JP7349326B2 - Oral composition - Google Patents

Oral composition Download PDF

Info

Publication number
JP7349326B2
JP7349326B2 JP2019204031A JP2019204031A JP7349326B2 JP 7349326 B2 JP7349326 B2 JP 7349326B2 JP 2019204031 A JP2019204031 A JP 2019204031A JP 2019204031 A JP2019204031 A JP 2019204031A JP 7349326 B2 JP7349326 B2 JP 7349326B2
Authority
JP
Japan
Prior art keywords
mass
sweetness
intensity
component
oral composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019204031A
Other languages
Japanese (ja)
Other versions
JP2020092694A (en
Inventor
遼介 小田
由典 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Publication of JP2020092694A publication Critical patent/JP2020092694A/en
Application granted granted Critical
Publication of JP7349326B2 publication Critical patent/JP7349326B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、経口組成物に関する。 TECHNICAL FIELD This invention relates to oral compositions.

高甘味度甘味料は、低カロリー甘味料として飲食品に広く使用されている。しかしながら、高甘味度甘味料は、砂糖に比べてボディ感やコクが不足しやすいため、高甘味度甘味料を使用した商品の味質に対して消費者の不満が多い。そこで、高甘味度甘味料の味質を改善する技術として、例えば、高甘味度甘味料に対して、馬鈴薯由来でDEが2以上5未満であるデキストリンを添加する方法が提案されている(特許文献1)。また、フルクトース、非還元性二糖類、糖アルコール、ビートオリゴ糖、甘草抽出物、ステビア抽出物、ラムノース及びソーマチンよりなる群から選択される少なくとも1種の甘味成分をスクラロースと共存させることで、スクラロースの甘味を改質できるとの報告もある(特許文献2)。 High-intensity sweeteners are widely used in foods and drinks as low-calorie sweeteners. However, since high-intensity sweeteners tend to lack body and richness compared to sugar, many consumers are dissatisfied with the taste quality of products using high-intensity sweeteners. Therefore, as a technique for improving the taste quality of high-intensity sweeteners, a method has been proposed, for example, in which dextrin derived from potatoes and having a DE of 2 or more and less than 5 is added to high-intensity sweeteners (patent Reference 1). In addition, by coexisting with sucralose at least one sweet component selected from the group consisting of fructose, non-reducing disaccharides, sugar alcohols, beet oligosaccharides, licorice extracts, stevia extracts, rhamnose, and thaumatin, sucralose There is also a report that it is possible to improve the sweetness of .

一方、カフェインは、脂質エネルギー代謝や運動機能の向上等の生理効果を有することが知られており、近年カフェインを含有する飲料の需要が拡大している。 On the other hand, caffeine is known to have physiological effects such as improving lipid energy metabolism and motor function, and the demand for beverages containing caffeine has increased in recent years.

特開2012-130336号公報Japanese Patent Application Publication No. 2012-130336 特開2014-100146号公報Japanese Patent Application Publication No. 2014-100146

本発明者らは、機能性素材としてカフェインを含有する低カロリー飲食品を開発すべく、カフェインを含有する飲食品に高甘味度甘味料を含有させたところ、高甘味度甘味料本来の甘味の強さに比べて甘味度が低下するという課題が存在することを見出した。
本発明の課題は、カフェインにより低下した甘味が改善された高甘味度甘味料含有経口組成物を提供することにある。
In order to develop low-calorie foods and drinks that contain caffeine as a functional ingredient, the present inventors added a high-intensity sweetener to a caffeine-containing food and drink, and found that the original high-intensity sweetener It has been found that there is a problem in that the degree of sweetness is lower than the intensity of sweetness.
An object of the present invention is to provide an oral composition containing a high-intensity sweetener that has improved sweetness lowered by caffeine.

本発明者らは、上記課題に鑑み、鋭意研究を重ねた結果、特定量の高甘味度甘味料とカフェインを含有する経口組成物に、カフェインに対して特定のポリフェノールを特定の量比で含有させ、Brixを制御することで、カフェインにより低下した甘味を改善できることを見出した。 In view of the above-mentioned problems, the present inventors have conducted intensive research and have determined that a specific polyphenol to caffeine is added to an oral composition containing a specific amount of a high-intensity sweetener and caffeine in a specific amount ratio. It has been found that the sweetness decreased by caffeine can be improved by controlling Brix.

すなわち、本発明は、次の成分(A)、(B)及び(C);
(A)高甘味度甘味料 ショ糖換算濃度で3~9質量%
(B)カフェイン 0.001~0.03質量%、及び
(C)アストラガリン
を含有し、
成分(B)と成分(C)との質量比[(C)/(B)]が0.01~3であり、
Brixが2.5以上である、
経口組成物を提供するものである。
That is, the present invention comprises the following components (A), (B) and (C);
(A) High-intensity sweetener 3-9% by mass in terms of sucrose concentration
(B) contains 0.001 to 0.03% by mass of caffeine, and (C) astragalin,
The mass ratio [(C)/(B)] of component (B) and component (C) is 0.01 to 3,
Brix is 2.5 or more,
Oral compositions are provided.

本発明によれば、カフェインにより低下した甘味が改善された高甘味度甘味料含有経口組成物を提供することができる。 According to the present invention, it is possible to provide an oral composition containing a high-intensity sweetener in which the sweetness lowered by caffeine is improved.

本発明の経口組成物は、成分(A)として高甘味度甘味料を含有する。ここで本明細書において「高甘味度甘味料」とは、ショ糖と比べて十倍から千倍の甘味を有し、微量の添加で飲食品に甘味を付与することができる人工又は天然の甘味料を意味する。
成分(A)としては、例えば、スクラロース、アセスルファムカリウム、ステビア、アスパルテーム、サッカリン、アリテーム、チクロ、ズルチン、ネオテーム、グリチルリチン、ソーマチン、モネリン、ネオヘスペリジン等が挙げられる。成分(A)は、1種又は2種以上を使用することができる。中でも、スクラロース、アセスルファムカリウム、ステビア、ソーマチン及びアスパルテームから選ばれる1種又は2種以上が好ましく、スクラロース、アセスルファムカリウム及びステビアから選ばれる1種又は2種以上が更に好ましい。
The oral composition of the present invention contains a high-intensity sweetener as component (A). As used herein, the term "high-intensity sweetener" refers to an artificial or natural sweetener that has a sweetness from 10 to 1,000 times that of sucrose and that can sweeten foods and drinks with the addition of a trace amount. means sweetener.
Examples of component (A) include sucralose, acesulfame potassium, stevia, aspartame, saccharin, alitame, cyclamate, dultin, neotame, glycyrrhizin, thaumatin, monellin, neohesperidin, and the like. Component (A) can be used alone or in combination of two or more. Among these, one or more types selected from sucralose, acesulfame potassium, stevia, thaumatin, and aspartame are preferred, and one or two or more types selected from sucralose, acesulfame potassium, and stevia are more preferred.

本発明の経口組成物中の成分(A)の含有量は、ショ糖甘味換算濃度により規定される。本明細書において「ショ糖甘味換算濃度」とは、本発明の経口組成物中の成分(A)の濃度と同一濃度の成分(A)水溶液の甘味を、ショ糖濃度に換算した値をいう。具体的には、下記の表1に示す数式のxに、本発明の経口組成物中の成分(A)の濃度(質量%)を当て嵌めることにより、成分(A)のショ糖甘味換算濃度yを算出することができる。なお、表1に示す数式は、所定濃度のショ糖水溶液の甘味と同等の甘さを有する成分(A)の濃度を決定し、その操作を繰り返して、得られたショ糖濃度と成分(A)の濃度との測定値から最小二乗法により求めたものである。なお、表1に記載のない高甘味度甘味料についても同様の操作により最小二乗法により数式を求め、被験高甘味度甘味料のショ糖甘味換算濃度を算出することができる。なお、成分(A)を2種以上含有する場合、成分(A)のショ糖甘味換算濃度は、使用する各高甘味度甘味料のショ糖甘味換算濃度の総和として求めることができる。 The content of component (A) in the oral composition of the present invention is defined by the concentration in terms of sucrose sweetness. As used herein, "sucrose sweetness conversion concentration" refers to the value obtained by converting the sweetness of an aqueous solution of component (A) at the same concentration as the concentration of component (A) in the oral composition of the present invention into sucrose concentration. . Specifically, by applying the concentration (mass%) of component (A) in the oral composition of the present invention to x in the formula shown in Table 1 below, the concentration of component (A) in terms of sucrose sweetness can be determined. y can be calculated. In addition, the formula shown in Table 1 is calculated by determining the concentration of component (A) having a sweetness equivalent to that of a sucrose aqueous solution of a predetermined concentration, repeating the operation, and calculating the obtained sucrose concentration and component (A). ) was calculated using the least squares method from the measured values. In addition, for high-intensity sweeteners not listed in Table 1, a mathematical formula can be obtained by the least squares method by the same operation, and the sucrose sweetness conversion concentration of the test high-intensity sweetener can be calculated. In addition, when two or more types of component (A) are contained, the sucrose sweetness equivalent concentration of component (A) can be determined as the sum of the sucrose sweetness equivalent concentrations of each high-intensity sweetener used.

本発明の経口組成物中の成分(A)のショ糖甘味換算濃度は3~9質量 %であるが、ボディ感及びコクの付与の観点から、3.5質量%以上が好ましく、4.0質量%以上がより好ましく、4.5質量%以上が更に好ましく、また後切れの良さの観点から、8.0質量%以下が好ましく、7.5質量%以下がより好ましく、7.0質量%以下が更に好ましい。かかるショ糖甘味換算濃度の範囲としては、好ましくは3.5~8.0質量%であり、より好ましくは4.0~7.5質量%であり、更に好ましくは4.5~7.0質量%である。 The concentration of component (A) in terms of sucrose sweetness in the oral composition of the present invention is 3 to 9% by mass, but from the viewpoint of imparting body and richness, it is preferably 3.5% by mass or more, and 4.0% by mass. It is more preferably at least 4.5% by mass, even more preferably at least 4.5% by mass, and from the viewpoint of good trailing edge, it is preferably at most 8.0% by mass, more preferably at most 7.5% by mass, and 7.0% by mass. The following are more preferable. The range of the sucrose sweetness conversion concentration is preferably 3.5 to 8.0% by mass, more preferably 4.0 to 7.5% by mass, and even more preferably 4.5 to 7.0% by mass. Mass%.

本発明の経口組成物は、成分(B)としてカフェインを含有する。成分(B)は、原料に由来するものでも、新たに加えられたものでもよい。また、成分(B)は、飲食品の分野において通常使用されているものであれば由来は特に限定されず、例えば、化学合成品でも、天然由来品でもよい。 The oral composition of the present invention contains caffeine as component (B). Component (B) may be derived from raw materials or may be newly added. In addition, the origin of component (B) is not particularly limited as long as it is commonly used in the field of food and beverages, and for example, it may be a chemically synthesized product or a naturally derived product.

本発明の経口組成物中の成分(B)の含有量は0.001~0.03質量%であるが、生理効果の観点から、0.002質量%以上が好ましく、0.0025質量%以上がより好ましく、0.003質量%以上が更に好ましく、またカフェイン由来の苦味抑制の観点から、0.025質量%以下が好ましく、0.02質量%以下がより好ましく、0.015質量%以下が更に好ましい。成分(B)の含有量の範囲としては、本発明の経口組成物中に、好ましくは0.002~0.025質量%であり、より好ましくは0.0025~0.02質量%であり、更に好ましくは0.003~0.015質量%である。なお、成分(B)の含有量は、通常知られている測定法のうち測定試料の状況に適した分析法により測定することが可能であり、例えば、液体クロマトグラフィで分析することが可能である。具体的には、後掲の実施例に記載の方法が挙げられる。なお、測定の際には装置の検出域に適合させるため、試料を凍結乾燥したり、装置の分離能に適合させるため試料中の夾雑物を除去したりする等、必要に応じて適宜処理を施してもよい。 The content of component (B) in the oral composition of the present invention is 0.001 to 0.03% by mass, but from the viewpoint of physiological effects, it is preferably 0.002% by mass or more, and 0.0025% by mass or more. is more preferable, 0.003% by mass or more is still more preferable, and from the viewpoint of suppressing bitterness derived from caffeine, 0.025% by mass or less is preferable, 0.02% by mass or less is more preferable, and 0.015% by mass or less. is even more preferable. The content range of component (B) in the oral composition of the present invention is preferably 0.002 to 0.025% by mass, more preferably 0.0025 to 0.02% by mass, More preferably, it is 0.003 to 0.015% by mass. Note that the content of component (B) can be measured by an analysis method suitable for the situation of the measurement sample among commonly known measurement methods, for example, it can be analyzed by liquid chromatography. . Specifically, the method described in Examples below may be mentioned. In addition, during measurement, appropriate processing is performed as necessary, such as freeze-drying the sample to match the detection range of the device, or removing impurities from the sample to match the separation capability of the device. It may be applied.

本発明の経口組成物は、成分(C)としてアストラガリンを含有する。ここで、本明細書において「アストラガリン」とは、ケンフェロールの3位にグルコースが結合した化合物である。成分(C)は、原料に由来するものでも、新たに加えられたものでもよい。また、成分(C)は、飲食品の分野において通常使用されているものであれば由来は特に限定されず、例えば、化学合成品でも、アストラガリンを含有する植物から抽出したものでもよい。 The oral composition of the present invention contains astragalin as component (C). Here, "astragalin" as used herein is a compound in which glucose is bound to the 3-position of kaempferol. Component (C) may be derived from raw materials or may be newly added. In addition, the origin of component (C) is not particularly limited as long as it is commonly used in the field of food and beverages, and for example, it may be a chemically synthesized product or one extracted from a plant containing astragalin.

本発明の経口組成物中の成分(C)の含有量は、甘味の改善の観点から、0.0001質量%以上が好ましく、0.0002質量%以上がより好ましく、0.0003質量%以上が更に好ましく、またアストラガリン由来の渋味抑制の観点から、0.01質量%以下が好ましく、0.007質量%以下がより好ましく、0.005質量%以下が更に好ましい。成分(C)の含有量の範囲としては、経口組成物中に、好ましくは0.0001~0.01質量%であり、より好ましくは0.0002~0.007質量%であり、更に好ましくは0.0003~0.005質量%である。なお、成分(C)の含有量は、通常知られている測定法のうち測定試料の状況に適した分析法により測定することが可能であり、例えば、液体クロマトグラフィで分析することが可能である。具体的には、後掲の実施例に記載の方法が挙げられる。なお、測定の際には装置の検出域に適合させるため、試料を凍結乾燥したり、装置の分離能に適合させるため試料中の夾雑物を除去したりする等、必要に応じて適宜処理を施してもよい。 From the viewpoint of improving sweet taste, the content of component (C) in the oral composition of the present invention is preferably 0.0001% by mass or more, more preferably 0.0002% by mass or more, and 0.0003% by mass or more. More preferably, from the viewpoint of suppressing the astringency derived from astragalin, it is preferably 0.01% by mass or less, more preferably 0.007% by mass or less, and even more preferably 0.005% by mass or less. The content range of component (C) in the oral composition is preferably 0.0001 to 0.01% by mass, more preferably 0.0002 to 0.007% by mass, and even more preferably It is 0.0003 to 0.005% by mass. Note that the content of component (C) can be measured by an analysis method suitable for the situation of the measurement sample among commonly known measurement methods; for example, it can be analyzed by liquid chromatography. . Specifically, the method described in Examples below may be mentioned. In addition, during measurement, appropriate processing is performed as necessary, such as freeze-drying the sample to match the detection range of the device, or removing impurities from the sample to match the separation capability of the device. It may be applied.

また、本発明の経口組成物は、成分(B)と成分(C)との質量比[(C)/(B)]が0.01~3であるが、甘味の改善の観点から、0.03以上が好ましく、0.06以上がより好ましく、0.09以上が更に好ましく、またアストラガリン由来の苦味抑制の観点から、2.5以下が好ましく、2.0以下がより好ましく、1.5以下が更に好ましい。かかる質量比[(C)/(B)]の範囲としては、好ましくは0.03~2.5であり、より好ましくは0.06~2.0であり、更に好ましくは0.09~1.5である。 In addition, the oral composition of the present invention has a mass ratio [(C)/(B)] of component (B) and component (C) of 0.01 to 3, but from the viewpoint of improving sweetness, 0.03 or more is preferable, 0.06 or more is more preferable, 0.09 or more is still more preferable, and from the viewpoint of suppressing the bitterness derived from astragalin, 2.5 or less is preferable, 2.0 or less is more preferable, 1. It is more preferably 5 or less. The range of the mass ratio [(C)/(B)] is preferably 0.03 to 2.5, more preferably 0.06 to 2.0, and even more preferably 0.09 to 1. It is .5.

本発明の経口組成物はBrixが2.5%以上であるが、ボディ感及びコクの付与の観点から、2.6%以上が好ましく、2.8%以上がより好ましく、3.0%以上が更に好ましく、また本発明の効果を享受しやすい点から、8.0%以下が好ましく、7.0%以下がより好ましく、6.0%以下が更に好ましい。かかるBrixの範囲としては、好ましくは2.5~8.0%であり、より好ましくは2.6~8.0%であり、更に好ましくは2.8~7.0%であり、殊更に好ましくは3.0~6.0%である。ここで、本明細書において「Brix」とは、糖用屈折計を利用して測定した値であり、20℃のショ糖水溶液の質量百分率に相当する値である。具体的には、後掲の実施例に記載の方法により測定することができる。 The oral composition of the present invention has a Brix of 2.5% or more, but from the viewpoint of imparting body feeling and richness, Brix is preferably 2.6% or more, more preferably 2.8% or more, and 3.0% or more. is more preferable, and from the standpoint of easily enjoying the effects of the present invention, the content is preferably 8.0% or less, more preferably 7.0% or less, and even more preferably 6.0% or less. The range of Brix is preferably 2.5 to 8.0%, more preferably 2.6 to 8.0%, still more preferably 2.8 to 7.0%, and especially Preferably it is 3.0 to 6.0%. Here, in this specification, "Brix" is a value measured using a sugar refractometer, and is a value corresponding to the mass percentage of a 20° C. sucrose aqueous solution. Specifically, it can be measured by the method described in Examples below.

また、本発明の経口組成物は、所望のBrixに調整するために、糖質を含有することができる。糖質としては飲食品に配合し得るものであれば特に限定されないが、例えば、果糖、ブドウ糖、ガラクトース、異性化糖等の単糖、スクロース、マルトース、ラクトース、パラチノース等の二糖、フラクトオリゴ糖、イソマルトオリゴ糖、ガラクトオリゴ糖等のオリゴ糖、デキストリン、でんぷん等の多糖、還元麦芽糖水飴、エリスリトール、キシリトール、マルチトール、イソマルチトール、エリスリトール、ソルビトール、マンニトール、ラクチトール、マルトトリイトール、イソマルトトリイトール、パニトール、オリゴ糖アルコール等の糖アルコール等が挙げられる。糖質は、1種又は2種以上を用いることができる。中でも、甘味の改善の観点から、多糖が好ましく、デキストリンが更に好ましい。なお、糖質の含有量は、所望のBrixとなるように、糖質の種類に応じて適宜設定することができる。 Furthermore, the oral composition of the present invention can contain carbohydrates in order to adjust the Brix to a desired level. Carbohydrates are not particularly limited as long as they can be incorporated into foods and drinks, but examples include monosaccharides such as fructose, glucose, galactose, and high fructose sugar; disaccharides such as sucrose, maltose, lactose, and palatinose; fructooligosaccharides; Oligosaccharides such as isomalto-oligosaccharides and galacto-oligosaccharides, dextrin, polysaccharides such as starch, reduced maltose starch syrup, erythritol, xylitol, maltitol, isomaltitol, erythritol, sorbitol, mannitol, lactitol, maltotriitol, isomaltotriitol, Examples include sugar alcohols such as panitol and oligosaccharide alcohols. One type or two or more types of carbohydrates can be used. Among these, from the viewpoint of improving sweetness, polysaccharides are preferred, and dextrins are more preferred. Note that the content of carbohydrates can be appropriately set according to the type of carbohydrates so as to achieve a desired Brix.

更に、本発明の経口組成物は、所望により、酸味料、甘味料、アミノ酸、たんぱく質、ビタミン、ミネラル、香料、果汁、植物エキス、エステル、色素、乳化剤、乳成分、ココアパウダー、調味料、植物油脂、酸化防止剤、保存料、pH調整剤、品質安定剤、花蜜エキス、ゲル化剤、増粘剤等の添加剤を1種又は2種以上を含有することができる。添加剤の含有量は、本発明の目的を損なわない範囲内で適宜設定することができる。 Furthermore, the oral composition of the present invention may optionally contain acidulants, sweeteners, amino acids, proteins, vitamins, minerals, fragrances, fruit juices, plant extracts, esters, pigments, emulsifiers, milk components, cocoa powder, seasonings, and plants. It can contain one or more additives such as fats and oils, antioxidants, preservatives, pH adjusters, quality stabilizers, nectar extracts, gelling agents, and thickeners. The content of the additive can be appropriately set within a range that does not impair the purpose of the present invention.

本明細書において「経口組成物」とは、経口摂取に供される製品をいう。経口組成物の製品形態としては、常温(20℃±15℃)において液状でも、固形状でもよく、適宜の形態を採り得る。液状の場合、RTDのような飲料のみならず、濃縮液状、ゲル状、ゼリー状、スラリー状等の形態であっても構わない。ここで、本明細書において「RTD」とは、希釈せずにそのまま飲用できる飲料をいう。濃縮液状である場合、その固形分濃度がRTDよりも高濃度であれば適宜選択可能であり、特に限定されない。ゼリー状である場合、容器に備え付けられた吸い口やストローから飲料を吸引できれば、その固形分濃度は特に限定されず、適宜選択可能である。また、固形である場合、常温(20℃±15℃)において固体であればその形状は特に限定されず、粉末状、顆粒状、錠状、棒状、板状、ブロック状等の種々の形状とすることができる。本発明の固形経口組成物中の固形分量は、好ましくは90質量%以上、より好ましくは93質量%以上、更に好ましくは95質量%以上である。なお、かかる固形分量の上限は特に限定されず、100質量%であってもよい。ここで、本明細書において「固形分量」とは、試料を105℃の電気恒温乾燥機で3時間乾燥して揮発物を除いた残分の質量をいう。 As used herein, "oral composition" refers to a product that is intended for oral ingestion. The product form of the oral composition may be liquid or solid at room temperature (20°C±15°C), and may take any appropriate form. In the case of a liquid, it may be in the form of not only a drink such as RTD, but also a concentrated liquid, gel, jelly, slurry, etc. Here, in this specification, "RTD" refers to a beverage that can be drunk as is without dilution. In the case of a concentrated liquid, it can be selected as appropriate as long as its solid content concentration is higher than RTD, and is not particularly limited. In the case of a jelly-like drink, the solid content concentration is not particularly limited and can be selected as appropriate, as long as the drink can be sucked through the mouthpiece or straw provided on the container. In addition, if it is solid, its shape is not particularly limited as long as it is solid at room temperature (20°C ± 15°C), and it may be in various shapes such as powder, granule, tablet, rod, plate, or block. can do. The solid content in the solid oral composition of the present invention is preferably 90% by mass or more, more preferably 93% by mass or more, and even more preferably 95% by mass or more. Note that the upper limit of the solid content is not particularly limited, and may be 100% by mass. Here, in this specification, "solid content" refers to the mass of the residue after removing volatile matter by drying the sample in an electric constant temperature dryer at 105° C. for 3 hours.

また、本発明の経口組成物が濃縮物又は固形物である場合、所定の用法にしたがい液体で希釈して飲料を調製したときに、成分(A)のショ糖換算濃度、成分(B)の含有量、質量比[(C)/(B)]及びBrixが上記要件を満たせばよい。液体は飲料に還元できれば特に限定されず、例えば、水、炭酸水、牛乳、豆乳等が挙げられ、液体の温度は問わない。なお、希釈倍率は所定の用法にしたがえばよいが、固形飲料である場合、通常20~600質量倍、好ましくは30~500質量倍、より好ましくは40~250質量倍、更に好ましくは50~200質量倍であり、殊更に好ましくは50~150質量倍である。また、濃縮還元飲料である場合、希釈倍率は、通常1.5~200質量倍、好ましくは1.5~100質量倍、より好ましくは1.8~50質量倍、更に好ましくは2~30質量倍である。 In addition, when the oral composition of the present invention is a concentrate or solid, when a drink is prepared by diluting it with a liquid according to a prescribed usage method, the concentration of component (A) in terms of sucrose, the concentration of component (B), etc. It is sufficient that the content, mass ratio [(C)/(B)], and Brix satisfy the above requirements. The liquid is not particularly limited as long as it can be reduced to a drink, and examples thereof include water, carbonated water, milk, soy milk, etc., and the temperature of the liquid does not matter. Note that the dilution ratio may be determined according to the prescribed usage, but in the case of solid beverages, it is usually 20 to 600 times by mass, preferably 30 to 500 times by mass, more preferably 40 to 250 times by mass, and still more preferably 50 to 50 times by mass. The amount is 200 times by mass, and particularly preferably 50 to 150 times by mass. In addition, in the case of a concentrated drink, the dilution ratio is usually 1.5 to 200 times by mass, preferably 1.5 to 100 times by mass, more preferably 1.8 to 50 times by mass, and even more preferably 2 to 30 times by mass. It's double.

本発明の経口組成物としては、飲食品が好ましい。飲食品の具体例としては、例えば、飲料(RTD)、ゼリー飲料、濃縮還元飲料、インスタント飲料、乳飲料等の飲料;ヨーグルト、チーズ等の乳製品;ゼリー、グミ、キャンディー、スナック、ビスケット、チョコレート、米菓等の菓子が挙げられ、健康食品(栄養機能食品、特定保健用食品、栄養補助食品、健康補助食品、サプリメント等)とすることもできる。中でも、本発明の効果を享受しやすい点から、飲料が好ましく、飲料(RTD)、ゼリー飲料が更に好ましい。 The oral composition of the present invention is preferably a food or drink. Specific examples of food and beverages include beverages such as RTD drinks, jelly drinks, concentrated drinks, instant drinks, and milk drinks; dairy products such as yogurt and cheese; jelly, gummies, candies, snacks, biscuits, and chocolates. and confectionery such as rice crackers, and can also be health foods (foods with nutritional function, foods for specified health uses, nutritional supplements, health supplements, supplements, etc.). Among these, beverages are preferred, and beverages (RTD) and jelly beverages are more preferred, from the standpoint of easily enjoying the effects of the present invention.

また、本発明の経口組成物が飲料である場合、ポリエチレンテレフタレートを主成分とする成形容器(いわゆるPETボトル)、金属缶、金属箔やプラスチックフィルムと複合された紙容器、瓶等の通常の包装容器に充填して容器詰飲料として提供することができる。
更に、本発明の経口組成物が飲料である場合、加熱殺菌済でもよい。加熱殺菌方法としては、適用されるべき法規(日本にあっては食品衛生法)に定められた条件に適合するものであれば特に限定されるものではない。例えば、レトルト殺菌法、高温短時間殺菌法(HTST法)、超高温殺菌法(UHT法)、充填後殺菌法(パストリゼーション)等を挙げることができる。また、容器の種類に応じて加熱殺菌法を適宜選択することも可能であり、例えば、金属缶、瓶のように、飲料を容器に充填後、容器ごと加熱殺菌できる場合にあってはレトルト殺菌や充填後殺菌法(パストリゼーション)を採用することができる。また、PETボトルのようにレトルト殺菌できないものについては、飲料をあらかじめ上記と同等の殺菌条件で加熱殺菌し、無菌環境下で殺菌処理した容器に充填するアセプティック充填や、ホットパック充填等を採用することができる。
In addition, when the oral composition of the present invention is a beverage, ordinary packaging such as a molded container mainly composed of polyethylene terephthalate (so-called PET bottle), a metal can, a paper container composited with metal foil or plastic film, a bottle, etc. It can be filled into containers and provided as a packaged beverage.
Furthermore, when the oral composition of the present invention is a drink, it may be heat sterilized. The heat sterilization method is not particularly limited as long as it complies with the conditions stipulated by applicable laws and regulations (in Japan, the Food Sanitation Law). Examples include a retort sterilization method, a high temperature short time sterilization method (HTST method), an ultra high temperature sterilization method (UHT method), and a post-filling sterilization method (pastorization). In addition, it is also possible to select an appropriate heat sterilization method depending on the type of container. For example, if the container can be heat sterilized after filling the container with beverages, such as metal cans and bottles, retort sterilization is recommended. or post-filling sterilization method (pastorization). In addition, for items that cannot be sterilized by retort, such as PET bottles, we will adopt aseptic filling, where the beverage is heat sterilized under the same sterilization conditions as above, and then filled into sterilized containers in a sterile environment, or hot pack filling. be able to.

本発明の経口組成物は適宜の方法により製造することが可能であるが、例えば、成分(A)、成分(B)及び成分(C)、必要により他の成分を配合し、成分(A)のショ糖換算濃度、成分(B)の含有量、質量比[(C)/(B)]及びBrixを調整して製造するができる。 The oral composition of the present invention can be manufactured by an appropriate method, but for example, component (A), component (B), component (C), and other components may be blended as necessary. It can be manufactured by adjusting the sucrose equivalent concentration, the content of component (B), the mass ratio [(C)/(B)], and Brix.

1.高甘味度甘味料の分析
(1)スクラロース
試料を水又はエタノールで中和後、超音波抽出を行い、抽出液を固相抽出カラム(例えば、Bond Elut C18(アジレント・テクノロジー株式会社))に通液後、メタノールで洗浄する。得られた洗浄液を濃縮、乾固し、水を加えて定容する。得られた試料をサンプリングしてHPLCにて測定する。この際のHPLC測定条件は、カラム:Shodex Sugar SC1011(昭和電工(株))、カラム管:内径8.0mm、長さ300mm、カラム温度:80℃、移動相:10mM CaSO4溶液、流速:0.6mL/分、検出器:RIにて行う。
1. Analysis of high-intensity sweeteners (1) Sucralose After neutralizing the sample with water or ethanol, perform ultrasonic extraction, and pass the extract through a solid phase extraction column (e.g., Bond Elut C18 (Agilent Technologies)). After washing with methanol. The obtained washing solution is concentrated and dried, and water is added to give a constant volume. The obtained sample is sampled and measured by HPLC. The HPLC measurement conditions at this time were: column: Shodex Sugar SC1011 (Showa Denko KK), column tube: inner diameter 8.0 mm, length 300 mm, column temperature: 80°C, mobile phase: 10 mM CaSO 4 solution, flow rate: 0. .6 mL/min, detector: RI.

(2)アセスルファムカリウム
試料を0.01mol/Lリン酸二水素アンモニウム及びメタノールの混液(容量比1:1)で溶解抽出後、遠心分離する。その後、メンブランフィルターで濾過後、定容する。得られた試料をサンプリングし、高速液体クロマトグラフィ(HPLC)にて測定する。測定条件は、カラム;Cosmosil 5 NH2-MS(ナカライテスク(株))、カラム管;内径4.6mm、長さ250mm、カラム温度;40℃、移動相;アセトニトリル1vol%リン酸:リン酸混液(6:4)、流速;1.0mL/分、測定検出波長;230nmにて行う(平成12年3月30日付け衛化第15号 別添「第2版食品中の食品添加物分析法」より)。
(2) Acesulfame potassium The sample is dissolved and extracted with a mixture of 0.01 mol/L ammonium dihydrogen phosphate and methanol (volume ratio 1:1), and then centrifuged. After that, it is filtered with a membrane filter and the volume is fixed. The obtained sample is sampled and measured using high performance liquid chromatography (HPLC). The measurement conditions were: Column: Cosmosil 5 NH2-MS (Nacalai Tesque Co., Ltd.), column tube: inner diameter 4.6 mm, length 250 mm, column temperature: 40°C, mobile phase: acetonitrile 1 vol% phosphoric acid: phosphoric acid mixture ( 6:4), flow rate: 1.0 mL/min, measurement detection wavelength: 230 nm (Sanitation No. 15 dated March 30, 2000, attached "2nd Edition Food Additives Analysis Method") Than).

(3)ステビア
レバウディオサイドは、アセトニトリル-水混合液によって抽出した後、NH2カラムを用いたHPLCにより分析することができる。HPLC測定条件は、カラム;Unisil Q-NH2(ジーエルサイエンス(株))、カラム管;内径4mm、長さ250mm、移動相;CH3CN:H2O(83:17)、流速;1.2mL/分、測定検出波長;210nmにて行う(食衛誌. Vol.21,No.6 「天然甘味料製剤中のステビア成分の分析法」より)。
(3) Stevia rebaudioside can be extracted with an acetonitrile-water mixture and then analyzed by HPLC using an NH 2 column. HPLC measurement conditions were: Column: Unisil Q-NH 2 (GL Sciences, Inc.), column tube: 4 mm inner diameter, 250 mm length, mobile phase: CH 3 CN:H 2 O (83:17), flow rate: 1. Measurement is carried out at 2 mL/min, detection wavelength: 210 nm (from Shokuei Magazine, Vol. 21, No. 6 "Analysis method of stevia component in natural sweetener preparations").

(4)ソーマチン
試料中の共存タンパク質を除去する前処理をした後、高速液体クロマトグラフィ分析、MSスペクトルで分析することができる。また、モノクロナール抗体法やポリクロナール抗体法により分析することも可能であり、例えば特開2005-10104号公報を参照することができる。
(4) Thaumatin After pretreatment to remove coexisting proteins in a sample, it can be analyzed by high-performance liquid chromatography and MS spectroscopy. It is also possible to analyze by monoclonal antibody method or polyclonal antibody method, for example, see JP-A No. 2005-10104.

(5)アスパルテーム
メタノール溶媒を用い、HPLCで分析することができる。HPLC測定条件は、アセスルファムカリウムと同様である。
(5) Aspartame Can be analyzed by HPLC using methanol solvent. HPLC measurement conditions are the same as for acesulfame potassium.

2.カフェインの分析
試料溶液をフィルター(0.45μm)で濾過し、高速液体クロマトグラフィ(型式SCL-10AVP)を用い、オクタデシル基導入液体クロマトグラフィ用パックドカラム(L-カラムTM ODS、4.6mmφ×250mm:財団法人 化学物質評価研究機構製)を装着し、カラム温度35℃でグラジエント法により測定した。移動相A液は酢酸を0.1mol/L含有する蒸留水溶液、B液は酢酸を0.1mol/L含有するアセトニトリル溶液とし、流速は1mL/分、試料注入量は10μL、UV検出器波長は280nmの条件で行った。グラジエント条件は以下の通りである。リテンションタイム条件は、カフェインの標準試薬を用いて設定した。
2. Analysis of caffeine The sample solution was filtered with a filter (0.45 μm), and using high performance liquid chromatography (model SCL-10AVP), an octadecyl group-introduced packed column for liquid chromatography (L-column TM ODS, 4.6 mmφ x 250 mm: (manufactured by the Japan Chemical Evaluation and Research Institute) was installed, and the measurement was carried out using the gradient method at a column temperature of 35°C. Mobile phase A solution was a distilled aqueous solution containing 0.1 mol/L of acetic acid, B solution was an acetonitrile solution containing 0.1 mol/L of acetic acid, the flow rate was 1 mL/min, the sample injection amount was 10 μL, and the UV detector wavelength was The experiment was carried out under the condition of 280 nm. The gradient conditions are as follows. Retention time conditions were established using a standard reagent for caffeine.

濃度勾配条件
時間(分) A液濃度(体積%) B液濃度(体積%)
0 97% 3%
5 97% 3%
37 80% 20%
43 80% 20%
43.5 0% 100%
48.5 0% 100%
49 97% 3%
60 97% 3%
Concentration gradient conditions Time (minutes) Concentration of liquid A (% by volume) Concentration of liquid B (% by volume)
0 97% 3%
5 97% 3%
37 80% 20%
43 80% 20%
43.5 0% 100%
48.5 0% 100%
49 97% 3%
60 97% 3%

3.アストラガリンの分析
試料溶液をフィルター(0.45μm)で濾過し、高速液体クロマトグラフィ(型式LC-20 Prominence,島津製作所製)を用い、カラム〔Cadenza CD-C18(3μm,4.6mmφ×150mm,Imtakt)〕を装着し、カラム温度40℃にてグラジエント法により行った。移動相C液は酢酸を0.05質量%含有するアセトニトリル溶液、D液はアセトニトリル溶液とし、流速は1mL/分、試料注入量は10μL、UV検出器波長は360nmの条件で行った。なお、グラジエントの条件は、以下のとおりである。
3. Analysis of Astragalin The sample solution was filtered with a filter (0.45 μm), and a column [Cadenza CD-C18 (3 μm, 4.6 mmφ×150 mm, Imtakt )] was installed, and the gradient method was used at a column temperature of 40°C. The mobile phase C solution was an acetonitrile solution containing 0.05% by mass of acetic acid, and the D solution was an acetonitrile solution. The flow rate was 1 mL/min, the sample injection amount was 10 μL, and the UV detector wavelength was 360 nm. Note that the gradient conditions are as follows.

濃度勾配条件
時間(分) C液濃度(体積%) D液濃度(体積%)
0 85% 15%
20 80% 20%
35 10% 90%
50 10% 90%
50.1 85% 15%
60 85% 15%
Concentration gradient conditions Time (minutes) Concentration of C solution (volume%) Concentration of D solution (volume%)
0 85% 15%
20 80% 20%
35 10% 90%
50 10% 90%
50.1 85% 15%
60 85% 15%

アストラガリンの標準品を用いて濃度既知の標準溶液を調製し、上記分析条件にて高速液体クロマトグラフィ分析に供することによりリテンションタイムを測定するとともに、検量線を作成した。
・アストラガリン :18.2分
上記リテンションタイムで一致したピークをアストラガリンとして試料溶液中の各成分の定量を行った。
A standard solution of known concentration was prepared using a standard product of astragalin, and the retention time was measured by subjecting it to high performance liquid chromatography analysis under the above analysis conditions, and a calibration curve was created.
- Astragaline: 18.2 minutes Each component in the sample solution was quantified using the peak that coincided with the above retention time as Astragaline.

4.デキストリンの分析
試料、及び各濃度の標準溶液1.5mLに、1N-NaOH水溶液を250μLと0.5MのPMP(3-メチル-1-フェニル-5-ピラゾロン)-メタノール溶液を500μL加え、70℃で30分加熱する。得られた溶液に対し、1N-HCl水溶液を250μLにて中和し、5mLのクロロホルムを加え分配し、水層を測定試料とする。上記操作により得られた測定試料について、高速液体クロマトグラフィ質量分析を用い、下記条件にて測定する。
4. Analysis of dextrin Add 250 μL of 1N NaOH aqueous solution and 500 μL of 0.5M PMP (3-methyl-1-phenyl-5-pyrazolone)-methanol solution to 1.5 mL of the sample and standard solution of each concentration, and add 250 μL of 1N-NaOH aqueous solution and 500 μL of 0.5M PMP (3-methyl-1-phenyl-5-pyrazolone)-methanol solution, and hold at 70°C. Heat for 30 minutes. The obtained solution is neutralized with 250 μL of 1N HCl aqueous solution, 5 mL of chloroform is added and distributed, and the aqueous layer is used as a measurement sample. The measurement sample obtained by the above operation is measured using high performance liquid chromatography mass spectrometry under the following conditions.

分析条件
・HPLC装置:型式ACQUITY UPLC、Waters製
・MS装置 :型式SYNAPT G2-S HDMS型、Waters製
・イオン化 :ESI
・質量範囲 :m/z 100-2500
・カラム :型式Unison UK-C18 UP(2.0×100mm,3μm),インタクト社製
・移動相 :E液:ギ酸0.05%水溶液、F液:アセトニトリル(%F=15→90)
・流量 :0.6mL/min
・注入量 :1μL
Analysis conditions ・HPLC device: Model ACQUITY UPLC, manufactured by Waters ・MS device: Model SYNAPT G2-S HDMS type, manufactured by Waters ・Ionization: ESI
・Mass range: m/z 100-2500
・Column: Model Unison UK-C18 UP (2.0 x 100 mm, 3 μm), manufactured by Intact ・Mobile phase: E solution: formic acid 0.05% aqueous solution, F solution: Acetonitrile (%F = 15 → 90)
・Flow rate: 0.6mL/min
・Injection volume: 1μL

5.Brixの測定
20℃における試料のBrixを、糖度計(Atago RX-5000、Atago社製)を用いて測定した。
5. Measurement of Brix Brix of the sample at 20°C was measured using a sugar meter (Atago RX-5000, manufactured by Atago).

6.官能評価による甘味強度の測定
ショ糖を用いて1~20質量%まで1質量%ずつ等間隔に濃度を変え、甘味強度を20段階に調整した甘味標準水溶液を調製した。そして、専門パネル3名が甘味標準水溶液の甘味強度を指標とする官能試験を行うことを合意したうえで、次の手順で甘味強度を測定した。先ず、各専門パネルが甘味標準水溶液を低濃度から順に口に含み甘味の強さを記憶した。次いで、各専門パネルが各被験飲料を口に含み甘味の強さを認識し、甘味標準水溶液の中から最も近い甘味強度のものを決定する。そして、各専門パネルが決定した甘味強度に基づいて、協議により最終甘味強度を決定した。
6. Measurement of sweetness intensity by sensory evaluation A sweetness standard aqueous solution was prepared using sucrose and adjusting the sweetness intensity in 20 steps by changing the concentration at equal intervals of 1% by mass from 1 to 20% by mass. Three expert panelists agreed to conduct a sensory test using the sweetness intensity of the sweetness standard aqueous solution as an index, and measured the sweetness intensity according to the following procedure. First, each expert panel member put sweetness standard aqueous solutions in their mouths in order of decreasing concentration and memorized the intensity of sweetness. Next, each expert panel takes each test beverage in its mouth, recognizes the intensity of sweetness, and determines the one with the closest sweetness intensity from among the sweetness standard aqueous solutions. Then, the final sweetness intensity was determined through discussion based on the sweetness intensity determined by each expert panel.

実施例1~4、比較例1、2及び参考例1、2
表2に示す各成分を配合して飲料を調製した後、容量200mLのPETボトルに充填し加熱殺菌した(ポストミックス方式)。殺菌条件は、65℃、20分で行った。得られた飲料の分析結果及び評価結果を表2に併せて示す。なお、表2中の「(A)のショ糖換算濃度(質量%)」は、高甘味度甘味料本来の甘味強度を示す。
Examples 1 to 4, Comparative Examples 1 and 2 and Reference Examples 1 and 2
After preparing a beverage by blending each component shown in Table 2, it was filled into a PET bottle with a capacity of 200 mL and heat sterilized (post-mix method). Sterilization conditions were 65° C. for 20 minutes. Table 2 also shows the analysis results and evaluation results of the obtained beverage. In addition, "sucrose conversion concentration (mass %) of (A)" in Table 2 indicates the original sweetness intensity of the high-intensity sweetener.

Figure 0007349326000002
Figure 0007349326000002

実施例5~8、比較例3、4及び参考例3、4
表3に示す各成分を配合したこと以外は、実施例1と同様の操作により容器詰飲料を調製した。得られた容器詰飲料の分析及び評価を実施例1と同様の方法により行った。その結果を表3に示す。なお、表3中の「(A)のショ糖換算濃度(質量%)」は、高甘味度甘味料本来の甘味強度を示す。
Examples 5 to 8, Comparative Examples 3 and 4, and Reference Examples 3 and 4
A packaged beverage was prepared in the same manner as in Example 1, except that the components shown in Table 3 were added. The obtained packaged beverage was analyzed and evaluated in the same manner as in Example 1. The results are shown in Table 3. In addition, "sucrose equivalent concentration (mass %) of (A)" in Table 3 indicates the original sweetness intensity of the high-intensity sweetener.

Figure 0007349326000003
Figure 0007349326000003

実施例9~12、比較例5、6及び参考例5、6
表4に示す各成分を配合したこと以外は、実施例1と同様の操作により容器詰飲料を調製した。得られた容器詰飲料の分析及び評価を実施例1と同様の方法により行った。その結果を表4に示す。なお、表4中の「(A)のショ糖換算濃度(質量%)」は、高甘味度甘味料本来の甘味強度を示す。
Examples 9 to 12, Comparative Examples 5 and 6 and Reference Examples 5 and 6
A packaged beverage was prepared in the same manner as in Example 1, except that the components shown in Table 4 were blended. The obtained packaged beverage was analyzed and evaluated in the same manner as in Example 1. The results are shown in Table 4. In addition, "sucrose conversion concentration (mass %) of (A)" in Table 4 indicates the original sweetness intensity of the high-intensity sweetener.

Figure 0007349326000004
Figure 0007349326000004

実施例13~16、比較例7、8及び参考例7、8
表5に示す各成分を配合したこと以外は、実施例1と同様の操作により容器詰飲料を調製した。得られた容器詰飲料の分析及び評価を実施例1と同様の方法により行った。その結果を表5に示す。なお、表5中の「(A)のショ糖換算濃度(質量%)」は、高甘味度甘味料本来の甘味強度を示す。
Examples 13 to 16, Comparative Examples 7 and 8, and Reference Examples 7 and 8
A packaged beverage was prepared in the same manner as in Example 1, except that the ingredients shown in Table 5 were added. The obtained packaged beverage was analyzed and evaluated in the same manner as in Example 1. The results are shown in Table 5. In addition, "sucrose conversion concentration (mass %) of (A)" in Table 5 indicates the original sweetness intensity of the high-intensity sweetener.

Figure 0007349326000005
Figure 0007349326000005

実施例17~20、比較例9~12及び参考例9~12
表6に示す各成分を配合したこと以外は、実施例1と同様の操作により容器詰飲料を調製した。得られた容器詰飲料の分析及び評価を実施例1と同様の方法により行った。その結果を表6に示す。なお、表6中の「(A)のショ糖換算濃度(質量%)」は、高甘味度甘味料本来の甘味強度を示す。
Examples 17-20, Comparative Examples 9-12 and Reference Examples 9-12
A packaged beverage was prepared in the same manner as in Example 1, except that the components shown in Table 6 were added. The obtained packaged beverage was analyzed and evaluated in the same manner as in Example 1. The results are shown in Table 6. In addition, "sucrose conversion concentration (mass %) of (A)" in Table 6 indicates the original sweetness intensity of the high-intensity sweetener.

Figure 0007349326000006
Figure 0007349326000006

実施例21、22、比較例13、14及び参考例13、14
表7に示す各成分を配合したこと以外は、実施例1と同様の操作により容器詰飲料を調製した。得られた容器詰飲料の分析及び評価を実施例1と同様の方法により行った。その結果を表7に示す。なお、表7中の「(A)のショ糖換算濃度(質量%)」は、高甘味度甘味料本来の甘味強度を示す。
Examples 21 and 22, Comparative Examples 13 and 14 and Reference Examples 13 and 14
A packaged beverage was prepared in the same manner as in Example 1, except that the components shown in Table 7 were added. The obtained packaged beverage was analyzed and evaluated in the same manner as in Example 1. The results are shown in Table 7. In addition, "sucrose conversion concentration (mass %) of (A)" in Table 7 indicates the original sweetness intensity of the high-intensity sweetener.

Figure 0007349326000007
Figure 0007349326000007

実施例23、比較例15及び参考例15
表8に示す各成分を配合したこと以外は、実施例1と同様の操作により容器詰飲料を調製した。得られた容器詰飲料の分析結果を表8に示す。なお、甘味強度の評価は、市販飲料を標準の甘味とし、市販飲料よりも甘味が弱い場合を「×」とし、「×」の飲料に対して甘味が改善されていれば「○」とすることを専門パネル3名が合意したうえで、次の手順で官能試験を行った。先ず、各専門パネルが市販飲料の甘味の強さを記憶した。次いで、各専門パネルが比較例15の容器詰飲料、実施例23の容器詰飲料の順に口に含み甘味の強さを認識した。そして、各専門パネルが決定した甘味強度に基づいて、協議により最終甘味強度を決定した。その結果を表8に示す。
Example 23, Comparative Example 15 and Reference Example 15
A packaged beverage was prepared in the same manner as in Example 1, except that the ingredients shown in Table 8 were added. Table 8 shows the analysis results of the obtained packaged beverage. In addition, for the evaluation of sweetness intensity, the commercially available beverage is considered to have a standard sweetness, and if the sweetness is weaker than the commercially available beverage, it is given a "x", and if the sweetness is improved compared to the "x" drink, it is given a "○". After the three expert panels agreed on this, a sensory test was conducted using the following procedure. First, each expert panel memorized the intensity of sweetness of commercially available drinks. Next, each expert panel took the packaged beverage of Comparative Example 15 and the packaged beverage of Example 23 in their mouths in order, and recognized the intensity of sweetness. Then, the final sweetness intensity was determined through discussion based on the sweetness intensity determined by each expert panel. The results are shown in Table 8.

Figure 0007349326000008
Figure 0007349326000008

実施例24、比較例16及び参考例16
表9に示す各成分を配合したこと以外は、実施例1と同様の操作により容器詰飲料を調製した。得られた容器詰飲料の分析及び評価を実施例1と同様の方法により行った。その結果を表9に示す。なお、表9中の「(A)のショ糖換算濃度(質量%)」は、高甘味度甘味料本来の甘味強度を示す。
Example 24, Comparative Example 16 and Reference Example 16
A packaged beverage was prepared in the same manner as in Example 1, except that the components shown in Table 9 were blended. The obtained packaged beverage was analyzed and evaluated in the same manner as in Example 1. The results are shown in Table 9. In addition, "sucrose equivalent concentration (mass %) of (A)" in Table 9 indicates the original sweetness intensity of the high-intensity sweetener.

Figure 0007349326000009
Figure 0007349326000009

実施例25~27、比較例17~19及び参考例17~20
表10に示す各成分を80℃の熱水に入れ、10分間撹拌して溶解させた。その後、それを耐熱性容器に充填し、5℃にて90分冷却して容器詰ゼリー飲料を得た。そして、得られた容器詰ゼリー飲料について分析を行った。その結果を表10に示す。なお、表10中の「(A)のショ糖換算濃度(質量%)」は、高甘味度甘味料本来の甘味強度を示す。また、甘味強度の評価は、参考例17の容器詰ゼリー飲料の甘味強度を「9」、参考例18の容器詰ゼリー飲料の甘味強度を「8」、参考例19の容器詰ゼリー飲料の甘味強度を「7」、参考例20の容器詰ゼリー飲料の甘味強度を「6」とすることを専門パネル3名が合意したうえで、次の手順で官能試験を行った。先ず、各専門パネルが参考例17~20の容器詰ゼリー飲料の甘味の強さを、甘味強度の低いものから順に口に含み甘味の強さを記憶した。次いで、各専門パネルが各被験容器詰ゼリー飲料を口に含み甘味の強さを認識し、参考例17~20の容器詰ゼリー飲料の中から最も近い甘味強度のものを決定した。そして、各専門パネルが決定した甘味強度に基づいて、協議により最終甘味強度を決定した。その結果を表10に示す。
Examples 25-27, Comparative Examples 17-19 and Reference Examples 17-20
Each component shown in Table 10 was placed in 80°C hot water and stirred for 10 minutes to dissolve. Thereafter, it was filled into a heat-resistant container and cooled at 5° C. for 90 minutes to obtain a packaged jelly beverage. Then, the obtained packaged jelly beverage was analyzed. The results are shown in Table 10. In addition, "sucrose conversion concentration (mass %) of (A)" in Table 10 indicates the original sweetness intensity of the high-intensity sweetener. In addition, the sweetness intensity was evaluated as follows: the sweetness intensity of the packaged jelly drink of Reference Example 17 was ``9'', the sweetness intensity of the packaged jelly drink of Reference Example 18 was ``8'', and the sweetness intensity of the packaged jelly drink of Reference Example 19 was ``9''. The three expert panels agreed that the sweetness intensity of the packaged jelly drink of Reference Example 20 should be "7" and "6", and a sensory test was conducted according to the following procedure. First, each expert panel memorized the sweetness intensity of the packaged jelly drinks of Reference Examples 17 to 20 by holding them in their mouths in descending order of sweetness intensity. Next, each expert panel put each test packaged jelly drink in their mouths and recognized the intensity of sweetness, and determined the one with the closest sweetness intensity from among the packaged jelly drinks of Reference Examples 17 to 20. Then, the final sweetness intensity was determined through discussion based on the sweetness intensity determined by each expert panel. The results are shown in Table 10.

Figure 0007349326000010
Figure 0007349326000010

表2~10から、高甘味度甘味料を含有する経口組成物にカフェインを添加すると、高甘味度甘味料本来の甘味の強さに比べて甘味度が低下するが、カフェインに対してアストラガリンを特定の量比で含有させることにより、カフェインにより低下した甘味を改善できることがわかる。 Tables 2 to 10 show that when caffeine is added to an oral composition containing a high-intensity sweetener, the sweetness level decreases compared to the original sweetness of the high-intensity sweetener; It can be seen that by containing astragalin in a specific amount ratio, the sweetness decreased by caffeine can be improved.

Claims (4)

次の成分(A)、(B)及び(C);
(A)高甘味度甘味料 ショ糖換算甘味度で3~9質量%
(B)カフェイン 0.001~0.03質量%、及び
(C)アストラガリン
を含有し、
成分(B)と成分(C)との質量比[(C)/(B)]が0.01~3であり、
Brixが2.5以上である、
経口組成物。
The following ingredients (A), (B) and (C);
(A) High-intensity sweetener 3 to 9% by mass in terms of sweetness in terms of sucrose
(B) contains 0.001 to 0.03% by mass of caffeine, and (C) astragalin,
The mass ratio [(C)/(B)] of component (B) and component (C) is 0.01 to 3,
Brix is 2.5 or more,
Oral composition.
Brixが2.5~8.0%である、請求項1記載の経口組成物。 The oral composition according to claim 1, having a Brix of 2.5 to 8.0%. 成分(A)がスクラロース、アセスルファムカリウム、ステビア、ソーマチン及びアスパルテームから選ばれる1種又は2種以上である、請求項1又は2記載の経口組成物。 3. The oral composition according to claim 1, wherein component (A) is one or more selected from sucralose, acesulfame potassium, stevia, thaumatin, and aspartame. 飲食品である、請求項1~3のいずれか1項に記載の経口組成物。 The oral composition according to any one of claims 1 to 3, which is a food or drink.
JP2019204031A 2018-11-30 2019-11-11 Oral composition Active JP7349326B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018225758 2018-11-30
JP2018225758 2018-11-30

Publications (2)

Publication Number Publication Date
JP2020092694A JP2020092694A (en) 2020-06-18
JP7349326B2 true JP7349326B2 (en) 2023-09-22

Family

ID=71085808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019204031A Active JP7349326B2 (en) 2018-11-30 2019-11-11 Oral composition

Country Status (1)

Country Link
JP (1) JP7349326B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001190241A (en) 2000-01-12 2001-07-17 Sunstar Inc Method for producing kakiba (persimmon leaf) essence
JP2002291441A (en) 2001-03-30 2002-10-08 Sunstar Inc Astragalin-containing food
WO2009035047A1 (en) 2007-09-11 2009-03-19 Suntory Holdings Limited Food or drink showing improved taste of sweetener
US20090186127A1 (en) 2004-12-15 2009-07-23 Krumhar Kim C Energy drink compositions
JP2015113309A (en) 2013-12-12 2015-06-22 イノー − ベヴ リミテッド Composition containing natural extract

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001190241A (en) 2000-01-12 2001-07-17 Sunstar Inc Method for producing kakiba (persimmon leaf) essence
JP2002291441A (en) 2001-03-30 2002-10-08 Sunstar Inc Astragalin-containing food
US20090186127A1 (en) 2004-12-15 2009-07-23 Krumhar Kim C Energy drink compositions
WO2009035047A1 (en) 2007-09-11 2009-03-19 Suntory Holdings Limited Food or drink showing improved taste of sweetener
JP2015113309A (en) 2013-12-12 2015-06-22 イノー − ベヴ リミテッド Composition containing natural extract

Also Published As

Publication number Publication date
JP2020092694A (en) 2020-06-18

Similar Documents

Publication Publication Date Title
WO2019182114A1 (en) Aroma-free fruit juice
MX2014006368A (en) Taste-masking compositions, sweetener compositions and consumable product compositions containing the same.
JP6757568B2 (en) Carbonated drinks
TW201616982A (en) Naringin-containing beverage
JP6400298B2 (en) Coffee drink
JP7349326B2 (en) Oral composition
AU2022206132A1 (en) Beverage containing galacto-oligosaccharide
TWI828744B (en) Stabilizer of pyrroloquinoline quinone, composition comprising the same and method for stabilization
WO2021186816A1 (en) Beverage containing caffeine and sweet component
JP2017176110A (en) Packed weakly acidic beverage containing indigestible dextrin with reduced paper odor
WO2021186784A1 (en) Carbonated drink
JP6121041B1 (en) Acidic beverage
JP6059407B1 (en) Acidic beverage
JP6316599B2 (en) Bottled milk coffee drink
JP7191553B2 (en) Beverages, packaged beverages and method for improving aftertaste and mouthfeel of beverages
JP7368546B2 (en) Carbonated drink
JP6121042B1 (en) Acidic beverage
JP6121608B1 (en) Acidic beverage
JP6280665B1 (en) Beverages containing caramel color
WO2019182115A1 (en) Aroma-free grape juice
WO2019182116A1 (en) Aroma-free pear juice

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230911

R151 Written notification of patent or utility model registration

Ref document number: 7349326

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151