JP7348652B2 - Computing method, computing device, and computing program - Google Patents
Computing method, computing device, and computing program Download PDFInfo
- Publication number
- JP7348652B2 JP7348652B2 JP2020017097A JP2020017097A JP7348652B2 JP 7348652 B2 JP7348652 B2 JP 7348652B2 JP 2020017097 A JP2020017097 A JP 2020017097A JP 2020017097 A JP2020017097 A JP 2020017097A JP 7348652 B2 JP7348652 B2 JP 7348652B2
- Authority
- JP
- Japan
- Prior art keywords
- estimated
- field
- soil
- interest
- measured
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Description
本発明は、演算方法、演算装置、および演算プログラムに関する。 The present invention relates to a calculation method, a calculation device, and a calculation program.
栽培において土壌水分の管理が重要な農作物を対象に、土壌水分環境を評価する手法が提案され、農業現場で実用化されている。例えば、非特許文献1には、基準蒸発散量と作物係数から圃場の蒸発散量を推定し、土壌水分(体積含水率)の変化を推定する手法が開示されている。非特許文献1に開示された手法を活用したかん水支援システムは、非特許文献2に記載のアメリカネブラスカ州における大豆の灌水支援システム「Soywater」や、非特許文献3に記載の栽培管理支援システムにおける大豆の灌水支援情報に採用されている。
A method for evaluating the soil moisture environment has been proposed for agricultural crops for which soil moisture management is important during cultivation, and has been put into practical use in agricultural fields. For example, Non-Patent
しかし、作物の水分ストレスや吸水量を評価するには、体積含水率よりも土壌水分張力(以下、「pF値」と称する。)の方が有用である。pF値は、土壌間隙の水を保持しようとする力、または土壌中の水が間隙内にとどまろうとする力を表す。水分ストレスにより糖が上昇するウンシュウミカンの栽培管理おいては、土壌水分の管理は非常に重要であることから、ウンシュウミカンの産地を有する公設試験場等において、土壌水分評価技術に対する関心は非常に高く、適切な土壌水分管理による高品質果実生産技術の開発が進められている。 However, to evaluate water stress and water absorption of crops, soil water tension (hereinafter referred to as "pF value") is more useful than volumetric water content. The pF value represents the force of soil pores to retain water, or the force of water in soil to remain within the pores. Since soil moisture management is extremely important in the cultivation and management of mandarin oranges, where sugar levels increase due to water stress, there is a high level of interest in soil moisture evaluation technology at public research stations that have the production areas of mandarin oranges. , development of high-quality fruit production technology through appropriate soil moisture management is underway.
pF値は、既存のセンサを用いて測定することができるが、センサは高価であり、その維持管理にも労力と時間がかかる。そこで、pF値を推定する方法が研究されている。例えば、非特許文献4には、気象データから、土壌水分の変化量を評価すると共に、pF水分特性曲線を用いて土壌水分の変化量を評価することが開示されている。非特許文献5では、基準蒸発散量から土壌の体積含水率を評価するとともに、加圧板法で求めたpF水分特性曲線を用いてpF値を推定することが開示されている。
The pF value can be measured using existing sensors, but the sensors are expensive and their maintenance requires effort and time. Therefore, methods for estimating the pF value are being studied. For example, Non-Patent
非特許文献4および5に開示された手法でpF値を推定するには、体積含水率とpF値との関係を示すpF水分特性曲線を作成する必要があるが、このpF水分特性曲線は、同じ種類の土壌であっても、物理性が異なる圃場毎に作成する必要がある。
In order to estimate the pF value using the methods disclosed in
さらに、このpF水分特性曲線を作成するには、pF値の範囲や大きさに応じて異なる手法(例えば、砂柱法、加圧板法、遠心法等)を適用する必要があるが、いずれのpF値の測定法であっても、高価な機械と長い計測時間を要する。このため、pF水分特性曲線の作成は、専門知識を有する技術者と特殊な装置を有する、一部の研究機関等でのみ実施可能であり、研究現場を超えて、一般の農業現場に従来技術を導入するのは困難である。 Furthermore, to create this pF moisture characteristic curve, it is necessary to apply different methods depending on the range and size of the pF value (e.g., sand column method, pressure plate method, centrifugation method, etc.); Even the method for measuring pF values requires expensive equipment and long measurement times. For this reason, the creation of pF moisture characteristic curves can only be carried out at some research institutions that have technicians with specialized knowledge and special equipment, and it is possible to create pF moisture characteristic curves by using conventional techniques at general agricultural sites beyond research sites. is difficult to introduce.
本発明は係る背景に鑑みて成されたものであり、本発明の一態様は、高価で且つ維持管理に労力および時間がかかる既存のpF値センサを使用せずに、安価で且つ簡便にpF値を推定できる方法を実現することを目的とする。 The present invention has been made in view of the above background, and one aspect of the present invention is to easily and inexpensively measure pF value without using existing pF value sensors that are expensive and require labor and time to maintain. The purpose is to realize a method that can estimate the value.
前記の課題を解決するために、本発明の一態様に係る演算方法は、下記(1)に係る実測飽和含水率または推定飽和含水率、下記(2)に係る実測体積含水率、および下記(3)に係る実測水分張力値に基づき決定された、注目圃場についての体積含水率と水分張力値との関係を示す関係式を準備する関係式準備工程と、
(1)前記注目圃場の土壌について予め測定された実測飽和含水率、または前記注目圃場の土壌以外の土壌を含む複数の土壌の実測飽和含水率と、当該土壌の実測乾燥密度との回帰式を用いて、前記注目圃場の土壌の実測乾燥密度の測定値から算出された推定飽和含水率;
(2)前記注目圃場の土壌について予め測定された実測体積含水率;
(3)前記注目圃場の土壌について予め測定された実測水分張力値;
前記関係式準備工程において準備された関係式と、前記注目圃場が存する地点の気象データに基づき算出した前記注目圃場の土壌の推定体積含水率とに基づき、前記注目圃場の土壌の推定水分張力値を算出する、推定水分張力値算出工程と、を含む方法である。
In order to solve the above problems, a calculation method according to one aspect of the present invention calculates the measured saturated moisture content or estimated saturated moisture content according to the following (1), the measured volumetric moisture content according to the following (2), and the following ( a relational equation preparation step of preparing a relational equation indicating the relationship between the volumetric water content and the water tension value for the field of interest, determined based on the actually measured water tension value related to 3);
(1) Calculate the regression equation between the measured saturated moisture content of the soil of the field of interest, or the measured saturated moisture content of multiple soils including soil other than the soil of the field of interest, and the measured dry density of the soil. the estimated saturated moisture content calculated from the measured dry density of the soil of the field of interest;
(2) Actual volumetric water content measured in advance of the soil of the field of interest;
(3) Actual moisture tension value measured in advance for the soil of the field of interest;
An estimated water tension value of the soil of the field of interest based on the relational equation prepared in the relational equation preparation step and the estimated volumetric moisture content of the soil of the field of interest calculated based on the meteorological data of the point where the field of interest is located. This method includes a step of calculating an estimated water tension value.
また、前記の課題を解決するために、本発明の他の一態様に係る演算装置は、下記(1)に係る実測飽和含水率または推定飽和含水率、下記(2)に係る実測体積含水率、および下記(3)に係る実測水分張力値に基づき決定された、注目圃場についての体積含水率と水分張力値との関係を示す関係式を準備する関係式準備部と、
(1)前記注目圃場の土壌について予め測定された実測飽和含水率、または前記注目圃場の土壌以外の土壌を含む複数の土壌の実測飽和含水率と、当該土壌の実測乾燥密度との回帰式を用いて、前記注目圃場の土壌の実測乾燥密度の測定値から算出された推定飽和含水率;
(2)前記注目圃場の土壌について予め測定された実測体積含水率;
(3)前記注目圃場の土壌について予め測定された実測水分張力値;
前記関係式準備部において準備された関係式と、前記注目圃場が存する地点の気象データに基づき算出した前記注目圃場の土壌の推定体積含水率とに基づき、前記注目圃場の土壌の推定水分張力値を算出する、推定水分張力値算出部と、を備えている構成である。
In addition, in order to solve the above-mentioned problem, a calculation device according to another aspect of the present invention includes an actual measured saturated moisture content or an estimated saturated moisture content according to (1) below, and an actual measured volumetric moisture content according to (2) below. , and a relational equation preparation unit that prepares a relational equation indicating the relationship between the volumetric water content and the water tension value for the field of interest, which is determined based on the actually measured water tension value according to (3) below;
(1) Calculate the regression equation between the measured saturated moisture content of the soil of the field of interest, or the measured saturated moisture content of multiple soils including soil other than the soil of the field of interest, and the measured dry density of the soil. the estimated saturated moisture content calculated from the measured dry density of the soil of the field of interest;
(2) Actual volumetric water content measured in advance of the soil of the field of interest;
(3) Actual moisture tension value measured in advance for the soil of the field of interest;
An estimated water tension value of the soil of the field of interest based on the relational equation prepared in the relational equation preparation section and the estimated volumetric moisture content of the soil of the field of interest calculated based on the meteorological data of the point where the field of interest is located. This configuration includes an estimated moisture tension value calculation unit that calculates the estimated water tension value.
本発明の一態様によれば、高価で且つ維持管理に労力および時間がかかる既存のpF値センサを使用せずに、安価で且つ簡便にpF値を推定することができるという効果を奏する。 According to one aspect of the present invention, it is possible to estimate the pF value easily and inexpensively without using an existing pF value sensor that is expensive and requires labor and time to maintain.
〔演算方法〕
本発明の一態様に係る演算方法は、下記(1)に係る実測飽和含水率または推定飽和含水率、下記(2)に係る実測体積含水率、および下記(3)に係る実測水分張力値に基づき決定された、注目圃場についての体積含水率と水分張力値との関係を示す関係式を準備する関係式準備工程と、
(1)前記注目圃場の土壌について予め測定された実測飽和含水率、または前記注目圃場の土壌以外の土壌を含む複数の土壌の実測飽和含水率と、当該土壌の実測乾燥密度との回帰式を用いて、前記注目圃場の土壌の実測乾燥密度から算出された推定飽和含水率;
(2)前記注目圃場の土壌について予め測定された実測体積含水率;
(3)前記注目圃場の土壌について予め測定された実測水分張力値;
前記関係式準備工程において準備された関係式と、前記注目圃場が存する地点の気象データに基づき算出した前記注目圃場の土壌の推定体積含水率とに基づき、前記注目圃場の土壌の推定水分張力値を算出する、推定水分張力値算出工程と、を含む構成である。
[Calculation method]
The calculation method according to one aspect of the present invention is based on the measured saturated moisture content or estimated saturated moisture content according to (1) below, the measured volumetric moisture content according to (2) below, and the measured water tension value according to (3) below. a relational expression preparation step of preparing a relational expression indicating the relationship between the volumetric moisture content and the water tension value for the field of interest, determined based on the
(1) Calculate the regression equation between the measured saturated moisture content of the soil of the field of interest, or the measured saturated moisture content of multiple soils including soil other than the soil of the field of interest, and the measured dry density of the soil. the estimated saturated moisture content calculated from the measured dry density of the soil of the field of interest;
(2) Actual volumetric water content measured in advance of the soil of the field of interest;
(3) Actual moisture tension value measured in advance for the soil of the field of interest;
An estimated water tension value of the soil of the field of interest based on the relational equation prepared in the relational equation preparation step and the estimated volumetric moisture content of the soil of the field of interest calculated based on the meteorological data of the point where the field of interest is located. This configuration includes an estimated moisture tension value calculation step of calculating the estimated water tension value.
本発明の一態様に係る演算方法では、前記実測体積含水率と、当該実測体積含水率を測定した時点での前記注目圃場が存する地点の気象データに基づき算出した前記注目圃場の土壌の第1推定基準蒸発散量と、に基づき決定された、前記注目圃場の作物係数を準備する作物係数準備工程と、
水分張力値算出時点での前記注目圃場が存する地点の気象データに基づき前記注目圃場の土壌の第2推定基準蒸発散量を算出する、第2推定基準蒸発散量算出工程と、
前記第2推定基準蒸発散量算出工程によって算出された前記第2推定基準蒸発散量と、前記作物係数準備工程において準備された前記作物係数とに基づき、前記注目圃場の推定実蒸発散量を算出する推定実蒸発散量算出工程と、
前記推定実蒸発散量算出工程によって算出された前記推定実蒸発散量に基づき、前記注目圃場の土壌の推定体積含水率を算出する推定体積含水率算出工程と、をさらに含み、
前記推定体積含水率算出工程によって算出された前記推定体積含水率を、前記推定水分張力値算出工程において用いる構成とすることができる。
In the calculation method according to one aspect of the present invention, the first soil of the field of interest is calculated based on the measured volumetric water content and meteorological data of the point where the field of interest is located at the time when the measured volumetric water content is measured. a crop coefficient preparation step of preparing a crop coefficient for the field of interest determined based on the estimated standard evapotranspiration;
a second estimated standard evapotranspiration calculation step of calculating a second estimated standard evapotranspiration of the soil of the field of interest based on meteorological data at the point where the field of interest is located at the time of calculating the water tension value;
Based on the second estimated standard evapotranspiration calculated in the second estimated standard evapotranspiration calculation step and the crop coefficient prepared in the crop coefficient preparation step, calculate the estimated actual evapotranspiration of the field of interest. An estimated actual evapotranspiration calculation step;
further comprising an estimated volumetric water content calculation step of calculating an estimated volumetric water content of soil in the field of interest based on the estimated actual evapotranspiration calculated in the estimated actual evapotranspiration calculation step,
The estimated volumetric water content calculated in the estimated volumetric water content calculation step may be used in the estimated water tension value calculation step.
ここで、本発明の一態様に係る演算方法について図1および図2を用いて説明する。図1は、本発明の一態様に係る演算方法の一例を示すフローチャートであり、図2は、当該フローチャートに示す処理を実行する演算装置の一態様を示すブロック図である。 Here, a calculation method according to one aspect of the present invention will be described using FIGS. 1 and 2. FIG. 1 is a flowchart illustrating an example of a calculation method according to an aspect of the present invention, and FIG. 2 is a block diagram illustrating an example of a calculation device that executes the processing shown in the flowchart.
まず、ステップS101において、関係式準備部11は、下記(1)に係る実測飽和含水率または推定飽和含水率、下記(2)に係る実測体積含水率、および下記(3)に係る実測水分張力値に基づき決定された、注目圃場についての体積含水率と水分張力値との関係を示す関係式を準備する(関係式準備工程):
(1)前記注目圃場の土壌について予め測定された実測飽和含水率、または前記注目圃場の土壌以外の土壌を含む複数の土壌の実測飽和含水率と、当該土壌の実測乾燥密度との回帰式を用いて、前記注目圃場の土壌の実測乾燥密度から算出された推定飽和含水率;
(2)前記注目圃場の土壌について予め測定された実測体積含水率;
(3)前記注目圃場の土壌について予め測定された実測水分張力値。
First, in step S101, the relational
(1) Calculate the regression equation between the actually measured saturated moisture content of the soil of the field of interest, or the actually measured saturated moisture content of a plurality of soils including soil other than the soil of the field of interest, and the actually measured dry density of the soil. the estimated saturated water content calculated from the measured dry density of the soil of the field of interest;
(2) Actual volumetric water content measured in advance of the soil of the field of interest;
(3) Actual water tension value measured in advance for the soil of the field of interest.
具体的には、関係式データベース(DB)4から、注目圃場についての体積含水率と水分張力値(以下、「pF値」ともいう)との関係を示す関係式を取得することによって注目圃場についての前記関係式を準備する。関係式準備部11は、取得した前記関係式を推定水分張力値算出部14に供給する。
Specifically, the relational expression indicating the relationship between the volumetric water content and the water tension value (hereinafter also referred to as "pF value") for the focused field is obtained from the relational expression database (DB) 4, and the Prepare the above relational expression. The relational
前記注目圃場についての体積含水率とpF値との関係を示す関係式(以下、「推定pF値の算出式」と称する)のデータは、例えば、関係式DB4のようなデータベースに格納されている。関係式DB4には、注目圃場についての推定pF値の算出式を含む複数種類の圃場についての推定pF値の算出式のデータが格納されていてもよい。関係式準備工程では、関係式準備部11が、必要に応じて、関係式DB4から注目圃場についての推定pF値の算出式のデータを取得することによって、注目圃場についての推定pF値の算出式を準備する。関係式DB4は、演算装置1のハードディスクに保存されていてもよく、サーバ上に保存されていてもよい。
The data of the relational expression (hereinafter referred to as "estimated pF value calculation formula") indicating the relationship between the volumetric moisture content and the pF value for the field of interest is stored in a database such as the relational expression DB4, for example. . The relational expression DB4 may store data on formulas for calculating estimated pF values for a plurality of types of fields, including formulas for calculating estimated pF values for the field of interest. In the relational equation preparation step, the relational
注目圃場についての推定pF値の算出式は、前記実測飽和含水率または前記推定飽和含水率と、前記実測体積含水率と、前記実測pF値とに基づき予め決定される。注目圃場についての推定pF値の算出式の決定に用いる飽和含水率の値は、実測値である実測飽和含水率であってもよく、推定値である推定飽和含水率であってもよい。 A formula for calculating the estimated pF value for the field of interest is determined in advance based on the actually measured saturated moisture content or the estimated saturated moisture content, the actually measured volumetric moisture content, and the actually measured pF value. The value of the saturated water content used to determine the formula for calculating the estimated pF value for the field of interest may be the actually measured saturated water content, or may be the estimated saturated water content, which is the estimated value.
ここで、前記「実測飽和含水率」は、土壌の飽和含水率の実測値である。土壌の飽和含水率は、例えば、採土管で採取した100mlの土壌の飽和重量(g)および乾燥重量(g)をそれぞれ測定し、以下の式(1)から飽和含水率(%)を算出することができる。前記「実測飽和含水率」の測定方法はこの方法に限定されない。 Here, the "actually measured saturated moisture content" is an actually measured value of the saturated moisture content of soil. To determine the saturated moisture content of soil, for example, measure the saturated weight (g) and dry weight (g) of 100 ml of soil collected with a sampling tube, and calculate the saturated moisture content (%) from the following formula (1). be able to. The method for measuring the "actually measured saturated water content" is not limited to this method.
また、前記「推定飽和含水率」は、注目圃場の土壌以外の土壌を含む複数の土壌の実測飽和含水率と、当該土壌の実測乾燥密度との回帰式を用いて、前記注目圃場の土壌の実測乾燥密度の測定値から算出された値である。前記「実測乾燥密度」は、土壌の乾燥密度の実測値である。前記「乾燥密度」は、一定体積当たりの土壌の乾燥重量を表している。土壌の乾燥密度は、例えば、後述する実施例に示す方法によって測定することができる。 The "estimated saturated moisture content" is determined by using a regression equation between the actually measured saturated moisture content of a plurality of soils, including soils other than the soil in the field of interest, and the measured dry density of the soil. This is a value calculated from the measured value of the actually measured dry density. The "measured dry density" is an actual value of the dry density of soil. The above-mentioned "dry density" represents the dry weight of soil per fixed volume. The dry density of soil can be measured, for example, by the method shown in the Examples below.
後述する実施例で具体的に説明するが、本発明者らは、土壌の飽和含水率と乾燥密度とが相関していることを見出し、飽和含水率と乾燥密度との関係を示す回帰式を用いることにより、土壌の乾燥密度に基づき飽和含水率を推定できることを明らかにした。従来の飽和含水率の測定方法は工程が多く、飽和含水率を取得するために手間と時間がかかる。一方で、乾燥密度は、一定体積当たりの土壌の乾燥前後の重さを量るだけで簡単に求めることができる。このため、この飽和含水率と乾燥密度との関係を示す回帰式を用いて土壌の実測乾燥密度に基づきの飽和含水率を算出することにより、土壌の乾燥密度を測定するだけで飽和含水率を簡便に且つ迅速に推定し得る。 As will be specifically explained in the examples below, the present inventors found that the saturated moisture content and dry density of soil are correlated, and developed a regression equation showing the relationship between the saturated moisture content and dry density. By using this method, it was revealed that the saturated moisture content can be estimated based on the dry density of soil. Conventional methods for measuring saturated moisture content involve many steps, and it takes time and effort to obtain saturated moisture content. On the other hand, dry density can be easily determined by simply measuring the weight of soil before and after drying per fixed volume. Therefore, by calculating the saturated moisture content based on the actually measured dry density of the soil using a regression equation that shows the relationship between the saturated moisture content and the dry density, the saturated moisture content can be calculated simply by measuring the dry density of the soil. It can be estimated easily and quickly.
前記「実測体積含水率」は、土壌の体積含水率の実測値である。土壌の体積含水率は、例えば、既存の水分センサ、土壌水分計等を用いて測定することができる。 The "measured volumetric moisture content" is an actual measured value of the volumetric moisture content of soil. The volumetric moisture content of soil can be measured using, for example, an existing moisture sensor, soil moisture meter, or the like.
前記「実測pF値」は、土壌のpF値の実測値である。土壌のpF値は、例えば、既存のテンシオメータ、pFセンサ等を用いて測定することができる。後述する実施例で具体的に説明するが、本発明の一態様に係る演算方法によれば、推定pF値の算出式の作成には、テンシオメータを用いて測定したpF値を好適に利用することができる。そして、そのようにして作成した推定pF値の算出式を用いてpF値を精度よく推定できる。テンシオメータは、既存の高価なpFセンサよりも入手が容易であり且つ研究者以外でも容易に取扱いできることからより好ましい。 The "actually measured pF value" is the actually measured pF value of soil. The pF value of soil can be measured using, for example, an existing tensiometer, pF sensor, or the like. As will be specifically explained in the examples described below, according to the calculation method according to one aspect of the present invention, the pF value measured using a tensiometer can be suitably used to create the calculation formula for the estimated pF value. I can do it. Then, the pF value can be estimated with high accuracy using the formula for calculating the estimated pF value created in this way. Tensiometers are more preferable than existing expensive pF sensors because they are easier to obtain and can be easily handled even by non-researchers.
前記「推定pF値の算出式」は、具体的には、van Genuchtenのモデル(参考文献1:van Genuchten, M. Th. 1980, Soil Sci. Soc. Am. J., VOL. 44:892-898)による推定pF値の算出式(以下の式(2))である: Specifically, the "formula for calculating the estimated pF value" is based on van Genuchten's model (Reference 1: van Genuchten, M. Th. 1980, Soil Sci. Soc. Am. J., VOL. 44:892- The formula for calculating the estimated pF value according to (898) is the following formula (2):
(前記式(2)中、Seは、次式(3)で表される相対水分率である。 (In the above formula (2), Se is the relative moisture content expressed by the following formula (3).
前記式(3)中、θは体積含水率、θsは飽和含水率、θrは残留水分率を表す。)。 In the formula (3), θ represents the volumetric water content, θs represents the saturated water content, and θr represents the residual water content. ).
推定pF値の算出式中のパラメータα、n、mおよびθrは、前記実測飽和含水率または前記推定飽和含水率と、前記実測体積含水率と、前記実測pF値とに基づき決定される。具体的には、前記実測飽和含水率または前記推定飽和含水率と、前記実測体積含水率と、前記実測pF値とから得られる曲線と、前記推定pF値の算出式に前記実測飽和含水率または前記推定飽和含水率と前記実測体積含水率とを代入して得られる曲線とが一致するように、推定pF値の算出式中の各パラメータの値を調整すればよい。 Parameters α, n, m, and θr in the equation for calculating the estimated pF value are determined based on the actually measured saturated moisture content or the estimated saturated moisture content, the actually measured volumetric moisture content, and the actually measured pF value. Specifically, a curve obtained from the measured saturated water content or the estimated saturated water content, the measured volumetric water content, and the measured pF value, and the calculated formula for the estimated pF value include the measured saturated water content or the estimated pF value. The values of each parameter in the equation for calculating the estimated pF value may be adjusted so that the curve obtained by substituting the estimated saturated water content and the measured volumetric water content match.
注目圃場についての推定pF値の算出式を決定するために用いる前記実測体積含水率および前記実測pF値のデータセットは、それぞれ、注目圃場の土壌について、湿潤状態から乾燥状態に至る異なる水分条件で取得すればよい。例えば、テンシオメータで計測可能な0<pF≦2.7の範囲の水分条件で、注目圃場の土壌の前記実測pF値および前記実測体積含水率の実測データのセットを数点(例えば、3~4点)測定すればよい。前記実測体積含水率および前記実測pF値の実測データのセット数は、特に制限されないが、少なくとも2点以上取得することで信頼性のあるデータを取得することができる。 The data sets of the measured volumetric moisture content and the measured pF value used to determine the formula for calculating the estimated pF value for the field of interest are the data sets of the measured volumetric moisture content and the measured pF value, respectively, for the soil of the field of interest under different moisture conditions ranging from a wet state to a dry state. Just get it. For example, several sets (for example, 3 to 4 Point) Just measure it. The number of sets of measured data of the measured volume water content and the measured pF value is not particularly limited, but reliable data can be obtained by obtaining at least two or more points.
関係式準備部11は、図示しない入力部を介してユーザによる指示ないし入力を受け付けて、ステップS101の処理を開始してもよいし、予め設定された期間毎に定期的にステップS101の処理を開始してもよい。前記「ユーザによる指示ないし入力」としては、例えば、注目圃場の名称、注目圃場の位置情報、pF値の算出日時等であり得る。
The relational
次いで、ステップS102において、作物係数準備部12は、実測体積含水率と、当該実測体積含水率を測定した時点での注目圃場が存する地点の気象データに基づき算出した注目圃場の土壌の第1推定基準蒸発散量と、に基づき決定された、注目圃場の作物係数を準備する(作物係数準備工程)。具体的には、作物係数準備部12は、作物係数データベース(DB)3から、注目圃場についての作物係数を取得することによって注目圃場についての作物係数を準備する。作物係数準備部12は、取得した作物係数をパラメータ算出部13に供給する。
Next, in step S102, the crop
注目圃場についての作物係数のデータは、例えば、作物係数DB3のようなデータベースに格納されている。作物係数DB3には、注目圃場についての作物係数を含む複数種類の圃場の作物係数のデータが格納されていてもよい。作物係数準備工程では、作物係数準備部12が、必要に応じて、作物係数DB3から注目圃場についての作物係数のデータを取得することによって、注目圃場についての作物係数を準備する。作物係数DB3は、演算装置1のハードディスクに保存されていてもよく、サーバ上に保存されていてもよい。
The crop coefficient data for the field of interest is stored in a database such as crop coefficient DB3, for example. The crop coefficient DB3 may store data on crop coefficients of a plurality of types of fields, including the crop coefficient for the field of interest. In the crop coefficient preparation step, the crop
注目圃場についての作物係数は、前記実測体積含水率と、当該実測体積含水率を測定した時点での前記注目圃場が存する地点の気象データに基づき算出した前記注目圃場の土壌の第1推定基準蒸発散量とに基づき予め決定される。 The crop coefficient for the field of interest is the first estimated standard evaporation of the soil of the field of interest, which is calculated based on the measured volumetric moisture content and the meteorological data of the point where the field of interest is located at the time when the measured volumetric moisture content is measured. It is determined in advance based on the amount of dispersion.
ここで、前記「実測体積含水率」は、前述の関係式準備工程において、推定pF値の算出式を決定する際に用いた実測体積含水率である。 Here, the "actually measured volumetric water content" is the measured volumetric water content used when determining the calculation formula for the estimated pF value in the above-mentioned relational equation preparation step.
前記「第1推定基準蒸発散量」は、前記実測体積含水率を測定した時点での注目圃場が存する地点の気象データに基づき算出された、注目圃場の土壌の推定基準蒸発散量である。前記「基準蒸発散量」は、潜在的な蒸発散の基準値(mm)を表している(非特許文献3:農研機構 農業環境変動研究センター 2019、栽培管理支援システム Ver.1.0. 利用マニュアル p.120-p.127)。FAOの灌水に関するガイドライン(非特許文献1:Allen, R.G. et al., 1997, FAO Irrigation and Drainage Paper No.56、通称「FAO-56」)では、Reference evapotranspiration(ETo)として説明されている。 The "first estimated standard evapotranspiration" is the estimated standard evapotranspiration of the soil of the field of interest, which is calculated based on the meteorological data of the point where the field of interest is located at the time when the actual volumetric water content is measured. The "standard evapotranspiration" represents the standard value (mm) of potential evapotranspiration (Non-Patent Document 3: National Agriculture and Food Research Organization Agricultural Environmental Change Research Center 2019, Cultivation Management Support System Ver. 1.0. User's Manual p.120-p.127). In the FAO guidelines on irrigation (Non-patent Document 1: Allen, R.G. et al., 1997, FAO Irrigation and Drainage Paper No. 56, commonly known as "FAO-56"), it is described as Reference evapotranspiration (ETo).
気象データからの基準蒸発散量の算出方法としては、例えば、下記式(4)を用いるPriestly-Taylor法(PT法)を用いる方法を挙げることができる。 As a method for calculating the standard evapotranspiration amount from meteorological data, for example, a method using the Priestly-Taylor method (PT method) using the following formula (4) can be mentioned.
(前記式(4)中、s:飽和水蒸気圧曲線の勾配、γ:乾湿計定数、G:地中伝熱量、Rn:純放射量である。)
このモデル式(4)の各係数(純放射量、乾湿計定数、飽和水蒸気圧曲線の勾配)は、FAO-56に記載の式を用いて、気温と日射量とから算出することができる。地中伝熱量については無視してもよい。FAO-56では、基準蒸発散量として、Penman-Monteith法(PM法)による蒸発散量を推奨しているが、(i)PM法は風速のデータが必要であること、(ii)PT法のような放射法(Radiation methods)は、湿潤な気候では良い結果が得られること、(iii)PT法は、PM法を含む他の手法に比べ、最も観測値に近かったという報告がある(Douglas et al. 2009, J Hydrology 373)ことから、基準蒸発散量は、PT法を用いて算出することが好ましい。
(In the above formula (4), s: slope of the saturated water vapor pressure curve, γ: psychrometer constant, G: underground heat transfer amount, Rn: net radiation amount.)
Each coefficient of this model formula (4) (net radiation amount, psychrometer constant, slope of saturated water vapor pressure curve) can be calculated from the air temperature and the amount of solar radiation using the formula described in FAO-56. The amount of underground heat transfer can be ignored. FAO-56 recommends evapotranspiration by the Penman-Monteith method (PM method) as the standard evapotranspiration, but (i) the PM method requires wind speed data, and (ii) the PT method It has been reported that radiation methods such as the above yield good results in humid climates, and (iii) that the PT method was closest to observed values compared to other methods, including the PM method. Douglas et al. 2009, J Hydrology 373) Therefore, it is preferable to calculate the standard evapotranspiration using the PT method.
また、気象データからの基準蒸発散量を算出する別の方法としては、例えば、西日本農業研究センターが提供している農地環境推定システムを利用することができる(参考文献2:「中山間地の精密な気象データをアメダス等から推定する農地環境推定システム」,西日本農業研究センター 2017年 研究成果情報;参考文献3:植山ら 2018、生物と気象、vol.18、p.76-p.85)。農地環境推定システムによれば、近隣のアメダスポイントの観測値等の公共データから、対象地の気象データ(日最高気温、日最低気温、日平均気温、日平均相対湿度、日積算日射量、日積算降水量、当該時間までの日積算降水量、6時間先降水量、日積算基準蒸発散量)を取得することができる。 In addition, as another method for calculating standard evapotranspiration from meteorological data, it is possible to use, for example, the farmland environment estimation system provided by the West Japan Agricultural Research Center (Reference 2: "A farmland environment estimation system that estimates precise weather data from AMeDAS etc.", West Japan Agricultural Research Center 2017 Research results information; Reference 3: Ueyama et al. 2018, Biology and Weather, vol. 18, p. 76-p. 85) . According to the farmland environment estimation system, meteorological data of the target area (daily maximum temperature, daily minimum temperature, daily average temperature, daily average relative humidity, daily cumulative solar radiation, daily It is possible to obtain the cumulative precipitation amount, daily cumulative precipitation amount up to the relevant time, 6 hours ahead precipitation amount, and daily cumulative standard evapotranspiration amount.
第1推定基準蒸発散量の算出に用いる気象データとしては、例えば、日最高気温、日最低気温、日積算日射量、風速等を挙げることができ、日最高気温、日最低気温および日積算日射量を組み合わせて用いることが好ましい。日最高気温、日最低気温および日積算日射量の組合せから、PT法で用いる純放射量の算出に必要な短波放射収支(下向き短波放射量と上向き短波放射量との差)と長波放射収支(下向き長波放射量と上向き長波放射量との差)を推定することができる。短波放射収支および長波放射収支の推定式は、FAO-56に記載の式を用いて算出することができる。短波放射収支は、地表面の日射量の反射率であるアルベドと日積算日射量から算出する。長波放射収支は、日最高気温、日最低気温、日積算日射量、水蒸気圧(日最高気温と日最低気温とから推定)、晴天日射量(標高と大気外日射量から推定)から算出する。これらの推定式において、推定値の代わりに実測値を用いることも可能である。FAO-56の推定式の採用は、日最高気温、日最低気温および日積算日射量という一般的な気象データのみで純放射量を算出し得ることから、実用的である。なお、気象データから第1推定基準蒸発散量を算出する例を説明したが、第1推定基準蒸発散量は、降雨量または潅水量に基づき算出することも可能である。 The meteorological data used to calculate the first estimated standard evapotranspiration include, for example, daily maximum temperature, daily minimum temperature, daily cumulative solar radiation, wind speed, etc. Preferably, a combination of amounts is used. From the combination of daily maximum temperature, daily minimum temperature, and daily cumulative solar radiation, the shortwave radiation balance (difference between downward shortwave radiation and upward shortwave radiation) and longwave radiation balance ( The difference between the amount of downward longwave radiation and the amount of upward longwave radiation) can be estimated. Estimating formulas for the shortwave radiation budget and longwave radiation budget can be calculated using the formulas described in FAO-56. The shortwave radiation budget is calculated from the albedo, which is the reflectance of the solar radiation on the ground surface, and the daily cumulative solar radiation. The longwave radiation budget is calculated from daily maximum temperature, daily minimum temperature, daily cumulative solar radiation, water vapor pressure (estimated from daily maximum temperature and daily minimum temperature), and clear-sky solar radiation (estimated from altitude and extraatmospheric solar radiation). In these estimation formulas, it is also possible to use actually measured values instead of estimated values. Adoption of the FAO-56 estimation formula is practical because the net radiation amount can be calculated using only general meteorological data such as daily maximum temperature, daily minimum temperature, and daily integrated solar radiation. Although an example has been described in which the first estimated standard evapotranspiration is calculated from weather data, the first estimated standard evapotranspiration can also be calculated based on the amount of rainfall or the amount of irrigation.
前記「作物係数」は、作物毎に固有の係数であり、生育ステージに応じて変動する。FAO-56では、Crop coefficient(Kc)として説明されている。前記「作物係数」は、前記実測体積含水率から実蒸発散量を算出し、得られた実蒸発散量を前記第1推定基準蒸発散量で除することで算出することができる。 The "crop coefficient" is a coefficient unique to each crop, and varies depending on the growth stage. In FAO-56, it is explained as Crop coefficient (Kc). The "crop coefficient" can be calculated by calculating the actual evapotranspiration from the measured volumetric water content and dividing the obtained actual evapotranspiration by the first estimated standard evapotranspiration.
次いで、ステップS103において、パラメータ算出部13は、気象データ測定装置2から、注目圃場が存する地点の気象データを受け付ける。
Next, in step S103, the
次いで、ステップS104において、パラメータ算出部13は、水分張力値算出時点での注目圃場が存する地点の気象データに基づき、注目圃場の土壌の第2推定基準蒸発散量を算出する(第2推定基準蒸発散量算出工程)。具体的には、パラメータ算出部13は、ステップS103で取得した気象データに基づき注目圃場の土壌の第2推定基準蒸発散量を算出する。
Next, in step S104, the
前記「第2推定基準蒸発散量」は、pF値算出時の注目圃場が存する地点の気象データに基づき算出された、注目圃場の土壌の推定基準蒸発散量である。気象データから注目圃場の基準蒸発散量を算出する方法は、前記「作物係数準備工程」の項でも説明したが、PT法を用いた算出方法や、西日本農業研究センターが提供している農地環境推定システムを利用することができる。なお、第2推定基準蒸発散量についても、第1推定基準蒸発散量と同様に、降雨量または潅水量に基づき算出することも可能である。 The "second estimated standard evapotranspiration" is the estimated standard evapotranspiration of the soil of the field of interest, which is calculated based on the meteorological data of the point where the field of interest is located at the time of calculating the pF value. The method of calculating the reference evapotranspiration of the field of interest from meteorological data was explained in the section of "Crop coefficient preparation process" above, but there are calculation methods using the PT method and the farmland environment provided by the West Japan Agricultural Research Center. Estimation systems can be used. Note that the second estimated standard evapotranspiration can also be calculated based on the amount of rainfall or the amount of irrigation, similarly to the first estimated standard evapotranspiration.
次いで、ステップS105において、パラメータ算出部13は、第2推定基準蒸発散量算出工程によって算出された第2推定基準蒸発散量と、作物係数準備工程において準備された作物係数とに基づき、注目圃場の推定実蒸発散量を算出する(推定実蒸発散量算出工程)。具体的には、パラメータ算出部13は、ステップS104で算出した第2推定基準蒸発散量と、ステップS102で取得した作物係数とに基づき、注目圃場の推定実蒸発散量を算出する。
Next, in step S105, the
前記「実蒸発散量」は、作物の生育ステージや作土の乾燥状態を加味した実際の蒸発散の推定値(mm)を表している(非特許文献3:農研機構 農業環境変動研究センター 2019、栽培管理支援システム Ver.1.0. 利用マニュアル p.120-p.127)。FAO-56では、Crop evapotranspiration under non-standard conditions(ETc adj)として説明されている。 The above-mentioned "actual evapotranspiration" represents the estimated value (mm) of actual evapotranspiration taking into account the growth stage of the crop and the dryness of the cultivated soil (Non-Patent Document 3: National Agriculture and Food Research Organization, Agricultural Environmental Change Research Center) 2019, Cultivation Management Support System Ver. 1.0. User Manual p.120-p.127). In FAO-56, it is explained as Crop evapotranspiration under non-standard conditions (ETc adj).
注目圃場の推定実蒸発散量は、ステップS104で算出された第2推定基準蒸発散量に、ステップS102で取得した作物係数を乗ずることで、推定実蒸発散量を算出することができる(非特許文献1を参照)。 The estimated actual evapotranspiration of the field of interest can be calculated by multiplying the second estimated standard evapotranspiration calculated in step S104 by the crop coefficient obtained in step S102 (non-representative evapotranspiration). (See Patent Document 1).
次いで、ステップS106において、パラメータ算出部13は、推定実蒸発散量算出工程によって算出された推定実蒸発散量に基づき、注目圃場の土壌の推定体積含水率を算出する(推定体積含水率算出工程)。具体的には、パラメータ算出部13は、ステップS105で算出した推定実蒸発散量に基づき、注目圃場の土壌の推定体積含水率を算出する。パラメータ算出部13は、算出した推定体積含水率を推定水分張力値算出部14に供給する。
Next, in step S106, the
推定体積含水率の算出方法としては、具体的には、まず、pF測定対象日をt日とすると、t日の注目圃場における降水量(mm)からステップS105で算出された推定実蒸発散量(mm)を減じることで、t日の注目圃場の表層の土壌水分増加量(mm)を算出する。次いで、t日の注目圃場の表層の土壌水分増加量を、注目圃場の表層の厚さ(mm)で除し、これを、pF測定対象日の前日(t-1日)の体積含水率に加えることで、t日の推定体積含水率を算出することができる。 Specifically, as a method for calculating the estimated volumetric water content, first, when the pF measurement target day is day t, the estimated actual evapotranspiration calculated in step S105 from the precipitation amount (mm) in the field of interest on day t. By subtracting (mm), the amount of increase in soil moisture (mm) in the surface layer of the field of interest on day t is calculated. Next, the increase in soil moisture in the surface layer of the field of interest on day t is divided by the thickness (mm) of the surface layer of the field of interest, and this is calculated as the volumetric water content of the day before the pF measurement target day (day t-1). By adding, the estimated volumetric water content on day t can be calculated.
次いで、ステップS107において、推定水分張力値算出部14は、関係式準備工程において準備された関係式と、注目圃場が存する地点の気象データに基づき算出した注目圃場の土壌の推定体積含水率とに基づき、注目圃場の土壌の推定水分張力値を算出する(推定水分張力値算出工程)。具体的には、推定水分張力値算出部14は、ステップS101で取得した前記関係式と、ステップS106で算出した推定体積含水率とに基づき、注目圃場の土壌の推定pF値を算出する。推定水分張力値算出部14は、算出した推定pF値のデータを出力制御部16に供給する。
Next, in step S107, the estimated water tension
次いで、ステップS108において、出力制御部16は、取得した推定pF値のデータを出力する。出力制御部16は、インターネット等の通信を介して、ステップS107において算出した注目圃場の土壌の推定pF値を、ディスプレイ、スマートフォン、タブレット端末等の外部の表示装置に出力してもよい。これにより、ユーザが表示装置に表示された注目圃場の土壌の推定pF値を把握することができる。得られた推定pF値は、灌水のタイミングを決めるなど、農産物の品質管理に用いることができる。高糖度の果実とpF値の関係もあるといわれており、pF値を把握することは、農産物の品質管理において重要である。
Next, in step S108, the
本発明の一態様に係る演算方法によれば、高価で且つ維持管理に労力および時間がかかる既存のpF値センサを使用せずに、安価で且つ簡便にpF値を推定することができるので、一般の農業現場において、pF値等の土壌水分データに基づく高度な栽培管理の実現が可能となる。 According to the calculation method according to one aspect of the present invention, the pF value can be estimated easily and inexpensively without using existing pF value sensors that are expensive and require labor and time to maintain. In general agricultural fields, it becomes possible to realize advanced cultivation management based on soil moisture data such as pF values.
また、本発明の一態様に係る演算方法によれば、注目圃場についての推定pF値の算出式を決定する際に体積含水率とpF値を測定すれば、その後は、pF値を測定しなくとも、注目圃場についての推定pF値の算出式を用いて、気象データからpF値を推定することができるという利点を有している。また、推定pF値の算出式の決定のために用いる体積含水率とpF値は、水分センサやテンシオメータ等の安価な計測装置にて容易に測定可能であり、高価なセンサを必要としない。さらには、本発明の一態様に係る演算方法によれば、従来のテンシオメータでは測定することができなかったpF2.7以上のpF値も推定することが可能となるという優れた効果を奏する。 Further, according to the calculation method according to one aspect of the present invention, if the volumetric moisture content and the pF value are measured when determining the calculation formula for the estimated pF value for the field of interest, the pF value is not measured thereafter. Both methods have the advantage that the pF value can be estimated from weather data using the formula for calculating the estimated pF value for the field of interest. Further, the volumetric water content and pF value used to determine the formula for calculating the estimated pF value can be easily measured with an inexpensive measuring device such as a moisture sensor or a tensiometer, and do not require an expensive sensor. Furthermore, the calculation method according to one aspect of the present invention has an excellent effect in that it becomes possible to estimate pF values of pF2.7 or more, which could not be measured with conventional tensiometers.
(演算方法の変形例)
本発明の他の一態様に係る演算方法は、前記推定水分張力値算出工程によって算出した前記推定pF値に基づいて、前記注目圃場の土壌の水分変化量を推定する土壌水分変化量推定工程をさらに含む構成としてもよい。
(Variation example of calculation method)
The calculation method according to another aspect of the present invention includes a soil moisture change amount estimation step of estimating the amount of soil moisture change in the field of interest based on the estimated pF value calculated by the estimated water tension value calculation step. It is good also as a structure which further includes.
かかる構成とすることにより、pF値に基づく注目圃場の土壌の水分変化量を推定することができるので、推定pF値の変化に応じた高度な栽培管理の実現が可能となる。 With this configuration, it is possible to estimate the amount of change in soil moisture in the field of interest based on the pF value, so it is possible to achieve advanced cultivation management according to changes in the estimated pF value.
本発明の他の一態様に係る演算方法について図2および図3を用いて説明する。図3は、本発明の他の一態様に係る演算方法の一例を示すフローチャートである。この変形例では、ステップS107で算出した推定pF値のデータをステップS108で出力する代わりに、ステップS107で算出した推定pF値に基づいて、注目圃場の土壌の水分変化量を推定し(ステップS301)、推定した水分変化量を出力する(ステップS302)点が、図1に示した演算方法と異なっている。そこで、ステップS301およびステップS302について説明し、それ以外のステップS101~ステップS107については、その説明を省略する。 A calculation method according to another aspect of the present invention will be described using FIGS. 2 and 3. FIG. 3 is a flowchart illustrating an example of a calculation method according to another aspect of the present invention. In this modification, instead of outputting the data of the estimated pF value calculated in step S107 in step S108, the amount of change in soil moisture in the field of interest is estimated based on the estimated pF value calculated in step S107 (step S301 ), the calculation method is different from the calculation method shown in FIG. 1 in that the estimated moisture change amount is output (step S302). Therefore, step S301 and step S302 will be explained, and the explanation of the other steps S101 to S107 will be omitted.
ステップS301において、土壌水分量推定部15は、ステップS107で算出した推定pF値に基づいて、注目圃場の土壌の水分変化量を推定する。土壌水分量推定部15は、水分変化量推定結果のデータを出力制御部16に供給する。
In step S301, the soil
次いで、ステップS302において、出力制御部16は、取得した水分変化量推定結果のデータを表示装置(図示しない)に出力する。注目圃場の土壌の水分変化量を推定する方法としては、後述する実施例に示すように、pF値を経時的に推定し記録することにより、注目圃場の土壌の水分量がどのように変化しているかを推定することができる。
Next, in step S302, the
〔演算装置〕
本発明の各態様に係る演算方法は、演算装置1によって実施することができる。以下、本発明の一態様に係る演算装置について説明する。但し、上述した演算方法において説明した内容と重複する内容に関しては、その説明を簡略化または繰り返さないこととする。
[Arithmetic device]
The calculation method according to each aspect of the present invention can be implemented by the
図2は、本発明の実施形態1に係る演算装置1の要部構成を示すブロック図である。図2に示すように、演算装置1は、関係式準備部11、作物係数準備部12、パラメータ算出部13、推定水分張力値算出部14、土壌水分量推定部15および出力制御部16を備えている。演算装置1は、注目圃場の土壌の推定pF値を算出する装置である。演算装置1は、例えば、演算部(プロセッサ、CPU(Central Processing Unit)等)及び記憶部(RAM等のメインメモリ、HDD/SDD等のストレージ、レジスタ及びキャッシュメモリ等)から構成される。記憶部は、データベース(DB)から取得したデータなど、各処理で必要なデータを記憶するものであってもよい。演算装置1は、ユーザの指示を受け付ける入力部(図示しない)をさらに備えていてもよい。
FIG. 2 is a block diagram showing the main part configuration of the
演算装置1は、気象データ測定装置2、作物係数データベース3(以下「作物係数DB3」)および関係式データベース4(以下、「関係式DB4」)と、無線接続または有線接続されている。
The
気象データ測定装置2は、注目圃場が存する地点の気象データを測定する。作物係数DB3には、少なくとも注目圃場の作物係数を含む1つ以上の作物係数のデータが格納されている。関係式DB4には、少なくとも注目圃場についての体積含水率とpF値との関係を示す関係式を含む1つ以上の関係式のデータが格納されている。また、図示は省略したが、演算装置1、気象データ測定装置2、作物係数DB3および関係式DB4は、無線接続または有線接続を実現するための通信部または接続部を備えている。
The meteorological
関係式準備部11は、注目圃場についての体積含水率とpF値との関係を示す関係式を関係式DB4から取得することによって注目圃場についての前記関係式を準備する。具体的には、関係式準備部11は、図1または図3のステップS101の処理を行う。また、関係式準備部11は、取得した注目圃場についての関係式を推定水分張力値算出部14に供給する。
The relational
作物係数準備部12は、注目圃場についての作物係数を作物係数DB3から取得することによって注目圃場についての作物係数を準備する。具体的には、作物係数準備部12は、図1または図3のステップS102の処理を行う。また、作物係数準備部12は、取得した注目圃場についての作物係数をパラメータ算出部13に供給する。
The crop
パラメータ算出部13は、注目圃場の土壌の推定基準蒸発散量、推定実蒸発散量および推定体積含水率を算出する。具体的には、パラメータ算出部13は、図1または図3のステップS103~ステップS106の処理を行う。パラメータ算出部13は、これらのパラメータを算出するために、注目圃場が存する地点の気象データを気象データ測定装置2から取得し、注目圃場についての作物係数を作物係数準備部12から取得する。また、パラメータ算出部13は、算出した推定体積含水率を推定水分張力値算出部14に供給する。
The
推定水分張力値算出部14は、関係式準備部11から注目圃場についての推定pF値の算出式を取得し、当該推定pF値の算出式を用いて推定体積含水率から推定pF値を算出する。具体的には、推定水分張力値算出部14は、図1または図3のステップS107の処理を行う。また、推定水分張力値算出部14は、算出した推定pF値を土壌水分量推定部15に供給する。
The estimated water tension
土壌水分量推定部15は、推定pF値に基づいて、注目圃場の土壌の水分変化量を推定する。具体的には、土壌水分量推定部15は、図3のステップS301の処理を行う。
The soil
出力制御部16は、演算装置1からの演算結果の出力を制御する。具体的には、土壌水分量推定部15は、図1のステップS108または図3のステップS302の処理を行う。出力制御部16は、演算装置1からの演算結果を、演算装置1に無線接続または有線接続されている表示装置(図示しない)に表示させてもよく、または演算装置1からの演算結果のデータを出力してもよい。前記演算結果としては、パラメータ算出部13が算出した各パラメータの数値、推定水分張力値算出部14が算出した推定pF値および土壌水分量推定部15が推定した水分変化量が含まれる。
The
〔ソフトウェアによる実現例〕
演算装置1の制御ブロック(特に関係式準備部11、作物係数準備部12、パラメータ算出部13、推定水分張力値算出部14、土壌水分量推定部15および出力制御部16)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、ソフトウェアによって実現してもよい。
[Example of implementation using software]
The control blocks of the arithmetic device 1 (especially the relational
後者の場合、演算装置1は、各機能を実現するソフトウェアであるプログラムの命令を実行するコンピュータを備えている。このコンピュータは、例えば1つ以上のプロセッサを備えていると共に、前記プログラムを記憶したコンピュータ読み取り可能な記録媒体を備えている。そして、前記コンピュータにおいて、前記プロセッサが前記プログラムを前記記録媒体から読み取って実行することにより、本発明の目的が達成される。前記プロセッサとしては、例えばCPU(Central Processing Unit)を用いることができる。前記記録媒体としては、「一時的でない有形の媒体」、例えば、ROM(Read Only Memory)等の他、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、前記プログラムを展開するRAM(Random Access Memory)などをさらに備えていてもよい。また、前記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して前記コンピュータに供給されてもよい。なお、本発明の一態様は、前記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。
In the latter case, the
〔まとめ〕
本発明の態様1に係る演算方法は、下記(1)に係る実測飽和含水率または推定飽和含水率、下記(2)に係る実測体積含水率、および下記(3)に係る実測水分張力値に基づき決定された、注目圃場についての体積含水率と水分張力値との関係を示す関係式を準備する関係式準備工程と、
(1)前記注目圃場の土壌について予め測定された実測飽和含水率、または前記注目圃場の土壌以外の土壌を含む複数の土壌の実測飽和含水率と、当該土壌の実測乾燥密度との回帰式を用いて、前記注目圃場の土壌の実測乾燥密度から算出された推定飽和含水率;
(2)前記注目圃場の土壌について予め測定された実測体積含水率;
(3)前記注目圃場の土壌について予め測定された実測水分張力値;
前記関係式準備工程において準備された関係式と、前記注目圃場が存する地点の気象データに基づき算出した前記注目圃場の土壌の推定体積含水率とに基づき、前記注目圃場の土壌の推定水分張力値を算出する、推定水分張力値算出工程と、を含む方法である。
〔summary〕
The calculation method according to
(1) Calculate the regression equation between the measured saturated moisture content of the soil of the field of interest, or the measured saturated moisture content of multiple soils including soil other than the soil of the field of interest, and the measured dry density of the soil. the estimated saturated moisture content calculated from the measured dry density of the soil of the field of interest;
(2) Actual volumetric water content measured in advance of the soil of the field of interest;
(3) Actual water tension value measured in advance for the soil of the field of interest;
An estimated water tension value of the soil of the field of interest based on the relational equation prepared in the relational equation preparation step and the estimated volumetric moisture content of the soil of the field of interest calculated based on the meteorological data of the point where the field of interest is located. This method includes a step of calculating an estimated water tension value.
本発明の態様2に係る演算方法は、前記の態様1において、前記実測体積含水率と、当該実測体積含水率を測定した時点での前記注目圃場が存する地点の気象データに基づき算出した前記注目圃場の土壌の第1推定基準蒸発散量と、に基づき決定された、前記注目圃場の作物係数を準備する作物係数準備工程と、
水分張力値算出時点での前記注目圃場が存する地点の気象データに基づき前記注目圃場の土壌の第2推定基準蒸発散量を算出する、第2推定基準蒸発散量算出工程と、
前記第2推定基準蒸発散量算出工程によって算出された前記第2推定基準蒸発散量と、前記作物係数準備工程において準備された前記作物係数とに基づき、前記注目圃場の推定実蒸発散量を算出する推定実蒸発散量算出工程と、
前記推定実蒸発散量算出工程によって算出された前記推定実蒸発散量に基づき、前記注目圃場の土壌の推定体積含水率を算出する推定体積含水率算出工程と、をさらに含み、
前記推定体積含水率算出工程によって算出された前記推定体積含水率を、前記推定水分張力値算出工程において用いる方法としてもよい。
In the calculation method according to
a second estimated standard evapotranspiration calculation step of calculating a second estimated standard evapotranspiration of the soil of the field of interest based on meteorological data at the point where the field of interest is located at the time of calculating the water tension value;
Based on the second estimated standard evapotranspiration calculated in the second estimated standard evapotranspiration calculation step and the crop coefficient prepared in the crop coefficient preparation step, calculate the estimated actual evapotranspiration of the field of interest. An estimated actual evapotranspiration calculation step;
further comprising an estimated volumetric water content calculation step of calculating an estimated volumetric water content of soil in the field of interest based on the estimated actual evapotranspiration calculated in the estimated actual evapotranspiration calculation step,
The estimated volumetric water content calculated in the estimated volumetric water content calculation step may be used in the estimated water tension value calculation step.
本発明の態様3に係る演算方法は、前記の態様1または2において、前記気象データは、日最高気温、日最低気温および日積算日射量である方法としてもよい。
The calculation method according to
本発明の態様4に係る演算方法は、前記の態様1~3のいずれかにおいて、前記推定水分張力値算出工程によって算出した前記推定水分張力値に基づいて、前記注目圃場の土壌の水分変化量を推定する土壌水分変化量推定工程をさらに含む方法としてもよい。
The calculation method according to
本発明の態様5に係る演算装置は、下記(1)に係る実測飽和含水率または推定飽和含水率、下記(2)に係る実測体積含水率、および下記(3)に係る実測水分張力値に基づき決定された、注目圃場についての体積含水率と水分張力値との関係を示す関係式を準備する関係式準備部と、
(1)前記注目圃場の土壌について予め測定された実測飽和含水率、または前記注目圃場の土壌以外の土壌を含む複数の土壌の実測飽和含水率と、当該土壌の実測乾燥密度との回帰式を用いて、前記注目圃場の土壌の実測乾燥密度から算出された推定飽和含水率;
(2)前記注目圃場の土壌について予め測定された実測体積含水率;
(3)前記注目圃場の土壌について予め測定された実測水分張力値;
前記関係式準備部において準備された関係式と、前記注目圃場が存する地点の気象データに基づき算出した前記注目圃場の土壌の推定体積含水率とに基づき、前記注目圃場の土壌の推定水分張力値を算出する、推定水分張力値算出部と、を備えている構成である。
The computing device according to
(1) Calculate the regression equation between the measured saturated moisture content of the soil of the field of interest, or the measured saturated moisture content of multiple soils including soil other than the soil of the field of interest, and the measured dry density of the soil. the estimated saturated moisture content calculated from the measured dry density of the soil of the field of interest;
(2) Actual volumetric water content measured in advance of the soil of the field of interest;
(3) Actual moisture tension value measured in advance for the soil of the field of interest;
An estimated water tension value of the soil of the field of interest based on the relational equation prepared in the relational equation preparation section and the estimated volumetric moisture content of the soil of the field of interest calculated based on the meteorological data of the point where the field of interest is located. This configuration includes an estimated moisture tension value calculation unit that calculates the estimated water tension value.
本発明の各態様に係る演算装置は、コンピュータによって実現してもよく、この場合には、コンピュータを前記演算装置が備える各部(ソフトウェア要素)として動作させることにより前記演算装置をコンピュータにて実現させる演算装置の演算プログラム、およびそれを記録したコンピュータ読み取り可能な記録媒体も、本発明の範疇に入る。 The arithmetic device according to each aspect of the present invention may be realized by a computer, and in this case, the arithmetic device is realized by the computer by operating the computer as each section (software element) included in the arithmetic device. An arithmetic program for an arithmetic device and a computer-readable recording medium on which it is recorded also fall within the scope of the present invention.
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the embodiments described above, and various modifications can be made within the scope of the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. are also included within the technical scope of the present invention.
以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれら実施例に限定されない。 The present invention will be described in more detail below based on Examples, but the present invention is not limited to these Examples.
[飽和含水率と乾燥密度と関係性についての事前調査]
本願発明者らは、日本の農地土壌の物理的性質データベースSolphyJ(参考文献4:農研機構農業環境変動研究センター平成22年度主要研究成果,[令和2年1月28日検索],インターネット<URL:https://www.naro.affrc.go.jp/archive/niaes/sinfo/result/result27/result27_60.html>)に収録されている、土壌の飽和含水率および乾燥密度のデータに着目した。図4は、SolphyJに収録されている16種類の異なる性質を有する土壌の飽和含水率を示すグラフである(データ数N=706)。
[Preliminary investigation on the relationship between saturated moisture content and dry density]
The inventors of this application have published the physical property database of agricultural soil in Japan, SolphyJ (Reference document 4: Main research results of 2010, Agricultural Environmental Change Research Center, National Agriculture and Food Research Organization (NARO), [searched on January 28, 2020], Internet < We focused on data on soil saturated moisture content and dry density, which is included in URL: https://www.naro.affrc.go.jp/archive/niaes/sinfo/result/result27/result27_60.html>) . FIG. 4 is a graph showing the saturated moisture content of soils having 16 different properties recorded in SolphyJ (number of data N=706).
そこで、図4に示した706個の土壌サンプル中689個の土壌サンプルについて、飽和含水率と乾燥密度との関係を図5の相関図に示したところ、飽和含水率と乾燥密度との関係を示すプロットは、ほぼ一直線上にのっており、土壌の乾燥密度と飽和含水率とに高い相関があることが明らかになった。そして、土壌の飽和含水率と乾燥密度とを回帰分析することにより以下の回帰式(5)を求めた。
飽和含水率(%)=-0.359×乾燥密度+0.972・・・(5)
従来の飽和含水率の測定方法は工程が多く、飽和含水率を取得するために手間と時間がかかる。これに対して、飽和含水率と乾燥密度との関係を示す前記回帰式を用いることにより、乾燥密度を測定するだけで飽和含水率を簡便に且つ迅速に推定し得ることが明らかになった。
Therefore, for 689 soil samples out of 706 soil samples shown in Figure 4, the relationship between saturated moisture content and dry density is shown in the correlation diagram in Figure 5. The plots shown are almost on a straight line, and it is clear that there is a high correlation between the dry density and saturated moisture content of the soil. Then, the following regression equation (5) was obtained by regression analysis of the saturated water content and dry density of the soil.
Saturated moisture content (%) = -0.359 x dry density + 0.972... (5)
Conventional methods for measuring saturated moisture content involve many steps, and it takes time and effort to obtain saturated moisture content. On the other hand, it has become clear that by using the regression equation showing the relationship between saturated moisture content and dry density, it is possible to easily and quickly estimate the saturated moisture content simply by measuring the dry density.
〔実施例1〕
注目圃場として、独立行政法人農業・食品産業技術総合研究機構の四国研究拠点の柑橘圃場(以下、「圃場A」と称する。)を選出し、圃場Aの土壌水分変化量を推定した。
[Example 1]
A citrus field (hereinafter referred to as "Field A") at the Shikoku Research Center of the National Agriculture and Food Research Organization, an independent administrative agency, was selected as a field of interest, and the amount of soil moisture change in Field A was estimated.
[事前調査の手順]
圃場Aの土壌水分変化量を推定するための事前調査として、下記(A)~(E)の手順で、圃場Aについての推定pF値の算出式のパラメータおよび作物係数を決定した。
[Preliminary investigation procedure]
As a preliminary investigation to estimate the amount of soil moisture change in field A, the parameters and crop coefficients of the formula for calculating the estimated pF value for field A were determined using the following steps (A) to (E).
<(A)圃場Aの土壌の体積含水率およびpF値の測定>
圃場Aの土壌(マルチ区または裸地区)について、それぞれ、湿潤状態から乾燥状態に至る異なる水分条件における体積含水率とpF値を測定し、3~4点のデータセットを得た。
<(A) Measurement of volumetric moisture content and pF value of soil in field A>
The volumetric water content and pF value of soil in field A (mulched area or bare area) were measured under different moisture conditions ranging from wet to dry conditions, and three to four data sets were obtained.
体積含水率は、水分センサ(株式会社A・R・P製、型番WD-3-W-5Y)を用いて測定した。pF値は、テンシオメータ(株式会社竹村電機製作所製、型番DM-8HG-100)を用いて測定した。水分条件は、テンシオメータにより測定可能な乾燥程度(pF2.7程度以下)とした。体積含水率およびpF値を測定すると同時に、圃場Aの土壌の基準蒸発散量の観測も行った。 The volumetric moisture content was measured using a moisture sensor (manufactured by A.R.P. Co., Ltd., model number WD-3-W-5Y). The pF value was measured using a tensiometer (manufactured by Takemura Electric Co., Ltd., model number DM-8HG-100). The moisture condition was set to a degree of dryness (pF of about 2.7 or less) that could be measured by a tensiometer. At the same time as measuring the volumetric water content and pF value, the standard evapotranspiration of the soil in field A was also observed.
<(B)圃場Aの土壌の乾燥密度の算出>
採土管(100ml)で採取した100mlの土壌を乾燥させ、乾燥重量から乾燥密度(g/cm3)を算出した。その結果、圃場Aのマルチ区の実測乾燥密度は1.432g/cm3であり、圃場Aの裸地区の実測乾燥密度は1.638g/cm3であった。
<(B) Calculation of dry density of soil in field A>
100 ml of soil collected with a soil collecting tube (100 ml) was dried, and the dry density (g/cm 3 ) was calculated from the dry weight. As a result, the measured dry density of the mulch area in field A was 1.432 g/cm 3 , and the measured dry density of the bare area of field A was 1.638 g/cm 3 .
<(C)圃場Aの飽和含水率の算出>
前記(B)で得られた実測乾燥密度と、前記「飽和含水率と乾燥密度との関係性についての事前調査」の項で準備した飽和含水率と乾燥密度との関係を示す以下の回帰式(5)とから、圃場Aの土壌の飽和含水率(推定飽和含水率)を算出した。
飽和含水率(%)=-0.359×乾燥密度+0.972・・・(5)
その結果、圃場Aのマルチ区の推定飽和含水率は0.458(45.8%)であり、圃場Aの裸地区の推定飽和含水率は0.384(38.4%)であった。なお、飽和含水率の実測値は、マルチ区43.1%、裸地区36.1%であり、回帰式(5)を用いて算出した推定飽和含水率と実測値との間に大きなずれは生じなかった。このことから、飽和含水率と乾燥密度との関係を示す以下の回帰式(5)と実測乾燥密度とから、土壌の推定飽和含水率を簡便に且つ精度よく推定できることが証明された。
<(C) Calculation of saturated moisture content of field A>
The following regression equation showing the relationship between the measured dry density obtained in (B) above and the saturated moisture content and dry density prepared in the section "Preliminary investigation on the relationship between saturated moisture content and dry density" (5), the saturated moisture content (estimated saturated moisture content) of the soil in field A was calculated.
Saturated moisture content (%) = -0.359 x dry density + 0.972... (5)
As a result, the estimated saturated moisture content of the mulched area of field A was 0.458 (45.8%), and the estimated saturated moisture content of the bare area of field A was 0.384 (38.4%). The actual measured values of the saturated moisture content were 43.1% in the mulch area and 36.1% in the bare area, and there was no large discrepancy between the estimated saturated moisture content calculated using regression equation (5) and the actual value. It did not occur. From this, it has been proven that the estimated saturated moisture content of soil can be easily and accurately estimated from the following regression equation (5) showing the relationship between saturated moisture content and dry density and the measured dry density.
<(D)圃場Aについての推定pF値の算出式の準備>
前記(C)で得られた推定飽和含水率、前記(A)で得られた実測体積含水率および前記(A)で得られた実測水分張力値から得られる曲線(図6に示す実線のグラフ)と、van Genuchtenのモデル(参考文献1:van Genuchten, M. Th. 1980, Soil Sci. Soc. Am. J., VOL. 44:892-898)による推定pF値の算出式(以下の式(2))に、前記推定飽和含水率と前記実測体積含水率とを代入して得られる曲線(図6に示す破線のグラフ)とが一致するように、推定pF値の算出式中のパラメータを決定した。なお、図6の1061に示す実線のグラフは、圃場Aのマルチ区の推定飽和含水率、実測体積含水率および実測水分張力値から得られる曲線を表し、図6の1062に示す実線のグラフは、圃場Aの裸地区の推定飽和含水率、実測体積含水率および実測水分張力値から得られる曲線を表している。
<(D) Preparation of formula for calculating estimated pF value for field A>
A curve obtained from the estimated saturated water content obtained in the above (C), the measured volume water content obtained in the above (A), and the measured water tension value obtained in the above (A) (solid line graph shown in FIG. 6) ) and the calculation formula for the estimated pF value (the following formula The parameters in the equation for calculating the estimated pF value are adjusted so that the curve (broken line graph shown in FIG. 6) obtained by substituting the estimated saturated water content and the measured volume water content into (2)) matches the curve obtained by substituting the estimated saturated water content and the measured volumetric water content. It was determined. The solid line graph shown at 1061 in FIG. 6 represents the curve obtained from the estimated saturated water content, the measured volume water content, and the measured water tension value of the multi plot in field A, and the solid line graph shown at 1062 in FIG. , represents a curve obtained from the estimated saturated water content, measured volumetric water content, and measured water tension value of the bare area of field A.
(前記式(2)中、Seは、次式(3)で表される相対水分率である。 (In the above formula (2), Se is the relative moisture content expressed by the following formula (3).
前記式(3)中、θは体積含水率、θsは飽和含水率、θrは残留水分率を表す。)
その結果、圃場Aのマルチ区についての推定pF値の算出式中のパラメータは、α:0.32、θr:0.05、n:1.32、m:0.242に決定した。また、圃場Aの裸地区についての推定pF値の算出式中のパラメータは、α:0.15、θr:0.09、n:1.35、m:0.259に決定した。
In the above formula (3), θ represents the volumetric water content, θs represents the saturated water content, and θr represents the residual water content. )
As a result, the parameters in the equation for calculating the estimated pF value for the multi-section of field A were determined to be α: 0.32, θr: 0.05, n: 1.32, and m: 0.242. Furthermore, the parameters in the formula for calculating the estimated pF value for the bare area of field A were determined to be α: 0.15, θr: 0.09, n: 1.35, and m: 0.259.
以上の結果から、圃場Aのマルチ区についての推定pF値の算出式は以下の式(6)に決定した。 Based on the above results, the formula for calculating the estimated pF value for the multi plot in field A was determined to be the following formula (6).
(前記式(6)中、Seは、次式(7)で表される相対水分率である。) (In the above formula (6), Se is the relative moisture content expressed by the following formula (7).)
また、圃場Aの裸地区についての推定pF値の算出式は以下の式(8)に決定した。 In addition, the formula for calculating the estimated pF value for the bare area of field A was determined to be the following formula (8).
(前記式(8)中、Seは、次式(9)で表される相対水分率である。) (In the above formula (8), Se is the relative moisture content expressed by the following formula (9).)
<(E)圃場Aの作物係数の準備>
前記(A)で測定した圃場Aの土壌の実測体積含水率と、圃場Aが存する地点の気象データより求めた基準蒸発散量(第1推定基準蒸発散量)とから、圃場Aについての作物係数を算出した。なお、水分状態が異なっても適用できる数値を出すため、作物係数は、1日のデータではなく、雨が降っていない28日間の観測値の平均値として算出した。但し、研究目的ではなく、普及員等が実際の農業現場でこの手法を活用する場合は、土壌の乾燥状態が異なる数日(もしくは数か所)の観測値の平均値として作物係数を算出すればよい。
<(E) Preparation of crop coefficients for field A>
Based on the actual volumetric moisture content of the soil in field A measured in (A) above and the standard evapotranspiration (first estimated standard evapotranspiration) determined from the meteorological data at the point where field A is located, the crops for field A are determined. The coefficient was calculated. In order to obtain numerical values that can be applied even under different moisture conditions, the crop coefficient was calculated as the average value of observed values for 28 days without rain, rather than data for one day. However, if this method is used by extension workers in actual agricultural fields rather than for research purposes, the crop coefficient should be calculated as the average value of observed values over several days (or several locations) with different soil dryness conditions. Bye.
気象データからの基準蒸発散量の算出は、西日本農業研究センターが提供している農地環境推定システムを用いて行った(参考文献2:「中山間地の精密な気象データをアメダス等から推定する農地環境推定システム」,西日本農業研究センター 2017年 研究成果情報)。気象データとしては、前記(A)で実測体積含水率を測定時に観測した圃場Aが存する地点の日最高気温、日最低気温および日積算日射量を用いた。日最高気温、日最低気温および日積算日射量の実測値から、FAO-56の式を用いて、純放射量を算出した。その結果、圃場Aのマルチ区、裸地区ともに、第1推定基準蒸発散量は1.58mm/日であった。また、圃場Aのマルチ区の実測体積含水率は11.9%であり、圃場Aの裸地区の実測体積含水率は17.5%であった。 Calculation of standard evapotranspiration from meteorological data was performed using the farmland environment estimation system provided by the West Japan Agricultural Research Center (Reference 2: "Estimating precise meteorological data for hilly and mountainous areas from AMeDAS etc." "Farmland Environment Estimation System", West Japan Agricultural Research Center 2017 Research Results Information). As meteorological data, the daily maximum temperature, daily minimum temperature, and daily cumulative solar radiation at the point where field A exists, which were observed when measuring the actual volumetric water content in (A) above, were used. The net radiation amount was calculated using the FAO-56 formula from the actual measured values of daily maximum temperature, daily minimum temperature, and daily integrated solar radiation. As a result, the first estimated standard evapotranspiration amount was 1.58 mm/day for both the mulch area and the bare area in field A. Furthermore, the measured volumetric moisture content of the mulched area of field A was 11.9%, and the measured volumetric moisture content of the bare area of field A was 17.5%.
作物係数は、前記(A)で測定した実測体積含水率から実蒸発散量を算出し、得られた実蒸発散量を、前記第1推定基準蒸発散量で除することで算出した。その結果、圃場Aのマルチ区の作物係数は0.18であり、圃場Aの裸地区の作物係数は0.94であった。 The crop coefficient was calculated by calculating the actual evapotranspiration from the measured volumetric water content measured in (A) above, and dividing the obtained actual evapotranspiration by the first estimated standard evapotranspiration. As a result, the crop coefficient in the mulched area of field A was 0.18, and the crop coefficient in the bare area of field A was 0.94.
[実施手順]
次いで、下記(a)~(d)の手順で、圃場Aのマルチ区および裸地区の土壌の体積含水率およびpF値を算出し、圃場Aのマルチ区および裸地区の土壌の体積含水率およびpF値を15日間にわたって経時的に調査した。
[Implementation procedure]
Next, calculate the volumetric water content and pF value of the soil in the mulched and bare areas of field A using the steps (a) to (d) below, and calculate the volumetric water content and pF value of the soil in the mulched and bare areas of field A. pF values were investigated over time over 15 days.
<(a)圃場Aの基準蒸発散量の算出>
前記「(E)圃場Aの作物係数の準備」の項で説明した方法により、pF値の算出を実施時の圃場Aが存する地点の気象データから、各調査日の圃場Aの基準蒸発散量(第2推定基準蒸発散量)を算出した。なお、各調査日の第2推定基準蒸発散量の数値の開示は割愛するが、圃場Aのマルチ区、裸地区ともに、第2推定基準蒸発散量の15日間の平均値は、1.59mm/日であった。
<(a) Calculation of standard evapotranspiration for field A>
Using the method explained in the above section "(E) Preparation of crop coefficients for field A," the pF value is calculated from the meteorological data at the point where field A is located at the time of implementation, and the standard evapotranspiration of field A on each survey day is calculated. (Second estimated standard evapotranspiration) was calculated. Although we will not disclose the numerical value of the second estimated standard evapotranspiration on each survey day, the average value of the second estimated standard evapotranspiration over 15 days is 1.59 mm for both the mulch plot and the bare plot in field A. / day.
<(b)圃場Aの実蒸発散量の算出>
前記(a)で取得した第2推定基準蒸発散量と、前記(E)で準備した作物係数とから、各調査日の圃場Aの実蒸発散量(推定実蒸発散量)を算出した。実蒸発散量の算出は、FAO-56に記載された方法に従って行った。なお、各調査日の実蒸発散量の数値の開示は割愛するが、実蒸発散量の15日間の平均値は、圃場Aのマルチ区では0.28mm/日であり、圃場Aの裸地区では1.48mm/日であった。
<(b) Calculation of actual evapotranspiration of field A>
The actual evapotranspiration (estimated actual evapotranspiration) of field A on each survey day was calculated from the second estimated standard evapotranspiration obtained in (a) above and the crop coefficient prepared in (E) above. Actual evapotranspiration was calculated according to the method described in FAO-56. Although we omit the disclosure of actual evapotranspiration values for each survey day, the average value of actual evapotranspiration over 15 days is 0.28 mm/day in the mulch area of field A, and 0.28 mm/day in the bare area of field A. It was 1.48 mm/day.
<(c)圃場Aの体積含水率の算出>
前記(b)で算出した推定実蒸発散量から、各調査日の圃場Aの土壌の体積含水率(推定体積含水率)を算出した。なお、各調査日の推定体積含水率の数値の開示は割愛するが、推定体積含水率の15日間の平均値は、圃場Aのマルチ区では11.2%であり、圃場Aの裸地区では15.9%であった。
<(c) Calculation of volumetric moisture content of field A>
From the estimated actual evapotranspiration calculated in (b) above, the volumetric water content (estimated volumetric water content) of the soil in field A on each survey day was calculated. Although we omit the disclosure of the estimated volumetric moisture content on each survey day, the average value of the estimated volumetric moisture content over 15 days is 11.2% in the mulch area of field A, and 11.2% in the bare area of field A. It was 15.9%.
<(d)圃場Aの土壌の推定pF値の算出>
前記(c)で算出した推定体積含水率と、前記(D)で準備した推定pF値の算出式とから、各調査日の圃場Aの土壌の推定pF値を算出した。
<(d) Calculation of estimated pF value of soil in field A>
The estimated pF value of the soil in field A on each survey day was calculated from the estimated volumetric water content calculated in (c) above and the equation for calculating the estimated pF value prepared in (D) above.
圃場Aの裸地区の土壌の体積含水率およびpF値を経時的に調査した結果を図7に示す。図7の1071には、上述の実施手順によって気象データから推定した圃場Aの裸地区の土壌の推定pF値と、推定pF値の精度を検証するためにpFセンサ(METER社製、型番TEROS-21)を用いて測定した圃場Aの裸地区の土壌の実測pF値とを示した。検証用に使用したpFセンサは、前記(A)でpF値の測定に使用したテンシオメータとは異なり、pF3.5程度まで測定可能な高性能なセンサである。 Figure 7 shows the results of an investigation of the volumetric water content and pF value of the soil in the bare area of field A over time. 1071 in Figure 7 shows the estimated pF value of the soil in the bare area of field A estimated from the meteorological data using the above implementation procedure, and a pF sensor (manufactured by METER, model number TEROS-) to verify the accuracy of the estimated pF value. The actual pF value of the soil in the bare area of field A measured using 21) is shown. The pF sensor used for verification is a high-performance sensor that can measure pF up to about 3.5, unlike the tensiometer used to measure the pF value in (A) above.
また、図7の1072には、上述の実施手順によって気象データから推定した圃場Aの裸地区の土壌の推定体積含水率と、水分センサを用いて測定した圃場Aの裸地区の土壌の実測体積含水率とを示した。 In addition, 1072 in Fig. 7 shows the estimated volumetric moisture content of the soil in the bare area of field A estimated from the meteorological data using the above implementation procedure, and the actual volume of soil in the bare area of field A measured using a moisture sensor. moisture content.
図7に示すように、体積含水率については、推定値と観測値(実測値)との間に大きなずれは生じなかった。また、pF値についても、推定体積含水率から推定した推定値と観測値との間に大きなずれは生じなかった。 As shown in FIG. 7, no large deviation occurred between the estimated value and the observed value (actually measured value) regarding the volumetric water content. Further, regarding the pF value, there was no large difference between the estimated value estimated from the estimated volumetric water content and the observed value.
このことから、既存の高価なpFセンサを使用せずに、入手が容易であり且つ研究者以外でも容易に取扱いできるテンシオメータを用いて、推定pF値の算出式が作成可能であり、また、そのようにして作成した推定pF値の算出式と推定体積含水率とからpF値を精度よく推定できることが証明された。なお、pF値が高い範囲では、推定値と観測値との間の差が大きくなる傾向が認められたが、これは、pFセンサの測定限界(pF3.5)を超えていることが要因となり推定値と観測値との間の差が大きくなっていると考えられた。以上の結果から、本発明の一態様に係る演算方法によって、既存の高価なpFセンサを使用せずに、気象データから精度よく土壌の体積含水率およびpF値を推定し得ることが明らかになった。 From this, it is possible to create a formula for calculating the estimated pF value using a tensiometer that is easily available and can be easily handled by non-researchers, without using existing expensive pF sensors. It was proved that the pF value can be estimated with high accuracy from the formula for calculating the estimated pF value created in the above manner and the estimated volumetric water content. It should be noted that in the high pF value range, there was a tendency for the difference between the estimated value and the observed value to become large, but this was due to the fact that the measurement limit of the pF sensor (pF3.5) was exceeded. It was thought that the difference between the estimated value and the observed value was increasing. From the above results, it is clear that the calculation method according to one embodiment of the present invention makes it possible to accurately estimate the volumetric water content and pF value of soil from meteorological data without using existing expensive pF sensors. Ta.
また、圃場Aのマルチ区の土壌の体積含水率およびpF値を経時的に調査した結果を図8に示す。図8の1081には、上述の実施手順によって気象データから推定した圃場Aのマルチ区の土壌の推定pF値と、推定pF値の精度を検証するためにpFセンサ(METER社製、型番TEROS-21)を用いて測定した圃場Aのマルチ区の土壌の実測pF値とを示した。 In addition, the results of investigating the volumetric moisture content and pF value of the soil in the mulch plot of field A over time are shown in FIG. 1081 in Figure 8 shows the estimated pF value of the soil in the mulch area of field A estimated from the meteorological data using the above-mentioned implementation procedure, and a pF sensor (manufactured by METER, model number TEROS-) to verify the accuracy of the estimated pF value. The actual pF value of the soil in the mulch area of field A measured using 21) is shown.
また、図8の1082には、上述の実施手順によって気象データから推定した圃場Aのマルチ区の土壌の推定体積含水率と、水分センサを用いて測定した圃場Aのマルチ区の土壌の実測体積含水率とを示した。 In addition, 1082 in FIG. 8 shows the estimated volumetric moisture content of the soil in the mulch area of field A estimated from the meteorological data using the above-mentioned implementation procedure, and the actual volume of soil in the mulch area of field A measured using a moisture sensor. moisture content.
図8に示すように、圃場Aのマルチ区についても、土壌の体積含水率およびpF値を経時的に調査した結果、体積含水率およびpF値ともに推定できた。体積含水率については、推定値と観測値との間に大きなずれは生じなかった。一方、pF値については、マルチ区は、常に土壌がかなり乾いた状態(含水率12%以下)である上、変化も小さいためか、観測値と推定値とがあまりよく合わなかった。しかし、pFセンサは、pF3.5程度以下までしか精度が保障されておらず、pF3.5を超えるpFセンサの観測値は参考にならないため、図8に示すpF値の観測値と推定値との間の差は、pF値の推定値の精度を示すものではない。 As shown in FIG. 8, as a result of investigating the volumetric moisture content and pF value of the soil over time in the mulched plot of field A, both the volumetric moisture content and the pF value could be estimated. Regarding the volumetric water content, there was no large difference between the estimated value and the observed value. On the other hand, regarding the pF value, the observed value and estimated value did not match very well in the mulch plot, probably because the soil was always quite dry (moisture content below 12%) and the changes were small. However, the accuracy of the pF sensor is guaranteed only up to about pF 3.5 or less, and the observed values of the pF sensor exceeding pF 3.5 are not useful as a reference, so the observed and estimated pF values shown in Figure 8 The difference between is not indicative of the accuracy of the pF value estimate.
本発明は、作物の水分ストレスや吸水量を評価することによって作物の栽培管理を行う公設試験場、農業現場等で利用することができる。 INDUSTRIAL APPLICABILITY The present invention can be used at public testing stations, agricultural sites, etc. where crop cultivation is managed by evaluating water stress and water absorption of crops.
1 演算装置
2 気象データ測定装置
3 作物係数データベース
4 関係式データベース
11 関係式準備部
12 作物係数準備部
13 パラメータ算出部
14 推定水分張力値算出部
15 土壌水分量推定部
16 出力制御部
1
Claims (6)
(1)前記注目圃場の土壌について予め測定された実測飽和含水率、または前記注目圃場の土壌以外の土壌を含む複数の土壌の実測飽和含水率と、当該土壌の実測乾燥密度との回帰式を用いて、前記注目圃場の土壌の実測乾燥密度から算出された推定飽和含水率;
(2)前記注目圃場の土壌について予め測定された実測体積含水率;
(3)前記注目圃場の土壌について予め測定された実測水分張力値;
前記関係式準備工程において準備された関係式と、前記注目圃場が存する地点の気象データに基づき算出した前記注目圃場の土壌の推定体積含水率とに基づき、前記注目圃場の土壌の推定水分張力値を算出する、推定水分張力値算出工程と、
を含むことを特徴とする、演算方法。 The volumetric moisture content of the field of interest determined based on the measured saturated moisture content or estimated saturated moisture content related to (1) below, the measured volumetric moisture content related to (2) below, and the measured moisture tension value related to (3) below. a relational equation preparation step of preparing a relational equation showing the relationship between the ratio and the water tension value;
(1) Calculate the regression equation between the measured saturated moisture content of the soil of the field of interest, or the measured saturated moisture content of multiple soils including soil other than the soil of the field of interest, and the measured dry density of the soil. the estimated saturated moisture content calculated from the measured dry density of the soil of the field of interest;
(2) Actual volumetric water content measured in advance of the soil of the field of interest;
(3) Actual moisture tension value measured in advance for the soil of the field of interest;
An estimated water tension value of the soil of the field of interest based on the relational equation prepared in the relational equation preparation step and the estimated volumetric moisture content of the soil of the field of interest calculated based on the meteorological data of the point where the field of interest is located. an estimated water tension value calculation step for calculating the
An arithmetic method characterized by comprising:
水分張力値算出時点での前記注目圃場が存する地点の気象データに基づき前記注目圃場の土壌の第2推定基準蒸発散量を算出する、第2推定基準蒸発散量算出工程と、
前記第2推定基準蒸発散量算出工程によって算出された前記第2推定基準蒸発散量と、前記作物係数準備工程において準備された前記作物係数とに基づき、前記注目圃場の推定実蒸発散量を算出する推定実蒸発散量算出工程と、
前記推定実蒸発散量算出工程によって算出された前記推定実蒸発散量に基づき、前記注目圃場の土壌の推定体積含水率を算出する推定体積含水率算出工程と、
をさらに含み、
前記推定体積含水率算出工程によって算出された前記推定体積含水率を、前記推定水分張力値算出工程において用いることを特徴とする、請求項1に記載の演算方法。 Determined based on the measured volumetric water content and a first estimated standard evapotranspiration of the soil of the field of interest, which is calculated based on meteorological data at the point where the field of interest is located at the time when the measured volumetric water content is measured. a crop coefficient preparation step of preparing crop coefficients for the field of interest;
a second estimated standard evapotranspiration calculation step of calculating a second estimated standard evapotranspiration of the soil of the field of interest based on meteorological data at the point where the field of interest is located at the time of calculating the water tension value;
Based on the second estimated standard evapotranspiration calculated in the second estimated standard evapotranspiration calculation step and the crop coefficient prepared in the crop coefficient preparation step, calculate the estimated actual evapotranspiration of the field of interest. An estimated actual evapotranspiration calculation step;
an estimated volumetric water content calculation step of calculating an estimated volumetric water content of soil in the field of interest based on the estimated actual evapotranspiration calculated in the estimated actual evapotranspiration calculation step;
further including;
2. The calculation method according to claim 1, wherein the estimated volumetric water content calculated in the estimated volumetric water content calculating step is used in the estimated water tension value calculating step.
(1)前記注目圃場の土壌について予め測定された実測飽和含水率、または前記注目圃場の土壌以外の土壌を含む複数の土壌の実測飽和含水率と、当該土壌の実測乾燥密度との回帰式を用いて、前記注目圃場の土壌の実測乾燥密度から算出された推定飽和含水率;
(2)前記注目圃場の土壌について予め測定された実測体積含水率;
(3)前記注目圃場の土壌について予め測定された実測水分張力値;
前記関係式準備部において準備された関係式と、前記注目圃場が存する地点の気象データに基づき算出した前記注目圃場の土壌の推定体積含水率とに基づき、前記注目圃場の土壌の推定水分張力値を算出する、推定水分張力値算出部と、
を備えていることを特徴とする、演算装置。 The volumetric moisture content of the field of interest determined based on the measured saturated moisture content or estimated saturated moisture content related to (1) below, the measured volumetric moisture content related to (2) below, and the measured moisture tension value related to (3) below. a relational equation preparation unit that prepares a relational equation showing the relationship between the ratio and the water tension value;
(1) Calculate the regression equation between the measured saturated moisture content of the soil of the field of interest, or the measured saturated moisture content of multiple soils including soil other than the soil of the field of interest, and the measured dry density of the soil. the estimated saturated moisture content calculated from the measured dry density of the soil of the field of interest;
(2) Actual volumetric water content measured in advance of the soil of the field of interest;
(3) Actual moisture tension value measured in advance for the soil of the field of interest;
An estimated water tension value of the soil of the field of interest based on the relational equation prepared in the relational equation preparation section and the estimated volumetric moisture content of the soil of the field of interest calculated based on the meteorological data of the point where the field of interest is located. an estimated water tension value calculation unit that calculates the
An arithmetic device comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020017097A JP7348652B2 (en) | 2020-02-04 | 2020-02-04 | Computing method, computing device, and computing program |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020017097A JP7348652B2 (en) | 2020-02-04 | 2020-02-04 | Computing method, computing device, and computing program |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021124343A JP2021124343A (en) | 2021-08-30 |
JP7348652B2 true JP7348652B2 (en) | 2023-09-21 |
Family
ID=77458560
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020017097A Active JP7348652B2 (en) | 2020-02-04 | 2020-02-04 | Computing method, computing device, and computing program |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7348652B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7267542B2 (en) * | 2021-08-31 | 2023-05-02 | 大分県 | How to estimate soil moisture |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001046681A1 (en) | 1999-12-22 | 2001-06-28 | Ebara Corporation | Soil pf value measuring method, and irrigation control method and irrigation control device |
JP2002215717A (en) | 2001-01-15 | 2002-08-02 | Mitsui & Co Ltd | Agriculture business support system |
JP2002315456A (en) | 2001-04-18 | 2002-10-29 | Ebara Corp | Watering controller for rooftop and ground vegetation system |
JP2006345768A (en) | 2005-06-15 | 2006-12-28 | Kyushu Electric Power Co Inc | Calculating method of evapotranspiration, and watering control method |
JP2011254722A (en) | 2010-06-07 | 2011-12-22 | Kureatera:Kk | Watering system for greened ground laid on water-impermeable surface |
WO2019053875A1 (en) | 2017-09-15 | 2019-03-21 | 日本電気株式会社 | Water content specifying device, water content specifying method, and storage medium storing water content specifying program |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4310758A (en) * | 1980-04-10 | 1982-01-12 | Purdue Research Foundation | Method for evaluating moisture tensions of soils using spectral data |
JP2009017792A (en) * | 2007-07-10 | 2009-01-29 | Taiyo Kogyo Co Ltd | Method for controlling irrigation liquid control system, and irrigation liquid control system |
JP5354500B2 (en) * | 2009-11-02 | 2013-11-27 | 島根県 | Irrigation equipment |
-
2020
- 2020-02-04 JP JP2020017097A patent/JP7348652B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001046681A1 (en) | 1999-12-22 | 2001-06-28 | Ebara Corporation | Soil pf value measuring method, and irrigation control method and irrigation control device |
JP2002215717A (en) | 2001-01-15 | 2002-08-02 | Mitsui & Co Ltd | Agriculture business support system |
JP2002315456A (en) | 2001-04-18 | 2002-10-29 | Ebara Corp | Watering controller for rooftop and ground vegetation system |
JP2006345768A (en) | 2005-06-15 | 2006-12-28 | Kyushu Electric Power Co Inc | Calculating method of evapotranspiration, and watering control method |
JP2011254722A (en) | 2010-06-07 | 2011-12-22 | Kureatera:Kk | Watering system for greened ground laid on water-impermeable surface |
WO2019053875A1 (en) | 2017-09-15 | 2019-03-21 | 日本電気株式会社 | Water content specifying device, water content specifying method, and storage medium storing water content specifying program |
Non-Patent Citations (3)
Title |
---|
加治佐隆光,先行降雨指数と畑地内サクションの関係について,農業土木学会京都支部研究発表会講演要旨集,日本,1992年,Vol.49th,pp.66-67 |
横山秀紀,数値気象モデルによる柑橘園地の局所蒸発散量推定法の開発,科学研究費助成事業 研究成果報告書,日本,2015年06月12日,https://kaken.nii.ac.jp/ja/file/KAKENHI-PROJECT-24580376/24580376seika.pdf |
横山秀紀ほか,露地における精密な栽培管理の実現に資する農地環境推定システム,生物と気象,日本,2018年,Vol.18,pp.76-85 |
Also Published As
Publication number | Publication date |
---|---|
JP2021124343A (en) | 2021-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Farahani et al. | Evapotranspiration: progress in measurement and modeling in agriculture | |
Li et al. | Evapotranspiration and crop coefficient of spring maize with plastic mulch using eddy covariance in northwest China | |
Ding et al. | Partitioning evapotranspiration into soil evaporation and transpiration using a modified dual crop coefficient model in irrigated maize field with ground-mulching | |
Jiang et al. | Crop coefficient and evapotranspiration of grain maize modified by planting density in an arid region of northwest China | |
Amayreh et al. | Developing crop coefficients for field-grown tomato (Lycopersicon esculentum Mill.) under drip irrigation with black plastic mulch | |
Zhao et al. | Comparison of dual crop coefficient method and Shuttleworth–Wallace model in evapotranspiration partitioning in a vineyard of northwest China | |
Anderson et al. | Assessing FAO-56 dual crop coefficients using eddy covariance flux partitioning | |
Han et al. | Estimating maize water stress by standard deviation of canopy temperature in thermal imagery | |
Irmak et al. | Determination of crop water stress index for irrigation timing and yield estimation of corn | |
Raun et al. | In‐season prediction of potential grain yield in winter wheat using canopy reflectance | |
Allen et al. | Evapotranspiration information reporting: II. Recommended documentation | |
Payero et al. | Daily energy fluxes, evapotranspiration and crop coefficient of soybean | |
Zeleke et al. | Evapotranspiration estimation using soil water balance, weather and crop data | |
Campos et al. | Remote sensing-based soil water balance to estimate Mediterranean holm oak savanna (dehesa) evapotranspiration under water stress conditions | |
Taghvaeian et al. | Minimizing instrumentation requirement for estimating crop water stress index and transpiration of maize | |
Trout et al. | USDA-ARS Colorado maize water productivity data set | |
Watanabe et al. | Changes in seasonal evapotranspiration, soil water content, and crop coefficients in sugarcane, cassava, and maize fields in Northeast Thailand | |
Wang et al. | Evapotranspiration partitioning and crop coefficient of maize in dry semi-humid climate regime | |
Martel et al. | Simulation of actual evapotranspiration from agricultural landscapes in the Canadian Prairies | |
Madugundu et al. | Estimation of gross primary production of irrigated maize using Landsat-8 imagery and Eddy Covariance data | |
Anapalli et al. | Modeling evapotranspiration for irrigation water management in a humid climate | |
AU2016273991A1 (en) | Detection of environmental conditions | |
Nassif et al. | Evapotranspiration and transpiration coupling to the atmosphere of sugarcane in southern Brazil: scaling up from leaf to field | |
Zhou et al. | The ratio of transpiration to evapotranspiration in a rainfed maize field on the Loess Plateau of China | |
Siegfried et al. | Multispectral satellite imagery to quantify in-field soil moisture variability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20221122 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230804 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230822 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230901 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7348652 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |