる。
According to the present invention, in a workpiece in which an electrodeposited photoresist coating film is formed on the surface of a metal part, the electrodeposition photoresist coating film can be peeled off from the metal surface in a short time, and once peeled off. It is possible to provide a method for stripping an electrodeposited photoresist coating film, which can reduce redeposition of electrodeposited resist pieces floating during electrolytic stripping treatment to a metal surface and suppress discoloration of the metal surface.
Further, the method for peeling off an electrodeposited photoresist coating film of the present invention includes positive-type cationic electrodeposited photoresist, negative-type cationic electrodeposited photoresist, positive-type anionic electrodeposited photoresist, negative-type anionic electrodeposited photoresist, and negative-type anionic electrodeposited photoresist. It can be applied to any electrodeposited photoresist coating made of resist.
各図においては、解り易くする為に、部材の大きさや比率を変更または誇張して記載することがある。また、見易さの為に説明上不要な部分や繰り返しとなる符号は省略することがある。 In each figure, the sizes and proportions of members may be changed or exaggerated for ease of understanding. Further, for ease of viewing, parts unnecessary for explanation or repetitive symbols may be omitted.
<被処理物>
本発明において、電着フォトレジスト塗膜が金属表面から剥離される被処理物は、例えば、金属からなるリードフレームやバスバー、プリント基板、ネクター端子等の微細加工用途の電子部品や、導電性を有する微細加工用途の部品などを形成する部材で、表面に電着フォトレジストの塗膜が形成されているものである。
リードフレームやバスバーの用途には、微細加工部の配線の線幅が15~100μm、解像度がL/S=15μm/15μm~100μm/100μmのものにも、本発明の電解剥離方法を適用することができる。
被処理物の基材は導電性を有し、電着フォトレジスト塗膜の電着、露光、現像、めっき又はエッチング等の工程に耐えられるものが好ましい。
基材の金属部に含有される金属種としては、電着フォトレジスト塗膜を形成し得る金属であれば特に制限は無いが、銅やステンレスが好ましい。
<Object to be processed>
In the present invention, the objects to be treated from which the electrodeposited photoresist coating is peeled off from the metal surface include, for example, electronic parts for microfabrication such as metal lead frames, bus bars, printed circuit boards, and nectar terminals, and conductive parts. This is a member for forming parts for microfabrication purposes, etc., and has a coating film of electrodeposited photoresist formed on its surface.
For applications such as lead frames and bus bars, the electrolytic stripping method of the present invention can be applied to wiring in microfabricated parts with a line width of 15 to 100 μm and a resolution of L/S = 15 μm/15 μm to 100 μm/100 μm. I can do it.
The base material of the object to be treated is preferably one that has conductivity and can withstand processes such as electrodeposition, exposure, development, plating, or etching of the electrodeposited photoresist coating.
The metal species contained in the metal portion of the base material is not particularly limited as long as it can form an electrodeposited photoresist coating, but copper and stainless steel are preferred.
<電解剥離条件>
本発明の電解剥離方法は、水の電気分解によるガス発生を利用した、電着フォトレジスト塗膜の剥離方法である。
したがって、該電解剥離方法は、水の電気分解における諸条件を備える。
本発明の電解剥離方法は、例えば、図4の概略図に示された装置で行われる。
[陰極及び陽極]
本発明の電解剥離方法においては、電着フォトレジストが電着されている基材(被処理物)を剥離液中に浸漬し、電着フォトレジストが電着されている金属部を、陰極または陽極として用いて、電解による電着フォトレジスト塗膜の剥離を行うことが好ましい。
被処理物の金属部の対極には、ステンレス板等を用いることが好ましい。
被処理物の金属部を陽極として用いた場合には該金属部が酸化による変色を生じ易いため、被処理物の金属部を陰極として用いることが好ましい。
但し、金属部の酸化や変色は、後処理で元に戻すことが可能である為、被処理物の用途等に応じて被処理物の金属部の極性を選択することができる。
<Electrolytic stripping conditions>
The electrolytic stripping method of the present invention is a method for stripping an electrodeposited photoresist coating using gas generation by electrolysis of water.
Therefore, the electrolytic stripping method has the conditions in water electrolysis.
The electrolytic stripping method of the present invention is carried out, for example, in the apparatus shown in the schematic diagram of FIG.
[Cathode and anode]
In the electrolytic stripping method of the present invention, the substrate (workpiece) on which the electrodeposited photoresist is electrodeposited is immersed in a stripping solution, and the metal part on which the electrodeposited photoresist is electrodeposited is attached to the cathode or It is preferable to use it as an anode to peel off an electrodeposited photoresist coating by electrolysis.
It is preferable to use a stainless steel plate or the like as a counter electrode to the metal part of the object to be treated.
When a metal part of the object to be treated is used as an anode, the metal part tends to discolor due to oxidation, so it is preferable to use the metal part of the object to be treated as a cathode.
However, since oxidation and discoloration of the metal part can be reversed by post-treatment, the polarity of the metal part of the workpiece can be selected depending on the intended use of the workpiece.
[電流密度]
本発明の電解剥離方法における電圧の印加は、剥離液に含有される水を電気分解して、十分な量のガスを発生する為に、電流密度を十分に高くすることによって大量のガスを発生して、本発明の電解剥離方法による電着フォトレジスト塗膜の剥離時間を短くすることができる。
適切な電流密度は被処理物の大きさや素材、電着フォトレジスト塗膜のパターン等によって異なるが、電流密度は、好ましくは0.3~45A/dm2、より好ましくは0.5~30A/dm2、更に好ましくは0.5~20A/dm2になるように、印加電圧を調節して行うことが好ましい。
[Current density]
The voltage application in the electrolytic stripping method of the present invention electrolyzes the water contained in the stripping solution and generates a sufficient amount of gas by increasing the current density sufficiently. As a result, the time required to remove an electrodeposited photoresist coating by the electrolytic removal method of the present invention can be shortened.
Appropriate current density varies depending on the size and material of the object to be treated, the pattern of the electrodeposited photoresist coating, etc., but the current density is preferably 0.3 to 45 A/dm 2 , more preferably 0.5 to 30 A/dm 2 . It is preferable to adjust the applied voltage so that it is dm 2 , more preferably 0.5 to 20 A/dm 2 .
電流密度の調節操作は、通電と同時に上記電流密度になるように電圧をかける、図1に示されたプロファイルのようなハードスタート、あるいは徐々に上記電流密度を上げていく、図2に示されたプロファイルのようなソフトスタートのいずれでもよい。
電着フォトレジスト塗膜のパターンが細く複雑な場合には、ソフトスタートが好ましい場合がある。
The current density adjustment operation can be performed by applying a voltage at the same time as energization to achieve the above current density, a hard start as shown in the profile shown in Fig. 1, or by gradually increasing the current density as shown in Fig. 2. Any soft start profile such as
Soft start may be preferred when the pattern of the electrodeposited photoresist coating is narrow and complex.
電流密度が上記範囲よりも小さいと、水の電気分解量が不十分で印加した効果が不十分になり易い。
電流密度の上限は電着フォトレジスト塗膜の種類や被処理物の素材構成等によって異なるが、上記範囲より大きいと、均一な剥離が困難になるおそれや、被処理物が劣化や変色を生じるおそれがある。
但し、ソフトスタートで電流密度を調節して、上記範囲より大きい電流密度で印加する時間を短くすることによって、上記範囲より大きい電流密度でも、剥離の均一化や、被処理物の劣化軽減が可能である。
If the current density is lower than the above range, the amount of water electrolyzed is insufficient and the applied effect tends to be insufficient.
The upper limit of the current density varies depending on the type of electrodeposited photoresist coating and the material composition of the object to be treated, but if it is larger than the above range, it may be difficult to peel uniformly, and the object to be treated may deteriorate or discolor. There is a risk.
However, by adjusting the current density with soft start and shortening the time to apply a current density higher than the above range, it is possible to make the peeling uniform and reduce the deterioration of the processed object even at a current density higher than the above range. It is.
上記の電流密度を得る為の印加電圧は、特に制限は無いが、30V以上、100V以下が好ましい。印加電圧が上記範囲よりも低いと十分な電解剥離を行うこと及び上記の電流密度を安定して得ることが困難な場合があり、印加電圧が上記範囲よりも高いと被処理物が劣化や変色を生じるおそれや、上記の電流密度を安定して得ることが困難になるおそれがある。 The applied voltage for obtaining the above current density is not particularly limited, but is preferably 30V or more and 100V or less. If the applied voltage is lower than the above range, it may be difficult to perform sufficient electrolytic stripping and to stably obtain the above current density, and if the applied voltage is higher than the above range, the object to be treated may deteriorate or change color. or it may be difficult to stably obtain the above current density.
電圧の印加は電着フォトレジスト塗膜が剥離するまで行われる。
本発明の電解剥離法を用いた電着フォトレジスト塗膜剥離方法によれば、通常の電圧を印加しない場合よりも約2/3~1/2の剥離時間で電着フォトレジスト塗膜を被処理物の金属部から剥離することが可能であり、また、剥離液温度を上昇させなくても短時間で剥離することができる。
電解時間に特に制限は無いが、生産性の面からは、10~60秒が好ましく、10~30秒がより好ましい。
The voltage is applied until the electrodeposited photoresist coating is peeled off.
According to the method of removing an electrodeposited photoresist coating film using the electrolytic stripping method of the present invention, the electrodeposited photoresist coating film can be coated in about 2/3 to 1/2 the time required for removing it than when no voltage is applied. It is possible to peel it off from the metal part of the object to be treated, and it can be peeled off in a short time without increasing the temperature of the stripping solution.
There is no particular restriction on the electrolysis time, but from the viewpoint of productivity, it is preferably 10 to 60 seconds, more preferably 10 to 30 seconds.
<剥離液>
本発明における電解剥離は、水を電気分解して気体の泡を発生させる為に、剥離液は水を含有する水系の剥離液であることが好ましい。電着フォトレジスト塗膜に浸透した水が金属表面で電気分解されて、電着フォトレジスト塗膜と金属表面との間に水素ガスまたは酸素ガスの泡を発生させて、電着フォトレジスト塗膜を金属表面から剥離することができる。
水の電気分解において被処理物の金属部に発生するガスは、該金属部が陰極の場合には水素ガスであり、該金属部が陽極の場合には酸素ガスである。
<Removal liquid>
Since electrolytic stripping in the present invention electrolyzes water to generate gas bubbles, the stripping solution is preferably an aqueous stripping solution containing water. The water that has penetrated the electrodeposited photoresist coating is electrolyzed on the metal surface, generating bubbles of hydrogen gas or oxygen gas between the electrodeposition photoresist coating and the metal surface, and the electrodeposition photoresist coating is can be peeled off from metal surfaces.
The gas generated in the metal part of the object to be treated during water electrolysis is hydrogen gas when the metal part is a cathode, and oxygen gas when the metal part is an anode.
また、本発明における剥離液は、電着フォトレジスト塗膜を膨潤させて剥離し易くするために、有機溶剤を含有することが好ましい。
さらに、剥離液に導電性を付与して水の電気分解を促進し、かつ剥離界面の結合の切断を促進するために、本発明における剥離液は、水溶性の有機酸を含有することが好ましい。
またさらに、剥離し始めた界面の剥離が拡大し易いように、かつ剥離片の再付着を抑制する為に、本発明における剥離液は、水溶性の界面活性剤を含有することが好ましい。
すなわち、本発明における剥離液は電気分解のための水を含有するものであり、さらに、有機溶剤、水溶性の有機酸、水溶性の界面活性剤からなる群から選ばれる1種または2種以上を含有することが好ましい。
Further, the stripping solution in the present invention preferably contains an organic solvent in order to swell the electrodeposited photoresist coating and make it easier to peel.
Further, the stripping solution in the present invention preferably contains a water-soluble organic acid in order to impart conductivity to the stripping solution to promote water electrolysis and to promote the breaking of bonds at the stripping interface. .
Furthermore, the stripping solution in the present invention preferably contains a water-soluble surfactant so that the peeling at the interface that has begun to peel is likely to spread and in order to suppress reattachment of peeled pieces.
That is, the stripping solution in the present invention contains water for electrolysis, and further contains one or more selected from the group consisting of an organic solvent, a water-soluble organic acid, and a water-soluble surfactant. It is preferable to contain.
剥離液は、脱イオン水等の水に、有機溶剤、有機酸、界面活性剤を添加して混合し、均一化することによって得ることができる。混合する順序は、例えば、使用する水を二分し、一方に有機溶剤および界面活性剤を加え、撹拌機などで十分に攪拌し均一化する。もう一方には有機酸を加え、こちらも十分に攪拌し均一化する。その後に、これら2液を混合し、十分に攪拌し均一化することによって得ることができる。
剥離液が有機溶剤を含有する場合の、水1Lに対する有機溶剤の含有量は、100~180質量部が好ましく、120~150質量部がより好ましい。上記範囲よりも少ないと含有した効果が発揮され難い。上記範囲よりも多いと水洗工程での洗浄が不十分になって、被処理物の金属部の変色を引き起こすおそれがある。
剥離液が有機酸を含有する場合の、水1Lに対する有機酸の含有量は、8~20質量部が好ましく、10~15質量部がより好ましい。上記範囲よりも少ないと含有した効果が発揮され難い。上記範囲よりも多いと基材の酸化変色を引き起こすおそれがある。
剥離液が界面活性剤を含有する場合の、水1Lに対する界面活性剤の含有量は、7~25質量部が好ましく、10~20質量部がより好ましい。上記範囲よりも少なくても多くても、界面活性剤の効果が発揮され難い。
The stripping solution can be obtained by adding an organic solvent, an organic acid, and a surfactant to water such as deionized water, mixing the mixture, and homogenizing the mixture. The order of mixing is, for example, dividing the water used into two parts, adding an organic solvent and a surfactant to one part, and thoroughly stirring with a stirrer or the like to make the mixture uniform. Add the organic acid to the other side and stir thoroughly to make it homogeneous. After that, it can be obtained by mixing these two liquids and sufficiently stirring to homogenize.
When the stripping solution contains an organic solvent, the content of the organic solvent per liter of water is preferably 100 to 180 parts by mass, more preferably 120 to 150 parts by mass. If the amount is less than the above range, the effect of containing it will be difficult to exhibit. If the amount exceeds the above range, cleaning in the water washing step may become insufficient, which may cause discoloration of the metal parts of the object to be treated.
When the stripping solution contains an organic acid, the content of the organic acid per liter of water is preferably 8 to 20 parts by mass, more preferably 10 to 15 parts by mass. If the amount is less than the above range, the effect of containing it will be difficult to exhibit. If the amount exceeds the above range, there is a risk of causing oxidative discoloration of the base material.
When the stripping solution contains a surfactant, the content of the surfactant per liter of water is preferably 7 to 25 parts by mass, more preferably 10 to 20 parts by mass. If the amount is less than or greater than the above range, the effect of the surfactant is difficult to be exhibited.
剥離液は水酸化ナトリウム等の金属水酸化物を含有しないことが好ましい。
金属水酸化物が剥離液に含有されていると、剥離液がアルカリ性になって被処理物に加水分解等の劣化を生じるおそれがある。また、剥離液を電気分解する際に、陰極では、水の電気分解よりも先に、金属の析出による被処理物の金属部の劣化、変色が生じる。
It is preferable that the stripping solution does not contain metal hydroxides such as sodium hydroxide.
If a metal hydroxide is contained in the stripping solution, the stripping solution may become alkaline and cause deterioration such as hydrolysis on the object to be treated. Further, when electrolyzing the stripping solution, deterioration and discoloration of the metal parts of the object to be treated occur at the cathode due to metal precipitation before the electrolysis of water.
[有機溶剤]
剥離液に含まれる有機溶剤としては、脂肪族アルコール系有機溶剤、フェノール系有機溶剤、芳香族アルコール系有機溶剤、グリコール系有機溶剤、グリコールモノエーテル系有機溶剤、アミド系有機溶剤、エステル系有機溶剤、ケトン系有機溶剤等を用いることができるが、これらに限定されない。
本発明においては、有機溶剤は、これらからなる群から選ばれる1種または2種以上を含有することができる。
上記の中でも、芳香族アルコール系有機溶剤、グリコール系有機溶剤、グリコールモノエーテル系有機溶剤からなる群から選ばれる1種または2種以上を含有することが好ましい。
[Organic solvent]
The organic solvents contained in the stripping solution include aliphatic alcohol-based organic solvents, phenolic-based organic solvents, aromatic alcohol-based organic solvents, glycol-based organic solvents, glycol monoether-based organic solvents, amide-based organic solvents, and ester-based organic solvents. , ketone organic solvents, etc. can be used, but are not limited to these.
In the present invention, the organic solvent can contain one or more selected from the group consisting of these.
Among the above, it is preferable to contain one or more selected from the group consisting of aromatic alcohol organic solvents, glycol organic solvents, and glycol monoether organic solvents.
脂肪族アルコール系有機溶剤の具体例としては、2-エチルヘキサノール等が挙げられる。
フェノール系有機溶剤の具体例としては、フェノール等が挙げられる。
芳香族アルコール系有機溶剤の具体例としては、ベンジルアルコール、フェニチルアル
コール等が挙げられる。
グリコール系有機溶剤の具体例としては、エチレングリコール、プロピレングリコール、ジエチレングリコール等が挙げられる。
Specific examples of aliphatic alcohol organic solvents include 2-ethylhexanol and the like.
Specific examples of phenolic organic solvents include phenol and the like.
Specific examples of aromatic alcohol-based organic solvents include benzyl alcohol, phenyl alcohol, and the like.
Specific examples of glycol-based organic solvents include ethylene glycol, propylene glycol, diethylene glycol, and the like.
グリコールモノエーテル系有機溶剤の具体例としては、エチレングリコール-2-エチルヘキシルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノ-ノルマル-ブチルエーテル、エチレングリコールモノフェニルエーテル、エチレングリコールモノベンジルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノ-ノルマル-ブチルエーテル、プロピレングリコールフェニルエーテル、3-メトキシ-3-メチル-1-ブタノール、ジエチレングリコールモノブチルエーテル等が挙げられる。 Specific examples of glycol monoether organic solvents include ethylene glycol-2-ethylhexyl ether, ethylene glycol monopropyl ether, ethylene glycol mono-normal-butyl ether, ethylene glycol monophenyl ether, ethylene glycol monobenzyl ether, and propylene glycol monopropyl. Examples include ether, propylene glycol mono-normal-butyl ether, propylene glycol phenyl ether, 3-methoxy-3-methyl-1-butanol, diethylene glycol monobutyl ether, and the like.
アミド系有機溶剤の具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、3-メチル-N,N-ジメチルプロパンアミド等が挙げられる。
エステル系有機溶剤の具体例としては、酢酸メチル、酢酸エチル、プロピレングリコールメチルエチルアセテート等が挙げられる。
ケトン系有機溶剤の具体例としては、アセチルアセトン等が挙げられる。
Specific examples of the amide organic solvent include N,N-dimethylformamide, N,N-dimethylacetamide, 3-methyl-N,N-dimethylpropanamide, and the like.
Specific examples of the ester organic solvent include methyl acetate, ethyl acetate, propylene glycol methyl ethyl acetate, and the like.
Specific examples of ketone organic solvents include acetylacetone and the like.
上記の中でも、ベンジルアルコール、エチレングリコール、エチレングリコールモノ-ノルマル-ブチルエーテル、エチレングリコールモノフェニルエーテル、プロピレングリコールモノプロピルエーテルからなる群から選ばれる1種または2種以上を含有することが好ましい。 Among the above, it is preferable to contain one or more selected from the group consisting of benzyl alcohol, ethylene glycol, ethylene glycol mono-normal-butyl ether, ethylene glycol monophenyl ether, and propylene glycol monopropyl ether.
また、上記の有機溶剤を2種以上組み合わせて用いることで、電着フォトレジスト塗膜の剥離時間をさらに短縮したり、電着フォトレジスト塗膜の剥離片の再付着をさらに抑制したりできる。
2種の有機溶剤の好ましい組み合わせとしては、芳香族アルコール系有機溶剤/グリコールモノエーテル系有機溶剤、芳香族アルコール系有機溶剤/グリコール系有機溶剤、グリコールモノエーテル系有機溶剤/グリコールモノエーテル系有機溶剤の組み合わせが好ましく、組み合わせる質量比は、20/80~80/20が好ましく、30/70~70/30がより好ましく、40/60~60/40が更に好ましい。
さらに具体的な組み合わせとしては、ベンジルアルコール/エチレングリコールモノ-ノルマル-ブチルエーテル=質量比50/50の組み合わせ、ベンジルアルコール/エチレングリコール=質量比50/50の組み合わせ、ベンジルアルコール/プロピレングリコールモノプロピルエーテル=質量比50/50の組み合わせ、エチレングリコールモノフェニルエーテル/エチレングリコールモノ-ノルマル-ブチルエーテル=質量比50/50の組み合わせが好ましい。
Furthermore, by using a combination of two or more of the above organic solvents, it is possible to further shorten the time required to peel off the electrodeposited photoresist coating, and to further suppress reattachment of peeled pieces of the electrodeposition photoresist coating.
Preferred combinations of the two organic solvents include aromatic alcohol organic solvent/glycol monoether organic solvent, aromatic alcohol organic solvent/glycol organic solvent, and glycol monoether organic solvent/glycol monoether organic solvent. The mass ratio of the combinations is preferably 20/80 to 80/20, more preferably 30/70 to 70/30, and even more preferably 40/60 to 60/40.
More specific combinations include benzyl alcohol/ethylene glycol mono-normal-butyl ether =
[有機酸]
剥離液に含まれる好ましい有機酸としては、剥離液が水を多く含有することから、水溶性の有機酸が好ましく、少なくとも、1種または2種以上の、炭素数が10以下のカルボン酸類またはジカルボン酸類を含有することが好ましい。ヒドロキシカルボン酸類、ジヒドロキシカルボン酸類等の、水酸基を有するカルボン酸類またはジカルボン酸類も上記に含まれる。
有機酸の具体例としては、ギ酸、酢酸、プロピオン酸、酪酸、乳酸、酒石酸、吉草酸、シュウ酸、コハク酸、グルタル酸、アジピン酸などが挙げられるが、これらに限定されない。また、これらの有機酸の2種以上を混合して用いてもよい。
上記の中でも、ギ酸、乳酸、シュウ酸、酒石酸がより好ましい。
[Organic acid]
The preferred organic acid contained in the stripping solution is preferably a water-soluble organic acid since the stripping solution contains a large amount of water, and at least one or more carboxylic acids or dicarboxylic acids having 10 or less carbon atoms. It is preferable to contain acids. The above also includes carboxylic acids or dicarboxylic acids having a hydroxyl group, such as hydroxycarboxylic acids and dihydroxycarboxylic acids.
Specific examples of organic acids include, but are not limited to, formic acid, acetic acid, propionic acid, butyric acid, lactic acid, tartaric acid, valeric acid, oxalic acid, succinic acid, glutaric acid, adipic acid, and the like. Furthermore, two or more of these organic acids may be used in combination.
Among the above, formic acid, lactic acid, oxalic acid, and tartaric acid are more preferred.
[界面活性剤]
界面活性剤は、電着フォトレジスト塗膜への剥離液成分の浸透を促す浸透作用や、電着フォトレジスト塗膜と金属との界面の密着性を低減する作用によって、電着フォトレジスト塗膜の剥離を促進する。
剥離液が多量の水を含有することから、界面活性剤は水溶性のものが好ましく、さらに、電解剥離処理後の被処理物から剥離液を水洗浄除去し易いように、水洗性を付与するものが好ましい。
上記のような、浸透作用、密着性を低減する作用、水溶性、水洗性付与等を有する界面活性剤であるならば、本発明の電着フォトレジスト塗膜における剥離液に含有される界面活性剤として好ましい。
また、界面活性剤は、陽イオン系界面活性剤、陰イオン系界面活性剤、非イオン系界面活性剤に大別されるが、陰イオン系界面活性剤および非イオン系面活性剤がより好ましく、非イオン系が更に好ましい。
陽イオン系界面活性剤は、陰イオン系界面活性剤または非イオン系界面活性剤よりも、電着フォトレジスト塗膜の剥離を促進する効果が劣る傾向が有り、剥離時間の短縮効果が小さい。また、陽イオン系界面活性剤を用いた場合には、被処理物の金属表面が陽イオン系界面活性剤を吸着して変色を生じるおそれがある。
[Surfactant]
Surfactants have a penetrating effect that promotes the penetration of stripper components into the electrodeposited photoresist coating, and an effect that reduces the adhesion of the electrodeposited photoresist coating to the metal interface. promotes exfoliation.
Since the stripping solution contains a large amount of water, the surfactant is preferably water-soluble, and furthermore, the surfactant should be washable with water so that the stripping solution can be easily removed from the workpiece after electrolytic stripping treatment. Preferably.
If the surfactant has a penetrating effect, an effect of reducing adhesion, water solubility, water washability, etc. as described above, the surfactant contained in the stripping solution in the electrodeposited photoresist coating film of the present invention preferred as an agent.
Surfactants are broadly classified into cationic surfactants, anionic surfactants, and nonionic surfactants, with anionic surfactants and nonionic surfactants being more preferred. , nonionic systems are more preferred.
Cationic surfactants tend to be less effective in promoting the peeling of electrodeposited photoresist coatings than anionic surfactants or nonionic surfactants, and their effect in shortening the peeling time is small. Furthermore, when a cationic surfactant is used, the metal surface of the object to be treated may adsorb the cationic surfactant and cause discoloration.
<電着フォトレジスト塗膜>
電着フォトレジスト塗膜は、リードフレームやバスバーなどを部分めっきやパターニングする際の各種リソグラフィー工程において電着形成されるマスキング膜(めっきレジスト膜、エッチングレジスト膜)であり、カチオン性またはアニオン性の感光性樹脂を含有するフォトレジストから形成される。
電着塗装とは、塗装対象基材を、カチオン性またはアニオン性フォトレジストを含有する電着液の中に浸漬し、電気を流して、該電着液中のカチオン性またはアニオン性感光性樹脂を電気泳動によって基材の導電部上に均一に塗装する方法である。
例えば、基材の金属部を陰極にして電気を流すと、陽イオンを有するカチオン性感光性樹脂微粒子は陰極に移動し、陰極から電荷を得ることで電荷を失い、塗膜として析出する。
カチオン性感光性樹脂微粒子間の析出が進行するにつれて、水分は電着液中にはじき出されて、強固な塗膜が形成される。
電着塗装は、スプレー塗装やコーター方式では塗装の難しい場所、複雑な形状や曲面にでも塗膜を形成することができる塗装方法であり、得られる電着塗膜は、膜厚が均一で、密着性、耐腐食性に優れる。
<Electrodeposited photoresist coating>
Electrodeposited photoresist coating is a masking film (plating resist film, etching resist film) that is formed by electrodeposition in various lithography processes when partial plating or patterning lead frames, bus bars, etc. It is formed from a photoresist containing a photosensitive resin.
Electrodeposition coating refers to immersing the substrate to be coated in an electrodeposition solution containing a cationic or anionic photoresist, and applying electricity to remove the cationic or anionic photosensitive resin in the electrodeposition solution. This is a method of uniformly coating the conductive portion of the base material by electrophoresis.
For example, when electricity is applied using the metal portion of the base material as a cathode, cationic photosensitive resin fine particles containing cations move to the cathode, gain charge from the cathode, lose charge, and precipitate as a coating film.
As precipitation between the cationic photosensitive resin particles progresses, water is expelled into the electrodeposition solution, forming a strong coating film.
Electrodeposition coating is a coating method that can form a coating film even on complex shapes and curved surfaces, where it is difficult to coat with spray painting or coater methods, and the resulting electrodeposition coating has a uniform thickness. Excellent adhesion and corrosion resistance.
感光性樹脂を含有するフォトレジストは、導電性の基材上に塗膜を形成後に光照射(露光)され、次いで現像され、洗浄後に不溶部分が残ることで、フォトレジストの有無パターンを形成することができるが、現像によって露光した部分が残るか溶解するかによって、ネガ型フォトレジストまたはポジ型のフォトレジストに分類される。
ネガ型フォトレジストは、露光された箇所が現像液に対して溶解性が低下し、現像によって露光した部分が残るタイプのフォトレジストであり、ポジ型フォトレジストは露光された箇所が現像液に対して溶解性が増大し、現像によって露光されなかった部分が残るタイプのフォトレジストである。
A photoresist containing a photosensitive resin forms a coating film on a conductive substrate, is irradiated with light (exposure), and is then developed, leaving an insoluble portion after washing, thereby forming a pattern with or without the photoresist. However, depending on whether the exposed areas remain or dissolve during development, they are classified as negative-working photoresists or positive-working photoresists.
Negative photoresist is a type of photoresist in which the exposed areas become less soluble in the developer and the exposed areas remain after development, while positive photoresists have the exposed areas less soluble in the developer. This is a type of photoresist whose solubility increases during development, leaving unexposed areas remaining after development.
均一で高密着なレジスト塗膜を得る為には、上記の様に、カチオン性またはアニオン性フォトレジストを用いて、電着法によってレジスト塗膜を形成することが好ましいが、得られた電着フォトレジスト塗膜は、塗膜の粘着性に起因して、基材表面からの剥離不良や、剥離した塗膜片が基材表面に再付着する不具合を生じやすく、特に、ネガ型電着フォトレジストは該不具合を生じやすい傾向が有る。
しかしながら、本発明の電着フォトレジスト塗膜剥離方法は、電着フォトレジスト塗膜が、ポジ型カチオン性電着フォトレジスト、ネガ型カチオン性電着フォトレジスト、ポジ
型アニオン性電着フォトレジスト、ネガ型アニオン性電着フォトレジストの何れから形成されたものであっても、電着フォトレジスト塗膜を基材の金属表面から短時間で容易に剥離することができ、且つ剥離した塗膜片が基材表面に再付着することを抑制することができる。
In order to obtain a uniform and highly adhesive resist coating film, it is preferable to form a resist coating film by electrodeposition using a cationic or anionic photoresist as described above. Photoresist coatings are prone to problems such as poor peeling from the substrate surface and re-adhesion of peeled coating pieces to the substrate surface due to the adhesiveness of the coating. Resists tend to be prone to such defects.
However, the method for removing an electrodeposited photoresist coating film of the present invention can be applied to a method in which the electrodeposited photoresist coating film is a positive cationic electrodeposited photoresist, a negative cationic electrodeposited photoresist, a positive anionic electrodeposited photoresist, or a positive type anionic electrodeposited photoresist. No matter which type of negative-type anionic electrodeposited photoresist is used, the electrodeposited photoresist coating can be easily peeled off from the metal surface of the base material in a short period of time, and the peeled coating film pieces can be easily peeled off from the metal surface of the base material. can be suppressed from re-adhering to the surface of the base material.
電着フォトレジスト塗膜の厚さは、特に制限は無いが、3μm以上、50μm以下が好ましく、5μm以上、25μm以下がより好ましい。上記範囲よりも薄いと照射光の遮断性が不十分になるおそれがある為に電着フォトレジストとして実用的ではない。また、上記範囲よりも厚いとパターニング解像度の低下と均一な塗膜厚を形成することが困難であり、工程上実用的ではない。また、剥離時間が長くなる。 The thickness of the electrodeposited photoresist coating film is not particularly limited, but is preferably 3 μm or more and 50 μm or less, more preferably 5 μm or more and 25 μm or less. If it is thinner than the above range, it is not practical as an electrodeposited photoresist because there is a risk that the shielding property of irradiated light will be insufficient. Furthermore, if the thickness is greater than the above range, the patterning resolution will decrease and it will be difficult to form a uniform coating film thickness, making it impractical in terms of the process. Moreover, the peeling time becomes longer.
≪ネガ型カチオン性電着フォトレジストを用いた工程例≫
[電着フォトレジスト塗膜の形成]
ネガ型カチオン性電着フォトレジスト塗膜の電着条件は、用いるネガ型カチオン性電着フォトレジストに適した電着条件を適用することが好ましい。
例えば、通電工程において、ネガ型カチオン性電着フォトレジスト電着液の温度を25~50℃、好ましくは30~45℃とし、被塗装物の基材の金属部を陰極として該電着液に浸漬して、印加電圧を15~250V、好ましくは60~180V、通電時間を5~180秒、好ましくは10~60秒とした電着条件が挙げられる。
印加電圧は通電と同時に設定電圧をかけるハードスタート、あるいは徐々に設定電圧まで上げていくソフトスタートのいずれでもかまわない。
電着塗装された被塗装物は水洗、次いで乾燥されて、塗膜中の水分や溶剤成分を除去することができる。
<<Process example using negative cationic electrodeposition photoresist>>
[Formation of electrodeposited photoresist coating]
As for the electrodeposition conditions for the negative-type cationic electrodeposition photoresist coating film, it is preferable to apply electrodeposition conditions suitable for the negative-type cationic electrodeposition photoresist used.
For example, in the energization step, the temperature of the negative cationic electrodeposited photoresist electrodeposition solution is set at 25 to 50°C, preferably 30 to 45°C, and the metal part of the substrate of the object to be coated is used as a cathode. Examples of electrodeposition conditions include immersion, applied voltage of 15 to 250 V, preferably 60 to 180 V, and current application time of 5 to 180 seconds, preferably 10 to 60 seconds.
The applied voltage may be either a hard start in which a set voltage is applied simultaneously with energization, or a soft start in which the voltage is gradually raised to the set voltage.
The electrodeposition-coated object is washed with water and then dried to remove moisture and solvent components in the coating film.
[露光]
水分や溶剤成分が除去されたネガ型カチオン性電着フォトレジスト塗膜に、例えば紫外線を照射して露光することができる。
紫外線光源としては、高圧水銀ランプ、メタルハライドランプ、波長365nm又は385nm発光のLED等のいずれでもかまわない。露光のための光量は50mJ/cm2~800mJ/cm2が好ましい。生産性向上の観点からは、50~250mJ/cm2が好ましい。
露光はマスクパターン越しに行い、所定のパターンを塗膜に焼き付ける。また、パターンの解像度を上げるために、マスクパターンは直接塗膜に接触させる方が好ましい。
[exposure]
The negative-tone cationic electrodeposited photoresist coating film from which water and solvent components have been removed can be exposed to, for example, ultraviolet light.
The ultraviolet light source may be a high-pressure mercury lamp, a metal halide lamp, an LED emitting light at a wavelength of 365 nm or 385 nm, or the like. The amount of light for exposure is preferably 50 mJ/cm 2 to 800 mJ/cm 2 . From the viewpoint of productivity improvement, 50 to 250 mJ/cm 2 is preferable.
Exposure is performed through a mask pattern, and a predetermined pattern is printed onto the coating film. Further, in order to increase the resolution of the pattern, it is preferable that the mask pattern be brought into direct contact with the coating film.
[現像]
露光された塗膜は、有機酸系等の現像液により現像され、未露光部分が溶解除去される。現像液は、ギ酸、酢酸、乳酸等の有機酸を1~5%程度の水溶液にしたものを、20℃~50℃の範囲で、好ましくは35~45℃の範囲で使用することが好ましい。
また、現像液に非イオン性界面活性剤を添加して、現像時間を短縮することが出来る。
カチオン性電着フォトレジスト電着液の場合には、上記の様に有機酸系等の現像液が用いられるが、アニオン性電着フォトレジスト電着液の場合には、アミン又は炭酸ナトリウムやメタケイ酸ナトリウムなどの塩基を0.5~3%程度の水溶液した現像液を、20℃~50℃の範囲で、好ましくは25~35℃の範囲で使用することが好ましい。
[developing]
The exposed coating film is developed with a developer such as an organic acid, and the unexposed portions are dissolved and removed. The developer is preferably an aqueous solution of about 1 to 5% organic acid such as formic acid, acetic acid, or lactic acid at a temperature of 20°C to 50°C, preferably 35 to 45°C.
Furthermore, the development time can be shortened by adding a nonionic surfactant to the developer.
In the case of a cationic electrodeposition photoresist electrodeposition solution, an organic acid-based developer is used as described above, but in the case of anionic electrodeposition photoresist electrodeposition solution, an amine, sodium carbonate, metacarbonate, etc. It is preferable to use a developer containing a 0.5 to 3% aqueous solution of a base such as sodium chloride at a temperature in the range of 20°C to 50°C, preferably in the range of 25 to 35°C.
[めっき、エッチング]
現像後に、被塗装物に対して、めっき処理やエッチング処理が行われる。
[Plating, etching]
After development, the object to be coated is subjected to plating treatment and etching treatment.
[電着フォトレジスト塗膜の電解剥離]
めっき処理やエッチング処理の終了後に、本発明の電着フォトレジスト塗膜剥離方法によって、電着フォトレジスト塗膜を剥離除去する。
例えば、電解剥離工程において、例えば図4に示された装置を用いて、剥離液の温度を25~60℃、好ましくは30~55℃とし、被塗装物の金属部を陰極として該剥離液に浸漬して、SUS304ステンレス板を陽極として構成して、電流密度が0.5~45A/dm2になるように電圧を調節して印加して、7~30秒間通電して、電解剥離処理を行うことができる。
[Electrolytic peeling of electrodeposited photoresist coating]
After completion of the plating process and the etching process, the electrodeposited photoresist coating film is peeled off and removed by the electrodeposition photoresist coating peeling method of the present invention.
For example, in an electrolytic stripping process, using the apparatus shown in FIG. After immersion, a SUS304 stainless steel plate was used as an anode, the voltage was adjusted and applied so that the current density was 0.5 to 45 A/dm 2 , and the current was applied for 7 to 30 seconds to perform electrolytic stripping treatment. It can be carried out.
[洗浄・乾燥]
電解剥離処理が終了した被塗装物を、脱イオン水等で洗浄し、オーブン等を用いて、40~70℃で乾燥することができる。
[Washing/drying]
After the electrolytic stripping treatment has been completed, the object to be coated can be washed with deionized water or the like and dried at 40 to 70° C. using an oven or the like.
以下に、本発明の効果を実施例によって説明するが、本発明は下記実施例に限定されるものではない。 EXAMPLES The effects of the present invention will be explained below with reference to examples, but the present invention is not limited to the following examples.
[原料]
本発明の実施例に用いられた主な原料や資材は下記のとおりである。
・銅板1:太佑機材(株)社製、C1100。50mm×50mm×0.2mm厚。
・硫酸水溶液1:濃度100g/Lの硫酸水溶液。
・電着フォトレジスト希釈液1:ハニー化成(株)社製ネガ型カチオン性電着フォトレジスト液のハニレジストE-2000(加熱残分15質量%)に、脱イオン水を加えて、加熱残分を10質量%に調整した希釈液。
・現像液1:ハニー化成(株)社製、ハニレジストDEV-1を4wt%に希釈した現像液。
・銀めっき液1:日本高純度化学製、セレナブライトC。
・非イオン系界面活性剤1:第一工業製薬(株)社製、ノイゲンEAー157。
・陰イオン系界面活性剤1:第一工業製薬(株)社製、ハイテノール18E。
・陽イオン系界面活性剤1:竹本油脂(株)社製、パイオニンB-2211。
[material]
The main raw materials and materials used in the examples of the present invention are as follows.
- Copper plate 1: manufactured by Taiyu Kizai Co., Ltd., C1100. 50 mm x 50 mm x 0.2 mm thick.
- Sulfuric acid aqueous solution 1: Sulfuric acid aqueous solution with a concentration of 100 g/L.
・Electrodeposition photoresist diluted solution 1: Add deionized water to Honeyresist E-2000 (heating residue: 15% by mass), a negative-tone cationic electrodeposition photoresist solution manufactured by Honey Kasei Co., Ltd., to dilute the heating residue. diluted solution adjusted to 10% by mass.
-Developer 1: A developer made by Honey Kasei Co., Ltd., in which HoneyResist DEV-1 was diluted to 4 wt%.
・Silver plating solution 1: Nippon Kojundo Kagaku, Serena Bright C.
- Nonionic surfactant 1: Noigen EA-157, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
- Anionic surfactant 1: Hitenol 18E, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
- Cationic surfactant 1: Pionin B-2211, manufactured by Takemoto Yushi Co., Ltd.
[めっき済み電着フォトレジスト塗膜付き銅板1の作製]
下記の操作によって、電解剥離処理用試験片の、電着フォトレジスト塗膜厚みが8μmの、めっき済み電着フォトレジスト塗膜付き銅板1を作製した。
[Preparation of plated copper plate 1 with electrodeposited photoresist coating]
A plated copper plate 1 with an electrodeposited photoresist coating having a thickness of 8 μm as a test piece for electrolytic peeling treatment was prepared by the following operation.
(電着フォトレジスト塗膜の形成)
銅板1を脱脂洗浄し、硫酸水溶液1に室温で10秒間浸漬して酸化膜を取り除いた。
そして、一部電極との通電部分を残した状態で、下記条件で、銅板1上に、電着フォトレジスト塗膜を形成した。
電着フォトレジスト希釈液1温度:43℃
陰極:銅板1
陽極:SUS304ステンレス板(50mm×50mm×0.2mm厚)
電圧:直流150V
通電時間:10秒
そして、電着フォトレジスト塗膜付き銅板1を、電着フォトレジスト希釈液1から取り出して、脱イオン水で水洗し、63℃に加温したオーブン内で30秒乾燥させた。
(Formation of electrodeposited photoresist coating)
The copper plate 1 was degreased, washed, and immersed in an aqueous sulfuric acid solution 1 at room temperature for 10 seconds to remove the oxide film.
Then, an electrodeposited photoresist coating film was formed on the copper plate 1 under the following conditions, with some electrically conductive parts remaining with the electrodes.
Electrodeposited photoresist diluted solution 1 temperature: 43℃
Cathode: copper plate 1
Anode: SUS304 stainless steel plate (50mm x 50mm x 0.2mm thick)
Voltage: DC 150V
Current application time: 10 seconds Then, the copper plate 1 with the electrodeposited photoresist coating was taken out from the electrodeposited photoresist diluted solution 1, washed with deionized water, and dried for 30 seconds in an oven heated to 63°C. .
(露光処理)
オーブンから乾燥した電着フォトレジスト塗膜付き銅板1を取り出して、片面の電着フォトレジスト表面に、図3に示されたマスク(3×2=6個のマスからなり、6個の電着フォトレジスト塗膜付き銅板1に同時露光可能。)を用いて、1つのマス(50mm×50mm)のパターンを1個の電着フォトレジスト塗膜付き銅板1(50mm×50mm)に当てて、露光波長が365nmのLEDランプを用いて、両面を250mJ/cm2で
露光した。
このパターンの黒色部分の電着フォトレジスト塗膜が現像液で溶解することになる。
(Exposure processing)
Take out the dried copper plate 1 with the electrodeposited photoresist coating from the oven, and apply the mask shown in FIG. A pattern of one square (50 mm x 50 mm) is applied to one copper plate 1 (50 mm x 50 mm) with an electrodeposited photoresist coating and exposed. Both sides were exposed to light at 250 mJ/cm 2 using an LED lamp with a wavelength of 365 nm.
The electrodeposited photoresist coating in the black part of this pattern will be dissolved by the developer.
(現像処理)
電着フォトレジスト塗膜付き銅板1に、45℃に加温された現像液1をスプレー圧0.15MPaでスプレー噴射して、30秒間現像し、脱イオン水で水洗して、現像済みの、図3に示された黒色部分にパターニングされた電着フォトレジスト塗膜付銅板1を得た。
(Development processing)
A developer 1 heated to 45° C. was sprayed onto a copper plate 1 with an electrodeposited photoresist coating film at a spray pressure of 0.15 MPa, developed for 30 seconds, and washed with deionized water to obtain a developed product. A copper plate 1 with an electrodeposited photoresist coating patterned in the black portion shown in FIG. 3 was obtained.
(めっき処理)
パターニングされた電着フォトレジスト塗膜付銅板1を、めっき液1に30秒間浸漬して電解めっきして、電着フォトレジスト塗膜が無い金属部分にめっきが施された、めっき済み電着フォトレジスト塗膜付き銅板1を得た。
(Plating treatment)
The patterned copper plate 1 with an electrodeposited photoresist coating is immersed in the plating solution 1 for 30 seconds for electrolytic plating, and the metal parts without the electrodeposition photoresist coating are plated. A copper plate 1 with a resist coating film was obtained.
[実施例1] [Example 1]
(剥離液の調製)
下記原料を撹拌機により混合して均一化して、剥離液aを調製した。
脱イオン水 0.5L
ベンジルアルコール 135g
非イオン系界面活性剤1 15g
下記原料を撹拌機により混合して均一化して、剥離液bを調製した。
脱イオン水 0.5L
乳酸 12.5g
そして、剥離液aと剥離液bとを下記配合で撹拌機により混合し、均一化して、剥離液を得た。
剥離液a 0.5L
剥離液b 0.5L
(Preparation of stripping solution)
The following raw materials were mixed and homogenized using a stirrer to prepare stripping solution a.
Deionized water 0.5L
Benzyl alcohol 135g
Nonionic surfactant 1 15g
The following raw materials were mixed and homogenized using a stirrer to prepare stripping solution b.
Deionized water 0.5L
Lactic acid 12.5g
Then, stripping solution a and stripping solution b were mixed in the following formulation using a stirrer and homogenized to obtain a stripping solution.
Stripping liquid a 0.5L
Stripping liquid b 0.5L
(電着フォトレジスト塗膜の電解剥離)
上記で作製しためっき済み電着フォトレジスト塗膜付き銅板1に対して、上記で得た剥離液を用いて、下記条件で電解剥離処理を行った。
剥離液温度:50℃
陰極:めっき済み電着フォトレジスト塗膜付き銅板1の金属部
陽極:SUS304ステンレス板
電流密度:6.0A/dm2(ハードスタート)
電圧:上記電流密度になるように、直流電圧を調節(50~100V)。
そして、電着フォトレジスト塗膜が剥離するまでの時間を測定した。
電着フォトレジストが剥離したら印加を終了して、銅板1に再付着している電着フォトレジスト片の個数をカウントし、めっき済み電着フォトレジスト塗膜付き銅板1の銅板金属露出部の変色レベルを目視にて判定した。その結果を表1に示す。
(Electrolytic peeling of electrodeposited photoresist coating)
Electrolytic stripping treatment was performed on the plated copper plate 1 with the electrodeposited photoresist coating produced above using the stripping solution obtained above under the following conditions.
Stripper temperature: 50℃
Cathode: Metal part of copper plate 1 with electroplated photoresist coating Anode: SUS304 stainless steel plate Current density: 6.0A/dm 2 (hard start)
Voltage: Adjust the DC voltage (50 to 100 V) to achieve the above current density.
Then, the time required for the electrodeposited photoresist coating to peel off was measured.
Once the electrodeposited photoresist has peeled off, stop the application, count the number of electrodeposited photoresist pieces that have reattached to the copper plate 1, and check the discoloration of the exposed copper plate metal part of the plated copper plate 1 with the electrodeposited photoresist coating. The level was determined visually. The results are shown in Table 1.
[実施例2~28、比較例1~7]
剥離液の組成及び電解剥離の条件を表1、表2に示した内容に変更し、それ以外は、実施例1と同様に操作して、電着レジストの印加による剥離処理を行って、同様に評価した。その結果を表1、表2に示す。
但し、剥離液の調製時は、脱イオン水の半量ずつを、剥離液a、剥離液bに用いた。
[Examples 2 to 28, Comparative Examples 1 to 7]
The composition of the stripping solution and the conditions for electrolytic stripping were changed to those shown in Tables 1 and 2, and the other operations were the same as in Example 1, and the stripping process was performed by applying an electrodeposited resist. It was evaluated as follows. The results are shown in Tables 1 and 2.
However, when preparing the stripping solutions, half of each amount of deionized water was used for stripping solution a and stripping solution b.
<評価方法> <Evaluation method>
[剥離レジスト片付着数]
電着処理後のめっき済み電着フォトレジスト塗膜付き銅板1を、純水中に浸漬し、手動でわずかに5秒間揺動させた。次いで60℃のオーブン内で60秒間乾燥させた。
そして、銅板部に付着している剥離レジスト片の個数を、実体顕微鏡を用いて数えた。
観察エリア面積:50mm×50mm(電着処理後のめっき済み電着フォトレジスト塗膜付き銅板1の片面全域)
検出対象の剥離レジスト片の大きさ:50μm以上のもの
[Number of peeled resist pieces attached]
The plated copper plate 1 with the electrodeposited photoresist coating after the electrodeposition treatment was immersed in pure water and manually swung slightly for 5 seconds. It was then dried in an oven at 60°C for 60 seconds.
Then, the number of peeled resist pieces adhering to the copper plate portion was counted using a stereoscopic microscope.
Observation area area: 50 mm x 50 mm (the entire area on one side of the plated copper plate 1 with electrodeposited photoresist coating after electrodeposition treatment)
Size of peeled resist piece to be detected: 50 μm or more
[銅板変色]
電解剥離後のめっき済み電着フォトレジスト塗膜付き銅板1の金属露出部の変色レベルを目視にて、下記判定基準で判定した。
◎:変色なし。
〇:許容範囲の変色有り。
×:顕著な変色あり。
[Copper plate discoloration]
The level of discoloration of the exposed metal portion of the plated copper plate 1 with the electrodeposited photoresist coating after electrolytic peeling was visually observed and determined according to the following criteria.
◎: No discoloration.
〇: Discoloration within acceptable range.
×: Significant discoloration.
[評価結果まとめ]
めっき済み電着フォトレジスト塗膜付き銅板1を陰極にして、電流密度を0.5~45A/dm2の条件で印加して電解剥離を行った全実施例は、短時間で電着フォトレジスト塗膜が剥離し、付着個数が少ない結果を示した。また、銅板の大きな変色も減少した。
そして、2種の有機溶剤を含有する剥離液を用いた実施例7、14~16は、1種の有機溶剤しか含有しない剥離液を用いた実施例1および2と比較して、同条件下で、短時間で電解剥離されて、電着膜の付着数が若干減少し、銅板の変色も無くなった。
また、電流密度が高くなるにつれて剥離時間が短くなり、電着膜の付着数が若干減少し、銅板の変色も無かったが、45A/dm2の付近で電着膜の付着数は変化しなくなり、若干の変色が見られた(実施例3~10)。
剥離液に含有される有機酸として、乳酸、ギ酸、シュウ酸、酒石酸は、何れも良好な短い剥離時間を示した(実施例1、17~19)。
剥離液に陰イオン系活性剤1を含有する実施例20も、非イオン系活性剤1を含む剥離液と同様に良好な結果を示した。
剥離液に界面活性剤を含有しない実施例21も、非イオン系活性剤1または陰イオン系活性剤1を含む剥離液と同様に良好な結果を示した。
電着膜を薄くした実施例22と、厚くした実施例23も、良好な結果を示した。
剥離液の液温を変更した実施例24、25も、良好な結果を示した。
さらに、めっき済み電着フォトレジスト塗膜付き銅板1を陽極にして電解剥離を行った実施例26~28は、めっき済み電着フォトレジスト塗膜付き銅板1陰極にして電解剥離を行った実施例よりも、剥離時間が短くなったが、銅板が若干変色した。
一方、電圧印加を行わなかった、または電流密度が上記範囲よりも小さい比較例1~4は、電着膜の剥離に長時間を要し、電着膜の付着数が多い結果を示した。
また、電流密度が45A/dm2よりも大きい比較例5は、銅板の激しい変色が生じた。
[Summary of evaluation results]
In all the examples, electrolytic stripping was performed by applying a current density of 0.5 to 45 A/dm 2 using the plated copper plate 1 with the electrodeposited photoresist coating as a cathode. The paint film peeled off and the number of adhered particles was small. Also, major discoloration of the copper plate was reduced.
Examples 7 and 14 to 16 using a stripping solution containing two types of organic solvents were compared with Examples 1 and 2 using a stripping solution containing only one type of organic solvent under the same conditions. The electrolytic peeling was completed in a short period of time, the number of electrodeposited films decreased slightly, and the discoloration of the copper plate disappeared.
Furthermore, as the current density increased, the peeling time became shorter, the number of electrodeposited films decreased slightly, and there was no discoloration of the copper plate, but the number of electrodeposited films stopped changing around 45A/ dm2 . , some discoloration was observed (Examples 3 to 10).
As organic acids contained in the stripping solution, lactic acid, formic acid, oxalic acid, and tartaric acid all showed good and short stripping times (Examples 1, 17 to 19).
Example 20, in which the stripping solution contained anionic activator 1, also showed good results, similar to the stripping solution containing nonionic activator 1.
Example 21, in which the stripping solution did not contain a surfactant, also showed good results, similar to the stripping solution containing the nonionic activator 1 or the anionic activator 1.
Example 22, in which the electrodeposited film was made thinner, and Example 23, in which it was made thicker, also showed good results.
Examples 24 and 25 in which the temperature of the stripping solution was changed also showed good results.
Further, Examples 26 to 28 in which electrolytic stripping was performed using the plated copper plate 1 with an electrodeposited photoresist coating as the anode are examples in which electrolytic stripping was performed using the plated copper plate 1 with the electrodeposited photoresist coating as the cathode. The peeling time was shorter, but the copper plate was slightly discolored.
On the other hand, in Comparative Examples 1 to 4 in which no voltage was applied or the current density was lower than the above range, it took a long time to peel off the electrodeposited film, and a large number of electrodeposited films adhered.
Furthermore, in Comparative Example 5 where the current density was higher than 45 A/dm 2 , severe discoloration of the copper plate occurred.
本発明の電着フォトレジスト塗膜の剥離方法は、従来技術と比較して、再付着片の発生が抑制され、短時間で電着フォトレジスト塗膜を剥離することができ、また、電着フォトレジスト塗膜の組成を変更することなく、多種のフォトレジストからなる電着フォトレジ
スト塗膜に適用することができることから、生産性が向上し、工業上において有用である。
Compared to conventional techniques, the method for removing an electrodeposited photoresist coating film of the present invention suppresses the generation of redeposited pieces, makes it possible to peel off an electrodeposited photoresist coating film in a short time, and Since it can be applied to electrodeposited photoresist coatings made of various types of photoresists without changing the composition of the photoresist coating, productivity is improved and it is industrially useful.
10 電解剥離装置
11 直流電源
12 対極
13 塗布基材(被処理物)
14 オーバーフロー槽
15 サブタンク
16 送液ポンプ
17 ろ過フィルタ
18 本槽湧出口
19 剥離本槽
20 オーバーフロー
21 剥離液
10 Electrolytic stripping
14
Claims (5)
該被処理物を剥離液に浸漬して、該被処理物の該金属部に電圧を印加し、
該印加は、電流密度が0.5~45A/dm2になるように電圧を調整し、
該剥離液は、水を含有する水系の剥離液であって、有機溶剤、水溶性の有機酸、および水溶性の界面活性剤を含み、
該有機溶剤は、ベンジルアルコールおよび/またはエチレングリコールモノ-ノルマル-ブチルエーテルを含み、
該界面活性剤は、陰イオン系界面活性剤、および/または非イオン系界面活性剤を含み、
該剥離液に含有される水を電気分解して、電着フォトレジスト塗膜と該金属部との界面に気体を発生させて、該電着フォトレジスト塗膜を該金属部から剥離する
ことを特徴とする、電着フォトレジスト塗膜剥離方法。 A method for removing an electrodeposited photoresist coating for electrolytically removing the electrodeposited photoresist coating from the surface of the metal part in a workpiece in which the electrodeposition photoresist coating is electrodeposited on the surface of the metal part. And,
immersing the object to be treated in a stripping solution and applying a voltage to the metal part of the object,
The voltage is adjusted so that the current density is 0.5 to 45 A/dm 2 , and
The stripping solution is an aqueous stripping solution containing water, and includes an organic solvent, a water-soluble organic acid, and a water-soluble surfactant,
The organic solvent includes benzyl alcohol and/or ethylene glycol mono-normal-butyl ether,
The surfactant includes an anionic surfactant and/or a nonionic surfactant,
The water contained in the stripping solution is electrolyzed to generate gas at the interface between the electrodeposited photoresist coating and the metal portion, and the electrodeposition photoresist coating is peeled from the metal portion. Characteristic method for removing electrodeposited photoresist coatings.
ン性電着フォトレジスト、ポジ型アニオン性電着フォトレジスト、ネガ型アニオン性電着フォトレジストからなる群から選ばれる1種の電着フォトレジストから形成されていることを特徴とする、請求項1~4の何れか1項に記載の電着フォトレジスト塗膜剥離方法。 The electrodeposited photoresist coating film is selected from the group consisting of a positive-type cationic electrodeposited photoresist, a negative-type cationic electrodeposited photoresist, a positive-type anionic electrodeposited photoresist, and a negative-type anionic electrodeposited photoresist. The method for removing an electrodeposited photoresist coating according to any one of claims 1 to 4 , characterized in that the electrodeposited photoresist coating is formed from one type of electrodeposited photoresist.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021210168A JP7352301B2 (en) | 2021-12-24 | 2021-12-24 | How to remove electrodeposited photoresist coating |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021210168A JP7352301B2 (en) | 2021-12-24 | 2021-12-24 | How to remove electrodeposited photoresist coating |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2023094708A JP2023094708A (en) | 2023-07-06 |
JP7352301B2 true JP7352301B2 (en) | 2023-09-28 |
Family
ID=87002469
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021210168A Active JP7352301B2 (en) | 2021-12-24 | 2021-12-24 | How to remove electrodeposited photoresist coating |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7352301B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004029346A (en) | 2002-06-25 | 2004-01-29 | Mitsubishi Gas Chem Co Inc | Resist stripping solution composition |
US20050167284A1 (en) | 2004-01-30 | 2005-08-04 | International Business Machines Corporation | Electrolytic method for photoresist stripping |
JP2016126175A (en) | 2015-01-05 | 2016-07-11 | ハニー化成株式会社 | Aqueous anti-tack treatment solution composition for electrodeposition photoresist and treatment method of electrodeposition photoresist coating film using the same |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0212154A (en) * | 1988-04-13 | 1990-01-17 | Siemens Ag | Removal of photoresist layer on metal conduction layer |
JPH04359257A (en) * | 1991-06-05 | 1992-12-11 | Kansai Paint Co Ltd | Peeling liquid |
JPH04361265A (en) * | 1991-06-07 | 1992-12-14 | Kansai Paint Co Ltd | Peeling liquid |
-
2021
- 2021-12-24 JP JP2021210168A patent/JP7352301B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004029346A (en) | 2002-06-25 | 2004-01-29 | Mitsubishi Gas Chem Co Inc | Resist stripping solution composition |
US20050167284A1 (en) | 2004-01-30 | 2005-08-04 | International Business Machines Corporation | Electrolytic method for photoresist stripping |
JP2016126175A (en) | 2015-01-05 | 2016-07-11 | ハニー化成株式会社 | Aqueous anti-tack treatment solution composition for electrodeposition photoresist and treatment method of electrodeposition photoresist coating film using the same |
Also Published As
Publication number | Publication date |
---|---|
JP2023094708A (en) | 2023-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20190051965A (en) | Cleaning agent composition for peeling resin mask | |
TW201413056A (en) | Micro-etching agent containing copper, its feeding liquor and the manufacturing method of wiring substrate | |
CN110597026A (en) | Dry film removing process for flexible circuit board | |
JP2013010926A (en) | Intaglio cleaning liquid composition for offset printing, and cleaning method using the same | |
JP7352301B2 (en) | How to remove electrodeposited photoresist coating | |
EP0539714A1 (en) | Amphoteric compositions | |
US5202222A (en) | Selective and precise etching and plating of conductive substrates | |
JPH0343470A (en) | Positive type electrodeposition coating composition and production of circuit board using the same | |
TWI636160B (en) | Aluminum electrolytic treatment method | |
US5047128A (en) | Electrodialysis cell for removal of excess electrolytes formed during electrodeposition of photoresists coatings | |
US6436276B1 (en) | Cathodic photoresist stripping process | |
TW202231926A (en) | Etching liquid for silver and manufacturing method for printed wiring board using same | |
US20050167284A1 (en) | Electrolytic method for photoresist stripping | |
US20010018131A1 (en) | Primed substrate for manufacture of a printed circuit board | |
KR101112702B1 (en) | method for E-coating of a metal goods | |
KR101766209B1 (en) | Cleaning solution composition for offset-printing cliche and cleaning method using the same | |
JP2843986B2 (en) | Method for producing aluminum support for lithographic printing plate | |
JP2001164400A (en) | Electrolytic peeling agent for phenolic resin and electrolytic peeling method | |
JP2686955B2 (en) | Method for producing aluminum support for lithographic printing plate | |
CN1257138A (en) | No-pollution metal etching method and device thereof | |
KR100312287B1 (en) | Peeling composition containing methanesulfonic acid for tin-lead alloy plating | |
WO2022162972A1 (en) | Resist redisue removal liquid and method for forming substrate with conductor pattern using same | |
JP5627404B2 (en) | Dry film resist thinning method | |
JP2003213297A (en) | Detergent for peeling and dissolving fluorescent coated film | |
JP3002616B2 (en) | Metal sheet cleaning equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220729 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230516 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230705 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230905 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230908 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7352301 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |