JP7348518B2 - How to operate a blast furnace - Google Patents

How to operate a blast furnace Download PDF

Info

Publication number
JP7348518B2
JP7348518B2 JP2019224616A JP2019224616A JP7348518B2 JP 7348518 B2 JP7348518 B2 JP 7348518B2 JP 2019224616 A JP2019224616 A JP 2019224616A JP 2019224616 A JP2019224616 A JP 2019224616A JP 7348518 B2 JP7348518 B2 JP 7348518B2
Authority
JP
Japan
Prior art keywords
blast furnace
furnace
water
center
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019224616A
Other languages
Japanese (ja)
Other versions
JP2021091948A (en
Inventor
裕介 佐々野
智彦 田川
顕太郎 野口
祥文 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019224616A priority Critical patent/JP7348518B2/en
Publication of JP2021091948A publication Critical patent/JP2021091948A/en
Application granted granted Critical
Publication of JP7348518B2 publication Critical patent/JP7348518B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

本発明は、高炉の操業方法に関し、詳細には、コークスの中心装入を実施している高炉操業における高炉炉頂設備の熱劣化防止に関する。 The present invention relates to a method for operating a blast furnace, and more particularly, to a method for preventing thermal deterioration of blast furnace top equipment during blast furnace operation in which coke is centrally charged.

一般に、高炉の安定操業を継続させるためには、逆V字型の融着帯を形成することが必要である。そのためには、炉中心部のO/C(鉱石/コークス)を低く抑えてガス流を発達させ、炉中心部の温度を他の領域より高く維持しなければならない。そこで、炉内に装入するコークスの一部を炉口中心部に装入(コークス中心装入)して炉中心領域のO/Cを局所的に低下させることにより融着帯の形状を制御する方法が採られることがある。 Generally, in order to continue stable operation of a blast furnace, it is necessary to form an inverted V-shaped cohesive zone. To achieve this, it is necessary to keep the O/C (ore/coke) in the furnace center low to develop a gas flow and maintain the temperature in the furnace center higher than in other areas. Therefore, the shape of the cohesive zone is controlled by charging a part of the coke into the furnace into the center of the furnace mouth (coke center charging) to locally lower the O/C in the furnace center region. A method may be adopted.

通常、炉内に装入されたコークスは、降下過程で鉱石の還元反応によって生じたCOガスによりソリューションロス反応を受け、多量の粉を発生する。発生した多量の粉により炉内の通気性、通液性が悪化するが、コークス中心装入を実施した場合、炉中心部の鉱石量が減少することにより炉中心部でのCOガスの発生量が減少する。その結果、ソリューションロス反応が抑制され、発生粉の少ない健全な炉心が形成される。 Normally, coke charged into a furnace undergoes a solution loss reaction due to CO 2 gas generated by a reduction reaction of ore during the descending process, and generates a large amount of powder. The large amount of powder generated deteriorates the air permeability and liquid permeability in the furnace, but when coke center charging is performed, the amount of ore in the center of the furnace decreases, resulting in the generation of CO2 gas in the center of the furnace. quantity decreases. As a result, solution loss reactions are suppressed and a healthy core with less generated powder is formed.

しかしながら、コークス中心装入を実施すると、高温の排出ガスが炉中心部から高炉外へ集中的に排出されるため、熱による高炉炉頂設備の劣化が顕著となる。
そこで、特許文献1では、高炉炉内の原燃料面を低下させる減尺休風を行うに当たり、原燃料面より上の炉内空間が大幅に増加した際の炉内ガス温度を低下させる発明が開示されている。この発明では、炉頂方向を指向する散水ノズルを原燃料の直上に固定し、炉頂方向に散水した水が炉内を上昇後に下降することにより炉内ガスを冷却する。
また、特許文献2では、高炉炉頂部に設置した散水ノズルから下方に向けて散水する際、原燃料に水が付着しない程度の散水粒子径として高炉炉頂ガスの最大温度を低下させる発明が開示されている。
However, when center charging of coke is performed, high-temperature exhaust gas is intensively discharged from the center of the furnace to the outside of the blast furnace, so deterioration of the top equipment of the blast furnace due to heat becomes significant.
Therefore, Patent Document 1 discloses an invention that lowers the gas temperature in the furnace when the space in the furnace above the raw fuel level increases significantly when performing a reduced air suspension to lower the raw fuel level in the blast furnace. Disclosed. In this invention, a water spray nozzle oriented toward the top of the furnace is fixed directly above the raw fuel, and the water sprayed toward the top of the furnace rises in the furnace and then descends, thereby cooling the gas in the furnace.
Additionally, Patent Document 2 discloses an invention in which when water is sprayed downward from a water nozzle installed at the top of the blast furnace, the maximum temperature of the blast furnace top gas is lowered by setting the water spray particle size to such an extent that water does not adhere to the raw fuel. has been done.

特開平4-362108号公報Japanese Patent Application Publication No. 4-362108 特開2003-064407号公報Japanese Patent Application Publication No. 2003-064407

本発明者らが特許文献1及び特許文献2記載の方法について検証したところ、以下の課題があることが判明した。
特許文献1記載の方法は、高炉操業中における炉内ガスの冷却を想定していない。従って、高炉操業中に特許文献1記載の方法を実施した場合、散水した水の上昇と下降の距離(距離に伴う冷却時間)が不足し、炉内ガスの冷却が不十分となる。特に、近年多用されている高炉におけるコークスの中心装入操業では、炉心から吹き上がる炉内ガスが高温となる傾向があるため、特許文献1記載の発明が特徴としている炉頂方向の散水、例えば特許文献1の図1(b)の斜線部の散水範囲では、高炉炉頂設備の冷却効果が不足する(炉心に位置する高炉炉頂設備の温度低下が不足する)。
また、特許文献2記載の方法は、散水量が限られるため、コークスの中心装入操業を行う場合、高炉炉頂設備の冷却効果が不足する。
When the present inventors verified the methods described in Patent Document 1 and Patent Document 2, it was found that the following problems existed.
The method described in Patent Document 1 does not assume cooling of furnace gas during blast furnace operation. Therefore, when the method described in Patent Document 1 is carried out during blast furnace operation, the distance between the rise and fall of the sprayed water (the cooling time associated with the distance) is insufficient, and the gas in the furnace is insufficiently cooled. In particular, in the center charging operation of coke in blast furnaces, which has been frequently used in recent years, the gas in the furnace that blows up from the core tends to reach a high temperature. In the water spraying range of the shaded area in FIG. 1(b) of Patent Document 1, the cooling effect of the blast furnace top equipment is insufficient (temperature reduction of the blast furnace top equipment located in the reactor core is insufficient).
Further, in the method described in Patent Document 2, since the amount of water sprinkled is limited, the cooling effect of the blast furnace top equipment is insufficient when central coke charging operation is performed.

本発明はかかる事情に鑑みてなされたもので、高炉操業中における高炉炉頂設備の温度上昇を抑制して、熱による高炉炉頂設備の劣化を防止することができる高炉の操業方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a blast furnace operating method that can suppress the temperature rise of the blast furnace top equipment during blast furnace operation and prevent deterioration of the blast furnace top equipment due to heat. The purpose is to

上記目的を達成するため、本発明は、コークス中心装入を実施している高炉の操業において、
炉内原燃料面より上の炉内空間内で、平面視して、高炉中心を中点とする仮想線分の両端点の位置、もしくは前記高炉中心回りに回転対称な仮想正多角形の各頂点の位置に、水を噴射する噴射孔を設け、
高炉操業中に前記各噴射孔から前記高炉中心に向けて仰角0°~仰角10°の方向に水を噴射し、
前記各噴射孔から噴射される噴射水量(ton/h)の差を、前記各噴射孔から噴射される噴射水量の合計量の5質量%以内とすることを特徴としている。
In order to achieve the above object, the present invention provides the following advantages:
The positions of both end points of a virtual line segment with the center of the blast furnace as its midpoint, or each vertex of a virtual regular polygon that is rotationally symmetrical about the center of the blast furnace when viewed from above within the furnace space above the raw fuel surface of the furnace. An injection hole for injecting water is provided at the position of
Injecting water from each injection hole toward the center of the blast furnace during blast furnace operation in a direction with an elevation angle of 0° to 10°;
It is characterized in that the difference in the amount of water (ton/h) injected from each of the injection holes is within 5% by mass of the total amount of water to be injected from each of the injection holes.

本発明では、高炉操業中に炉心から吹き上がる高温の炉内上昇ガスに対して、平面視して回転対称となる各位置から高炉中心に向けて概ね水平方向に均等な量の水(もしくは水が蒸発した蒸気)を噴射し、高温の炉内上昇ガスを撹拌する。これにより、高温の炉内上昇ガスが炉心以外の部位に存在する比較的低温の炉内ガスと混合され、炉心から吹き上がる炉内上昇ガスの温度が低下する。 In the present invention, in response to the high-temperature rising gas that blows up from the core during blast furnace operation, an equal amount of water (or (vaporized steam) is injected to stir the high-temperature gas rising inside the furnace. As a result, the high-temperature rising gas in the reactor is mixed with relatively low-temperature in-furnace gas existing in a region other than the reactor core, and the temperature of the rising gas in the reactor blown up from the reactor core is lowered.

また、本発明に係る高炉の操業方法では、前記各噴射孔の位置が前記高炉中心から水平方向に1.0m以上離隔し、前記各噴射孔から噴射される噴射水量が2ton/h~10ton/hであることを好適とする。 Further, in the method for operating a blast furnace according to the present invention, the position of each of the injection holes is spaced apart from the center of the blast furnace by 1.0 m or more in the horizontal direction, and the amount of water injected from each of the injection holes is 2 tons/h to 10 tons/h. h is preferable.

当該構成によれば、噴射した水滴が高炉炉頂設備に付着することがないので、粉塵が水滴と共に高炉炉頂設備に付着堆積することが抑制され、高炉炉頂設備の故障を防止し、付着堆積物の定期的な清掃を不要とすることができる。 According to this configuration, since the injected water droplets do not adhere to the blast furnace top equipment, dust is suppressed from adhering and depositing on the blast furnace top equipment together with the water droplets, preventing failure of the blast furnace top equipment, and preventing dust from adhering to the top equipment. Periodic cleaning of deposits can be made unnecessary.

本発明に係る高炉の操業方法では、平面視して回転対称となる各位置から高炉中心に向けて概ね水平方向に均等な量の水を噴射して、高炉操業中に炉心から吹き上がる高温の炉内上昇ガスと炉心以外の部位に存在する比較的低温の炉内ガスとを混合させることにより、高炉炉頂設備の温度上昇を抑制して、熱による高炉炉頂設備の劣化を防止することができる。
また、本発明に係る高炉の操業方法では、仰角0°~仰角10°の方向に水を噴射するので、散水による原燃料への悪影響を防止することができる。
In the method of operating a blast furnace according to the present invention, an equal amount of water is injected in a generally horizontal direction toward the center of the blast furnace from each position that is rotationally symmetrical when viewed from above, and high-temperature water that blows up from the core during blast furnace operation is removed. By mixing the rising gas in the furnace with the relatively low-temperature gas existing in parts other than the core, the temperature rise in the blast furnace top equipment is suppressed and the deterioration of the blast furnace top equipment due to heat is prevented. Can be done.
Furthermore, in the blast furnace operating method according to the present invention, since water is injected in the direction of an elevation angle of 0° to 10°, it is possible to prevent an adverse effect on the raw fuel due to water spraying.

本発明の一実施の形態に係る高炉の操業方法を実施するベルレス式高炉の炉頂部の縦断面図である。1 is a longitudinal cross-sectional view of the furnace top of a bellless blast furnace that implements a blast furnace operating method according to an embodiment of the present invention. 同炉頂部の平断面図である。FIG. 3 is a plan cross-sectional view of the top of the furnace. 第1の変形例に係る同炉頂部の平断面図である。FIG. 7 is a plan cross-sectional view of the top of the furnace according to a first modification. 第2の変形例に係る同炉頂部の平断面図である。FIG. 7 is a plan cross-sectional view of the top of the furnace according to a second modification.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態について説明し、本発明の理解に供する。なお、本明細書及び図面において実質的に同一の機能を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Next, embodiments embodying the present invention will be described with reference to the attached drawings to provide an understanding of the present invention. Note that in this specification and the drawings, constituent elements having substantially the same functions are designated by the same reference numerals, and redundant explanation will be omitted.

[高炉操業の現況]
従来より高炉の主原料は鉱石と燃料であるコークスであったが、数十年前より徐々に燃料として、低コストである石炭を粉砕した微粉炭がコークスの代替として使用されるようになってきている。近年では、微粉炭の使用量増加に伴ってコークスの使用量が減少している。
[Current status of blast furnace operation]
Traditionally, the main raw materials for blast furnaces have been ore and the fuel coke, but over the past few decades, low-cost pulverized coal, which is made by pulverizing coal, has gradually come to be used as a fuel instead of coke. ing. In recent years, the amount of coke used has decreased as the amount of pulverized coal has increased.

コークスなどの炉頂からの装入物はそれ自体冷却材であって、炉内ガスとの熱交換を通じて炉内ガスを冷却する機能を果たしている。しかし、上述したように、コークス投入量が近年減少していることから、微粉炭の使用量の増加に応じて炉内ガスの温度は上昇する傾向にある。 The charge from the top of the furnace, such as coke, is itself a coolant and functions to cool the furnace gas through heat exchange with the furnace gas. However, as mentioned above, since the amount of coke input has been decreasing in recent years, the temperature of the furnace gas tends to rise as the amount of pulverized coal used increases.

また、微粉炭の使用量が増加しコークスの使用量が減少することで炉内ガスの通気性が悪化するが、炉内中心部に装入するコークス量の割合を増加させ、炉内上昇ガスを中心流化し、軟化融着帯の形状を逆V字型に維持することにより炉況を安定させている。一方、炉内上昇ガスの中心流化により、高炉水平断面におけるガス温度は、炉頂中心部(炉心部)の温度がピークとなる温度分布となる。 In addition, as the amount of pulverized coal used increases and the amount of coke used decreases, the permeability of gas in the furnace deteriorates. The furnace condition is stabilized by converting it into a central flow and maintaining the shape of the softened cohesive zone in an inverted V-shape. On the other hand, due to the central flow of the rising gas in the furnace, the gas temperature in the horizontal section of the blast furnace has a temperature distribution where the temperature at the center of the furnace top (core part) is the peak.

このように、従来に比べて微粉炭の使用量を増やしコークス装入量を減らしたことによる炉内ガスの温度上昇と炉内上昇ガスの中心流化によって高炉炉頂設備の熱負荷が上昇している。その結果、高炉炉頂設備の熱的損傷、寿命及びメンテナンス周期の短縮等の問題が生じている。 In this way, the heat load on the blast furnace top equipment increases due to the rise in the temperature of the gas in the furnace due to the increase in the amount of pulverized coal used and the reduction in the amount of coke charged compared to the past, and the central flow of the rising gas in the furnace. ing. As a result, problems such as thermal damage to blast furnace top equipment, shortened service life, and shortened maintenance cycles have arisen.

[本発明の技術思想]
コークス中心装入を実施している高炉操業における特許文献1記載の方法の効果を検証するため、コークス中心装入を採用している操業中の高炉に特許文献1記載の方法を適用したところ、炉内ガスの冷却は可能であるものの冷却能が不足し、高炉炉頂設備の損傷を抑制するほどの温度低下が認められなかった。その原因について種々検討した結果、中心装入部位(炉心)から吹き上がる高温の炉内上昇ガスが十分に冷却されない状態で高炉炉頂設備に直接衝突することにより、高炉炉頂設備の温度低下が不十分になるという知見が得られた。
[Technical idea of the present invention]
In order to verify the effectiveness of the method described in Patent Document 1 in a blast furnace operation where coke center charging is implemented, the method described in Patent Document 1 was applied to an operating blast furnace that employs coke center charging. Although it was possible to cool the gas in the furnace, the cooling capacity was insufficient and the temperature could not be lowered enough to prevent damage to the blast furnace top equipment. As a result of various studies on the causes, we found that the high-temperature rising gas in the furnace blowing up from the central charging area (core) directly collides with the blast furnace top equipment without being sufficiently cooled, resulting in a decrease in the temperature of the blast furnace top equipment. It was found that this was insufficient.

そこで、本発明者らは、炉心以外の部位に存在する比較的低温である炉内ガスと、炉心から吹き上がる高温の炉内上昇ガスの撹拌を推進することにより、高炉炉頂設備、特に炉心の設備の温度低下を図ることとした。具体的には、炉心から吹き上がる高温の炉内上昇ガスに対し、概ね水平方向から水(もしくは水が蒸発した蒸気)を噴射して高温の炉内上昇ガスを撹拌して、炉心以外の部位に存在する炉内ガスと混合させることにより、炉内上昇ガスの温度を低下させる。その際、一方向のみからの水噴射であれば、炉内上昇ガスの流れる方向が変化するのみとなるため、平面視して回転対称となる各位置から高炉中心に向けて概ね水平方向に均等な量の水を噴射し、炉内上昇ガスを撹拌する。 Therefore, the present inventors have developed a method for improving blast furnace top equipment, especially the core, by promoting agitation of the relatively low-temperature in-furnace gas existing in areas other than the core and the high-temperature in-furnace rising gas that blows up from the core. We decided to lower the temperature of the equipment. Specifically, water (or steam evaporated from water) is injected approximately horizontally into the high-temperature gas rising inside the reactor that is blown up from the core, stirring the high-temperature rising gas inside the reactor, and destroying parts other than the core. The temperature of the rising gas in the furnace is lowered by mixing it with the furnace gas existing in the furnace. At that time, if water is injected from only one direction, only the direction in which the gas rising in the furnace flows will change, so it will flow approximately horizontally evenly from each position that is rotationally symmetrical in plan view toward the center of the blast furnace. A large amount of water is injected to stir the rising gas in the furnace.

[本発明の一実施の形態に係る高炉の操業方法]
本発明の一実施の形態に係る高炉の操業方法ではベルレス式高炉を使用する。本実施の形態に係る高炉の操業方法を実施するベルレス式高炉の炉頂部10の縦断面を図1に、炉頂部10の平断面を図2に示す。
ベルレス式高炉は高炉炉頂設備として旋回コーン12と旋回シュート13を備えている。ベルレス式高炉の操業では、炉頂部10の炉口に設置された旋回コーン12内の駆動装置(図示省略)により炉内周方向に旋回し、鉛直方向に傾動する旋回シュート13を介して原燃料20であるコークスと鉱石を炉内に装入する。コークス中心装入を実施している高炉操業では、炉内中心部21にコークスを優先的に装入しながら、コークスと鉱石を層状に装入する。
[Blast furnace operating method according to an embodiment of the present invention]
A method of operating a blast furnace according to an embodiment of the present invention uses a bellless blast furnace. FIG. 1 shows a vertical cross-section of a furnace top 10 of a bellless blast furnace that implements the blast furnace operating method according to the present embodiment, and FIG. 2 shows a planar cross-section of the furnace top 10.
The bellless blast furnace is equipped with a rotating cone 12 and a rotating chute 13 as top equipment of the blast furnace. In the operation of a bellless blast furnace, a drive device (not shown) in a rotating cone 12 installed at the mouth of the furnace top 10 rotates the furnace in the circumferential direction, and feeds raw fuel through a rotating chute 13 that tilts vertically. 20 coke and ore are charged into the furnace. In a blast furnace operation in which coke is centrally charged, coke and ore are charged in layers while coke is preferentially charged into the center 21 of the furnace.

本実施の形態では、炉内原燃料20の上面より上の炉内空間11において、平面視して、高炉中心15を中点とする仮想線分22の両端点の位置に、水を噴射する散水ノズル16(噴射孔の一例)が設置されている(図2参照)。各散水ノズル16には散水配管17を介して水が供給される。供給される水の温度は20℃~50℃程度である。
また、炉内ガスの温度を測定するため、各散水ノズル16及び散水配管17の直下には測温ゾンデ18が設置されている。
In this embodiment, water is sprayed to inject water at both end points of an imaginary line segment 22 with the blast furnace center 15 as the midpoint when viewed from above in the in-furnace space 11 above the upper surface of the in-furnace raw fuel 20. A nozzle 16 (an example of an injection hole) is installed (see FIG. 2). Water is supplied to each water sprinkling nozzle 16 via a water sprinkling pipe 17 . The temperature of the supplied water is about 20°C to 50°C.
Further, in order to measure the temperature of the gas in the furnace, a temperature measuring probe 18 is installed directly below each water spray nozzle 16 and water spray pipe 17.

各散水ノズル16は高炉中心15から水平方向に1.0m以上離隔した位置に設置することが望ましい。高炉中心15からの離隔距離が1.0m未満の場合、ノズル孔が炉内上昇ガスに直接接触する可能性があり、散水ノズル16の交換頻度が増えるおそれがある。 It is desirable that each water spray nozzle 16 be installed at a position separated from the blast furnace center 15 by 1.0 m or more in the horizontal direction. If the separation distance from the blast furnace center 15 is less than 1.0 m, there is a possibility that the nozzle hole will come into direct contact with the rising gas in the furnace, and there is a risk that the water spray nozzle 16 will have to be replaced more frequently.

散水ノズル16から高炉中心15に向けて噴射され、高炉中心15に供給される水流の中心軸の角度は仰角0°~仰角10°の範囲とする。
仰角がマイナス、即ち伏角になると、散水ノズル16が下向きとなり、炉内上昇ガスに含まれる粉塵によってノズル孔が閉塞する原因となる場合がある。このため、水の噴射方向は仰角0°以上がよい。一方、仰角が10°を超えると、炉内上昇ガスに対する撹拌性が低下し、吹き上がる炉内上昇ガスに向けて噴射した水が炉内上昇ガスに同伴する流れとなる傾向が強くなる。その結果、優位な撹拌効果が得られなくなる。
The angle of the central axis of the water stream that is injected from the water spray nozzle 16 toward the blast furnace center 15 and supplied to the blast furnace center 15 is in the range of an elevation angle of 0° to an elevation angle of 10°.
When the angle of elevation becomes negative, that is, the angle of inclination, the water spray nozzle 16 is directed downward, which may cause the nozzle hole to be clogged by dust contained in the gas rising in the furnace. For this reason, it is preferable that the water jet direction has an elevation angle of 0° or more. On the other hand, when the elevation angle exceeds 10°, the stirring performance for the rising gas in the furnace decreases, and the water injected toward the rising gas in the furnace tends to flow along with the rising gas in the furnace. As a result, a superior stirring effect cannot be obtained.

各散水ノズル16から噴射される噴射水量(ton/h)の差は各散水ノズル16から噴射される噴射水量の合計量の5質量%以内とする。
各散水ノズル16から噴射される噴射水量の差が大きいと、炉内上昇ガスの流れる方向が変化するのみとなるため、各散水ノズル16から噴射される噴射水量に実質的な差が無いようにする。
The difference in the amount of water (ton/h) sprayed from each water spray nozzle 16 is within 5% by mass of the total amount of water sprayed from each water nozzle 16.
If the difference in the amount of water injected from each water nozzle 16 is large, the flow direction of the rising gas in the furnace will only change. do.

各散水ノズル16から噴射される噴射水量は2ton/h~10ton/hであることが望ましい。
各散水ノズル16から噴射される噴射水量が10ton/hを超えると、噴射水の一部が蒸気化せず、高炉炉頂設備に水滴が付着する場合がある。その場合、水滴と共に粉塵が高炉炉頂設備に付着することがあるため、高炉炉頂設備の定期的な清掃が必要となる。
一方、各散水ノズル16から噴射される噴射水量が少ないと、散水配管17内で水が蒸気化する現象が顕著となり、散水配管17内における異物の付着堆積が顕著になる。また、散水配管17を断熱材で被覆する等の手間が増加する。本発明者らの知見では、各散水ノズル16から噴射される噴射水量を2ton/h以上とすれば、散水配管17内における異物の顕著な付着堆積は見られなかった。
The amount of water sprayed from each water nozzle 16 is preferably 2 ton/h to 10 ton/h.
If the amount of water injected from each water nozzle 16 exceeds 10 ton/h, part of the injected water may not be vaporized and water droplets may adhere to the blast furnace top equipment. In that case, dust and water droplets may adhere to the top equipment of the blast furnace, so the top equipment of the blast furnace needs to be cleaned regularly.
On the other hand, if the amount of water injected from each water nozzle 16 is small, the phenomenon of water vaporization within the water sprinkling pipe 17 becomes noticeable, and the adhesion and accumulation of foreign matter within the water sprinkling pipe 17 becomes noticeable. Moreover, the effort of covering the water sprinkling pipe 17 with a heat insulating material increases. According to the findings of the present inventors, when the amount of water sprayed from each water nozzle 16 was set to 2 tons/h or more, no significant accumulation of foreign matter was observed in the water spray pipe 17.

上記実施形態では、平面視して高炉中心15を中点とする仮想線分22の両端点の位置に散水ノズル16を配置したが、平面視して高炉中心15回りに回転対称な仮想正多角形の各頂点の位置に散水ノズル16を配置してもよい。平面視して高炉中心15回りに回転対称な仮想正三角形23の各頂点の位置に散水ノズル16を配置した第1の変形例を図3に、平面視して高炉中心15回りに回転対称な仮想正四角形24の各頂点の位置に散水ノズル16を配置した第2の変形例を図4にそれぞれ示す。 In the above embodiment, the water spray nozzles 16 are arranged at the positions of both end points of the virtual line segment 22 whose midpoint is the blast furnace center 15 when viewed from above, The water spray nozzle 16 may be arranged at each vertex of the rectangle. FIG. 3 shows a first modification example in which water nozzles 16 are arranged at each vertex of a virtual equilateral triangle 23 that is rotationally symmetrical about the blast furnace center 15 when viewed from above. A second modification example in which the water spray nozzles 16 are arranged at each vertex of the virtual square 24 is shown in FIG. 4, respectively.

なお、回転対象となる各位置(即ち、平面視して、高炉中心を中点とする仮想線分の両端点の位置、もしくは高炉中心回りに回転対称な仮想正多角形の各頂点の位置)に散水ノズル16を設ける際、幾何学的な該当位置(両端点または各頂点)に設けても良いし、所定の誤差が存在しても良い。本実施の形態では、散水ノズル16を設ける場所と幾何学的な該当位置との距離を、散水ノズル16を設ける場所(高さ位置)における高炉直径の5%以下としており、この程度の誤差であっても本発明の効果が得られることを確認している(高炉炉容積が5000m程度であれば、直径は約30mであり、1.5m以下の誤差であればよい)。本実施の形態における、各散水ノズル16の高低差(最も高い位置にある散水ノズルと最も低い位置にある散水ノズルの高低差)は0.5m以下としており、この程度の範囲であっても本発明の効果は得られている。 In addition, each position to be rotated (i.e., the position of both end points of a virtual line segment whose midpoint is the center of the blast furnace, or the position of each vertex of a virtual regular polygon that is rotationally symmetrical about the center of the blast furnace) When providing the water spray nozzle 16, it may be provided at a geometrically relevant position (both end points or each vertex), or a predetermined error may exist. In this embodiment, the distance between the location where the water spray nozzle 16 is installed and the corresponding geometric position is set to 5% or less of the diameter of the blast furnace at the location (height position) where the water spray nozzle 16 is installed. It has been confirmed that the effect of the present invention can be obtained even if there is a difference in diameter (if the blast furnace volume is about 5000 m3 , the diameter is about 30 m, and the error is 1.5 m or less). In this embodiment, the height difference between each water spray nozzle 16 (height difference between the highest and lowest water spray nozzles) is set to 0.5 m or less, and even within this range, the The effects of the invention have been obtained.

以上、本発明の実施の形態について説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、上記実施の形態では、ベルレス式高炉としているが、ベル式高炉でもよい。また、上記実施の形態では、噴射孔に散水ノズルを使用しているが、金属管などでもよい。 Although the embodiments of the present invention have been described above, the present invention is not limited to the configurations described in the above-described embodiments, and can be considered within the scope of the claims. It also includes other embodiments and modifications. For example, in the above embodiment, a bellless type blast furnace is used, but a bell type blast furnace may be used. Further, in the above embodiment, a water spray nozzle is used as the injection hole, but a metal pipe or the like may also be used.

本発明の効果について検証するために実施した検証試験について説明する。
コークス中心装入を採用している操業中の高炉を使用して本発明の効果について検証した。散水ノズルの噴射角度、噴射位置(対称、非対称)、高炉中心から散水ノズルまでの離隔距離、散水ノズル1本あたり水量、散水ノズル間の水量差をパラメータとして高炉炉頂設備の温度変化を測定した。
A verification test conducted to verify the effects of the present invention will be described.
The effects of the present invention were verified using an operating blast furnace that employs coke center charging. Temperature changes at the top of the blast furnace were measured using the spray nozzle spray angle, spray position (symmetrical, asymmetrical), distance from the center of the blast furnace to the water nozzle, water volume per spray nozzle, and water volume difference between the spray nozzles as parameters. .

高炉炉頂設備温度の良否判定は以下のように行った。
散水しない場合の高炉炉頂設備の温度は1200℃程度であり、高炉炉頂設備温度の低下代が600℃以上の場合◎(優)、500℃以上600℃未満の場合○(良)、500℃未満の場合×(不可)とした。
試験結果を表1に示す。
The quality of the blast furnace top equipment temperature was judged as follows.
The temperature of the blast furnace top equipment without watering is approximately 1200°C, and if the reduction in the temperature of the blast furnace top equipment is 600°C or more, ◎ (excellent), if it is 500°C or more and less than 600°C, ○ (good), 500. If the temperature was less than ℃, it was marked as × (not possible).
The test results are shown in Table 1.

Figure 0007348518000001
Figure 0007348518000001

検証試験より判明した事項を以下に列記する。
・実施例は全て温度良否が○以上であった。本発明に係る請求項1の条件の範囲内において、水量や噴射位置の離隔距離の値により温度低下代が異なるが、○または◎の評価が得られている。
・散水ノズルの交換頻度が半年~1年である実施例1に対し、高炉中心から散水ノズルまでの離隔距離を1.0m以上とした実施例5~8は散水ノズルの交換頻度が1年超であった。なお、実施例9の離隔距離も1.0mであったが、散水ノズル1本あたり水量を15.0ton/hとしたため、高炉炉頂設備への顕著な粉塵付着が観察された。
The matters revealed from the verification test are listed below.
- In all Examples, the temperature quality was ○ or higher. Within the scope of the conditions of claim 1 of the present invention, the temperature reduction amount varies depending on the amount of water and the distance between the injection positions, but evaluations of ◎ or ◎ were obtained.
・In contrast to Example 1, where the water nozzle was replaced every six months to one year, in Examples 5 to 8, where the distance from the center of the blast furnace to the water nozzle was 1.0 m or more, the water nozzle was replaced frequently over one year. Met. In addition, although the separation distance in Example 9 was also 1.0 m, since the amount of water per water nozzle was 15.0 ton/h, significant dust adhesion to the blast furnace top equipment was observed.

・散水ノズルを片側1箇所とした比較例1、噴射角度が仰角0°~仰角10°の範囲外であった比較例2及び比較例3、散水ノズル間の水量差が20質量%であった比較例4は温度良否が×であった。特に、噴射角度が仰角-45°であった比較例3は、ノズル詰まりが突然発生し、冷却能がダウンした。 ・Comparative Example 1 with one water spray nozzle on one side, Comparative Examples 2 and 3 where the spray angle was outside the range of elevation angle of 0° to elevation angle of 10°, and the difference in water amount between the water spray nozzles was 20% by mass In Comparative Example 4, the temperature was evaluated as poor. In particular, in Comparative Example 3 where the injection angle was -45° in elevation, nozzle clogging suddenly occurred and the cooling performance decreased.

10:炉頂部、11:炉内空間、12:旋回コーン(高炉炉頂設備)、13:旋回シュート(高炉炉頂設備)、15:高炉中心、16:散水ノズル(噴射孔)、17:散水配管、18:測温ゾンデ、20:原燃料、21:炉内中心部、22:仮想線分、23:仮想正三角形、24:仮想正四角形 10: Furnace top, 11: Furnace space, 12: Swivel cone (blast furnace top equipment), 13: Swivel chute (blast furnace top equipment), 15: Center of blast furnace, 16: Water nozzle (injection hole), 17: Water spray Piping, 18: Temperature measurement sonde, 20: Raw fuel, 21: Center inside the reactor, 22: Virtual line segment, 23: Virtual equilateral triangle, 24: Virtual square

Claims (2)

コークス中心装入を実施している高炉の操業において、
炉内原燃料面より上の炉内空間内で、平面視して、高炉中心を中点とする仮想線分の両端点の位置、もしくは前記高炉中心回りに回転対称な仮想正多角形の各頂点の位置に、水を噴射する噴射孔を設け、
高炉操業中に前記各噴射孔から前記高炉中心に向けて仰角0°~仰角10°の方向に水を噴射し、
前記各噴射孔から噴射される噴射水量(ton/h)の差を、前記各噴射孔から噴射される噴射水量の合計量の5質量%以内とすることを特徴とする高炉の操業方法。
In the operation of blast furnaces that carry out central coke charging,
The positions of both end points of a virtual line segment with the center of the blast furnace as its midpoint, or each vertex of a virtual regular polygon that is rotationally symmetrical about the center of the blast furnace when viewed from above within the furnace space above the raw fuel surface of the furnace. An injection hole for injecting water is provided at the position of
Injecting water from each injection hole toward the center of the blast furnace during blast furnace operation in a direction with an elevation angle of 0° to 10°;
A method for operating a blast furnace, characterized in that the difference in the amount of water (ton/h) injected from each of the injection holes is within 5% by mass of the total amount of water injected from each of the injection holes.
請求項1記載の高炉の操業方法において、前記各噴射孔の位置が前記高炉中心から水平方向に1.0m以上離隔し、前記各噴射孔から噴射される噴射水量が2ton/h~10ton/hであることを特徴とする高炉の操業方法。 2. The method of operating a blast furnace according to claim 1, wherein each injection hole is spaced apart from the center of the blast furnace by 1.0 m or more in the horizontal direction, and the amount of water injected from each injection hole is 2 ton/h to 10 ton/h. A method of operating a blast furnace characterized by the following.
JP2019224616A 2019-12-12 2019-12-12 How to operate a blast furnace Active JP7348518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019224616A JP7348518B2 (en) 2019-12-12 2019-12-12 How to operate a blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019224616A JP7348518B2 (en) 2019-12-12 2019-12-12 How to operate a blast furnace

Publications (2)

Publication Number Publication Date
JP2021091948A JP2021091948A (en) 2021-06-17
JP7348518B2 true JP7348518B2 (en) 2023-09-21

Family

ID=76311843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019224616A Active JP7348518B2 (en) 2019-12-12 2019-12-12 How to operate a blast furnace

Country Status (1)

Country Link
JP (1) JP7348518B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000309810A (en) 1999-04-21 2000-11-07 Kobe Steel Ltd Method for controlling temperature of blast furnace top gas
JP2003064407A (en) 2001-08-22 2003-03-05 Sumitomo Metal Ind Ltd Method for spraying water to blast furnace top
JP2016003350A (en) 2014-06-16 2016-01-12 Jfeスチール株式会社 Method for spraying water to blast furnace top
JP2018119198A (en) 2017-01-27 2018-08-02 Jfeスチール株式会社 Operation method for blast furnace
JP2019014951A (en) 2017-07-10 2019-01-31 株式会社神戸製鋼所 Raw material charging method for charging coke to central portion of blast furnace

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293303A (en) * 1985-10-18 1987-04-28 Kawasaki Steel Corp Method and apparatus for spraying water to top of vertical furnace
JPH04362108A (en) * 1991-06-11 1992-12-15 Kobe Steel Ltd Device for spraying water in blast furnace
KR20080058064A (en) * 2006-12-21 2008-06-25 주식회사 포스코 Furnace top center temperature control method of blast furnace
KR20100127635A (en) * 2009-05-26 2010-12-06 현대제철 주식회사 Device and method for protecting turning suit of furnace

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000309810A (en) 1999-04-21 2000-11-07 Kobe Steel Ltd Method for controlling temperature of blast furnace top gas
JP2003064407A (en) 2001-08-22 2003-03-05 Sumitomo Metal Ind Ltd Method for spraying water to blast furnace top
JP2016003350A (en) 2014-06-16 2016-01-12 Jfeスチール株式会社 Method for spraying water to blast furnace top
JP2018119198A (en) 2017-01-27 2018-08-02 Jfeスチール株式会社 Operation method for blast furnace
JP2019014951A (en) 2017-07-10 2019-01-31 株式会社神戸製鋼所 Raw material charging method for charging coke to central portion of blast furnace

Also Published As

Publication number Publication date
JP2021091948A (en) 2021-06-17

Similar Documents

Publication Publication Date Title
JP5650198B2 (en) Device for injecting a gas stream into a solid fluidized bed
EP2338954B1 (en) Coke dry quenching facility
JPWO2005080272A1 (en) Metal chloride production equipment
JP2018512499A (en) Nozzle and tundish equipment for granulation of molten material
JP7348518B2 (en) How to operate a blast furnace
EP0605832B1 (en) Apparatus for manufacturing cement clinker
CN106435065A (en) Granulation system for processing high-temperature molten slag
CN103232863A (en) High-temperature gas washing and cooling device
JP6828225B2 (en) Raw material charging method for charging coke into the center of a blast furnace
CN112779030B (en) Dry quenching system and control method thereof
JP7371766B2 (en) Method for manufacturing sintered ore
CN209702797U (en) A kind of novel oxygen lance nozzle
JP5554607B2 (en) Coke dry fire extinguishing equipment
JP3841014B2 (en) Blast furnace operation method
KR101600881B1 (en) Multi Cooling System for Producing Metal and Alloy Spherical Powders
JP4069837B2 (en) Hot phosphorus dephosphorization method
JP5171919B2 (en) Method for producing granular mold powder for continuous casting of steel
JP7124666B2 (en) Sinter cooling device
US5944513A (en) Apparatus for manufacturing cement clinker
CN217058344U (en) Flow guide mechanism, ventilation device and production equipment
JPH06191615A (en) Powder dispersing device
JP2003064407A (en) Method for spraying water to blast furnace top
JP3226809B2 (en) Manufacturing method of hollow granule mold flux
CN113932618A (en) High-temperature smoke powder fluidization cooling tower based on slag self-cleaning
CN203144355U (en) High-temperature gas washing and cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230523

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20230703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230821

R151 Written notification of patent or utility model registration

Ref document number: 7348518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151