JP7351485B2 - 画像符号化方法及び装置、画像復号方法及び装置並びにプログラム - Google Patents
画像符号化方法及び装置、画像復号方法及び装置並びにプログラム Download PDFInfo
- Publication number
- JP7351485B2 JP7351485B2 JP2020144911A JP2020144911A JP7351485B2 JP 7351485 B2 JP7351485 B2 JP 7351485B2 JP 2020144911 A JP2020144911 A JP 2020144911A JP 2020144911 A JP2020144911 A JP 2020144911A JP 7351485 B2 JP7351485 B2 JP 7351485B2
- Authority
- JP
- Japan
- Prior art keywords
- motion vector
- unit
- decoded
- encoded
- control points
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/136—Incoming video signal characteristics or properties
- H04N19/137—Motion inside a coding unit, e.g. average field, frame or block difference
- H04N19/139—Analysis of motion vectors, e.g. their magnitude, direction, variance or reliability
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/503—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
- H04N19/51—Motion estimation or motion compensation
- H04N19/513—Processing of motion vectors
- H04N19/517—Processing of motion vectors by encoding
- H04N19/52—Processing of motion vectors by encoding by predictive encoding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/103—Selection of coding mode or of prediction mode
- H04N19/105—Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/124—Quantisation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/157—Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/17—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
- H04N19/176—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/182—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a pixel
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/44—Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/503—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
- H04N19/51—Motion estimation or motion compensation
- H04N19/513—Processing of motion vectors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/503—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
- H04N19/51—Motion estimation or motion compensation
- H04N19/513—Processing of motion vectors
- H04N19/521—Processing of motion vectors for estimating the reliability of the determined motion vectors or motion vector field, e.g. for smoothing the motion vector field or for correcting motion vectors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/593—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
Description
第1の予め設定されたルールに従って、符号化予定ユニットの隣接する符号化されたユニットからN個の符号化されたユニットを決定する段階であって、N個の符号化されたユニットの動き予測モードが、符号化予定ユニットのそれと同じであり、Nは、正の整数である、段階と、
第1の予め設定されたアルゴリズムを用いて、n番目の符号化されたユニットの動きベクトルに基づいて、n番目の動きベクトルグループを生成する段階であって、nは、Nより大きくない任意の正の整数を有する、段階と、
第2の予め設定されたルールに従って、取得されたN個の動きベクトルグループから、1つの動きベクトルグループを最適な動きベクトルグループとして決定する段階と、
第2の予め設定されたアルゴリズムを用いて、最適な動きベクトルグループに基づいて、符号化予定ユニットにおける各サンプルユニットの予測サンプル値を決定する段階と、
各サンプルユニットの元のサンプル値と各サンプルユニットの予測サンプル値との間の差に基づいて、各サンプルユニットの予測残差を決定する段階と、
符号化予定ユニットに対応するビットストリームを取得するべく、各サンプルユニットの予測残差及び最適な動きベクトルグループのインデックス識別子を符号化する段階であって、最適な動きベクトルグループのインデックス識別子は、復号装置に、各サンプルユニットの予測サンプル値を決定するように命令するために用いられる、段階と
を含む
画像符号化方法
を提供する。
第1の予め設定されたアルゴリズムを用いて、n番目の符号化されたユニットの動きベクトルと、n番目の符号化されたユニットのサンプル座標と、M個の制御点のサンプル座標とに基づいて、符号化予定ユニットのM個の制御点の動きベクトル予測値を決定する段階と
M個の制御点の動きベクトル予測値に基づいてn番目の動きベクトルグループを生成する段階と
を含んでよく、
Mは、符号化予定ユニットの動き予測モードに基づいて決定される正の整数である。
第1の予め設定されたアルゴリズムを用いて、n番目の符号化されたユニットの動きベクトルと、n番目の符号化されたユニットのサンプル座標と、M個の制御点のサンプル座標とに基づいて、符号化予定ユニットのM個の制御点の動きベクトル予測値を決定する段階は、
次式(1)を用いて、n番目の符号化されたユニットの左上の頂点の動きベクトル(vx2,vy2)、n番目の符号化されたユニットの右上の頂点の動きベクトル(vx3,vy3)、n番目の符号化されたユニットの左下の頂点の動きベクトル(vx4,vy4)、n番目の符号化されたユニットの左上の頂点のサンプル座標(x2,y2)、n番目の符号化されたユニットの右上の頂点のサンプル座標(x3,y3)、n番目の符号化されたユニットの左下の頂点のサンプル座標(x4,y4)、及び符号化予定ユニットの左上の頂点のサンプル座標(x0,y0)に基づいて、符号化予定ユニットの左上の頂点の動きベクトル予測値(vx0,vy0)を決定する段階と、
候補動きベクトルキューを生成するべく、予め設定されたソートルールに従ってN個の動きベクトルグループをソートする段階と、
Nが予め設定された値より大きいか又はそれに等しい場合、候補動きベクトルキューの前の予め設定された数の動きベクトルグループを決定する段階と、
前の予め設定された数の動きベクトルグループの各々と符号化予定ユニットとの間のマッチング誤差を決定する段階と、
マッチング誤差が最小である1つの動きベクトルグループを最適な動きベクトルグループとして決定する段階と
を含んでよい。
予め設定されたソートルールに従ってN個の動きベクトルグループをソートする段階と、
Nが予め設定された値より小さい場合、Q個の動きベクトルグループを生成する段階であって、NとQとの和は、予め設定された値より大きいか又はそれに等しく、Qは、正の整数である、段階と、
候補動きベクトルキューを生成するべく、N個の動きベクトルグループの後にQ個の動きベクトルグループを追加する段階と、
候補動きベクトルキューの前の予め設定された数の動きベクトルグループを決定する段階と、
前の予め設定された数の動きベクトルグループの各々と符号化予定ユニットとの間のマッチング誤差を決定する段階と、
マッチング誤差が最小である1つの動きベクトルグループを最適な動きベクトルグループとして決定する段階と
を含んでよい。
隣接する符号化されたユニットから、符号化予定ユニットにおけるm番目の制御点に対応する符号化されたユニットを決定する段階であって、m番目の制御点に対応する符号化されたユニットとm番目の制御点との間の距離は、予め設定された距離より小さいか又はそれに等しく、mは、Mより大きくない任意の正の整数を有する、段階と、
m番目の制御点に対応する符号化されたユニットの動きベクトルを、m番目の制御点の動きベクトル予測値として決定する段階と、
M個の制御点の動きベクトル予測値に基づいてQ個の動きベクトルグループを生成する段階と
を含んでよい。
隣接する符号化されたユニットから、符号化予定ユニットにおけるm番目の制御点に対応する符号化されたユニットを決定する段階であって、m番目の制御点に対応する符号化されたユニットとm番目の制御点との間の距離は、予め設定された距離より小さいか又はそれに等しく、mは、Mより大きくない任意の正の整数を有する、段階と、
m番目の制御点に対応する符号化されたユニットの動きベクトルを、m番目の制御点の第1の動きベクトル予測値として決定する段階と、
M個の制御点の第1の動きベクトル予測値に基づいてK個の第1の動きベクトルグループを生成する段階と、
隣接する符号化されたユニットにおけるj番目の符号化されたユニットの動きベクトルを、m番目の制御点の第2の動きベクトル予測値として決定する段階であって、jは、1,...,又はJのいずれか1つであり、Jは、隣接する符号化されたユニットの数であり、Jは、正の整数である、段階と、
M個の制御点の第2の動きベクトル予測値に基づいてL個の第2の動きベクトルグループを生成する段階と、
Q個の動きベクトルグループを生成するべく、L個の第2の動きベクトルグループの後にK個の第1の動きベクトルグループを追加する段階と
を含んでよい。
q番目の動きベクトルグループに対応する固有値を決定する段階であって、qは、Qより大きくない任意の正の整数を有する、段階と、
Q個の動きベクトルグループに対応する固有値に基づいて昇順にQ個の動きベクトルグループをソートする段階と、
候補動きベクトルキューを生成するべく、ソートされたN個の動きベクトルグループの後にソートされたQ個の動きベクトルグループを追加する段階と
を含んでよい。
M個の制御点における隣接する制御点の、q番目の動きベクトルグループにおける、動きベクトル予測値の、1つの予測方向における、成分間の差を決定する段階と、
差の絶対値を予め設定された成分閾値と比較する段階であって、予め設定された成分閾値は、予測方向における符号化予定ユニットの範囲である、段階と、
差の絶対値が、予め設定された成分閾値より小さいか又はそれに等しい場合、q番目の動きベクトルグループに対応する固有値を決定する段階と
を含む。
隣接する符号化されたユニットから、別の制御点に対応する符号化されたユニットを決定する段階であって、別の制御点に対応する符号化されたユニットと別の制御点との間の距離は、予め設定された距離より小さいか又はそれに等しく、別の制御点は、符号化予定ユニットにおけるM個の制御点以外の任意の制御点である、段階と、
別の制御点に対応する符号化されたユニットの動きベクトルを、別の制御点の動きベクトル予測値として決定する段階と、
第3の予め設定されたアルゴリズムを用いて、別の制御点の動きベクトル予測値と、q番目の動きベクトルグループにおける、M個の制御点の、動きベクトル予測値とに基づいて、q番目の動きベクトルグループに対応する固有値を決定する段階と
を含んでよい。
第1の予め設定されたルールに従って、復号予定ユニットの隣接する復号されたユニットからN個の復号されたユニットを決定する段階であって、N個の復号されたユニットの動き予測モードが、復号予定ユニットのそれと同じであり、Nは、正の整数である、段階と、
第1の予め設定されたアルゴリズムを用いて、n番目の復号されたユニットの動きベクトルに基づいて、n番目の動きベクトルグループを生成する段階であって、nは、Nより大きくない任意の正の整数を有する、段階と、
各サンプルユニットの予測残差及び最適な動きベクトルグループのインデックス識別子を取得するべく、復号予定ユニットに対応するビットストリームを復号する段階と、
最適な動きベクトルグループのインデックス識別子に基づいて、N個の動きベクトルグループにおける最適な動きベクトルグループを決定する段階と、
第2の予め設定されたアルゴリズムを用いて、最適な動きベクトルグループに基づいて、復号予定ユニットにおける各サンプルユニットの予測サンプル値を決定する段階と、
各サンプルユニットの予測サンプル値と各サンプルユニットの予測残差との和に基づいて、各サンプルユニットの再構成サンプル値を決定する段階と
を含む
画像復号方法
を更に提供する。
第1の予め設定されたアルゴリズムを用いて、n番目の復号されたユニットの動きベクトルと、n番目の復号されたユニットのサンプル座標と、M個の制御点のサンプル座標とに基づいて、復号予定ユニットのM個の制御点の動きベクトル予測値を決定する段階と、
M個の制御点の動きベクトル予測値に基づいてn番目の動きベクトルグループを生成する段階と
を含んでよく、
Mは、復号予定ユニットの動き予測モードに基づいて決定される正の整数である。
第1の予め設定されたアルゴリズムを用いて、n番目の復号されたユニットの動きベクトルと、n番目の復号されたユニットのサンプル座標と、M個の制御点のサンプル座標とに基づいて、復号予定ユニットのM個の制御点の動きベクトル予測値を決定する段階は、
次式(1)を用いて、n番目の復号されたユニットの左上の頂点の動きベクトル(vx2,vy2)、n番目の復号されたユニットの右上の頂点の動きベクトル(vx3,vy3)、n番目の復号されたユニットの左下の頂点の動きベクトル(vx4,vy4)、n番目の復号されたユニットの左上の頂点のサンプル座標(x2,y2)、n番目の復号されたユニットの右上の頂点のサンプル座標(x3,y3)、n番目の復号されたユニットの左下の頂点のサンプル座標(x4,y4)、及び復号予定ユニットの左上の頂点のサンプル座標(x0,y0)に基づいて、復号予定ユニットの左上の頂点の動きベクトル予測値(vx0,vy0)を決定する段階と、
候補動きベクトルキューを生成するべく、予め設定されたソートルールに従ってN個の動きベクトルグループをソートする段階と、
Nが予め設定された値より大きいか又はそれに等しい場合、候補動きベクトルキューの前の予め設定された数の動きベクトルグループを決定する段階と、
最適な動きベクトルグループのインデックス識別子に基づいて、前の予め設定された数の動きベクトルグループにおける最適な動きベクトルグループを決定する段階と
を含んでよい。
予め設定されたソートルールに従ってN個の動きベクトルグループをソートする段階と、
Nが予め設定された値より小さい場合、Q個の動きベクトルグループを生成する段階であって、NとQとの和は、予め設定された値より大きいか又はそれに等しく、Qは、正の整数である、段階と、
候補動きベクトルキューを生成するべく、N個の動きベクトルグループの後にQ個の動きベクトルグループを追加する段階と、
候補動きベクトルキューの前の予め設定された数の動きベクトルグループを決定する段階と、
最適な動きベクトルグループのインデックス識別子に基づいて、前の予め設定された数の動きベクトルグループにおける最適な動きベクトルグループを決定する段階と
を含んでよい。
隣接する復号されたユニットから、復号予定ユニットにおけるm番目の制御点に対応する復号されたユニットを決定する段階であって、m番目の制御点に対応する復号されたユニットとm番目の制御点との間の距離は、予め設定された距離より小さいか又はそれに等しく、mは、Mより大きくない任意の正の整数を有する、段階と、
m番目の制御点に対応する復号されたユニットの動きベクトルを、m番目の制御点の動きベクトル予測値として決定する段階と、
M個の制御点の動きベクトル予測値に基づいてQ個の動きベクトルグループを生成する段階と
を含む。
隣接する復号されたユニットから、復号予定ユニットにおけるm番目の制御点に対応する復号されたユニットを決定する段階であって、m番目の制御点に対応する復号されたユニットとm番目の制御点との間の距離は、予め設定された距離より小さいか又はそれに等しく、mは、Mより大きくない任意の正の整数を有する、段階と、
m番目の制御点に対応する復号されたユニットの動きベクトルを、m番目の制御点の第1の動きベクトル予測値として決定する段階と、
M個の制御点の第1の動きベクトル予測値に基づいてK個の第1の動きベクトルグループを生成する段階と、
隣接する復号されたユニットにおけるj番目の復号されたユニットの動きベクトルを、m番目の制御点の第2の動きベクトル予測値として決定する段階であって、jは、1,...,又はJのいずれか1つであり、Jは、隣接する復号されたユニットの数であり、Jは、正の整数である、段階と、
M個の制御点の第2の動きベクトル予測値に基づいてL個の第2の動きベクトルグループを生成する段階と、
Q個の動きベクトルグループを生成するべく、L個の第2の動きベクトルグループの後にK個の第1の動きベクトルグループを追加する段階と
を含む。
q番目の動きベクトルグループに対応する固有値を決定する段階であって、qは、Qより大きくない任意の正の整数を有する、段階と、
Q個の動きベクトルグループに対応する固有値に基づいて昇順にQ個の動きベクトルグループをソートする段階と、
候補動きベクトルキューを生成するべく、ソートされたN個の動きベクトルグループの後にソートされたQ個の動きベクトルグループを追加する段階と
を含む。
M個の制御点における隣接する制御点の、q番目の動きベクトルグループにおける、動きベクトル予測値の、1つの予測方向における、成分間の差を決定する段階と、
差の絶対値を予め設定された成分閾値と比較する段階であって、予め設定された成分閾値は、予測方向における復号予定ユニットの範囲である、段階と、
差の絶対値が、予め設定された成分閾値より小さいか又はそれに等しい場合、q番目の動きベクトルグループに対応する固有値を決定する段階と
を含む。
隣接する復号されたユニットから、別の制御点に対応する復号されたユニットを決定する段階であって、別の制御点に対応する復号されたユニットと別の制御点との間の距離は、予め設定された距離より小さいか又はそれに等しく、別の制御点は、復号予定ユニットにおけるM個の制御点以外の任意の制御点である、段階と、
別の制御点に対応する復号されたユニットの動きベクトルを、別の制御点の動きベクトル予測値として決定する段階と、
第3の予め設定されたアルゴリズムを用いて、別の制御点の動きベクトル予測値と、q番目の動きベクトルグループにおける、M個の制御点の、動きベクトル予測値とに基づいて、q番目の動きベクトルグループに対応する固有値を決定する段階と
を含む。
第1の予め設定されたルールに従って、符号化予定ユニットの隣接する符号化されたユニットからN個の符号化されたユニットを決定するように構成される決定モジュールであって、N個の符号化されたユニットの動き予測モードが、符号化予定ユニットのそれと同じであり、Nは、正の整数である、決定モジュールと、
第1の予め設定されたアルゴリズムを用いて、決定モジュールによって決定されたn番目の符号化されたユニットの動きベクトルに基づいて、n番目の動きベクトルグループを生成するように構成される計算モジュールであって、nは、Nより大きくない任意の正の整数を有する、計算モジュールと、
符号化予定ユニットに対応するビットストリームを取得するべく、各サンプルユニットの予測残差及び最適な動きベクトルグループのインデックス識別子を符号化するように構成される符号化モジュールであって、最適な動きベクトルグループのインデックス識別子は、復号装置に、各サンプルユニットの予測サンプル値を決定するように命令するために用いられる、符号化モジュールと
を含み、
決定モジュールは、
第2の予め設定されたルールに従って、計算モジュールによって取得されたN個の動きベクトルグループから、1つの動きベクトルグループを最適な動きベクトルグループとして決定する
ように更に構成され、
計算モジュールは、
第2の予め設定されたアルゴリズムを用いて、決定モジュールによって決定された最適な動きベクトルグループに基づいて、符号化予定ユニットにおける各サンプルユニットの予測サンプル値を決定し、
各サンプルユニットの元のサンプル値と各サンプルユニットの予測サンプル値との間の差に基づいて、各サンプルユニットの予測残差を決定する
ように更に構成される、
画像符号化装置
を更に提供する。
第1の予め設定されたアルゴリズムを用いて、決定モジュールによって決定されたn番目の符号化されたユニットの動きベクトルと、n番目の符号化されたユニットのサンプル座標と、M個の制御点のサンプル座標とに基づいて、符号化予定ユニットのM個の制御点の動きベクトル予測値を決定する、
M個の制御点の動きベクトル予測値に基づいてn番目の動きベクトルグループを生成する
ように構成され、
Mは、符号化予定ユニットの動き予測モードに基づいて決定される正の整数である。
計算モジュールは、具体的には、
次式(1)を用いて、決定モジュールによって決定されたn番目の符号化されたユニットの左上の頂点の動きベクトル(vx2,vy2)、n番目の符号化されたユニットの右上の頂点の動きベクトル(vx3,vy3)、n番目の符号化されたユニットの左下の頂点の動きベクトル(vx4,vy4)、n番目の符号化されたユニットの左上の頂点のサンプル座標(x2,y2)、n番目の符号化されたユニットの右上の頂点のサンプル座標(x3,y3)、n番目の符号化されたユニットの左下の頂点のサンプル座標(x4,y4)、及び符号化予定ユニットの左上の頂点のサンプル座標(x0,y0)に基づいて、符号化予定ユニットの左上の頂点の動きベクトル予測値(vx0,vy0)を決定する
ように構成され、
次式(2)を用いて、決定モジュールによって決定されたn番目の符号化されたユニットの左上の頂点の動きベクトル(vx2,vy2)、n番目の符号化されたユニットの右上の頂点の動きベクトル(vx3,vy3)、n番目の符号化されたユニットの左上の頂点のサンプル座標(x2,y2)、n番目の符号化されたユニットの右上の頂点のサンプル座標(x3,y3)、符号化予定ユニットの左上の頂点の動きベクトル予測値(vx0,vy0)、符号化予定ユニットの左上の頂点のサンプル座標(x0,y0)、及び符号化予定ユニットの右上の頂点のサンプル座標(x1,y1)に基づいて、符号化予定ユニットの右上の頂点の動きベクトル予測値(vx1,vy1)を決定する
ように更に構成される、
候補動きベクトルキューを生成するべく、予め設定されたソートルールに従ってN個の動きベクトルグループをソートする、
Nが予め設定された値より大きいか又はそれに等しい場合、候補動きベクトルキューの前の予め設定された数の動きベクトルグループを決定する、
前の予め設定された数の動きベクトルグループの各々と符号化予定ユニットとの間のマッチング誤差を決定する、
マッチング誤差が最小である1つの動きベクトルグループを最適な動きベクトルグループとして決定する
ように構成される。
予め設定されたソートルールに従ってN個の動きベクトルグループをソートすることと、
Nが予め設定された値より小さい場合、Q個の動きベクトルグループを生成することであって、NとQとの和は、予め設定された値より大きいか又はそれに等しく、Qは、正の整数である、生成することと、
候補動きベクトルキューを生成するべく、N個の動きベクトルグループの後にQ個の動きベクトルグループを追加することと、
候補動きベクトルキューの前の予め設定された数の動きベクトルグループを決定することと、
前の予め設定された数の動きベクトルグループの各々と符号化予定ユニットとの間のマッチング誤差を決定することと、
マッチング誤差が最小である1つの動きベクトルグループを最適な動きベクトルグループとして決定することと
を行うように更に構成される。
隣接する符号化されたユニットから、符号化予定ユニットにおけるm番目の制御点に対応する符号化されたユニットを決定することであって、m番目の制御点に対応する符号化されたユニットとm番目の制御点との間の距離は、予め設定された距離より小さいか又はそれに等しく、mは、Mより大きくない任意の正の整数を有する、決定することと、
m番目の制御点に対応する符号化されたユニットの動きベクトルを、m番目の制御点の動きベクトル予測値として決定することと、
M個の制御点の動きベクトル予測値に基づいてQ個の動きベクトルグループを生成することと
を行うように更に構成される。
隣接する符号化されたユニットから、符号化予定ユニットにおけるm番目の制御点に対応する符号化されたユニットを決定することであって、m番目の制御点に対応する符号化されたユニットとm番目の制御点との間の距離は、予め設定された距離より小さいか又はそれに等しく、mは、Mより大きくない任意の正の整数を有する、決定することと、
m番目の制御点に対応する符号化されたユニットの動きベクトルを、m番目の制御点の第1の動きベクトル予測値として決定することと、
M個の制御点の第1の動きベクトル予測値に基づいてK個の第1の動きベクトルグループを生成することと、
隣接する符号化されたユニットにおけるj番目の符号化されたユニットの動きベクトルを、m番目の制御点の第2の動きベクトル予測値として決定することであって、jは、1,...,又はJのいずれか1つであり、Jは、隣接する符号化されたユニットの数であり、Jは、正の整数である、決定することと、
M個の制御点の第2の動きベクトル予測値に基づいてL個の第2の動きベクトルグループを生成することと、
Q個の動きベクトルグループを生成するべく、L個の第2の動きベクトルグループの後にK個の第1の動きベクトルグループを追加することと
を行うように更に構成される。
q番目の動きベクトルグループに対応する固有値を決定することであって、qは、Qより大きくない任意の正の整数を有する、決定することと、
Q個の動きベクトルグループに対応する固有値に基づいて昇順にQ個の動きベクトルグループをソートすることと、
候補動きベクトルキューを生成するべく、ソートされたN個の動きベクトルグループの後にソートされたQ個の動きベクトルグループを追加することと
を行うように更に構成される。
M個の制御点における隣接する制御点の、q番目の動きベクトルグループにおける、動きベクトル予測値の、1つの予測方向における、成分間の差を決定することと、
差の絶対値を予め設定された成分閾値と比較することであって、予め設定された成分閾値は、予測方向における符号化予定ユニットの範囲である、比較することと、
差の絶対値が、予め設定された成分閾値より小さいか又はそれに等しい場合、q番目の動きベクトルグループに対応する固有値を決定することと
を行うように更に構成される。
隣接する符号化されたユニットから、別の制御点に対応する符号化されたユニットを決定することであって、別の制御点に対応する符号化されたユニットと別の制御点との間の距離は、予め設定された距離より小さいか又はそれに等しく、別の制御点は、符号化予定ユニットにおけるM個の制御点以外の任意の制御点である、決定することと、
別の制御点に対応する符号化されたユニットの動きベクトルを、別の制御点の動きベクトル予測値として決定することと、
第3の予め設定されたアルゴリズムを用いて、別の制御点の動きベクトル予測値と、q番目の動きベクトルグループにおける、M個の制御点の、動きベクトル予測値とに基づいて、q番目の動きベクトルグループに対応する固有値を決定することと
を行うように更に構成される。
第1の予め設定されたルールに従って、復号予定ユニットの隣接する復号されたユニットからN個の復号されたユニットを決定するように構成される決定モジュールであって、N個の復号されたユニットの動き予測モードが、復号予定ユニットのそれと同じであり、Nは、正の整数である、決定モジュールと、
第1の予め設定されたアルゴリズムを用いて、決定モジュールによって決定されたn番目の復号されたユニットの動きベクトルに基づいて、n番目の動きベクトルグループを生成するように構成される計算モジュールであって、nは、Nより大きくない任意の正の整数を有する、計算モジュールと、
各サンプルユニットの予測残差及び最適な動きベクトルグループのインデックス識別子を取得するべく、復号予定ユニットに対応するビットストリームを復号するように構成される復号モジュールと
を含み、
決定モジュールは、復号モジュールによって決定された最適な動きベクトルグループのインデックス識別子に基づいて、N個の動きベクトルグループにおける最適な動きベクトルグループを決定するように更に構成され、
計算モジュールは、第2の予め設定されたアルゴリズムを用いて、決定モジュールによって決定された最適な動きベクトルグループに基づいて、復号予定ユニットにおける各サンプルユニットの予測サンプル値を決定する、
各サンプルユニットの予測サンプル値と各サンプルユニットの予測残差との和に基づいて、各サンプルユニットの再構成サンプル値を決定する
ように更に構成される、
画像復号装置
を更に提供する。
第1の予め設定されたアルゴリズムを用いて、決定モジュールによって決定されたn番目の復号されたユニットの動きベクトルと、n番目の復号されたユニットのサンプル座標と、M個の制御点のサンプル座標とに基づいて、復号予定ユニットのM個の制御点の動きベクトル予測値を決定する、
M個の制御点の動きベクトル予測値に基づいてn番目の動きベクトルグループを生成する
ように構成され、
Mは、復号予定ユニットの動き予測モードに基づいて決定される正の整数である。
計算モジュールは、具体的には、
次式(1)を用いて、決定モジュールによって決定されたn番目の復号されたユニットの左上の頂点の動きベクトル(vx2,vy2)、n番目の復号されたユニットの右上の頂点の動きベクトル(vx3,vy3)、n番目の復号されたユニットの左下の頂点の動きベクトル(vx4,vy4)、n番目の復号されたユニットの左上の頂点のサンプル座標(x2,y2)、n番目の復号されたユニットの右上の頂点のサンプル座標(x3,y3)、n番目の復号されたユニットの左下の頂点のサンプル座標(x4,y4)、及び復号予定ユニットの左上の頂点のサンプル座標(x0,y0)に基づいて、復号予定ユニットの左上の頂点の動きベクトル予測値(vx0,vy0)を決定する
ように構成され、
次式(2)を用いて、決定モジュールによって決定されたn番目の復号されたユニットの左上の頂点の動きベクトル(vx2,vy2)、n番目の復号されたユニットの右上の頂点の動きベクトル(vx3,vy3)、n番目の復号されたユニットの左上の頂点のサンプル座標(x2,y2)、n番目の復号されたユニットの右上の頂点のサンプル座標(x3,y3)、復号予定ユニットの左上の頂点の動きベクトル予測値(vx0,vy0)、復号予定ユニットの左上の頂点のサンプル座標(x0,y0)、及び復号予定ユニットの右上の頂点のサンプル座標(x1,y1)に基づいて、復号予定ユニットの右上の頂点の動きベクトル予測値(vx1,vy1)を決定する
ように更に構成される、
候補動きベクトルキューを生成するべく、予め設定されたソートルールに従ってN個の動きベクトルグループをソートし、
Nが予め設定された値より大きいか又はそれに等しい場合、候補動きベクトルキューの前の予め設定された数の動きベクトルグループを決定し、
最適な動きベクトルグループのインデックス識別子に基づいて、前の予め設定された数の動きベクトルグループにおける最適な動きベクトルグループを決定する
ように更に構成される。
予め設定されたソートルールに従ってN個の動きベクトルグループをソートすることと、
Nが予め設定された値より小さい場合、Q個の動きベクトルグループを生成することであって、NとQとの和は、予め設定された値より大きいか又はそれに等しく、Qは、正の整数である、生成することと、
候補動きベクトルキューを生成するべく、N個の動きベクトルグループの後にQ個の動きベクトルグループを追加することと、
候補動きベクトルキューの前の予め設定された数の動きベクトルグループを決定することと、
最適な動きベクトルグループのインデックス識別子に基づいて前の予め設定された数の動きベクトルグループにおける最適な動きベクトルグループを決定することと
を行うように更に構成される。
隣接する復号されたユニットから、復号予定ユニットにおけるm番目の制御点に対応する復号されたユニットを決定することであって、m番目の制御点に対応する復号されたユニットとm番目の制御点との間の距離は、予め設定された距離より小さいか又はそれに等しく、mは、Mより大きくない任意の正の整数を有する、決定することと、
m番目の制御点に対応する復号されたユニットの動きベクトルを、m番目の制御点の動きベクトル予測値として決定することと、
M個の制御点の動きベクトル予測値に基づいてQ個の動きベクトルグループを生成することと
を行うように更に構成される。
隣接する復号されたユニットから、復号予定ユニットにおけるm番目の制御点に対応する復号されたユニットを決定することであって、m番目の制御点に対応する復号されたユニットとm番目の制御点との間の距離は、予め設定された距離より小さいか又はそれに等しく、mは、Mより大きくない任意の正の整数を有する、決定することと、
m番目の制御点に対応する復号されたユニットの動きベクトルを、m番目の制御点の第1の動きベクトル予測値として決定することと、
M個の制御点の第1の動きベクトル予測値に基づいてK個の第1の動きベクトルグループを生成することと、
隣接する復号されたユニットにおけるj番目の復号されたユニットの動きベクトルを、m番目の制御点の第2の動きベクトル予測値として決定することであって、jは、1,...,又はJのいずれか1つであり、Jは、隣接する復号されたユニットの数であり、Jは、正の整数である、決定することと、
M個の制御点の第2の動きベクトル予測値に基づいてL個の第2の動きベクトルグループを生成することと、
Q個の動きベクトルグループを生成するべく、L個の第2の動きベクトルグループの後にK個の第1の動きベクトルグループを追加することと
を行うように更に構成される。
q番目の動きベクトルグループに対応する固有値を決定することであって、qは、Qより大きくない任意の正の整数を有する、決定することと、
Q個の動きベクトルグループに対応する固有値に基づいて昇順にQ個の動きベクトルグループをソートすることと、
候補動きベクトルキューを生成するべく、ソートされたN個の動きベクトルグループの後にソートされたQ個の動きベクトルグループを追加することと
を行うように更に構成される。
M個の制御点における隣接する制御点の、q番目の動きベクトルグループにおける、動きベクトル予測値の、1つの予測方向における、成分間の差を決定することと、
差の絶対値を予め設定された成分閾値と比較することであって、予め設定された成分閾値は、予測方向における復号予定ユニットの範囲である、比較することと、
差の絶対値が、予め設定された成分閾値より小さいか又はそれに等しい場合、q番目の動きベクトルグループに対応する固有値を決定することと
を行うように更に構成される。
隣接する復号されたユニットから、別の制御点に対応する復号されたユニットを決定することであって、別の制御点に対応する復号されたユニットと別の制御点との間の距離は、予め設定された距離より小さいか又はそれに等しく、別の制御点は、復号予定ユニットにおけるM個の制御点以外の任意の制御点である、決定することと、
別の制御点に対応する復号されたユニットの動きベクトルを、別の制御点の動きベクトル予測値として決定することと、
第3の予め設定されたアルゴリズムを用いて、別の制御点の動きベクトル予測値と、q番目の動きベクトルグループにおける、M個の制御点の、動きベクトル予測値とに基づいて、q番目の動きベクトルグループに対応する固有値を決定することと
を行うように更に構成される。
プロセッサと、メモリと、通信インタフェースと、バスとを含み、プロセッサは、バスを用いてメモリ及び通信インタフェースに接続されている、画像符号化装置であって、
メモリは、命令を格納するように構成され、
プロセッサは、命令を実行するように構成され、プロセッサが、メモリに格納された命令を実行する場合に、プロセッサは、先述の画像符号化方法のいずれか1つを実行する、
画像符号化装置
を更に提供する。
プロセッサと、メモリと、通信インタフェースと、バスとを含み、プロセッサは、バスを用いてメモリ及び通信インタフェースに接続されている、画像復号装置であって、
メモリは、命令を格納するように構成され、
プロセッサは、命令を実行するように構成され、プロセッサが、メモリに格納された命令を実行する場合に、プロセッサは、先述の画像復号方法のいずれか1つを実行する、
画像復号装置
を更に提供する。
N個の符号化されたユニットは、第1の予め設定されたルールに従って、符号化予定ユニットの隣接する符号化されたユニットから決定されてよく、N個の符号化されたユニットの動き予測モードが、符号化予定ユニットのそれと同じであり、Nは、正の整数であり、
n番目の動きベクトルグループは、第1の予め設定されたアルゴリズムを用いて、n番目の符号化されたユニットの動きベクトルに基づいて、生成され、nは、Nより大きくない任意の正の整数を有し、
1つの動きベクトルグループが、第2の予め設定されたルールに従って、取得されたN個の動きベクトルグループから、最適な動きベクトルグループとして決定され、
符号化予定ユニットにおける各サンプルユニットの予測サンプル値は、第2の予め設定されたアルゴリズムを用いて、最適な動きベクトルグループに基づいて、決定され、
各サンプルユニットの予測残差は、各サンプルユニットの元のサンプル値と各サンプルユニットの予測サンプル値との間の差に基づいて、決定され、
各サンプルユニットの予測残差及び最適な動きベクトルグループのインデックス識別子は、符号化予定ユニットに対応するビットストリームを取得するべく、符号化され、最適な動きベクトルグループのインデックス識別子は、復号装置に、各サンプルユニットの予測サンプル値を決定するように命令するために用いられる。N個の符号化されたユニットの動き予測モードが、符号化予定ユニットのそれと同じであるため、N個の符号化されたユニットと符号化予定ユニットとの間の動き相関が、比較的高い。加えて、最適な動きベクトルグループは、N個の符号化されたユニットの動きベクトルに基づいて決定されるN個の動きベクトルグループから決定される。従って、最適な動きベクトルグループに基づいて決定される、符号化予定ユニットにおける各サンプルユニットの、予測サンプル値は、より正確であり、符号化精度が、より高い。
第1の予め設定されたアルゴリズムを用いて、n番目の符号化されたユニットの動きベクトルと、n番目の符号化されたユニットのサンプル座標と、M個の制御点のサンプル座標とに基づいて、符号化予定ユニットのM個の制御点の動きベクトル予測値を決定する段階であって、Mは、符号化予定ユニットの動き予測モードに基づいて決定される正の整数である、段階と、
M個の制御点の動きベクトル予測値に基づいてn番目の動きベクトルグループを生成する段階と
を含んでよい。
次式(1)を用いて、n番目の符号化されたユニットの左上の頂点の動きベクトル(vx2,vy2)、n番目の符号化されたユニットの右上の頂点の動きベクトル(vx3,vy3)、n番目の符号化されたユニットの左下の頂点の動きベクトル(vx4,vy4)、n番目の符号化されたユニットの左上の頂点のサンプル座標(x2,y2)、n番目の符号化されたユニットの右上の頂点のサンプル座標(x3,y3)、n番目の符号化されたユニットの左下の頂点のサンプル座標(x4,y4)、及び符号化予定ユニットの左上の頂点のサンプル座標(x0,y0)に基づいて、符号化予定ユニットの左上の頂点の動きベクトル予測値(vx0,vy0)を決定する段階と、
候補動きベクトルキューを生成するべく、予め設定されたソートルールに従ってN個の動きベクトルグループをソートする段階と、
Nが予め設定された値より大きいか又はそれに等しい場合、候補動きベクトルキューの前の予め設定された数の動きベクトルグループを決定する段階と、
前の予め設定された数の動きベクトルグループの各々と符号化予定ユニットとの間のマッチング誤差を決定する段階と、
マッチング誤差が最小である1つの動きベクトルグループを最適な動きベクトルグループとして決定する段階と
を含んでよい。
前の予め設定された数の動きベクトルグループの各々と符号化予定ユニットとの間のマッチング誤差を決定する段階と、
符号化予定ユニットとのマッチング誤差が最小である1つの動きベクトルグループを最適な動きベクトルグループとして決定する段階と
であってよい。
動きベクトルグループに基づいて、動きベクトルグループに対応する、符号化予定ユニットにおける、サンプルユニットの予測サンプル値を決定する段階と、
動きベクトルグループに対応するサンプルユニットの予測サンプル値とサンプルユニットの元のサンプル値との間の、差の二乗和(Sum of Squared Difference、略称:SSD)又は差の絶対値の和(Sum of Absolute Differences、略称:SAD)に基づいて、動きベクトルグループに対応するレート歪みコスト(Rate Distortion Cost、略称:RD Cost)を決定する段階と、
動きベクトルグループに対応するレート歪みコストに基づいて、動きベクトルグループと符号化予定ユニットとの間のマッチング誤差を決定する段階と
であってよい。
動きベクトルグループに基づいてサンプルユニットの動きベクトル予測値を決定する段階、及び
サンプルユニットの動きベクトル予測値に基づいて動きベクトルグループに対応するレート歪みコストを更に決定する段階
を含んでよい。
第2の予め設定されたアルゴリズムを用いて、M個の制御点の、最適な動きベクトルグループにおける動きベクトル予測値、及び各サンプルユニットのサンプル座標に基づいて、符号化予定ユニットにおける各サンプルユニットの動きベクトル予測値を決定する段階と、
各サンプルユニットの動きベクトル予測値に基づいて、予め設定された参照フレームにおいて、各サンプルユニットの予測サンプル値を決定する段階と
を含んでよい。
N個の符号化されたユニットは、第1の予め設定されたルールに従って、符号化予定ユニットの隣接する符号化されたユニットから決定されてよく、N個の符号化されたユニットの動き予測モードが、符号化予定ユニットのそれと同じであり、
n番目の動きベクトルグループは、第1の予め設定されたアルゴリズムを用いて、n番目の符号化されたユニットの動きベクトルに基づいて、生成され、nは、Nより大きくない任意の正の整数を有し、
1つの動きベクトルグループが、第2の予め設定されたルールに従って、取得されたN個の動きベクトルグループから、最適な動きベクトルグループとして決定され、
符号化予定ユニットにおける各サンプルユニットの予測サンプル値は、第2の予め設定されたアルゴリズムを用いて、最適な動きベクトルグループに基づいて、決定され、
各サンプルユニットの予測残差は、各サンプルユニットの元のサンプル値と各サンプルユニットの予測サンプル値との間の差に基づいて、決定され、
各サンプルユニットの予測残差及び最適な動きベクトルグループのインデックス識別子は、符号化予定ユニットに対応するビットストリームを取得するべく、符号化される。N個の符号化されたユニットの動き予測モードが、符号化予定ユニットのそれと同じであるため、N個の符号化されたユニットと符号化予定ユニットとの間の動き相関は、比較的高い。加えて、最適な動きベクトルグループは、N個の符号化されたユニットの動きベクトルに基づいて決定されるN個の動きベクトルグループから決定される。従って、最適な動きベクトルグループに基づいて決定される、符号化予定ユニットにおける各サンプルユニットの、予測サンプル値は、より正確であり、これにより、画像符号化の精度が、より高い。
隣接する符号化されたユニットから、符号化予定ユニットにおけるm番目の制御点に対応する符号化されたユニットを決定する段階であって、m番目の制御点に対応する符号化されたユニットとm番目の制御点との間の距離は、予め設定された距離より小さいか又はそれに等しく、mは、Mより大きくない任意の正の整数を有する、段階と、
m番目の制御点に対応する符号化されたユニットの動きベクトルを、m番目の制御点の動きベクトル予測値として決定する段階と、
M個の制御点の動きベクトル予測値に基づいてQ個の動きベクトルグループを生成する段階と
を含んでよい。
隣接する符号化されたユニットから、符号化予定ユニットにおけるm番目の制御点に対応する符号化されたユニットを決定する段階であって、m番目の制御点に対応する符号化されたユニットとm番目の制御点との間の距離は、予め設定された距離より小さいか又はそれに等しく、mは、Mより大きくない任意の正の整数を有する、段階と、
m番目の制御点に対応する符号化されたユニットの動きベクトルを、m番目の制御点の第1の動きベクトル予測値として決定する段階と、
M個の制御点の第1の動きベクトル予測値に基づいてK個の第1の動きベクトルグループを生成する段階と、
隣接する符号化されたユニットにおけるj番目の符号化されたユニットの動きベクトルを、m番目の制御点の第2の動きベクトル予測値として決定する段階であって、jは、1,...,又はJのいずれか1つであり、Jは、隣接する符号化されたユニットの数であり、Jは、正の整数である、段階と、
M個の制御点の第2の動きベクトル予測値に基づいてL個の第2の動きベクトルグループを生成する段階と、
Q個の動きベクトルグループを生成するべく、L個の第2の動きベクトルグループの後にK個の第1の動きベクトルグループを追加する段階と
を含んでよい。
q番目の動きベクトルグループに対応する固有値を決定する段階であって、qは、Qより大きくない任意の正の整数を有する、段階と、
Q個の動きベクトルグループに対応する固有値に基づいて昇順にQ個の動きベクトルグループをソートする段階と、
候補動きベクトルキューを生成するべく、ソートされたN個の動きベクトルグループの後にソートされたQ個の動きベクトルグループを追加する段階と
を含んでよい。
M個の制御点における隣接する制御点の、q番目の動きベクトルグループにおける、動きベクトル予測値の、1つの予測方向における、成分間の差を決定する段階と、
差の絶対値を予め設定された成分閾値と比較する段階であって、予め設定された成分閾値は、予測方向における符号化予定ユニットの範囲である、段階と、
差の絶対値が、予め設定された成分閾値より小さいか又はそれに等しい場合、q番目の動きベクトルグループに対応する固有値を決定する段階と
を含んでよい。
隣接する符号化されたユニットから、別の制御点に対応する符号化されたユニットを決定する段階であって、別の制御点に対応する符号化されたユニットと別の制御点との間の距離は、予め設定された距離より小さいか又はそれに等しく、別の制御点は、符号化予定ユニットにおけるM個の制御点以外の任意の制御点である、段階と、
別の制御点に対応する符号化されたユニットの動きベクトルを、別の制御点の動きベクトル予測値として決定する段階と、
第3の予め設定されたアルゴリズムを用いて、別の制御点の動きベクトル予測値と、q番目の動きベクトルグループにおける、M個の制御点の、動きベクトル予測値とに基づいて、q番目の動きベクトルグループに対応する固有値を決定する段階と
を含んでよい。
復号予定ユニットの動き予測モードを決定する段階
を更に含んでよい。
復号予定ユニットの動き予測モードを取得するべく、復号予定ユニットに対応する構文要素を解析する段階
を含んでよい。解析する段階の後取得された構文要素affine‐merge‐flagが1である場合、復号予定ユニットの動き予測モードは、アフィン動き予測モードである。解析する段階の後取得された構文要素affine‐merge‐flagが0である場合、復号予定ユニットの動き予測モードは、並進動き予測モードである。
第1の予め設定されたアルゴリズムを用いて、n番目の復号されたユニットの動きベクトルと、n番目の復号されたユニットのサンプル座標と、M個の制御点のサンプル座標とに基づいて、復号予定ユニットのM個の制御点の動きベクトル予測値を決定する段階と、
M個の制御点の動きベクトル予測値に基づいてn番目の動きベクトルグループを生成する段階と
を含んでよく、
Mは、復号予定ユニットの動き予測モードに基づいて決定される正の整数である。
次式(1)を用いて、n番目の復号されたユニットの左上の頂点の動きベクトル(vx2,vy2)、n番目の復号されたユニットの右上の頂点の動きベクトル(vx3,vy3)、n番目の復号されたユニットの左下の頂点の動きベクトル(vx4,vy4)、n番目の復号されたユニットの左上の頂点のサンプル座標(x2,y2)、n番目の復号されたユニットの右上の頂点のサンプル座標(x3,y3)、n番目の復号されたユニットの左下の頂点のサンプル座標(x4,y4)、及び復号予定ユニットの左上の頂点のサンプル座標(x0,y0)に基づいて、復号予定ユニットの左上の頂点の動きベクトル予測値(vx0,vy0)を決定する段階と、
候補動きベクトルキューを生成するべく、予め設定されたソートルールに従ってN個の動きベクトルグループをソートする段階と、
Nが予め設定された値より大きいか又はそれに等しい場合、候補動きベクトルキューの前の予め設定された数の動きベクトルグループを決定する段階と、
最適な動きベクトルグループのインデックス識別子に基づいて、前の予め設定された数の動きベクトルグループにおける最適な動きベクトルグループを決定する段階と
を含んでよい。
予め設定されたソートルールに従ってN個の動きベクトルグループをソートする段階と、
Nが予め設定された値より小さい場合、Q個の動きベクトルグループを生成する段階であって、NとQとの和は、予め設定された値より大きいか又はそれに等しく、Qは、正の整数である、段階と、
候補動きベクトルキューを生成するべく、N個の動きベクトルグループの後にQ個の動きベクトルグループを追加する段階と、
候補動きベクトルキューの前の予め設定された数の動きベクトルグループを決定する段階と、
最適な動きベクトルグループのインデックス識別子に基づいて、前の予め設定された数の動きベクトルグループにおける最適な動きベクトルグループを決定する段階と
を含んでよい。
隣接する復号されたユニットから、復号予定ユニットにおけるm番目の制御点に対応する復号されたユニットを決定する段階であって、m番目の制御点に対応する復号されたユニットとm番目の制御点との間の距離は、予め設定された距離より小さいか又はそれに等しく、mは、Mより大きくない任意の正の整数を有する、段階と、
m番目の制御点に対応する復号されたユニットの動きベクトルを、m番目の制御点の動きベクトル予測値として決定する段階と、
M個の制御点の動きベクトル予測値に基づいてQ個の動きベクトルグループを生成する段階と
を含んでよい。
隣接する復号されたユニットから、復号予定ユニットにおけるm番目の制御点に対応する復号されたユニットを決定する段階であって、m番目の制御点に対応する復号されたユニットとm番目の制御点との間の距離は、予め設定された距離より小さいか又はそれに等しく、mは、Mより大きくない任意の正の整数を有する、段階と、
m番目の制御点に対応する復号されたユニットの動きベクトルを、m番目の制御点の第1の動きベクトル予測値として決定する段階と、
M個の制御点の第1の動きベクトル予測値に基づいてK個の第1の動きベクトルグループを生成する段階と、
隣接する復号されたユニットにおけるj番目の復号されたユニットの動きベクトルを、m番目の制御点の第2の動きベクトル予測値として決定する段階であって、jは、1,...,又はJのいずれか1つであり、Jは、隣接する復号されたユニットの数であり、Jは、正の整数である、段階と、
M個の制御点の第2の動きベクトル予測値に基づいてL個の第2の動きベクトルグループを生成する段階と、
Q個の動きベクトルグループを生成するべく、L個の第2の動きベクトルグループの後にK個の第1の動きベクトルグループを追加する段階と
を含んでよい。
q番目の動きベクトルグループに対応する固有値を決定する段階であって、qは、Qより大きくない任意の正の整数を有する、段階と、
Q個の動きベクトルグループに対応する固有値に基づいて昇順にQ個の動きベクトルグループをソートする段階と、
候補動きベクトルキューを生成するべく、ソートされたN個の動きベクトルグループの後にソートされたQ個の動きベクトルグループを追加する段階と
を含んでよい。
M個の制御点における隣接する制御点の、q番目の動きベクトルグループにおける、動きベクトル予測値の、1つの予測方向における、成分間の差を決定する段階と、
差の絶対値を予め設定された成分閾値と比較する段階であって、予め設定された成分閾値は、予測方向における復号予定ユニットの範囲である、段階と、
差の絶対値が、予め設定された成分閾値より小さいか又はそれに等しい場合、q番目の動きベクトルグループに対応する固有値を決定する段階と
を含む。
隣接する復号されたユニットから、別の制御点に対応する復号されたユニットを決定する段階であって、別の制御点に対応する復号されたユニットと別の制御点との間の距離は、予め設定された距離より小さいか又はそれに等しく、別の制御点は、復号予定ユニットにおけるM個の制御点以外の任意の制御点である、段階と、
別の制御点に対応する復号されたユニットの動きベクトルを、別の制御点の動きベクトル予測値として決定する段階と、
第3の予め設定されたアルゴリズムを用いて、別の制御点の動きベクトル予測値と、q番目の動きベクトルグループにおける、M個の制御点の、動きベクトル予測値とに基づいて、q番目の動きベクトルグループに対応する固有値を決定する段階と
を含んでよい。
第2の予め設定されたアルゴリズムを用いて、決定モジュールによって決定された最適な動きベクトルグループに基づいて、符号化予定ユニットにおける各サンプルユニットの予測サンプル値を決定する、
各サンプルユニットの元のサンプル値と各サンプルユニットの予測サンプル値との間の差に基づいて、各サンプルユニットの予測残差を決定する
ように更に構成される。
符号化予定ユニットに対応するビットストリームを取得するべく、各サンプルユニットの予測残差及び最適な動きベクトルグループのインデックス識別子を符号化する
ように構成され、
最適な動きベクトルグループのインデックス識別子は、復号装置に、各サンプルユニットの予測サンプル値を決定するように命令するために用いられる。
第1の予め設定されたアルゴリズムを用いて、決定モジュール501によって決定されたn番目の符号化されたユニットの動きベクトルと、n番目の符号化されたユニットのサンプル座標と、M個の制御点のサンプル座標とに基づいて、符号化予定ユニットのM個の制御点の動きベクトル予測値を決定する、
M個の制御点の動きベクトル予測値に基づいてn番目の動きベクトルグループを生成する
ように構成され、
Mは、符号化予定ユニットの動き予測モードに基づいて決定される正の整数である。
計算モジュール502は、具体的には、
次式(1)を用いて、決定モジュール501によって決定されたn番目の符号化されたユニットの左上の頂点の動きベクトル(vx2,vy2)、n番目の符号化されたユニットの右上の頂点の動きベクトル(vx3,vy3)、n番目の符号化されたユニットの左下の頂点の動きベクトル(vx4,vy4)、n番目の符号化されたユニットの左上の頂点のサンプル座標(x2,y2)、n番目の符号化されたユニットの右上の頂点のサンプル座標(x3,y3)、n番目の符号化されたユニットの左下の頂点のサンプル座標(x4,y4)、及び符号化予定ユニットの左上の頂点のサンプル座標(x0,y0)に基づいて、符号化予定ユニットの左上の頂点の動きベクトル予測値(vx0,vy0)を決定する
ように構成され、
次式(2)を用いて、決定モジュール501によって決定されたn番目の符号化されたユニットの左上の頂点の動きベクトル(vx2,vy2)、n番目の符号化されたユニットの右上の頂点の動きベクトル(vx3,vy3)、n番目の符号化されたユニットの左上の頂点のサンプル座標(x2,y2)、n番目の符号化されたユニットの右上の頂点のサンプル座標(x3,y3)、符号化予定ユニットの左上の頂点の動きベクトル予測値(vx0,vy0)、符号化予定ユニットの左上の頂点のサンプル座標(x0,y0)、及び符号化予定ユニットの右上の頂点のサンプル座標(x1,y1)に基づいて、符号化予定ユニットの右上の頂点の動きベクトル予測値(vx1,vy1)を決定する
ように更に構成される、
候補動きベクトルキューを生成するべく、予め設定されたソートルールに従ってN個の動きベクトルグループをソートする、
Nが予め設定された値より大きいか又はそれに等しい場合、候補動きベクトルキューの前の予め設定された数の動きベクトルグループを決定する、
前の予め設定された数の動きベクトルグループの各々と符号化予定ユニットとの間のマッチング誤差を決定する、
マッチング誤差が最小である1つの動きベクトルグループを最適な動きベクトルグループとして決定する
ように構成される。
予め設定されたソートルールに従ってN個の動きベクトルグループをソートすることと、
Nが予め設定された値より小さい場合、Q個の動きベクトルグループを生成することであって、NとQとの和は、予め設定された値より大きいか又はそれに等しく、Qは、正の整数である、生成することと、
候補動きベクトルキューを生成するべく、N個の動きベクトルグループの後にQ個の動きベクトルグループを追加することと、
候補動きベクトルキューの前の予め設定された数の動きベクトルグループを決定することと、
前の予め設定された数の動きベクトルグループの各々と符号化予定ユニットとの間のマッチング誤差を決定することと、
マッチング誤差が最小である1つの動きベクトルグループを最適な動きベクトルグループとして決定することと
を行うように更に構成される。
隣接する符号化されたユニットから、符号化予定ユニットにおけるm番目の制御点に対応する符号化されたユニットを決定することであって、m番目の制御点に対応する符号化されたユニットとm番目の制御点との間の距離は、予め設定された距離より小さいか又はそれに等しく、mは、Mより大きくない任意の正の整数を有する、決定することと、
m番目の制御点に対応する符号化されたユニットの動きベクトルを、m番目の制御点の動きベクトル予測値として決定することと、
M個の制御点の動きベクトル予測値に基づいてQ個の動きベクトルグループを生成することと
を行うように更に構成される。
隣接する符号化されたユニットから、符号化予定ユニットにおけるm番目の制御点に対応する符号化されたユニットを決定することであって、m番目の制御点に対応する符号化されたユニットとm番目の制御点との間の距離は、予め設定された距離より小さいか又はそれに等しく、mは、Mより大きくない任意の正の整数を有する、決定することと、
m番目の制御点に対応する符号化されたユニットの動きベクトルを、m番目の制御点の第1の動きベクトル予測値として決定することと、
M個の制御点の第1の動きベクトル予測値に基づいてK個の第1の動きベクトルグループを生成することと、
隣接する符号化されたユニットにおけるj番目の符号化されたユニットの動きベクトルを、m番目の制御点の第2の動きベクトル予測値として決定することであって、jは、1,...,又はJのいずれか1つであり、Jは、隣接する符号化されたユニットの数であり、Jは、正の整数である、決定することと、
M個の制御点の第2の動きベクトル予測値に基づいてL個の第2の動きベクトルグループを生成することと、
Q個の動きベクトルグループを生成するべく、L個の第2の動きベクトルグループの後にK個の第1の動きベクトルグループを追加することと
を行うように更に構成される。
q番目の動きベクトルグループに対応する固有値を決定することであって、qは、Qより大きくない任意の正の整数を有する、決定することと、
Q個の動きベクトルグループに対応する固有値に基づいて昇順にQ個の動きベクトルグループをソートすることと、
候補動きベクトルキューを生成するべく、ソートされたN個の動きベクトルグループの後にソートされたQ個の動きベクトルグループを追加することと
を行うように更に構成される。
M個の制御点における隣接する制御点の、q番目の動きベクトルグループにおける、動きベクトル予測値の、1つの予測方向における、成分間の差を決定することと、
差の絶対値を予め設定された成分閾値と比較することであって、予め設定された成分閾値は、予測方向における符号化予定ユニットの範囲である、比較することと、
差の絶対値が、予め設定された成分閾値より小さいか又はそれに等しい場合、q番目の動きベクトルグループに対応する固有値を決定することと
を行うように更に構成される。
隣接する符号化されたユニットから、別の制御点に対応する符号化されたユニットを決定することであって、別の制御点に対応する符号化されたユニットと別の制御点との間の距離は、予め設定された距離より小さいか又はそれに等しく、別の制御点は、符号化予定ユニットにおけるM個の制御点以外の任意の制御点である、決定することと、
別の制御点に対応する符号化されたユニットの動きベクトルを、別の制御点の動きベクトル予測値として決定することと、
第3の予め設定されたアルゴリズムを用いて、別の制御点の動きベクトル予測値と、q番目の動きベクトルグループにおける、M個の制御点の、動きベクトル予測値とに基づいて、q番目の動きベクトルグループに対応する固有値を決定することと
を行うように更に構成される。
各サンプルユニットの予測残差及び最適な動きベクトルグループのインデックス識別子を取得するべく、復号予定ユニットに対応するビットストリームを復号する
ように構成される。
復号モジュール603によって決定された最適な動きベクトルグループのインデックス識別子に基づいて、N個の動きベクトルグループにおける最適な動きベクトルグループを決定する
ように更に構成される。
第2の予め設定されたアルゴリズムを用いて、決定モジュール601によって決定された最適な動きベクトルグループに基づいて、復号予定ユニットにおける各サンプルユニットの予測サンプル値を決定する、
各サンプルユニットの予測サンプル値と各サンプルユニットの予測残差との和に基づいて、各サンプルユニットの再構成サンプル値を決定する
ように更に構成される。
第1の予め設定されたアルゴリズムを用いて、決定モジュール601によって決定されたn番目の復号されたユニットの動きベクトルと、n番目の復号されたユニットのサンプル座標と、M個の制御点のサンプル座標とに基づいて、復号予定ユニットのM個の制御点の動きベクトル予測値を決定する、
M個の制御点の動きベクトル予測値に基づいてn番目の動きベクトルグループを生成する
ように構成され、
Mは、復号予定ユニットの動き予測モードに基づいて決定される正の整数である。
計算モジュール602は、具体的には、
次式(1)を用いて、決定モジュール601によって決定されたn番目の復号されたユニットの左上の頂点の動きベクトル(vx2,vy2)、n番目の復号されたユニットの右上の頂点の動きベクトル(vx3,vy3)、n番目の復号されたユニットの左下の頂点の動きベクトル(vx4,vy4)、n番目の復号されたユニットの左上の頂点のサンプル座標(x2,y2)、n番目の復号されたユニットの右上の頂点のサンプル座標(x3,y3)、n番目の復号されたユニットの左下の頂点のサンプル座標(x4,y4)、及び復号予定ユニットの左上の頂点のサンプル座標(x0,y0)に基づいて、復号予定ユニットの左上の頂点の動きベクトル予測値(vx0,vy0)を決定する
ように構成され、
次式(2)を用いて、決定モジュール601によって決定されたn番目の復号されたユニットの左上の頂点の動きベクトル(vx2,vy2)、n番目の復号されたユニットの右上の頂点の動きベクトル(vx3,vy3)、n番目の復号されたユニットの左上の頂点のサンプル座標(x2,y2)、n番目の復号されたユニットの右上の頂点のサンプル座標(x3,y3)、復号予定ユニットの左上の頂点の動きベクトル予測値(vx0,vy0)、復号予定ユニットの左上の頂点のサンプル座標(x0,y0)、及び復号予定ユニットの右上の頂点のサンプル座標(x1,y1)に基づいて、復号予定ユニットの右上の頂点の動きベクトル予測値(vx1,vy1)を決定する
ように更に構成される、
候補動きベクトルキューを生成するべく、予め設定されたソートルールに従ってN個の動きベクトルグループをソートし、
Nが予め設定された値より大きいか又はそれに等しい場合、候補動きベクトルキューの前の予め設定された数の動きベクトルグループを決定し、
最適な動きベクトルグループのインデックス識別子に基づいて、前の予め設定された数の動きベクトルグループにおける最適な動きベクトルグループを決定する
ように更に構成される。
予め設定されたソートルールに従ってN個の動きベクトルグループをソートすることと、
Nが予め設定された値より小さい場合、Q個の動きベクトルグループを生成することであって、NとQとの和は、予め設定された値より大きいか又はそれに等しく、Qは、正の整数である、生成することと、
候補動きベクトルキューを生成するべく、N個の動きベクトルグループの後にQ個の動きベクトルグループを追加することと、
候補動きベクトルキューの前の予め設定された数の動きベクトルグループを決定することと、
最適な動きベクトルグループのインデックス識別子に基づいて前の予め設定された数の動きベクトルグループにおける最適な動きベクトルグループを決定することと
を行うように更に構成される。
隣接する復号されたユニットから、復号予定ユニットにおけるm番目の制御点に対応する復号されたユニットを決定することであって、m番目の制御点に対応する復号されたユニットとm番目の制御点との間の距離は、予め設定された距離より小さいか又はそれに等しく、mは、Mより大きくない任意の正の整数を有する、決定することと、
m番目の制御点に対応する復号されたユニットの動きベクトルを、m番目の制御点の動きベクトル予測値として決定することと、
M個の制御点の動きベクトル予測値に基づいてQ個の動きベクトルグループを生成することと
を行うように更に構成される。
隣接する復号されたユニットから、復号予定ユニットにおけるm番目の制御点に対応する復号されたユニットを決定することであって、m番目の制御点に対応する復号されたユニットとm番目の制御点との間の距離は、予め設定された距離より小さいか又はそれに等しく、mは、Mより大きくない任意の正の整数を有する、決定することと、
m番目の制御点に対応する復号されたユニットの動きベクトルを、m番目の制御点の第1の動きベクトル予測値として決定することと、
M個の制御点の第1の動きベクトル予測値に基づいてK個の第1の動きベクトルグループを生成することと、
隣接する復号されたユニットにおけるj番目の復号されたユニットの動きベクトルを、m番目の制御点の第2の動きベクトル予測値として決定することであって、jは、1,...,又はJのいずれか1つであり、Jは、隣接する復号されたユニットの数であり、Jは、正の整数である、決定することと、
M個の制御点の第2の動きベクトル予測値に基づいてL個の第2の動きベクトルグループを生成することと、
Q個の動きベクトルグループを生成するべく、L個の第2の動きベクトルグループの後にK個の第1の動きベクトルグループを追加することと
を行うように更に構成される。
q番目の動きベクトルグループに対応する固有値を決定することであって、qは、Qより大きくない任意の正の整数を有する、決定することと、
Q個の動きベクトルグループに対応する固有値に基づいて昇順にQ個の動きベクトルグループをソートすることと、
候補動きベクトルキューを生成するべく、ソートされたN個の動きベクトルグループの後にソートされたQ個の動きベクトルグループを追加することと
を行うように更に構成される。
M個の制御点における隣接する制御点の、q番目の動きベクトルグループにおける、動きベクトル予測値の、1つの予測方向における、成分間の差を決定することと、
差の絶対値を予め設定された成分閾値と比較することであって、予め設定された成分閾値は、予測方向における復号予定ユニットの範囲である、比較することと、
差の絶対値が、予め設定された成分閾値より小さいか又はそれに等しい場合、q番目の動きベクトルグループに対応する固有値を決定することと
を行うように更に構成される。
隣接する復号されたユニットから、別の制御点に対応する復号されたユニットを決定することであって、別の制御点に対応する復号されたユニットと別の制御点との間の距離は、予め設定された距離より小さいか又はそれに等しく、別の制御点は、復号予定ユニットにおけるM個の制御点以外の任意の制御点である、決定することと、
別の制御点に対応する復号されたユニットの動きベクトルを、別の制御点の動きベクトル予測値として決定することと、
第3の予め設定されたアルゴリズムを用いて、別の制御点の動きベクトル予測値と、q番目の動きベクトルグループにおける、M個の制御点の、動きベクトル予測値とに基づいて、q番目の動きベクトルグループに対応する固有値を決定することと
を行うように更に構成される。
(項目1)
第1の予め設定されたルールに従って、符号化予定ユニットの隣接する符号化されたユニットからN個の符号化されたユニットを決定する段階であって、前記N個の符号化されたユニットの動き予測モードが、前記符号化予定ユニットのそれと同じであり、Nは、正の整数である、段階と、
第1の予め設定されたアルゴリズムを用いて、n番目の符号化されたユニットの動きベクトルに基づいて、n番目の動きベクトルグループを生成する段階であって、nは、Nより大きくない任意の正の整数を有する、段階と、
第2の予め設定されたルールに従って、取得されたN個の動きベクトルグループから、1つの動きベクトルグループを最適な動きベクトルグループとして決定する段階と、
第2の予め設定されたアルゴリズムを用いて、前記最適な動きベクトルグループに基づいて、前記符号化予定ユニットにおける各サンプルユニットの予測サンプル値を決定する段階と、
各サンプルユニットの元のサンプル値と各サンプルユニットの前記予測サンプル値との間の差に基づいて、各サンプルユニットの予測残差を決定する段階と、
前記符号化予定ユニットに対応するビットストリームを取得するべく、各サンプルユニットの前記予測残差及び前記最適な動きベクトルグループのインデックス識別子を符号化する段階であって、前記最適な動きベクトルグループの前記インデックス識別子は、復号装置に、各サンプルユニットの前記予測サンプル値を決定するように命令するために用いられる、段階と
を備える
画像符号化方法。
(項目2)
第1の予め設定されたアルゴリズムを用いて、n番目の符号化されたユニットの動きベクトルに基づいて、n番目の動きベクトルグループを前記生成する段階は、
前記第1の予め設定されたアルゴリズムを用いて、前記n番目の符号化されたユニットの前記動きベクトルと、前記n番目の符号化されたユニットのサンプル座標と、M個の制御点のサンプル座標とに基づいて、前記符号化予定ユニットの前記M個の制御点の動きベクトル予測値を決定する段階であって、Mは、前記符号化予定ユニットの前記動き予測モードに基づいて決定される正の整数である、段階と、
前記M個の制御点の前記動きベクトル予測値に基づいて前記n番目の動きベクトルグループを生成する段階と
を備える、項目1に記載の方法。
(項目3)
前記M個の制御点は、前記符号化予定ユニットの左上の頂点及び右上の頂点を有し、
前記第1の予め設定されたアルゴリズムを用いて、前記n番目の符号化されたユニットの前記動きベクトルと、前記n番目の符号化されたユニットのサンプル座標と、M個の制御点のサンプル座標とに基づいて、前記符号化予定ユニットの前記M個の制御点の動きベクトル予測値を決定する段階は、
次式(1)を用いて、前記n番目の符号化されたユニットの左上の頂点の動きベクトル(vx2,vy2)、前記n番目の符号化されたユニットの右上の頂点の動きベクトル(vx3,vy3)、前記n番目の符号化されたユニットの左下の頂点の動きベクトル(vx4,vy4)、前記n番目の符号化されたユニットの前記左上の頂点のサンプル座標(x2,y2)、前記n番目の符号化されたユニットの前記右上の頂点のサンプル座標(x3,y3)、前記n番目の符号化されたユニットの前記左下の頂点のサンプル座標(x4,y4)、及び前記符号化予定ユニットの前記左上の頂点のサンプル座標(x0,y0)に基づいて、前記符号化予定ユニットの前記左上の頂点の動きベクトル予測値(vx0,vy0)を決定する段階と、
、項目2に記載の方法。
(項目4)
第2の予め設定されたルールに従って、取得されたN個の動きベクトルグループから、1つの動きベクトルグループを最適な動きベクトルグループとして前記決定する段階は、
候補動きベクトルキューを生成するべく、予め設定されたソートルールに従って前記N個の動きベクトルグループをソートする段階と、
Nが予め設定された値より大きいか又はそれに等しい場合、前記候補動きベクトルキューの前の予め設定された数の動きベクトルグループを決定する段階と、
前の前記予め設定された数の動きベクトルグループの各々と前記符号化予定ユニットとの間のマッチング誤差を決定する段階と、
マッチング誤差が最小である1つの動きベクトルグループを前記最適な動きベクトルグループとして決定する段階と
を備える、項目2又は3に記載の方法。
(項目5)
前記予め設定されたソートルールは、前記N個の符号化されたユニットの降順を含む、項目4に記載の方法。
(項目6)
第2の予め設定されたルールに従って、取得されたN個の動きベクトルグループから、1つの動きベクトルグループを最適な動きベクトルグループとして前記決定する段階は、
予め設定されたソートルールに従って前記N個の動きベクトルグループをソートする段階と、
Nが予め設定された値より小さい場合、Q個の動きベクトルグループを生成する段階であって、NとQとの和は、前記予め設定された値より大きいか又はそれに等しく、Qは、正の整数である、段階と、
候補動きベクトルキューを生成するべく、前記N個の動きベクトルグループの後に前記Q個の動きベクトルグループを追加する段階と、
前記候補動きベクトルキューの前の予め設定された数の動きベクトルグループを決定する段階と、
前の前記予め設定された数の動きベクトルグループの各々と前記符号化予定ユニットとの間のマッチング誤差を決定する段階と、
マッチング誤差が最小である1つの動きベクトルグループを前記最適な動きベクトルグループとして決定する段階と
を備える、項目2又は3に記載の方法。
(項目7)
Q個の動きベクトルグループを前記生成する段階は、
前記隣接する符号化されたユニットから、前記符号化予定ユニットにおけるm番目の制御点に対応する符号化されたユニットを決定する段階であって、前記m番目の制御点に対応する前記符号化されたユニットと前記m番目の制御点との間の距離は、予め設定された距離より小さいか又はそれに等しく、mは、Mより大きくない任意の正の整数を有する、段階と、
前記m番目の制御点に対応する前記符号化されたユニットの動きベクトルを、前記m番目の制御点の動きベクトル予測値として決定する段階と、
前記M個の制御点の前記動きベクトル予測値に基づいて前記Q個の動きベクトルグループを生成する段階と
を備える、項目6に記載の方法。
(項目8)
Q個の動きベクトルグループを前記生成する段階は、
前記隣接する符号化されたユニットから、前記符号化予定ユニットにおけるm番目の制御点に対応する符号化されたユニットを決定する段階であって、前記m番目の制御点に対応する前記符号化されたユニットと前記m番目の制御点との間の距離は、予め設定された距離より小さいか又はそれに等しく、mは、Mより大きくない任意の正の整数を有する、段階と、
前記m番目の制御点に対応する前記符号化されたユニットの動きベクトルを、前記m番目の制御点の第1の動きベクトル予測値として決定する段階と、
前記M個の制御点の第1の動きベクトル予測値に基づいてK個の第1の動きベクトルグループを生成する段階と、
前記隣接する符号化されたユニットにおけるj番目の符号化されたユニットの動きベクトルを、前記m番目の制御点の第2の動きベクトル予測値として決定する段階であって、jは、1,...,又はJのいずれか1つであり、Jは、前記隣接する符号化されたユニットの数であり、Jは、正の整数である、段階と、
前記M個の制御点の第2の動きベクトル予測値に基づいてL個の第2の動きベクトルグループを生成する段階と、
前記Q個の動きベクトルグループを生成するべく、前記L個の第2の動きベクトルグループの後に前記K個の第1の動きベクトルグループを追加する段階と
を備える、項目6に記載の方法。
(項目9)
候補動きベクトルキューを生成するべく、前記ソートされたN個の動きベクトルグループの後に前記Q個の動きベクトルグループを前記追加する段階は、
q番目の動きベクトルグループに対応する固有値を決定する段階であって、qは、Qより大きくない任意の正の整数を有する、段階と、
前記Q個の動きベクトルグループに対応する固有値に基づいて昇順に前記Q個の動きベクトルグループをソートする段階と、
前記候補動きベクトルキューを生成するべく、前記ソートされたN個の動きベクトルグループの後に前記ソートされたQ個の動きベクトルグループを追加する段階と
を備える、項目6から8の何れか一項に記載の方法。
(項目10)
q番目の動きベクトルグループに対応する固有値を前記決定する段階は、
前記M個の制御点における隣接する制御点の、前記q番目の動きベクトルグループにおける、動きベクトル予測値の、1つの予測方向における、成分間の差を決定する段階と、
前記差の絶対値を予め設定された成分閾値と比較する段階であって、前記予め設定された成分閾値は、前記予測方向における前記符号化予定ユニットの範囲である、段階と、
前記差の前記絶対値が、前記予め設定された成分閾値より小さいか又はそれに等しい場合、前記q番目の動きベクトルグループに対応する前記固有値を決定する段階と
を備える、項目9に記載の方法。
(項目11)
q番目の動きベクトルグループに対応する固有値を前記決定する段階は、
前記隣接する符号化されたユニットから、別の制御点に対応する符号化されたユニットを決定する段階であって、前記別の制御点に対応する前記符号化されたユニットと前記別の制御点との間の距離は、前記予め設定された距離より小さいか又はそれに等しく、前記別の制御点は、前記符号化予定ユニットにおける前記M個の制御点以外の任意の制御点である、段階と、
前記別の制御点に対応する前記符号化されたユニットの動きベクトルを、前記別の制御点の動きベクトル予測値として決定する段階と、
第3の予め設定されたアルゴリズムを用いて、前記別の制御点の前記動きベクトル予測値と、前記q番目の動きベクトルグループにおける、前記M個の制御点の、動きベクトル予測値とに基づいて、前記q番目の動きベクトルグループに対応する前記固有値を決定する段階と
を備える、項目9又は10に記載の方法。
(項目12)
前記符号化予定ユニットの前記動き予測モードは、並進動き予測モード又はアフィン動き予測モードを含む、項目1から11の何れか一項に記載の方法。
(項目13)
第1の予め設定されたルールに従って、復号予定ユニットの隣接する復号されたユニットからN個の復号されたユニットを決定する段階であって、前記N個の復号されたユニットの動き予測モードが、前記復号予定ユニットのそれと同じであり、Nは、正の整数である、段階と、
第1の予め設定されたアルゴリズムを用いて、n番目の復号されたユニットの動きベクトルに基づいて、n番目の動きベクトルグループを生成する段階であって、nは、Nより大きくない任意の正の整数を有する、段階と、
各サンプルユニットの予測残差及び最適な動きベクトルグループのインデックス識別子を取得するべく、前記復号予定ユニットに対応するビットストリームを復号する段階と、
前記最適な動きベクトルグループの前記インデックス識別子に基づいて、N個の動きベクトルグループにおける前記最適な動きベクトルグループを決定する段階と、
第2の予め設定されたアルゴリズムを用いて、前記最適な動きベクトルグループに基づいて、前記復号予定ユニットにおける各サンプルユニットの予測サンプル値を決定する段階と、
各サンプルユニットの前記予測サンプル値と各サンプルユニットの前記予測残差との和に基づいて、各サンプルユニットの再構成サンプル値を決定する段階と
を備える
画像復号方法。
(項目14)
第1の予め設定されたアルゴリズムを用いて、n番目の復号されたユニットの動きベクトルに基づいて、n番目の動きベクトルグループを前記生成する段階は、
前記第1の予め設定されたアルゴリズムを用いて、前記n番目の復号されたユニットの前記動きベクトルと、前記n番目の復号されたユニットのサンプル座標と、M個の制御点のサンプル座標とに基づいて、前記復号予定ユニットの前記M個の制御点の動きベクトル予測値を決定する段階であって、Mは、前記復号予定ユニットの前記動き予測モードに基づいて決定される正の整数である、段階と、
前記M個の制御点の前記動きベクトル予測値に基づいて前記n番目の動きベクトルグループを生成する段階と
を備える、項目13に記載の方法。
(項目15)
前記M個の制御点は、前記復号予定ユニットの左上の頂点及び右上の頂点を有し、
前記第1の予め設定されたアルゴリズムを用いて、前記n番目の復号されたユニットの前記動きベクトルと、前記n番目の復号されたユニットのサンプル座標と、M個の制御点のサンプル座標とに基づいて、前記復号予定ユニットの前記M個の制御点の動きベクトル予測値を決定する段階は、
次式(1)を用いて、前記n番目の復号されたユニットの左上の頂点の動きベクトル(vx2,vy2)、前記n番目の復号されたユニットの右上の頂点の動きベクトル(vx3,vy3)、前記n番目の復号されたユニットの左下の頂点の動きベクトル(vx4,vy4)、前記n番目の復号されたユニットの前記左上の頂点のサンプル座標(x2,y2)、前記n番目の復号されたユニットの前記右上の頂点のサンプル座標(x3,y3)、前記n番目の復号されたユニットの前記左下の頂点のサンプル座標(x4,y4)、及び前記復号予定ユニットの前記左上の頂点のサンプル座標(x0,y0)に基づいて、前記復号予定ユニットの前記左上の頂点の動きベクトル予測値(vx0,vy0)を決定する段階と、
(項目16)
前記最適な動きベクトルグループの前記インデックス識別子に基づいて、N個の動きベクトルグループにおける前記最適な動きベクトルグループを前記決定する段階は、
候補動きベクトルキューを生成するべく、予め設定されたソートルールに従って前記N個の動きベクトルグループをソートする段階と、
Nが予め設定された値より大きいか又はそれに等しい場合、前記候補動きベクトルキューの前の予め設定された数の動きベクトルグループを決定する段階と、
前記最適な動きベクトルグループの前記インデックス識別子に基づいて、前の前記予め設定された数の動きベクトルグループにおける前記最適な動きベクトルグループを決定する段階と
を備える、項目14又は15に記載の方法。
(項目17)
前記予め設定されたソートルールは、前記N個の復号されたユニットの降順を含む、項目16に記載の方法。
(項目18)
前記最適な動きベクトルグループの前記インデックス識別子に基づいて、N個の動きベクトルグループにおける前記最適な動きベクトルグループを前記決定する段階は、
予め設定されたソートルールに従って前記N個の動きベクトルグループをソートする段階と、
Nが予め設定された値より小さい場合、Q個の動きベクトルグループを生成する段階であって、NとQとの和は、前記予め設定された値より大きいか又はそれに等しく、Qは、正の整数である、段階と、
候補動きベクトルキューを生成するべく、前記N個の動きベクトルグループの後に前記Q個の動きベクトルグループを追加する段階と、
前記候補動きベクトルキューの前の予め設定された数の動きベクトルグループを決定する段階と、
前記最適な動きベクトルグループの前記インデックス識別子に基づいて、前の前記予め設定された数の動きベクトルグループにおける前記最適な動きベクトルグループを決定する段階と
を備える、項目14又は15に記載の方法。
(項目19)
Q個の動きベクトルグループを前記生成する段階は、
前記隣接する復号されたユニットから、前記復号予定ユニットにおけるm番目の制御点に対応する復号されたユニットを決定する段階であって、前記m番目の制御点に対応する前記復号されたユニットと前記m番目の制御点との間の距離は、予め設定された距離より小さいか又はそれに等しく、mは、Mより大きくない任意の正の整数を有する、段階と、
前記m番目の制御点に対応する前記復号されたユニットの動きベクトルを、前記m番目の制御点の動きベクトル予測値として決定する段階と、
前記M個の制御点の前記動きベクトル予測値に基づいて前記Q個の動きベクトルグループを生成する段階と
を備える、項目18に記載の方法。
(項目20)
Q個の動きベクトルグループを前記生成する段階は、
前記隣接する復号されたユニットから、前記復号予定ユニットにおけるm番目の制御点に対応する復号されたユニットを決定する段階であって、前記m番目の制御点に対応する前記復号されたユニットと前記m番目の制御点との間の距離は、予め設定された距離より小さいか又はそれに等しく、mは、Mより大きくない任意の正の整数を有する、段階と、
前記m番目の制御点に対応する前記復号されたユニットの動きベクトルを、前記m番目の制御点の第1の動きベクトル予測値として決定する段階と、
前記M個の制御点の第1の動きベクトル予測値に基づいてK個の第1の動きベクトルグループを生成する段階と、
前記隣接する復号されたユニットにおけるj番目の復号されたユニットの動きベクトルを、前記m番目の制御点の第2の動きベクトル予測値として決定する段階であって、jは、1,...,又はJのいずれか1つであり、Jは、前記隣接する復号されたユニットの数であり、Jは、正の整数である、段階と、
前記M個の制御点の第2の動きベクトル予測値に基づいてL個の第2の動きベクトルグループを生成する段階と、
前記Q個の動きベクトルグループを生成するべく、前記L個の第2の動きベクトルグループの後に前記K個の第1の動きベクトルグループを追加する段階と
を備える、項目18に記載の方法。
(項目21)
候補動きベクトルキューを生成するべく、前記ソートされたN個の動きベクトルグループの後に前記Q個の動きベクトルグループを前記追加する段階は、
q番目の動きベクトルグループに対応する固有値を決定する段階であって、qは、Qより大きくない任意の正の整数を有する、段階と、
前記Q個の動きベクトルグループに対応する固有値に基づいて昇順に前記Q個の動きベクトルグループをソートする段階と、
前記候補動きベクトルキューを生成するべく、前記ソートされたN個の動きベクトルグループの後に前記ソートされたQ個の動きベクトルグループを追加する段階と
を備える、項目18から20の何れか一項に記載の方法。
(項目22)
q番目の動きベクトルグループに対応する固有値を前記決定する段階は、
前記M個の制御点における隣接する制御点の、前記q番目の動きベクトルグループにおける、動きベクトル予測値の、1つの予測方向における、成分間の差を決定する段階と、
前記差の絶対値を予め設定された成分閾値と比較する段階であって、前記予め設定された成分閾値は、前記予測方向における前記復号予定ユニットの範囲である、段階と、
前記差の前記絶対値が、前記予め設定された成分閾値より小さいか又はそれに等しい場合、前記q番目の動きベクトルグループに対応する前記固有値を決定する段階と
を備える、項目21に記載の方法。
(項目23)
q番目の動きベクトルグループに対応する固有値を前記決定する段階は、
前記隣接する復号されたユニットから、別の制御点に対応する復号されたユニットを決定する段階であって、前記別の制御点に対応する前記復号されたユニットと前記別の制御点との間の距離は、前記予め設定された距離より小さいか又はそれに等しく、前記別の制御点は、前記復号予定ユニットにおける前記M個の制御点以外の任意の制御点である、段階と、
前記別の制御点に対応する前記復号されたユニットの動きベクトルを、前記別の制御点の動きベクトル予測値として決定する段階と、
第3の予め設定されたアルゴリズムを用いて、前記別の制御点の前記動きベクトル予測値と、前記q番目の動きベクトルグループにおける、前記M個の制御点の、動きベクトル予測値とに基づいて、前記q番目の動きベクトルグループに対応する前記固有値を決定する段階と
を備える、項目21又は22に記載の方法。
(項目24)
前記復号予定ユニットの前記動き予測モードは、並進動き予測モード又はアフィン動き予測モードを含む、項目13から23の何れか一項に記載の方法。
(項目25)
第1の予め設定されたルールに従って、符号化予定ユニットの隣接する符号化されたユニットからN個の符号化されたユニットを決定するように構成される決定モジュールであって、前記N個の符号化されたユニットの動き予測モードが、前記符号化予定ユニットのそれと同じであり、Nは、正の整数である、決定モジュールと、
第1の予め設定されたアルゴリズムを用いて、前記決定モジュールによって決定されたn番目の符号化されたユニットの動きベクトルに基づいて、n番目の動きベクトルグループを生成するように構成される計算モジュールであって、nは、Nより大きくない任意の正の整数を有する、計算モジュールと、
前記符号化予定ユニットに対応するビットストリームを取得するべく、各サンプルユニットの予測残差及び最適な動きベクトルグループのインデックス識別子を符号化するように構成される符号化モジュールであって、前記最適な動きベクトルグループの前記インデックス識別子は、復号装置に、各サンプルユニットの予測サンプル値を決定するように命令するために用いられる、符号化モジュールと
を備え、
前記決定モジュールは、第2の予め設定されたルールに従って、前記計算モジュールによって取得されたN個の動きベクトルグループから、1つの動きベクトルグループを前記最適な動きベクトルグループとして決定するように更に構成され、
前記計算モジュールは、
第2の予め設定されたアルゴリズムを用いて、前記決定モジュールによって決定された前記最適な動きベクトルグループに基づいて、前記符号化予定ユニットにおける各サンプルユニットの前記予測サンプル値を決定する、
各サンプルユニットの元のサンプル値と各サンプルユニットの前記予測サンプル値との間の差に基づいて、各サンプルユニットの前記予測残差を決定する
ように更に構成される、
画像符号化装置。
(項目26)
前記計算モジュールは、具体的には、
前記第1の予め設定されたアルゴリズムを用いて、前記決定モジュールによって決定された前記n番目の符号化されたユニットの前記動きベクトルと、前記n番目の符号化されたユニットのサンプル座標と、M個の制御点のサンプル座標とに基づいて、前記復号予定ユニットの前記M個の制御点の動きベクトル予測値を決定する、
前記M個の制御点の前記動きベクトル予測値に基づいて前記n番目の動きベクトルグループを生成する
ように構成され、
Mは、前記符号化予定ユニットの前記動き予測モードに基づいて決定される正の整数である、
項目25に記載の画像符号化装置。
(項目27)
前記M個の制御点は、前記符号化予定ユニットの左上の頂点及び右上の頂点を有し、
前記計算モジュールは、具体的には、
次式(1)を用いて、前記決定モジュールによって決定された前記n番目の符号化されたユニットの左上の頂点の動きベクトル(vx2,vy2)、前記n番目の符号化されたユニットの右上の頂点の動きベクトル(vx3,vy3)、前記n番目の符号化されたユニットの左下の頂点の動きベクトル(vx4,vy4)、前記n番目の符号化されたユニットの前記左上の頂点のサンプル座標(x2,y2)、前記n番目の符号化されたユニットの前記右上の頂点のサンプル座標(x3,y3)、前記n番目の符号化されたユニットの前記左下の頂点のサンプル座標(x4,y4)、及び前記符号化予定ユニットの前記左上の頂点のサンプル座標(x0,y0)に基づいて、前記符号化予定ユニットの前記左上の頂点の動きベクトル予測値(vx0,vy0)を決定する
ように構成され、
次式(2)を用いて、前記決定モジュールによって決定された前記n番目の符号化されたユニットの前記左上の頂点の前記動きベクトル(vx2,vy2)、前記n番目の符号化されたユニットの前記右上の頂点の前記動きベクトル(vx3,vy3)、前記n番目の符号化されたユニットの前記左上の頂点の前記サンプル座標(x2,y2)、前記n番目の符号化されたユニットの前記右上の頂点の前記サンプル座標(x3,y3)、前記符号化予定ユニットの前記左上の頂点の前記動きベクトル予測値(vx0,vy0)、前記符号化予定ユニットの前記左上の頂点の前記サンプル座標(x0,y0)、及び前記符号化予定ユニットの前記左上の頂点のサンプル座標(x1,y1)に基づいて、前記符号化予定ユニットの前記右上の頂点の動きベクトル予測値(vx1,vy1)を決定する
ように更に構成される、
(項目28)
前記決定モジュールは、具体的には、
候補動きベクトルキューを生成するべく、予め設定されたソートルールに従って前記N個の動きベクトルグループをソートする、
Nが予め設定された値より大きいか又はそれに等しい場合、前記候補動きベクトルキューの前の予め設定された数の動きベクトルグループを決定する、
前の前記予め設定された数の動きベクトルグループの各々と前記符号化予定ユニットとの間のマッチング誤差を決定する、
マッチング誤差が最小である1つの動きベクトルグループを前記最適な動きベクトルグループとして決定する
ように構成される、項目26又は27に記載の画像符号化装置。
(項目29)
前記予め設定されたソートルールは、前記N個の符号化されたユニットの降順を含む、項目28に記載の装置。
(項目30)
前記決定モジュールは、
予め設定されたソートルールに従って前記N個の動きベクトルグループをソートすることと、
Nが予め設定された値より小さい場合、Q個の動きベクトルグループを生成することであって、NとQとの和は、前記予め設定された値より大きいか又はそれに等しく、Qは、正の整数である、生成することと、
候補動きベクトルキューを生成するべく、前記N個の動きベクトルグループの後に前記Q個の動きベクトルグループを追加することと、
前記候補動きベクトルキューの前の予め設定された数の動きベクトルグループを決定することと、
前の前記予め設定された数の動きベクトルグループの各々と前記符号化予定ユニットとの間のマッチング誤差を決定することと、
マッチング誤差が最小である1つの動きベクトルグループを前記最適な動きベクトルグループとして決定することと
を行うように更に構成される、項目26又は27に記載の装置。
(項目31)
前記決定モジュールは、
前記隣接する符号化されたユニットから、前記符号化予定ユニットにおけるm番目の制御点に対応する符号化されたユニットを決定することであって、前記m番目の制御点に対応する前記符号化されたユニットと前記m番目の制御点との間の距離は、予め設定された距離より小さいか又はそれに等しく、mは、Mより大きくない任意の正の整数を有する、決定することと、
前記m番目の制御点に対応する前記符号化されたユニットの動きベクトルを、前記m番目の制御点の動きベクトル予測値として決定することと、
前記M個の制御点の前記動きベクトル予測値に基づいて前記Q個の動きベクトルグループを生成することと
を行うように更に構成される、項目30に記載の画像符号化装置。
(項目32)
前記決定モジュールは、
前記隣接する符号化されたユニットから、前記符号化予定ユニットにおけるm番目の制御点に対応する符号化されたユニットを決定することであって、前記m番目の制御点に対応する前記符号化されたユニットと前記m番目の制御点との間の距離は、予め設定された距離より小さいか又はそれに等しく、mは、Mより大きくない任意の正の整数を有する、決定することと、
前記m番目の制御点に対応する前記符号化されたユニットの動きベクトルを、前記m番目の制御点の第1の動きベクトル予測値として決定することと、
前記M個の制御点の第1の動きベクトル予測値に基づいてK個の第1の動きベクトルグループを生成することと、
前記隣接する符号化されたユニットにおけるj番目の符号化されたユニットの動きベクトルを、前記m番目の制御点の第2の動きベクトル予測値として決定することであって、jは、1,...,又はJのいずれか1つであり、Jは、前記隣接する符号化されたユニットの数であり、Jは、正の整数である、決定することと、
前記M個の制御点の第2の動きベクトル予測値に基づいてL個の第2の動きベクトルグループを生成することと、
前記Q個の動きベクトルグループを生成するべく、前記L個の第2の動きベクトルグループの後に前記K個の第1の動きベクトルグループを追加することと
を行うように更に構成される、項目30に記載の画像符号化装置。
(項目33)
前記決定モジュールは、
q番目の動きベクトルグループに対応する固有値を決定することであって、qは、Qより大きくない任意の正の整数を有する、決定することと、
前記Q個の動きベクトルグループに対応する固有値に基づいて昇順に前記Q個の動きベクトルグループをソートすることと、
前記候補動きベクトルキューを生成するべく、前記ソートされたN個の動きベクトルグループの後に前記ソートされたQ個の動きベクトルグループを追加することと
を行うように更に構成される、項目30から32の何れか一項に記載の画像符号化装置。
(項目34)
前記決定モジュールは、
前記M個の制御点における隣接する制御点の、前記q番目の動きベクトルグループにおける、動きベクトル予測値の、1つの予測方向における、成分間の差を決定することと、
前記差の絶対値を予め設定された成分閾値と比較することであって、前記予め設定された成分閾値は、前記予測方向における前記符号化予定ユニットの範囲である、比較することと、
前記差の前記絶対値が、前記予め設定された成分閾値より小さいか又はそれに等しい場合、前記q番目の動きベクトルグループに対応する前記固有値を決定することと
を行うように更に構成される、項目33に記載の画像符号化装置。
(項目35)
前記決定モジュールは、
前記隣接する符号化されたユニットから、別の制御点に対応する符号化されたユニットを決定することであって、前記別の制御点に対応する前記符号化されたユニットと前記別の制御点との間の距離は、前記予め設定された距離より小さいか又はそれに等しく、前記別の制御点は、前記符号化予定ユニットにおける前記M個の制御点以外の任意の制御点である、決定することと、
前記別の制御点に対応する前記符号化されたユニットの動きベクトルを、前記別の制御点の動きベクトル予測値として決定することと、
第3の予め設定されたアルゴリズムを用いて、前記別の制御点の前記動きベクトル予測値と、前記q番目の動きベクトルグループにおける、前記M個の制御点の、動きベクトル予測値とに基づいて、前記q番目の動きベクトルグループに対応する前記固有値を決定することと
を行うように更に構成される、項目33又は34に記載の画像符号化装置。
(項目36)
前記符号化予定ユニットの前記動き予測モードは、並進動き予測モード又はアフィン動き予測モードを含む、項目25から35の何れか一項に記載の画像符号化装置。
(項目37)
第1の予め設定されたルールに従って、復号予定ユニットの隣接する復号されたユニットからN個の復号されたユニットを決定するように構成される決定モジュールであって、前記N個の復号されたユニットの動き予測モードが、前記復号予定ユニットのそれと同じであり、Nは、正の整数である、決定モジュールと、
第1の予め設定されたアルゴリズムを用いて、前記決定モジュールによって決定されたn番目の復号されたユニットの動きベクトルに基づいて、n番目の動きベクトルグループを生成するように構成される計算モジュールであって、nは、Nより大きくない任意の正の整数を有する、計算モジュールと、
各サンプルユニットの予測残差及び最適な動きベクトルグループのインデックス識別子を取得するべく、前記復号予定ユニットに対応するビットストリームを復号するように構成される復号モジュールと
を備え、
前記決定モジュールは、前記復号モジュールによって決定された前記最適な動きベクトルグループの前記インデックス識別子に基づいて、N個の動きベクトルグループにおける前記最適な動きベクトルグループを決定するように更に構成され、
前記計算モジュールは、第2の予め設定されたアルゴリズムを用いて、前記決定モジュールによって決定された前記最適な動きベクトルグループに基づいて、前記復号予定ユニットにおける各サンプルユニットの予測サンプル値を決定する、
各サンプルユニットの前記予測サンプル値と各サンプルユニットの前記予測残差との和に基づいて、各サンプルユニットの再構成サンプル値を決定する
ように更に構成される、
画像復号装置。
(項目38)
前記計算モジュールは、具体的には、
前記第1の予め設定されたアルゴリズムを用いて、前記決定モジュールによって決定された前記n番目の復号されたユニットの前記動きベクトルと、前記n番目の復号されたユニットのサンプル座標と、M個の制御点のサンプル座標とに基づいて、前記復号予定ユニットの前記M個の制御点の動きベクトル予測値を決定する、
前記M個の制御点の前記動きベクトル予測値に基づいて前記n番目の動きベクトルグループを生成する
ように構成され、
Mは、前記復号予定ユニットの前記動き予測モードに基づいて決定される正の整数である、
項目37に記載の画像復号装置。
(項目39)
前記M個の制御点は、前記復号予定ユニットの左上の頂点及び右上の頂点を有し、
前記計算モジュールは、具体的には、
次式(1)を用いて、前記決定モジュールによって決定された前記n番目の復号されたユニットの左上の頂点の動きベクトル(vx2,vy2)、前記n番目の復号されたユニットの右上の頂点の動きベクトル(vx3,vy3)、前記n番目の復号されたユニットの左下の頂点の動きベクトル(vx4,vy4)、前記n番目の復号されたユニットの前記左上の頂点のサンプル座標(x2,y2)、前記n番目の復号されたユニットの前記右上の頂点のサンプル座標(x3,y3)、前記n番目の復号されたユニットの前記左下の頂点のサンプル座標(x4,y4)、及び前記復号予定ユニットの前記左上の頂点のサンプル座標(x0,y0)に基づいて、前記復号予定ユニットの前記左上の頂点の動きベクトル予測値(vx0,vy0)を決定する
ように構成され、
次式(2)を用いて、前記決定モジュールによって決定された前記n番目の復号されたユニットの前記左上の頂点の前記動きベクトル(vx2,vy2)、前記n番目の復号されたユニットの前記右上の頂点の前記動きベクトル(vx3,vy3)、前記n番目の復号されたユニットの前記左上の頂点の前記サンプル座標(x2,y2)、前記n番目の復号されたユニットの前記右上の頂点の前記サンプル座標(x3,y3)、前記復号予定ユニットの前記左上の頂点の動きベクトル予測値(vx0,vy0)、前記復号予定ユニットの前記左上の頂点のサンプル座標(x0,y0)、及び前記復号予定ユニットの前記左上の頂点のサンプル座標(x1,y1)に基づいて、前記復号予定ユニットの前記右上の頂点の動きベクトル予測値(vx1,vy1)を決定する
ように更に構成される、
(項目40)
前記決定モジュールは、
候補動きベクトルキューを生成するべく、予め設定されたソートルールに従って前記N個の動きベクトルグループをソートし、
Nが予め設定された値より大きいか又はそれに等しい場合、前記候補動きベクトルキューの前の予め設定された数の動きベクトルグループを決定し、
前記最適な動きベクトルグループの前記インデックス識別子に基づいて、前の前記予め設定された数の動きベクトルグループにおける前記最適な動きベクトルグループを決定する
ように更に構成される、項目38又は39に記載の画像復号装置。
(項目41)
前記予め設定されたソートルールは、前記N個の復号されたユニットの降順を含む、項目40に記載の画像復号装置。
(項目42)
前記決定モジュールは、
予め設定されたソートルールに従って前記N個の動きベクトルグループをソートすることと、
Nが予め設定された値より小さい場合、Q個の動きベクトルグループを生成することであって、NとQとの和は、前記予め設定された値より大きいか又はそれに等しく、Qは、正の整数である、生成することと、
候補動きベクトルキューを生成するべく、前記N個の動きベクトルグループの後に前記Q個の動きベクトルグループを追加することと、
前記候補動きベクトルキューの前の予め設定された数の動きベクトルグループを決定することと、
前記最適な動きベクトルグループの前記インデックス識別子に基づいて前の前記予め設定された数の動きベクトルグループにおける前記最適な動きベクトルグループを決定することと
を行うように更に構成される、項目40又は41に記載の画像復号装置。
(項目43)
前記決定モジュールは、
前記隣接する復号されたユニットから、前記復号予定ユニットにおけるm番目の制御点に対応する復号されたユニットを決定することであって、前記m番目の制御点に対応する前記復号されたユニットと前記m番目の制御点との間の距離は、予め設定された距離より小さいか又はそれに等しく、mは、Mより大きくない任意の正の整数を有する、決定することと、
前記m番目の制御点に対応する前記復号されたユニットの動きベクトルを、前記m番目の制御点の動きベクトル予測値として決定することと、
前記M個の制御点の前記動きベクトル予測値に基づいて前記Q個の動きベクトルグループを生成することと
を行うように更に構成される、項目42に記載の画像復号装置。
(項目44)
前記決定モジュールは、
前記隣接する復号されたユニットから、前記復号予定ユニットにおけるm番目の制御点に対応する復号されたユニットを決定することであって、前記m番目の制御点に対応する前記復号されたユニットと前記m番目の制御点との間の距離は、予め設定された距離より小さいか又はそれに等しく、mは、Mより大きくない任意の正の整数を有する、決定することと、
前記m番目の制御点に対応する前記復号されたユニットの動きベクトルを、前記m番目の制御点の第1の動きベクトル予測値として決定することと、
前記M個の制御点の第1の動きベクトル予測値に基づいてK個の第1の動きベクトルグループを生成することと、
前記隣接する復号されたユニットにおけるj番目の復号されたユニットの動きベクトルを、前記m番目の制御点の第2の動きベクトル予測値として決定することであって、jは、1,...,又はJのいずれか1つであり、Jは、前記隣接する復号されたユニットの数であり、Jは、正の整数である、決定することと、
前記M個の制御点の第2の動きベクトル予測値に基づいてL個の第2の動きベクトルグループを生成することと、
前記Q個の動きベクトルグループを生成するべく、前記L個の第2の動きベクトルグループの後に前記K個の第1の動きベクトルグループを追加することと
を行うように更に構成される、項目42に記載の画像復号装置。
(項目45)
前記決定モジュールは、
q番目の動きベクトルグループに対応する固有値を決定することであって、qは、Qより大きくない任意の正の整数を有する、決定することと、
前記Q個の動きベクトルグループに対応する固有値に基づいて昇順に前記Q個の動きベクトルグループをソートすることと、
前記候補動きベクトルキューを生成するべく、前記ソートされたN個の動きベクトルグループの後に前記ソートされたQ個の動きベクトルグループを追加することと
を行うように更に構成される、項目42から44の何れか一項に記載の画像復号装置。
(項目46)
前記決定モジュールは、
前記M個の制御点における隣接する制御点の、前記q番目の動きベクトルグループにおける、動きベクトル予測値の、1つの予測方向における、成分間の差を決定することと、
前記差の絶対値を予め設定された成分閾値と比較することであって、前記予め設定された成分閾値は、前記予測方向における前記復号予定ユニットの範囲である、比較することと、
前記差の前記絶対値が、前記予め設定された成分閾値より小さいか又はそれに等しい場合、前記q番目の動きベクトルグループに対応する前記固有値を決定することと
を行うように更に構成される、項目45に記載の画像復号装置。
(項目47)
前記決定モジュールは、
前記隣接する復号されたユニットから、別の制御点に対応する復号されたユニットを決定することであって、前記別の制御点に対応する前記復号されたユニットと前記別の制御点との間の距離は、前記予め設定された距離より小さいか又はそれに等しく、前記別の制御点は、前記復号予定ユニットにおける前記M個の制御点以外の任意の制御点である、決定することと、
前記別の制御点に対応する前記復号されたユニットの動きベクトルを、前記別の制御点の動きベクトル予測値として決定することと、
第3の予め設定されたアルゴリズムを用いて、前記別の制御点の前記動きベクトル予測値と、前記q番目の動きベクトルグループにおける、前記M個の制御点の、動きベクトル予測値とに基づいて、前記q番目の動きベクトルグループに対応する前記固有値を決定することと
を行うように更に構成される、項目45又は46に記載の画像復号装置。
(項目48)
前記復号予定ユニットの前記動き予測モードは、並進動き予測モード又はアフィン動き予測モードを含む、項目37から47の何れか一項に記載の画像復号装置。
(項目49)
プロセッサと、メモリと、通信インタフェースと、バスとを備え、前記プロセッサは、前記バスを用いて前記メモリ及び前記通信インタフェースに接続されている、画像符号化装置であって、
前記メモリは、命令を格納するように構成され、
前記プロセッサは、前記命令を実行するように構成され、前記プロセッサが、前記メモリに格納された前記命令を実行する場合に、前記プロセッサは、項目1から12の何れか一項に記載の画像符号化方法を実行する、
画像符号化装置。
(項目50)
プロセッサと、メモリと、通信インタフェースと、バスとを備え、前記プロセッサは、前記バスを用いて前記メモリ及び前記通信インタフェースに接続されている、画像復号装置であって、
前記メモリは、命令を格納するように構成され、
前記プロセッサは、前記命令を実行するように構成され、前記プロセッサが、前記メモリに格納された前記命令を実行する場合に、前記プロセッサは、項目13から24の何れか一項に記載の画像復号方法を実行する、
画像復号装置。
Claims (14)
- 復号予定ユニットの左側にある2つの隣接する復号されたユニットから、第1のシーケンスに従い第1に見つけられた第1の復号されたユニットを決定する段階であって、前記第1の復号されたユニットの動き予測モードは前記復号予定ユニットの動き予測モードと同一である、段階と、
前記復号予定ユニットの上方にある3つの隣接する復号されたユニットから、第2のシーケンスに従い第1に見つけられた第2の復号されたユニットを決定する段階であって、前記第2の復号されたユニットの動き予測モードは前記復号予定ユニットの動き予測モードと同一であり、前記第1の復号されたユニットの前記動き予測モード、前記第2の復号されたユニットの前記動き予測モード及び前記復号予定ユニットの前記動き予測モードはアフィン動き予測モードであり、前記第1のシーケンスは前記第2のシーケンスとは独立である、段階と、
前記第1の復号されたユニットの複数の制御点の動きベクトルと、前記第1の復号されたユニットの前記複数の制御点のサンプル座標と、前記復号予定ユニットのM個の制御点のサンプル座標とに基づき、前記復号予定ユニットの前記M個の制御点の第1の動きベクトル予測値を計算する段階と、
前記M個の制御点の前記第1の動きベクトル予測値に基づき、第1の動きベクトルグループを生成する段階と、
前記第2の復号されたユニットの複数の制御点の動きベクトルと、前記第2の復号されたユニットの前記複数の制御点のサンプル座標と、前記復号予定ユニットの前記M個の制御点の前記サンプル座標とに基づき、前記復号予定ユニットの前記M個の制御点の第2の動きベクトル予測値を計算する段階と、
前記M個の制御点の前記第2の動きベクトル予測値に基づき、第2の動きベクトルグループを生成する段階と、
ビットストリームから、最適な動きベクトルグループのインデックス識別子を取得し、前記インデックス識別子に基づき複数の動きベクトルグループから、ターゲットの動きベクトルグループを決定する段階であって、前記複数の動きベクトルグループは前記第1の動きベクトルグループ及び前記第2の動きベクトルグループを有する、段階と、
前記ターゲットの動きベクトルグループに基づき、前記復号予定ユニットを予測する段階であって、前記復号予定ユニットの各サンプルユニットはそれぞれの動きベクトルを有する、段階と、を備え、
複数の動きベクトルグループから、ターゲットの動きベクトルグループを決定する前記段階は、前記複数の動きベクトルグループの数が予め設定された数より小さい場合、Q個の動きベクトルグループを生成する段階であって、Qは第1の値である、段階と、
前記Q個の動きベクトルグループ、前記第1の動きベクトルグループ及び前記第2の動きベクトルグループを含む前記複数の動きベクトルグループから、前記ターゲットの動きベクトルグループを決定する段階と、を含む、画像復号方法。 - Q+2は、予め設定された値より大きいか又はそれに等しい、請求項1に記載の画像復号方法。
- Q個の動きベクトルグループを生成する前記段階は、
前記復号予定ユニットの前記M個の制御点にそれぞれ対応する復号されたユニットの動きベクトルに基づき、前記Q個の動きベクトルグループを生成する段階を含む、請求項1または2に記載の画像復号方法。 - 符号化予定ユニットの左側にある2つの隣接する符号化されたユニットから、第1のシーケンスに従い第1に見つけられた第1の符号化されたユニットを決定する段階であって、前記第1の符号化されたユニットの動き予測モードは前記符号化予定ユニットの動き予測モードと同一である、段階と、
前記符号化予定ユニットの上方にある3つの隣接する符号化されたユニットから、第2のシーケンスに従い第1に見つけられた第2の符号化されたユニットを決定する段階であって、前記第2の符号化されたユニットの動き予測モードは前記符号化予定ユニットの動き予測モードと同一であり、前記第1の符号化されたユニットの前記動き予測モード、前記第2の符号化されたユニットの前記動き予測モード及び前記符号化予定ユニットの前記動き予測モードはアフィン動き予測モードであり、前記第1のシーケンスは前記第2のシーケンスとは独立である、段階と、
前記第1の符号化されたユニットの複数の制御点の動きベクトルと、前記第1の符号化されたユニットの前記複数の制御点のサンプル座標と、前記符号化予定ユニットのM個の制御点のサンプル座標とに基づき、前記符号化予定ユニットの前記M個の制御点の第1の動きベクトル予測値を計算し、前記M個の制御点の前記第1の動きベクトル予測値に基づき、第1の動きベクトルグループを生成する段階と、
前記第2の符号化されたユニットの複数の制御点の動きベクトルと、前記第2の符号化されたユニットの前記複数の制御点のサンプル座標と、前記符号化予定ユニットの前記M個の制御点の前記サンプル座標とに基づき、前記符号化予定ユニットの前記M個の制御点の第2の動きベクトル予測値を計算し、前記M個の制御点の前記第2の動きベクトル予測値に基づき、第2の動きベクトルグループを生成する段階と、
複数の動きベクトルグループから、ターゲットの動きベクトルグループを決定する段階であって、前記複数の動きベクトルグループは前記第1の動きベクトルグループ及び前記第2の動きベクトルグループを有する、段階と、
前記複数の動きベクトルグループ及び前記ターゲットの動きベクトルグループに基づき、前記ターゲットの動きベクトルグループのインデックス識別子を決定する段階と、
前記インデックス識別子をビットストリーム内に符号化する段階と、を備え、
複数の動きベクトルグループから、ターゲットの動きベクトルグループを決定する前記段階は、
前記複数の動きベクトルグループの数が予め設定された数より小さい場合、Q個の動きベクトルグループを生成する段階であって、Qは第1の値である、段階と、
前記Q個の動きベクトルグループ、前記第1の動きベクトルグループ及び前記第2の動きベクトルグループを含む前記複数の動きベクトルグループから、前記ターゲットの動きベクトルグループを決定する段階と、を含む、画像符号化方法。 - Q+2は、予め設定された値より大きいか又はそれに等しい、請求項4に記載の画像符号化方法。
- Q個の動きベクトルグループを生成する前記段階は、
前記符号化予定ユニットの前記M個の制御点にそれぞれ対応する符号化されたユニットの動きベクトルに基づき、前記Q個の動きベクトルグループを生成する段階を含む、請求項4または5に記載の画像符号化方法。 - 復号予定ユニットの左側にある隣接する2つの復号されたユニットから、第1のシーケンスに従い第1に見つけられた第1の復号されたユニットを決定するよう構成され、前記第1の復号されたユニットの動き予測モードは前記復号予定ユニットの動き予測モードと同一であり、及び更に、前記復号予定ユニットの上方にある3つの隣接する復号されたユニットから、第2のシーケンスに従い第1に見つけられた第2の復号されたユニットを決定するよう構成され、前記第2の復号されたユニットの動き予測モードは前記復号予定ユニットの動き予測モードと同一であり、前記第1の復号されたユニットの前記動き予測モード、前記第2の復号されたユニットの前記動き予測モード及び前記復号予定ユニットの前記動き予測モードはアフィン動き予測モードであり、前記第1のシーケンスは前記第2のシーケンスとは独立である、決定モジュールと、
前記第1の復号されたユニットの複数の制御点の動きベクトルと、前記第1の復号されたユニットの前記複数の制御点のサンプル座標と、前記復号予定ユニットのM個の制御点のサンプル座標とに基づき、前記M個の制御点の第1の動きベクトル予測値を計算し、前記M個の制御点の前記第1の動きベクトル予測値に基づき、第1の動きベクトルグループを生成するよう構成され、及び更に、前記第2の復号されたユニットの複数の制御点の動きベクトルと、前記第2の復号されたユニットの前記複数の制御点のサンプル座標と、前記復号予定ユニットの前記M個の制御点の前記サンプル座標とに基づき、前記M個の制御点の第2の動きベクトル予測値を計算し、前記M個の制御点の前記第2の動きベクトル予測値に基づき、第2の動きベクトルグループを生成する、よう構成された計算モジュールと、を備える、画像復号装置であって、
前記決定モジュールは、更に、ビットストリームから最適な動きベクトルグループのインデックス識別子を取得し、前記インデックス識別子に基づき複数の動きベクトルグループからターゲットの動きベクトルグループを決定するよう構成されており、前記複数の動きベクトルグループは前記第1の動きベクトルグループ及び前記第2の動きベクトルグループを有し、
前記計算モジュールは、更に、前記ターゲットの動きベクトルグループに基づき、前記復号予定ユニットを予測するよう構成されており、前記復号予定ユニットの各サンプルユニットはそれぞれの動きベクトルを有し、
前記決定モジュールは、具体的に、
前記複数の動きベクトルグループの数が予め設定された数より小さい場合、Q個の動きベクトルグループを生成するよう構成されており、Qは第1の値であり、Q+2は予め設定された値より大きいか又はそれに等しい、並びに
前記Q個の動きベクトルグループ、前記第1の動きベクトルグループ及び前記第2の動きベクトルグループを含む前記複数の動きベクトルグループから、前記ターゲットの動きベクトルグループを決定するよう構成されている、画像復号装置。 - 更に、前記決定モジュールは、具体的に、
前記復号予定ユニットの前記M個の制御点にそれぞれ対応する復号されたユニットの動きベクトルに基づき、前記Q個の動きベクトルグループを生成するよう構成されている、請求項7に記載の画像復号装置。 - 符号化予定ユニットの左側にある隣接する2つの符号化されたユニットから、第1のシーケンスに従い第1に見つけられた第1の符号化されたユニットを決定するよう構成され、前記第1の符号化されたユニットの動き予測モードは前記符号化予定ユニットの動き予測モードと同一であり、及び更に、前記符号化予定ユニットの上方にある3つの隣接する符号化されたユニットから、第2のシーケンスに従い第1に見つけられた第2の符号化されたユニットを決定するよう構成され、前記第2の符号化されたユニットの動き予測モードは前記符号化予定ユニットの動き予測モードと同一であり、前記第1の符号化されたユニットの前記動き予測モード、前記第2の符号化されたユニットの前記動き予測モード及び前記符号化予定ユニットの前記動き予測モードはアフィン動き予測モードであり、前記第1のシーケンスは前記第2のシーケンスとは独立である、決定モジュールと、
前記第1の符号化されたユニットの複数の制御点の動きベクトルと、前記第1の符号化されたユニットの前記複数の制御点のサンプル座標と、前記符号化予定ユニットのM個の制御点のサンプル座標とに基づき、前記M個の制御点の第1の動きベクトル予測値を計算し、前記M個の制御点の前記第1の動きベクトル予測値に基づき、第1の動きベクトルグループを生成するよう構成され、更に、前記第2の符号化されたユニットの複数の制御点の動きベクトルと、前記第2の符号化されたユニットの前記複数の制御点のサンプル座標と、前記符号化予定ユニットの前記M個の制御点の前記サンプル座標とに基づき、前記M個の制御点の第2の動きベクトル予測値を計算し、前記M個の制御点の前記第2の動きベクトル予測値に基づき、第2の動きベクトルグループを生成する、よう構成された計算モジュールと、を備える、画像符号化装置であって、
前記決定モジュールは、更に、複数の動きベクトルグループから、ターゲットの動きベクトルグループを決定するよう構成されており、前記複数の動きベクトルグループは前記第1の動きベクトルグループ及び前記第2の動きベクトルグループを有し、前記画像符号化装置はさらに
前記複数の動きベクトルグループ及び前記ターゲットの動きベクトルグループに基づき、前記ターゲットの動きベクトルグループのインデックス識別子を決定し、前記インデックス識別子をビットストリーム内に符号化するよう構成された符号化モジュールを備え、
前記決定モジュールは、具体的に、
前記複数の動きベクトルグループの数が予め設定された数より小さい場合、Q個の動きベクトルグループを生成するよう構成されており、Qは第1の値であり、Q+2は予め設定された値より大きいか又はそれに等しい、並びに
前記Q個の動きベクトルグループ、前記第1の動きベクトルグループ及び前記第2の動きベクトルグループを含む前記複数の動きベクトルグループから、前記ターゲットの動きベクトルグループを決定するよう構成されている、画像符号化装置。 - 前記決定モジュールは、具体的に、
前記符号化予定ユニットの前記M個の制御点にそれぞれ対応する符号化されたユニットの動きベクトルに基づき、前記Q個の動きベクトルグループを生成するよう構成されている、請求項9に記載の画像符号化装置。 - プロセッサと、メモリと、通信インタフェースと、バスとを備える画像処理装置であって、前記プロセッサは、前記メモリ及び前記通信インタフェースに前記バスを用いて接続されており、
前記メモリは、命令を格納するよう構成されており、
前記プロセッサは、前記命令を実行するよう構成されており、前記プロセッサが前記メモリ内に格納された前記命令を実行すると、前記プロセッサは、請求項1から3のいずれか一項に記載の画像復号方法を実行できるようになる、画像処理装置。 - プロセッサと、メモリと、通信インタフェースと、バスとを備える画像処理装置であって、前記プロセッサは、前記メモリ及び前記通信インタフェースに前記バスを用いて接続されており、
前記メモリは、命令を格納するよう構成されており、
前記プロセッサは、前記命令を実行するよう構成されており、前記プロセッサが前記メモリ内に格納された前記命令を実行すると、前記プロセッサは、請求項4から6のいずれか一項に記載の画像符号化方法を実行できるようになる、画像処理装置。 - コンピュータに、請求項1から3のいずれか一項に記載の画像復号方法を実行させるための、プログラム。
- コンピュータに、請求項4から6のいずれか一項に記載の画像符号化方法を実行させるための、プログラム。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610081070.3 | 2016-02-06 | ||
CN201610081070.3A CN107046645B9 (zh) | 2016-02-06 | 2016-02-06 | 图像编解码方法及装置 |
JP2018541193A JP7069022B2 (ja) | 2016-02-06 | 2016-09-08 | 画像符号化方法及び装置、並びに画像復号方法及び装置 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018541193A Division JP7069022B2 (ja) | 2016-02-06 | 2016-09-08 | 画像符号化方法及び装置、並びに画像復号方法及び装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020205610A JP2020205610A (ja) | 2020-12-24 |
JP7351485B2 true JP7351485B2 (ja) | 2023-09-27 |
Family
ID=59499362
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018541193A Active JP7069022B2 (ja) | 2016-02-06 | 2016-09-08 | 画像符号化方法及び装置、並びに画像復号方法及び装置 |
JP2020144911A Active JP7351485B2 (ja) | 2016-02-06 | 2020-08-28 | 画像符号化方法及び装置、画像復号方法及び装置並びにプログラム |
JP2020144912A Active JP7351463B2 (ja) | 2016-02-06 | 2020-08-28 | 画像符号化方法及び装置、画像復号方法及び装置並びにプログラム |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018541193A Active JP7069022B2 (ja) | 2016-02-06 | 2016-09-08 | 画像符号化方法及び装置、並びに画像復号方法及び装置 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020144912A Active JP7351463B2 (ja) | 2016-02-06 | 2020-08-28 | 画像符号化方法及び装置、画像復号方法及び装置並びにプログラム |
Country Status (10)
Country | Link |
---|---|
US (5) | US10798405B2 (ja) |
EP (2) | EP4099699A1 (ja) |
JP (3) | JP7069022B2 (ja) |
KR (4) | KR102447241B1 (ja) |
CN (4) | CN111526361B (ja) |
AU (3) | AU2016390979B2 (ja) |
CA (1) | CA3013655C (ja) |
HK (1) | HK1256107A1 (ja) |
RU (4) | RU2722389C2 (ja) |
WO (1) | WO2017133243A1 (ja) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111526361B (zh) * | 2016-02-06 | 2022-05-13 | 华为技术有限公司 | 图像编解码方法及装置 |
WO2019002215A1 (en) | 2017-06-26 | 2019-01-03 | Interdigital Vc Holdings, Inc. | MULTIPLE PREDICTION CANDIDATES FOR MOTION COMPENSATION |
US10856003B2 (en) * | 2017-10-03 | 2020-12-01 | Qualcomm Incorporated | Coding affine prediction motion information for video coding |
US10582212B2 (en) * | 2017-10-07 | 2020-03-03 | Google Llc | Warped reference motion vectors for video compression |
CN109922336B (zh) * | 2017-12-12 | 2023-07-18 | 华为技术有限公司 | 视频数据的帧间预测方法和装置 |
CN110035287B (zh) * | 2018-01-12 | 2023-05-09 | 富士通株式会社 | 对统一转换单元模式进行分组标识的方法、装置和电子设备 |
CN108449599B (zh) * | 2018-03-23 | 2021-05-18 | 安徽大学 | 一种基于面透射变换的视频编码与解码方法 |
CN116684638A (zh) | 2018-04-01 | 2023-09-01 | Lg电子株式会社 | 图像编码/解码方法、视频数据发送方法和存储介质 |
CN117061738A (zh) * | 2018-04-02 | 2023-11-14 | 深圳市大疆创新科技有限公司 | 用于图像处理的方法和图像处理装置 |
CN110971899B (zh) * | 2018-10-01 | 2021-06-01 | 华为技术有限公司 | 一种确定运动信息的方法、帧间预测方法及装置 |
US11528484B2 (en) | 2018-12-06 | 2022-12-13 | Lg Electronics Inc. | Method and apparatus for processing video signal on basis of inter prediction |
CN112970257A (zh) | 2019-01-02 | 2021-06-15 | Oppo广东移动通信有限公司 | 解码预测方法、装置及计算机存储介质 |
EP3930327A4 (en) * | 2019-03-08 | 2022-06-01 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | PREDICTION PROCESS, ENCODER, DECODER, AND COMPUTER STORAGE MEDIA |
CN113824960B (zh) * | 2019-11-13 | 2024-02-23 | 腾讯科技(深圳)有限公司 | 视频编码方法、装置、计算机可读介质及电子设备 |
CN111698502A (zh) * | 2020-06-19 | 2020-09-22 | 中南大学 | 基于vvc编码的仿射运动估计加速方法、设备及存储介质 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012165279A (ja) | 2011-02-08 | 2012-08-30 | Jvc Kenwood Corp | 画像復号装置、画像復号方法および画像復号プログラム |
CN105163116A (zh) | 2015-08-29 | 2015-12-16 | 华为技术有限公司 | 图像预测的方法及设备 |
JP2020205611A (ja) | 2016-02-06 | 2020-12-24 | ホアウェイ・テクノロジーズ・カンパニー・リミテッド | 画像符号化方法及び装置、画像復号方法及び装置並びにプログラム |
Family Cites Families (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100215451B1 (ko) * | 1996-05-29 | 1999-08-16 | 윤종용 | 임의형태 물체를 포함한 동화상의 부호화 및 복호화시스템 |
WO1998042134A1 (en) * | 1997-03-17 | 1998-09-24 | Mitsubishi Denki Kabushiki Kaisha | Image encoder, image decoder, image encoding method, image decoding method and image encoding/decoding system |
KR100772873B1 (ko) * | 2006-01-12 | 2007-11-02 | 삼성전자주식회사 | 스무딩 예측을 이용한 다계층 기반의 비디오 인코딩 방법,디코딩 방법, 비디오 인코더 및 비디오 디코더 |
US8619853B2 (en) * | 2007-06-15 | 2013-12-31 | Qualcomm Incorporated | Separable directional transforms |
WO2009123248A1 (en) * | 2008-04-01 | 2009-10-08 | Canon Kabushiki Kaisha | Moving image encoding apparatus and moving image encoding method |
JP5401071B2 (ja) * | 2008-10-09 | 2014-01-29 | 株式会社Nttドコモ | 動画像符号化装置、動画像復号装置、動画像符号化方法、動画像復号方法、動画像符号化プログラム、動画像復号プログラム、動画像処理システムおよび動画像処理方法 |
KR101590511B1 (ko) * | 2009-01-23 | 2016-02-02 | 에스케이텔레콤 주식회사 | 움직임 벡터 부호화/복호화 장치 및 방법과 그를 이용한 영상 부호화/복호화 장치 및 방법 |
JP4760923B2 (ja) * | 2009-02-03 | 2011-08-31 | ソニー株式会社 | 画像処理装置、画像処理方法および撮像装置 |
KR101452859B1 (ko) | 2009-08-13 | 2014-10-23 | 삼성전자주식회사 | 움직임 벡터를 부호화 및 복호화하는 방법 및 장치 |
EP2493195A1 (en) * | 2009-10-20 | 2012-08-29 | Sharp Kabushiki Kaisha | Video encoding device, video decoding device, and data structure |
KR101459714B1 (ko) * | 2009-10-28 | 2014-11-13 | 에스케이텔레콤 주식회사 | 공간 분할을 이용한 움직임 벡터 부호화/복호화 방법 및 장치와 그를 이용한 영상 부호화/복호화 방법 및 장치 |
CN102783151A (zh) * | 2010-01-08 | 2012-11-14 | 诺基亚公司 | 用于视频编码的装置、方法和计算机程序 |
CN101771878B (zh) * | 2010-01-14 | 2011-05-25 | 广西大学 | 面向全景视频编码的自适应选择全局运动估计方法 |
JP5306485B2 (ja) * | 2010-02-09 | 2013-10-02 | 日本電信電話株式会社 | 動きベクトル予測符号化方法、動きベクトル予測復号方法、動画像符号化装置、動画像復号装置およびそれらのプログラム |
CN103039075B (zh) * | 2010-05-21 | 2015-11-25 | Jvc建伍株式会社 | 图像编码装置、图像编码方法、以及图像解码装置、图像解码方法 |
GB2487200A (en) * | 2011-01-12 | 2012-07-18 | Canon Kk | Video encoding and decoding with improved error resilience |
EP3481066B1 (en) * | 2011-06-28 | 2021-05-19 | LG Electronics Inc. | Method for deriving a motion vector predictor |
KR101943049B1 (ko) | 2011-06-30 | 2019-01-29 | 에스케이텔레콤 주식회사 | 영상 부호화/복호화 방법 및 장치 |
JP5950541B2 (ja) * | 2011-11-07 | 2016-07-13 | キヤノン株式会社 | 動きベクトル符号化装置、動きベクトル符号化方法及びプログラム、動きベクトル復号装置、動きベクトル復号方法及びプログラム |
EP2683165B1 (en) * | 2012-07-04 | 2015-10-14 | Thomson Licensing | Method for coding and decoding a block of pixels from a motion model |
US10003792B2 (en) * | 2013-05-27 | 2018-06-19 | Microsoft Technology Licensing, Llc | Video encoder for images |
US9774879B2 (en) * | 2013-08-16 | 2017-09-26 | Sony Corporation | Intra-block copying enhancements for HEVC in-range-extension (RExt) |
CN104717555B (zh) | 2013-12-11 | 2018-01-02 | 华为技术有限公司 | 视频码流的获取方法及装置 |
US11393019B2 (en) | 2014-05-14 | 2022-07-19 | National Institute Of Advanced Industrial Science And Technology | Device and method for exchanging trade information |
WO2016008157A1 (en) * | 2014-07-18 | 2016-01-21 | Mediatek Singapore Pte. Ltd. | Methods for motion compensation using high order motion model |
CN112087630B (zh) * | 2014-09-30 | 2022-04-08 | 华为技术有限公司 | 图像预测方法、装置、解码器及存储介质 |
ES2857674T3 (es) | 2014-11-24 | 2021-09-29 | Idemia France | Creación de archivos implícita en secuencias de comandos APDU |
CN107809642B (zh) * | 2015-02-16 | 2020-06-16 | 华为技术有限公司 | 用于视频图像编码和解码的方法、编码设备和解码设备 |
WO2017118411A1 (en) * | 2016-01-07 | 2017-07-13 | Mediatek Inc. | Method and apparatus for affine inter prediction for video coding system |
WO2017130696A1 (ja) * | 2016-01-29 | 2017-08-03 | シャープ株式会社 | 予測画像生成装置、動画像復号装置、および動画像符号化装置 |
CN109729352B (zh) * | 2017-10-27 | 2020-07-21 | 华为技术有限公司 | 确定仿射编码块的运动矢量的方法和装置 |
CN109922336B (zh) * | 2017-12-12 | 2023-07-18 | 华为技术有限公司 | 视频数据的帧间预测方法和装置 |
-
2016
- 2016-02-06 CN CN202010262560.XA patent/CN111526361B/zh active Active
- 2016-02-06 CN CN202010262939.0A patent/CN111556323B/zh active Active
- 2016-02-06 CN CN202010262559.7A patent/CN111526360A/zh active Pending
- 2016-02-06 CN CN201610081070.3A patent/CN107046645B9/zh active Active
- 2016-09-08 KR KR1020217023755A patent/KR102447241B1/ko active IP Right Grant
- 2016-09-08 CA CA3013655A patent/CA3013655C/en active Active
- 2016-09-08 KR KR1020187025260A patent/KR102247383B1/ko active IP Right Grant
- 2016-09-08 EP EP22169632.1A patent/EP4099699A1/en active Pending
- 2016-09-08 KR KR1020207029947A patent/KR102284099B1/ko active IP Right Grant
- 2016-09-08 RU RU2019137993A patent/RU2722389C2/ru active
- 2016-09-08 JP JP2018541193A patent/JP7069022B2/ja active Active
- 2016-09-08 RU RU2018131317A patent/RU2708347C1/ru active
- 2016-09-08 WO PCT/CN2016/098403 patent/WO2017133243A1/zh active Application Filing
- 2016-09-08 EP EP16889054.9A patent/EP3402205B1/en active Active
- 2016-09-08 AU AU2016390979A patent/AU2016390979B2/en active Active
- 2016-09-08 KR KR1020207029948A patent/KR102283725B1/ko active IP Right Grant
-
2018
- 2018-08-03 US US16/054,306 patent/US10798405B2/en active Active
- 2018-11-27 HK HK18115183.5A patent/HK1256107A1/zh unknown
-
2020
- 2020-05-25 RU RU2020117128A patent/RU2737315C1/ru active
- 2020-07-23 AU AU2020207860A patent/AU2020207860B2/en active Active
- 2020-07-23 AU AU2020207857A patent/AU2020207857B2/en active Active
- 2020-08-28 JP JP2020144911A patent/JP7351485B2/ja active Active
- 2020-08-28 JP JP2020144912A patent/JP7351463B2/ja active Active
- 2020-09-10 US US17/017,490 patent/US11394994B2/en active Active
- 2020-09-10 US US17/017,485 patent/US11412248B2/en active Active
- 2020-11-20 RU RU2020138084A patent/RU2748360C1/ru active
-
2022
- 2022-06-17 US US17/843,030 patent/US20220329845A1/en active Pending
- 2022-07-06 US US17/858,447 patent/US20220353525A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012165279A (ja) | 2011-02-08 | 2012-08-30 | Jvc Kenwood Corp | 画像復号装置、画像復号方法および画像復号プログラム |
CN105163116A (zh) | 2015-08-29 | 2015-12-16 | 华为技术有限公司 | 图像预测的方法及设备 |
JP2020205611A (ja) | 2016-02-06 | 2020-12-24 | ホアウェイ・テクノロジーズ・カンパニー・リミテッド | 画像符号化方法及び装置、画像復号方法及び装置並びにプログラム |
Non-Patent Citations (1)
Title |
---|
大久保 榮、H.265/HEVC教科書、第1版、2013年10月21日、p.136-137 |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7351485B2 (ja) | 画像符号化方法及び装置、画像復号方法及び装置並びにプログラム | |
KR20230109772A (ko) | 비디오 코딩 시스템에서 인터 예측 방법 및 장치 | |
JP6935553B2 (ja) | 縮小された予測動きベクトルの候補に基づいて、動きベクトルを符号化/復号化する方法及び装置 | |
KR102513585B1 (ko) | 비디오 처리 시스템에서 인터 예측 방법 및 장치 | |
CN112565789B (zh) | 视频解码及编码方法、装置、计算机可读介质及电子设备 | |
CN110740330A (zh) | 一种子块运动候选的冗余校验的方法及设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200907 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200907 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211011 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211102 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220201 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20220705 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221102 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20221102 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20221121 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20221122 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20230113 |
|
C211 | Notice of termination of reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C211 Effective date: 20230117 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20230131 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20230228 |
|
C13 | Notice of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: C13 Effective date: 20230328 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230621 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230906 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7351485 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |