JP7348710B2 - water quality monitoring system - Google Patents

water quality monitoring system Download PDF

Info

Publication number
JP7348710B2
JP7348710B2 JP2017215501A JP2017215501A JP7348710B2 JP 7348710 B2 JP7348710 B2 JP 7348710B2 JP 2017215501 A JP2017215501 A JP 2017215501A JP 2017215501 A JP2017215501 A JP 2017215501A JP 7348710 B2 JP7348710 B2 JP 7348710B2
Authority
JP
Japan
Prior art keywords
water
monitoring system
water quality
quality monitoring
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017215501A
Other languages
Japanese (ja)
Other versions
JP2019086427A (en
Inventor
祐子 松▲崎▼
茂 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Environment Co Ltd
Original Assignee
Sumitomo Heavy Industries Environment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Environment Co Ltd filed Critical Sumitomo Heavy Industries Environment Co Ltd
Priority to JP2017215501A priority Critical patent/JP7348710B2/en
Publication of JP2019086427A publication Critical patent/JP2019086427A/en
Application granted granted Critical
Publication of JP7348710B2 publication Critical patent/JP7348710B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、水処理プロセスにおける水質を監視する水質監視システムに関するものである。 The present invention relates to a water quality monitoring system for monitoring water quality in a water treatment process.

下水処理場、排水処理場、浄水場等の水処理プロセスでは、下排水処理場への流入水や、浄水場等に流入する導水の水質を監視するための水質監視システムが利用されている。
例えば、特許文献1には、水質監視システムとして、微生物センサーによる毒物検知装置と、この毒物検知装置の出力信号を受けて試料水を連続的に採取する採水装置と、採取された試料水を定量分析する化学分析装置と、この化学分析装置からの信号を受けて毒物の発生源を推定する毒物流出地域判定装置を備える水質監視システムが記載されている。
特許文献1には、毒物検知装置は、固定化微生物膜と溶存酸素電極を組み合わせてなる微生物センサーにより、対象となる被処理水中のフェノール、シアン、重金属などを10~20分で検知するものであること、また、毒物を検知した場合に採水装置を駆動して複数個の試料水容器に一旦収納し、成分分析装置で毒物の特定を行うものであることが記載されている。
In water treatment processes such as sewage treatment plants, wastewater treatment plants, and water treatment plants, water quality monitoring systems are used to monitor the quality of water flowing into the sewage treatment plants and water flowing into the water treatment plants.
For example, Patent Document 1 describes a water quality monitoring system that includes a poison detection device using a microbial sensor, a water sampling device that continuously collects sample water in response to an output signal from the poison detection device, and A water quality monitoring system is described that includes a chemical analyzer that performs quantitative analysis and a toxic substance spill area determination device that receives signals from the chemical analyzer and estimates the source of the toxic substance.
Patent Document 1 describes a toxic substance detection device that detects phenol, cyanide, heavy metals, etc. in target water to be treated in 10 to 20 minutes using a microbial sensor that combines an immobilized microbial membrane and a dissolved oxygen electrode. It also states that when a poisonous substance is detected, a water sampling device is activated to temporarily store the water in a plurality of sample water containers, and a component analyzer is used to identify the poisonous substance.

特開平5-10921号公報Japanese Patent Application Publication No. 5-10921

特許文献1のように、監視対象を検知してから採水を行い、さらに成分分析装置による定量分析を行うような水質監視システムでは、採水や定量分析に時間を要するため、水質異常に対する対応が遅れる可能性がある。また、定量分析を行う分析装置は、検知する監視対象によって異なる手法の装置を設ける必要があり、システム全体として大掛かりなものになるという問題がある。
また、水処理プロセスにおける水質監視対象は、水中の重金属だけではなく、油、洗剤などの有害物質、さらには固体状物質であるスカムなどがあり、複数の相(水相・油相、固体・液体)及び水中での存在形態が異なるもの(溶解・分散)について一度に検出することが求められている。
In a water quality monitoring system as in Patent Document 1, which samples water after detecting the monitoring target and then performs quantitative analysis using a component analyzer, it takes time to sample water and perform quantitative analysis, so it is difficult to respond to water quality abnormalities. may be delayed. In addition, an analysis device that performs quantitative analysis needs to be equipped with devices that use different methods depending on the monitoring target to be detected, and there is a problem that the system as a whole becomes large-scale.
In addition, the targets of water quality monitoring in water treatment processes include not only heavy metals in the water, but also harmful substances such as oil and detergents, as well as scum, which is a solid substance, and has multiple phases (aqueous phase, oil phase, solid phase, There is a need to simultaneously detect substances that exist in different forms (dissolved/dispersed) in water (liquid) and in water (dissolved/dispersed).

本発明の課題は、水処理プロセスにおける水質の監視において、採水・分析の手間を軽減し、異物の種類や状態を問わず検知可能な水質監視システムを提供することである。 An object of the present invention is to provide a water quality monitoring system that can reduce the effort of water sampling and analysis in monitoring water quality in a water treatment process, and can detect foreign substances regardless of their type or state.

本発明者は、上記の課題について鋭意検討した結果、水処理プロセスにおける水質の監視において、紫外から赤外領域の複数の波長域の情報を、それぞれのスペクトルの経時変化として取得することにより、採水・分析をすることなく、さまざまな種類の異物を検知できることを見出して、本発明を完成した。
すなわち、本発明は、以下の水質監視システムである。
As a result of intensive study on the above-mentioned issues, the present inventors have discovered a method for monitoring water quality in water treatment processes by acquiring information in multiple wavelength ranges from the ultraviolet to the infrared region as changes over time in each spectrum. The present invention was completed by discovering that various types of foreign substances can be detected without water analysis.
That is, the present invention is the following water quality monitoring system.

上記課題を解決するための本発明の水質監視システムは、水処理プロセスにおける水質監視システムであって、水処理装置と、前記水処理装置の水面上方に設けられた観測手段とを備え、前記観測手段は、紫外から赤外領域の複数の波長域の情報について、それぞれのスペクトルの経時変化として取得することで、被処理水の水面状態に関する情報を得るという特徴を有する。
本発明の水質監視システムは、紫外から赤外領域の複数の波長域のスペクトルを取得するため、1つの波長による観測では検知できないような種々の物質についても検知が可能であり、被処理水又は処理水の水面状態の変化を確実に捉えることができる。また、スペクトルの経時変化として情報を得るため、水面状態の変化のタイミングを迅速に検知することが可能となる。さらに、被処理水の水路上方から観測することにより、採水も不要となる。
A water quality monitoring system of the present invention for solving the above problems is a water quality monitoring system in a water treatment process, and includes a water treatment device and an observation means provided above the water surface of the water treatment device, The means is characterized in that information regarding the water surface state of the water to be treated is obtained by acquiring information in a plurality of wavelength ranges from ultraviolet to infrared regions as changes over time in the respective spectra.
Since the water quality monitoring system of the present invention acquires spectra in multiple wavelength ranges from ultraviolet to infrared, it is possible to detect various substances that cannot be detected by observation using a single wavelength. It is possible to reliably capture changes in the water surface condition of treated water. Furthermore, since information is obtained as changes in spectra over time, it is possible to quickly detect the timing of changes in water surface conditions. Furthermore, by observing the water to be treated from above the waterway, there is no need for water sampling.

また、本発明の水質監視システムの一実施態様としては、被処理水及び/又は処理水の水面状態に関する情報が、異物の混入検知に関するものであるという特徴を有する。
この特徴によれば、採水の手間なく異物混入を検知することができるため、異物除去などの迅速な対応を実現することが可能となる。また、スカムのように目視可能な異物はもちろん、油、洗剤、重金属等のように目視では被処理水又は処理水と区別ができない異物についても検知が可能であるため、さまざまな物質を検知対象として扱うことができる。
Further, an embodiment of the water quality monitoring system of the present invention is characterized in that the information regarding the water surface condition of the water to be treated and/or the treated water is related to detection of contamination of foreign matter.
According to this feature, since it is possible to detect foreign matter contamination without the hassle of water sampling, it is possible to implement quick measures such as foreign matter removal. In addition, it is possible to detect not only foreign substances that are visible to the naked eye such as scum, but also foreign substances that cannot be visually distinguished from treated water or treated water, such as oil, detergents, and heavy metals, so a variety of substances can be detected. It can be treated as

また、本発明の水質監視システムの一実施態様としては、観測手段は、波長域の情報とともに、二次元の位置情報を合わせて取得するという特徴を有する。
この特徴によれば、観測範囲における水面状態が変化した位置や領域を特定することが可能となる。特に、異物混入の検知では、異物の大きさや、異物が混入している領域などの二次元の情報を得られることから、異物の種類だけでなく、大きさや混入領域等の情報に応じた適切な対応が可能となる。
Further, an embodiment of the water quality monitoring system of the present invention is characterized in that the observation means acquires two-dimensional position information as well as wavelength range information.
According to this feature, it becomes possible to specify the position or area where the water surface condition has changed in the observation range. In particular, when detecting foreign matter contamination, it is possible to obtain two-dimensional information such as the size of the foreign matter and the area where the foreign matter is contaminated. This makes it possible to respond accordingly.

本発明によると、水処理プロセスにおける被処理水の流入時及び/又は処理水の流出時の水質の監視において、採水・分析を必要とせず、また複数種類の計測器を設けることもなく、被処理水の水面状態に関する情報を得ることで、さまざまな異物を検知可能な水質監視システムを提供することができる。 According to the present invention, there is no need for water sampling and analysis, and there is no need to provide multiple types of measuring instruments in monitoring the quality of water at the time of inflow of treated water and/or outflow of treated water in a water treatment process. By obtaining information about the water surface condition of the water to be treated, it is possible to provide a water quality monitoring system that can detect various foreign substances.

本発明の第一の実施態様に係る水質監視システムの構造を示す概略説明図である。1 is a schematic explanatory diagram showing the structure of a water quality monitoring system according to a first embodiment of the present invention. 本発明の第一の実施態様に係る水質監視システムを用いた観測例に使用する観測対象の写真のイメージ図である。FIG. 2 is an image diagram of a photograph of an observation target used in an observation example using the water quality monitoring system according to the first embodiment of the present invention. 本発明の第一の実施態様に係る水質監視システムを用いた観測例のスペクトルグラフを示す図である。FIG. 2 is a diagram showing a spectrum graph of an observation example using the water quality monitoring system according to the first embodiment of the present invention. 本発明の第一の実施態様に係る水質監視システムを用いて観測されたスペクトルグラフの解析例である。It is an example of analysis of a spectrum graph observed using the water quality monitoring system according to the first embodiment of the present invention. 本発明の第二の実施態様に係る水質監視システムの構造を示す概略説明図である。FIG. 2 is a schematic explanatory diagram showing the structure of a water quality monitoring system according to a second embodiment of the present invention.

以下、図面を参照しつつ本発明に係る水質監視システムの実施態様を詳細に説明する。
なお、実施態様に記載する水質監視システムについては、本発明に係る水質監視システムを説明するために例示したにすぎず、これに限定されるものではない。
Hereinafter, embodiments of the water quality monitoring system according to the present invention will be described in detail with reference to the drawings.
Note that the water quality monitoring system described in the embodiments is merely an example for explaining the water quality monitoring system according to the present invention, and the present invention is not limited thereto.

本発明に係る水質監視システムは、水処理装置の水面上方に、観測手段を設けるものであり、観測手段は紫外から赤外領域の複数の波長域の情報を、それぞれのスペクトルの経時変化として取得可能なものであることを特徴とする。 The water quality monitoring system according to the present invention is provided with an observation means above the water surface of a water treatment equipment, and the observation means acquires information in a plurality of wavelength ranges from ultraviolet to infrared regions as changes over time in each spectrum. It is characterized by being possible.

[第一の実施態様]
図1には、本発明の第一の実施態様に係る水質監視システム100の概略説明図が図示されている。
本実施形態に係る水質監視システム100は、各種の水処理プロセスに係る水質を連続的に監視するためのシステムであり、図1に示すように、水処理装置1における処理水Wの流出水路2の上部に、観測手段3と解析手段4を設けたものである。
[First embodiment]
FIG. 1 shows a schematic explanatory diagram of a water quality monitoring system 100 according to a first embodiment of the present invention.
The water quality monitoring system 100 according to the present embodiment is a system for continuously monitoring water quality related to various water treatment processes, and as shown in FIG. Observation means 3 and analysis means 4 are provided on the upper part of the apparatus.

水処理装置1は、水処理に係る公知の装置であれば特に種類は問わない。例えば、下水処理場、廃水処理場、食品工場、製薬工場等の有機性排水処理設備、メッキ工場等の無機性排水処理設備、浄水場等の上水処理設備等に利用される装置である。より具体的には、沈砂地設備、沈殿池設備、曝気槽、好気反応槽、嫌気反応槽、オキシデーションディッチ槽、凝集槽、沈殿槽、汚泥濃縮設備、汚泥消化設備、貯留タンク、消毒設備等の排水処理設備、着水井、フロック形成池、沈殿池、ろ過池、配水池等の上水処理設備等が挙げられる。なお、本発明の水処理装置1とは、水処理を実施する水処理槽11、水処理槽11に被処理水を流入する流入水路、処理水を流出する流出水路2だけでなく、複数の水処理装置を連結する水路等も含むものである。 The water treatment device 1 may be of any type as long as it is a known device related to water treatment. For example, the device is used in sewage treatment plants, wastewater treatment plants, organic wastewater treatment facilities such as food factories, pharmaceutical factories, etc., inorganic wastewater treatment facilities such as plating factories, and water treatment facilities such as water purification plants. More specifically, sand settling equipment, sedimentation tank equipment, aeration tank, aerobic reaction tank, anaerobic reaction tank, oxidation ditch tank, flocculation tank, settling tank, sludge concentration equipment, sludge digestion equipment, storage tank, disinfection equipment Examples include wastewater treatment facilities such as water receiving wells, floc formation ponds, sedimentation ponds, filtration ponds, water distribution ponds, and other water treatment facilities. Note that the water treatment device 1 of the present invention includes not only the water treatment tank 11 that performs water treatment, the inflow waterway that flows the water to be treated into the water treatment tank 11, and the outflow waterway 2 that flows out the treated water, but also a plurality of It also includes waterways etc. that connect water treatment equipment.

流出水路2は、上記水処理槽11で処理された処理水Wが流出するための水路であり、観測手段3を備えている。流出水路2に観測手段3を設けることにより、処理水Wの異常を迅速に検知し、次工程への異物の流入を防止することができる。
流出水路2は、上面が開放された水路であり、観測手段3により処理水Wの水面を直接に観測する。なお、流出水路2は、断面矩形や断面円形の水路管であってもよい。また、断面矩形又は断面円形の水路管の場合には、観測手段3を流出水路2の内部に設けて処理水Wの水面を直接に観測しても、流出水路2の一部に観測窓を設け、観測窓を介して処理水Wの水面を観測してもよい。
The outflow waterway 2 is a waterway through which the treated water W treated in the water treatment tank 11 flows out, and is equipped with an observation means 3. By providing the observation means 3 in the outflow channel 2, abnormalities in the treated water W can be quickly detected and foreign matter can be prevented from flowing into the next process.
The outflow waterway 2 is a waterway with an open top surface, and the surface of the treated water W is directly observed by the observation means 3. Note that the outflow waterway 2 may be a waterway pipe having a rectangular cross section or a circular cross section. In addition, in the case of a waterway pipe with a rectangular or circular cross section, even if the observation means 3 is provided inside the outflow channel 2 to directly observe the water surface of the treated water W, an observation window may be provided in a part of the outflow channel 2. The water surface of the treated water W may be observed through the observation window.

また、観測手段3は、水処理槽11や、水処理槽11に被処理水を流入する流入水路等に設けてもよく、水処理槽、流入水路及び流出水路等に複数のに設けてもよい。流入水路に観測手段3を設ける場合には、水処理槽11に異物が流入することを防止し、水処理槽11における処理を安定化することができる。なお、流入水路は、流出水路2と同様、上面が開放された水路や、断面矩形や断面円形の水路管により形成される。 Further, the observation means 3 may be provided in the water treatment tank 11, an inflow channel through which water to be treated flows into the water treatment tank 11, or may be provided in a plurality of locations in the water treatment tank, inflow channel, outflow channel, etc. good. When the observation means 3 is provided in the inflow channel, it is possible to prevent foreign matter from flowing into the water treatment tank 11 and stabilize the treatment in the water treatment tank 11. Note that, like the outflow channel 2, the inflow channel is formed by a channel with an open top surface, or a channel pipe with a rectangular or circular cross section.

観測手段3は、紫外から赤外領域の複数の波長域の情報を取得し、それぞれのスペクトルの経時変化を観測するものである。これにより、被処理水又は処理水の水面状態の変化に関する情報が得られる。また、複数の波長域の情報を取得できるため、種々の異物を検知することができる。つまり、し渣やスカム等のように目視可能な異物はもちろん、油、洗剤、重金属などのように人の目では処理水Wと区別ができない異物についても検知が可能となり、さまざまな物質を監視及び検知対象として扱うことができる。また、経時変化を連続的に観測することで、被処理水又は処理水の表面状態の変化のタイミングを迅速に検知することが可能となる。 The observation means 3 acquires information in a plurality of wavelength ranges from ultraviolet to infrared regions, and observes changes over time in each spectrum. Thereby, information regarding changes in the water surface state of the water to be treated or the water to be treated can be obtained. Furthermore, since information in multiple wavelength ranges can be acquired, various foreign objects can be detected. In other words, it is possible to detect not only foreign substances that are visible to the naked eye such as scum and scum, but also foreign substances that cannot be distinguished from treated water W by the human eye, such as oil, detergents, and heavy metals, thereby monitoring a variety of substances. and can be treated as a detection target. Furthermore, by continuously observing changes over time, it becomes possible to quickly detect the timing of changes in the surface state of the water to be treated or the water to be treated.

本実施形態における観測手段3は、計測部31と記憶部32からなり、計測部31としてハイパースペクトルカメラを設置している。
計測部31のハイパースペクトルカメラは、二次元の位置情報と、数十バンド以上に分光されたスペクトルの情報とを同時取得するものである。これにより、一定の観測範囲における紫外から赤外領域までの複数の波長域の情報(スペクトル)を取得することが可能となる。計測部31では、少なくとも10nm間隔でスペクトルを取得可能であることが望ましく、5nm間隔以下であることがより好ましい。なお、取得するスペクトルは、反射、吸収、透過のいずれであってもよい。
The observation means 3 in this embodiment consists of a measurement section 31 and a storage section 32, and a hyperspectral camera is installed as the measurement section 31.
The hyperspectral camera of the measurement unit 31 simultaneously acquires two-dimensional position information and information on a spectrum divided into dozens of bands or more. This makes it possible to obtain information (spectra) in multiple wavelength ranges from ultraviolet to infrared regions within a certain observation range. The measurement unit 31 is desirably able to acquire spectra at intervals of at least 10 nm, and more preferably at intervals of 5 nm or less. Note that the spectrum to be acquired may be any one of reflection, absorption, and transmission.

記憶部32は、計測部31で得られた測定結果を入力可能に接続したもので、時間ごとの測定結果を蓄積して記憶することで、スペクトルの経時変化に係る情報を得ることができる。また、通常運転時のスペクトル情報や水質に異常が発生した時のスペクトル情報に係るデータベースとしても使用される。 The storage unit 32 is connected so that the measurement results obtained by the measurement unit 31 can be input, and by accumulating and storing the measurement results for each time, it is possible to obtain information regarding the change in spectrum over time. It is also used as a database for spectral information during normal operation and spectral information when an abnormality occurs in water quality.

なお、計測部31としてハイパースペクトルカメラを用いることで、取得する情報として観測範囲における位置情報が加わり、異物が存在する場所の特定が可能となる。そのため、異物の大きさや、異物が混入している領域などの二次元の情報を得られることから、異物の種類だけでなく、大きさや混入領域等の情報に応じた適切な対応が可能となる。例えば、流入水路や流出水路の一部に異物が混入した場合には、被処理水の流入や処理水の流出をすべて停止するまでもなく、異物が混入した領域のみを排水して異物を除去する等の対応や、異物のみを掬い取る等の対応が可能である。 Note that by using a hyperspectral camera as the measurement unit 31, position information in the observation range is added as information to be acquired, making it possible to specify the location where the foreign object is present. Therefore, since it is possible to obtain two-dimensional information such as the size of the foreign object and the area where the foreign object is mixed, it is possible to take appropriate measures based not only on the type of foreign object but also on information such as the size and area of the foreign object. . For example, if a foreign object gets mixed into a part of the inflow or outflow waterway, it is not necessary to stop all inflow of treated water and outflow of treated water, but to remove the foreign object by draining only the area where the foreign object has entered. It is possible to take measures such as scooping out only the foreign matter.

解析手段4は、観測手段3から得られた測定結果に基づき、水質状態を判断するための解析を行うものであり、演算部41、表示部42を備える。
演算部41は、記憶部32に記録された情報を基に解析を行うものである。例えば、解析に必要なプログラムをCPU等のプロセッサにより実行する計算装置である。
また、表示部42は、演算部41における解析結果を画像として表示させるとともに、必要に応じて警告を発するものである。例えば、画像と警告音が出力できるモニターであり、画像検索や警告の条件設定などを行うための入力手段が接続されていることが好ましい。
The analysis means 4 performs analysis for determining the water quality state based on the measurement results obtained from the observation means 3, and includes a calculation section 41 and a display section 42.
The calculation unit 41 performs analysis based on the information recorded in the storage unit 32. For example, it is a computing device that executes a program necessary for analysis using a processor such as a CPU.
Further, the display unit 42 displays the analysis results in the calculation unit 41 as an image, and issues a warning as necessary. For example, it is preferable that the monitor is a monitor capable of outputting images and warning sounds, and is connected to input means for performing image searches, setting warning conditions, and the like.

演算部41における解析の例として、平均波長強度解析やNDSI解析が挙げられる。
平均波長強度解析は、特定波長間のスペクトル強度の平均によるもので、以下の式(1)を用いる。
Examples of the analysis in the calculation unit 41 include average wavelength intensity analysis and NDSI analysis.
Average wavelength intensity analysis is based on the average of spectral intensities between specific wavelengths, and uses the following equation (1).

[式1]

Figure 0007348710000001
[Formula 1]
Figure 0007348710000001

また、NDSI解析は、特定の2波長間の反射率の傾きによるもので、以下の式(2)を用いる。なお、NDSIとは、Normalized Difference Spectral Indexの略である。 Further, the NDSI analysis is based on the slope of reflectance between two specific wavelengths, and uses the following equation (2). Note that NDSI is an abbreviation for Normalized Difference Spectral Index.

[式2]

Figure 0007348710000002
[Formula 2]
Figure 0007348710000002

図2~図4は、ハイパースペクトルカメラによる観測例である。
図2は、観測対象の写真のイメージ図である。観測対象は、活性汚泥を含む処理水Wであり、この処理水Wに異物として洗剤を混入し、静置したものである。これを目視すると、図2に示すように洗剤が混入した部分はやや白くなっており、処理水Wとは区別できる状態である。この処理水Wをハイパースペクトルカメラにより測定した結果を図3に示す。図2中の(A)~(C)は、スペクトルグラフの測定箇所を示す。なお、測定は紫外から赤外領域の反射スペクトルを計測した。
2 to 4 are examples of observations using a hyperspectral camera.
FIG. 2 is an image diagram of a photograph of the observation target. The object of observation is treated water W containing activated sludge, in which detergent is mixed as a foreign substance and left to stand. When visually inspecting this, as shown in FIG. 2, the part where the detergent was mixed is slightly white and can be distinguished from the treated water W. FIG. 3 shows the results of measuring this treated water W using a hyperspectral camera. (A) to (C) in FIG. 2 show measurement points on the spectrum graph. In addition, the measurement was performed by measuring the reflection spectrum in the ultraviolet to infrared region.

図3は、図2の各測定箇所(A)~(C)におけるスペクトルグラフである。図3に示すように、測定箇所(A)と測定箇所(C)を比較すると、目視による差異があると共に、全測定波長において、大きな差異が認められた。一方、測定箇所(B)と測定箇所(C)を比較すると、目視では差異が認識できないが、測定箇所(C)とは異なるスペクトルグラフが示された。これは、洗剤が混入した箇所の周辺において、洗剤が溶解して拡散していることによると考察される。このようにハイパースペクトルカメラを用いることにより、目視により視認できないような物質の混入を検知することができる。 FIG. 3 is a spectrum graph at each measurement location (A) to (C) in FIG. 2. As shown in FIG. 3, when comparing the measurement location (A) and the measurement location (C), there was a visual difference and a large difference was observed in all measurement wavelengths. On the other hand, when the measurement point (B) and the measurement point (C) were compared, a spectrum graph different from that of the measurement point (C) was shown, although the difference could not be visually recognized. This is considered to be because the detergent dissolves and diffuses around the area where the detergent is mixed. By using a hyperspectral camera in this way, it is possible to detect the contamination of substances that cannot be visually recognized.

また、測定箇所(B)と測定箇所(C)におけるスペクトルグラフを見ると、紫外~可視光領域ではほとんど差がないが、赤外領域のほうで差が見られた。このようにハイパースペクトルカメラを用いることにより、紫外から赤外領域の複数の波長域の情報が得られることから、物質の種類によって分光特性が異なる場合であってもスペクトルグラフの変化を検知することができる。 Furthermore, looking at the spectrum graphs at the measurement location (B) and measurement location (C), there was almost no difference in the ultraviolet to visible light region, but a difference was seen in the infrared region. By using a hyperspectral camera in this way, information in multiple wavelength ranges from the ultraviolet to the infrared region can be obtained, making it possible to detect changes in the spectral graph even if the spectral characteristics differ depending on the type of material. Can be done.

図4は、ハイパースペクトルカメラで得られた測定結果(図3)を演算部41により解析し、表示部42で示す画像のイメージ図である。解析は、平均波長強度解析により行い、図3における破線で囲まれた波長領域を解析に使用した。
図4に示すように、観測範囲における平均波長強度を分布として画像表示することで、異物(洗剤)の混入している箇所が視覚的にも確認しやすくなる。特に、目視により検知できない異物の混入箇所の特定が容易になる。
FIG. 4 is an image diagram of an image obtained by analyzing the measurement results (FIG. 3) obtained by the hyperspectral camera by the calculation unit 41 and displayed on the display unit 42. The analysis was performed by average wavelength intensity analysis, and the wavelength region surrounded by the broken line in FIG. 3 was used for the analysis.
As shown in FIG. 4, by displaying an image as a distribution of the average wavelength intensity in the observation range, it becomes easier to visually confirm the location where foreign matter (detergent) is mixed. In particular, it becomes easier to identify locations where foreign matter is mixed in, which cannot be detected visually.

異物の検知では、このスペクトル情報を記憶部32に経時的に記録していくことにより、正確に異物混入のタイミングを検知することが可能となる。
また、他の実施形態として、記憶部32に記憶された通常運転時のスペクトル情報を、演算部41において基準値として設定し、設定した基準値と計測部31で得られる測定結果との差を求め、この差が一定範囲を超えたときに、表示部42を介して警告を発してもよい。
In foreign matter detection, by recording this spectral information in the storage unit 32 over time, it becomes possible to accurately detect the timing of foreign matter contamination.
In another embodiment, the spectrum information during normal operation stored in the storage unit 32 is set as a reference value in the calculation unit 41, and the difference between the set reference value and the measurement result obtained by the measurement unit 31 is calculated. When the difference exceeds a certain range, a warning may be issued via the display section 42.

その他の実施形態として、記憶部32に種々の既知物質に関するスペクトルグラフのリストを予め記録しておき、測定された検知物質のスペクトルグラフの結果と、予め記録された既知物質のスペクトルグラフのリストとを比較することにより、検知物質の特定や、その濃度を特定することも可能である。 As another embodiment, a list of spectral graphs related to various known substances is recorded in advance in the storage unit 32, and the result of the measured spectral graph of the detected substance is combined with the list of spectral graphs of the known substance recorded in advance. By comparing the results, it is also possible to identify the detected substance and its concentration.

また、水質の異常(例えば、異物混入)が検知された場合に、異常に対応するための装置を設けてもよい。異常に対応するための装置としては、例えば、水路への水の供給停止を制御する制御装置、薬剤を添加する薬剤添加装置、希釈水を添加する希釈水供給装置、固形物を回収するための固形物回収装置などが挙げられる。 Further, when an abnormality in water quality (for example, foreign matter contamination) is detected, a device may be provided to deal with the abnormality. Devices for responding to abnormalities include, for example, a control device that controls the stoppage of water supply to waterways, a drug addition device that adds drugs, a dilution water supply device that adds dilution water, and a device that collects solids. Examples include solid matter recovery equipment.

なお、上述した実施態様は水質監視システムの一例を示すものである。本発明に係る水質監視システムは、上述した実施態様のように、異物の混入を検出するための水質監視システムに限られるものではなく、本発明の水質監視システム100を、水処理装置1の正常な処理の監視のために利用してもよい。 In addition, the embodiment mentioned above shows an example of a water quality monitoring system. The water quality monitoring system according to the present invention is not limited to a water quality monitoring system for detecting the contamination of foreign substances as in the embodiment described above. It may be used for monitoring processing.

例えば、本実施態様の水質監視システムは、水処理プロセスにおける汚泥の種類及び状態判別手段として利用することが可能である。汚泥を測定して得られる分光スペクトルは、汚泥の種類及び状態によって異なる傾向を示すと考えられる。特にスペクトル差の大きい特定の2波長間を選択し、NDSI解析を行うことで、汚泥の種類及び状態判別に利用可能となる。 For example, the water quality monitoring system of this embodiment can be used as means for determining the type and condition of sludge in a water treatment process. It is thought that the spectra obtained by measuring sludge show different trends depending on the type and condition of the sludge. By selecting two specific wavelengths with a particularly large spectral difference and performing NDSI analysis, it can be used to determine the type and condition of sludge.

[第二の実施態様]
図5には、本発明の第二の実施態様に係る水質監視システム101の概略説明図が図示されている。
本実施形態に係る水質監視システム101は、図5に示すように、水処理装置1における水処理槽11の上部に、観測手段3と解析手段4を設けたものである。
[Second embodiment]
FIG. 5 shows a schematic explanatory diagram of a water quality monitoring system 101 according to a second embodiment of the present invention.
A water quality monitoring system 101 according to the present embodiment includes an observation means 3 and an analysis means 4 above a water treatment tank 11 in a water treatment apparatus 1, as shown in FIG.

本発明の水質監視方法は、水処理プロセスにおける被処理水の流入時及び/又は処理水の流出時の水質管理に利用される。例えば、下水処理場、廃水処理場、浄水場等における各水路での水質異常の検知のために利用される。 The water quality monitoring method of the present invention is used for water quality management during the inflow of treated water and/or the outflow of treated water in a water treatment process. For example, it is used to detect water quality abnormalities in each waterway in sewage treatment plants, wastewater treatment plants, water purification plants, etc.

100,101 水質監視システム、1 水処理装置、11 水処理槽、2 流出水路、3 観測手段、4 解析手段、31 計測部、32 記憶部、41 演算部、42 表示部、W 処理水 100,101 water quality monitoring system, 1 water treatment device, 11 water treatment tank, 2 outflow channel, 3 observation means, 4 analysis means, 31 measurement section, 32 storage section, 41 calculation section, 42 display section, W treated water

Claims (3)

水処理プロセスにおける水質を監視する水質監視システムであって、
水処理装置と、
前記水処理装置の水面上方に設けられた観測手段と
種々の既知物質に関するスペクトル情報を予め記録する記憶部を備え、
前記観測手段は、紫外から赤外領域の複数の波長域のスペクトル情報を取得することで、被処理水及び/又は処理水の水面状態に関する情報を得るものであり、
前記被処理水及び/又は前記処理水の水面状態に関する情報は、種々の異物の混入検知に関するものであることを特徴とする、水質監視システム。
A water quality monitoring system for monitoring water quality in a water treatment process,
water treatment equipment;
Observation means provided above the water surface of the water treatment device ;
Equipped with a storage unit that pre-records spectral information regarding various known substances ,
The observation means obtains information regarding the water surface state of the treated water and/or the treated water by acquiring spectral information in a plurality of wavelength ranges from ultraviolet to infrared regions,
A water quality monitoring system characterized in that the information regarding the water surface state of the treated water and/or the treated water is related to detection of contamination of various foreign substances.
前記観測手段は、前記波長域のスペクトル情報を経時的に取得することを特徴とする、請求項1に記載の水質監視システム。The water quality monitoring system according to claim 1, wherein the observation means acquires spectral information in the wavelength range over time. 前記観測手段は、前記波長域の情報とともに、二次元の位置情報を合わせて取得することを特徴とする、請求項1又は2に記載の水質監視システム。
3. The water quality monitoring system according to claim 1 , wherein the observation means acquires two-dimensional position information as well as information on the wavelength range.
JP2017215501A 2017-11-08 2017-11-08 water quality monitoring system Active JP7348710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017215501A JP7348710B2 (en) 2017-11-08 2017-11-08 water quality monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017215501A JP7348710B2 (en) 2017-11-08 2017-11-08 water quality monitoring system

Publications (2)

Publication Number Publication Date
JP2019086427A JP2019086427A (en) 2019-06-06
JP7348710B2 true JP7348710B2 (en) 2023-09-21

Family

ID=66762861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017215501A Active JP7348710B2 (en) 2017-11-08 2017-11-08 water quality monitoring system

Country Status (1)

Country Link
JP (1) JP7348710B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116704064B (en) * 2023-06-08 2024-02-23 深圳市中科云驰环境科技有限公司 Sewage imaging method, system, electronic equipment and storage medium based on hyperspectrum

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004136208A (en) 2002-10-17 2004-05-13 Kurita Water Ind Ltd Water treatment device, water treatment method, and water treatment program
JP6229920B2 (en) 2012-01-05 2017-11-15 合同会社クスノキ Gas purification device and gas purification system using the gas purification device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06229920A (en) * 1993-01-29 1994-08-19 Nec Environment Eng Ltd Detection of oil film floating on water surface
JP3772016B2 (en) * 1998-03-26 2006-05-10 日本放送協会 Wavelength selective camera device
JP4347536B2 (en) * 2000-06-20 2009-10-21 メタウォーター株式会社 Alarm detection method for oil detector
JP5253327B2 (en) * 2009-08-18 2013-07-31 フジクリーン工業株式会社 Water treatment equipment monitoring system
JP2015014527A (en) * 2013-07-05 2015-01-22 住友電気工業株式会社 Abnormality detection device and abnormality detection method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004136208A (en) 2002-10-17 2004-05-13 Kurita Water Ind Ltd Water treatment device, water treatment method, and water treatment program
JP6229920B2 (en) 2012-01-05 2017-11-15 合同会社クスノキ Gas purification device and gas purification system using the gas purification device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
平成25年度 農業農村工学会大会講演会 講演要旨集 公益社団法人 農業農村工学会 (平成25年9月 発行) 第578~579頁
計測と制御 第40巻 第4号 公益社団法人 計測自動制御学会 (2001年4月 発行) 第279~285頁

Also Published As

Publication number Publication date
JP2019086427A (en) 2019-06-06

Similar Documents

Publication Publication Date Title
Wasswa et al. Assessing the potential of fluorescence spectroscopy to monitor contaminants in source waters and water reuse systems
Stedmon et al. A potential approach for monitoring drinking water quality from groundwater systems using organic matter fluorescence as an early warning for contamination events
Pittroff et al. Microplastic analysis in drinking water based on fractionated filtration sampling and Raman microspectroscopy
Yu et al. Impact of dataset diversity on accuracy and sensitivity of parallel factor analysis model of dissolved organic matter fluorescence excitation-emission matrix
JP6977953B2 (en) Water quality condition determination device
TWI576586B (en) Method for monitoring and control of a wastewater process stream
Yu et al. Front-face fluorescence excitation-emission matrix (FF-EEM) for direct analysis of flocculated suspension without sample preparation in coagulation-ultrafiltration for wastewater reclamation
CN101384342A (en) Method and system for monitoring reverse osmosis membranes
JP2016107235A (en) Analysis method for contaminated condition of separation membrane, evaluation method for water quality of filtration object water using the same, and filtration system for performing analysis method for contaminated condition of separation membrane
JP4108555B2 (en) Water quality measuring method and apparatus
Romero-Martínez et al. Assessment of imaging-in-flow system (FlowCAM) for systematic ballast water management
JP7348710B2 (en) water quality monitoring system
JP5631015B2 (en) Concentration measuring method and detecting method and device for specific oil in waste water or specific oil-containing waste water
Wong et al. In-situ 3D fouling visualization of membrane distillation treating industrial textile wastewater by optical coherence tomography imaging
Mossotti et al. Preparation and analysis of standards containing microfilaments/microplastic with fibre shape
CN104007277A (en) Automatic biotoxicity monitor and monitoring method
JP6679439B2 (en) Reverse osmosis membrane supply water membrane clogging evaluation method, membrane clogging evaluation apparatus, and water treatment apparatus operation management method using the membrane clogging evaluation method
Ibis et al. Nucleation kinetics of calcium oxalate monohydrate as a function of pH, magnesium, and osteopontin concentration quantified with droplet microfluidics
JP5601797B2 (en) Method for detecting leakage of specified chemical substances into the basin outside the system
DE102012214402A1 (en) Method for determining the sizes and concentration of liquid particles and gas particles in a multiphase liquid flow and cavitation channel
Banerjee et al. A portable spectroscopic instrument for multiplexed monitoring of acute water toxicity: Design, testing, and evaluation
Langergraber et al. Real-time detection of possible harmful events using UV/vis spectrometry
Benladghem et al. Biofouling of reverse osmosis membranes: Assessment by surface-enhanced Raman spectroscopy and microscopic imaging
Gilli et al. Application of semipermeable membrane device for assessing toxicity in drinking water
Páscoa et al. In situ near infrared monitoring of activated dairy sludge wastewater treatment processes

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171201

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20200413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220810

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220810

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220829

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220830

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20221028

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20221101

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20230131

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20230418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230908

R150 Certificate of patent or registration of utility model

Ref document number: 7348710

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150