JP7347508B2 - Adhesive sheet for vacuum pressure forming and its use - Google Patents

Adhesive sheet for vacuum pressure forming and its use Download PDF

Info

Publication number
JP7347508B2
JP7347508B2 JP2021526927A JP2021526927A JP7347508B2 JP 7347508 B2 JP7347508 B2 JP 7347508B2 JP 2021526927 A JP2021526927 A JP 2021526927A JP 2021526927 A JP2021526927 A JP 2021526927A JP 7347508 B2 JP7347508 B2 JP 7347508B2
Authority
JP
Japan
Prior art keywords
meth
pressure
mass
polymer
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021526927A
Other languages
Japanese (ja)
Other versions
JPWO2020256118A1 (en
Inventor
祐介 橋本
賢一 中村
伸幸 竹谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Publication of JPWO2020256118A1 publication Critical patent/JPWO2020256118A1/en
Application granted granted Critical
Publication of JP7347508B2 publication Critical patent/JP7347508B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/10Forming by pressure difference, e.g. vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/12Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor of articles having inserts or reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/14Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor using multilayered preforms or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/24Plastics; Metallised plastics based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/25Plastics; Metallised plastics based on macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)
  • Laminated Bodies (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Description

関連出願の相互参照Cross-reference of related applications

本出願は、2019年6月21日に出願された日本特許出願番号2019-115239号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2019-115239 filed on June 21, 2019, and the contents thereof are incorporated herein.

本開示は、真空圧空成形用粘着シート及びその利用に関する。 The present disclosure relates to a pressure-sensitive adhesive sheet for vacuum-pressure forming and its use.

粘着剤(感圧接着剤ともいう)は、例えば、テープ、ラベル等の形態に加工され、幅広い用途において利用されている。また、その被着対象物もプラスチック、紙類、金属、ガラス及び陶器等、様々な物質に対して適用される。 BACKGROUND ART Adhesives (also referred to as pressure-sensitive adhesives) are processed into forms such as tapes and labels, and are used in a wide range of applications. Moreover, it can be applied to various materials such as plastic, paper, metal, glass, and ceramics.

さらに、粘着剤は、家電製品又は自動車内外装用品等の部材の保護並びに意匠性の付与等を目的とした加飾フィルムにも利用される。加飾フィルムによる成形方法としては、射出成形によるインモールド成形の他、真空成形、真空圧空成形等により成形品に貼合又は転写する方法等が用いられている。ここで、貼合(ラミネート)により成形する場合、加飾フィルムとしては、塩化ビニル樹脂又はポリオレフィン樹脂等の熱可塑性樹脂からなる基材層に加飾層及び粘着剤層等を積層した構成のものが用いられる。また、転写により成形する場合、保護層、加飾層及び粘着剤層を含む積層体が、成形体表面に転写される。このような粘着剤層を有する真空成形用加飾フィルムが開示されている(特許文献1及び2)。 Furthermore, adhesives are also used in decorative films for the purpose of protecting components such as home appliances or automobile interior and exterior products, as well as imparting design features. As a method for forming a decorative film, in addition to in-mold molding using injection molding, methods of laminating or transferring the decorative film onto a molded product using vacuum forming, vacuum-pressure forming, etc. are used. Here, when forming by lamination, the decorative film has a structure in which a decorative layer, an adhesive layer, etc. are laminated on a base material layer made of a thermoplastic resin such as vinyl chloride resin or polyolefin resin. is used. In addition, when molding is performed by transfer, a laminate including a protective layer, a decoration layer, and an adhesive layer is transferred onto the surface of the molded product. A decorative film for vacuum forming having such an adhesive layer has been disclosed (Patent Documents 1 and 2).

特開2012-213891号公報JP2012-213891A 特開2012-213894号公報Japanese Patent Application Publication No. 2012-213894

加飾フィルムの用途においては、曲面や凹凸部等の複雑な形状に追従することが求められる。このため、前記の成形方法の中でも、「真空圧空成形」が注目されている。これは、熱可塑性樹脂からなる加飾フィルムを加熱軟化させ、型又は基材と加飾フィルムの間を真空にし、圧縮空気圧力で加飾フィルムを型又は基材に密着させて成形する方法である。 In the application of decorative films, it is required to follow complex shapes such as curved surfaces and uneven parts. For this reason, among the above-mentioned molding methods, "vacuum-pressure molding" is attracting attention. This is a method in which a decorative film made of thermoplastic resin is heated and softened, a vacuum is created between the mold or base material and the decorative film, and the decorative film is brought into close contact with the mold or base material using compressed air pressure. be.

しかしながら、特許文献1及び2記載の真空成形用加飾フィルムを「真空圧空成形」に用いた場合、常温での接着性は良好ではあるものの、基材へ貼着後の加飾フィルムにライン状の凹凸が発生するという外観不良(いわゆる、「ショックライン」、「ショックマーク」)が生じることがある。 However, when the decorative films for vacuum forming described in Patent Documents 1 and 2 are used for "vacuum-pressure forming", although the adhesion at room temperature is good, the decorative films after being attached to the base material have line-like formations. Appearance defects such as unevenness (so-called "shock lines" and "shock marks") may occur.

本開示は、上記事情に鑑みてなされたものであり、その目的は、基材へ貼着した後の加飾フィルムにショックラインが発生することを抑制できる真空圧空成形用粘着シート、同シートを用いた加飾フィルム、及び、同加飾フィルムを備える加飾成形体を提供することである。 The present disclosure has been made in view of the above circumstances, and its purpose is to provide a pressure-sensitive adhesive sheet for vacuum-pressure forming that can suppress the generation of shock lines on a decorative film after being attached to a base material. An object of the present invention is to provide a decorative film and a decorative molded article equipped with the decorative film.

本発明者らは、前記課題を解決するために鋭意検討した結果、特定の真空圧空成形用粘着シートを用いることで、前記のショックラインを抑制できることを見出した。本開示は以下の通りである。 As a result of intensive studies to solve the above problem, the present inventors have found that the shock line can be suppressed by using a specific pressure-sensitive adhesive sheet for vacuum pressure forming. The present disclosure is as follows.

〔1〕粘着剤組成物から形成される粘着剤層と、薄膜層とを有し、前記薄膜層は前記粘着剤層の少なくとも片面に配置され、前記粘着剤層よりも厚みが薄く、当該薄膜層の融点、軟化点若しくはガラス転移温度(Tg)が70℃以上であるか、又は、前記薄膜層は前記粘着剤層の表層部分であり、前記粘着剤層のX線光電子分光分析により得られるその表層部分の組成から計算されるTgが70℃以上である、真空圧空成形用粘着シート。
〔2〕前記粘着剤組成物が、アクリル系粘着剤組成物である、〔1〕に記載の真空圧空成形用粘着シート。
〔3〕前記アクリル系粘着剤組成物が、ビニル重合体(A)及びアクリル系粘着性ポリマー(B)を含み、前記ビニル重合体(A)は、Tgが30℃以上200℃以下であり、数平均分子量が500~10,000であり、前記アクリル系粘着性ポリマー(B)100質量部に対して0.5質量部以上60質量部以下含有されており、前記粘着剤層は、当該粘着剤層全体のTgである第1のTgが-80℃以上20℃以下であり、前記粘着剤層のX線光電子分光分析により得られるその表層部分の組成から計算されるTgである第2のTgが、前記第1のTgよりも30℃以上高い、〔2〕に記載の真空圧空成形用粘着シート。
〔4〕前記粘着剤層の少なくとも一方の表層部分において、前記ビニル重合体(A)をより高濃度で含有する、〔3〕に記載の真空圧空成形用粘着シート。
〔5〕前記薄膜層が、ポリオレフィン系樹脂、ロジンエステル系樹脂、ポリエステル系樹脂及び(メタ)アクリル系樹脂からなる群より選択される少なくとも1種を含む、〔1〕~〔4〕のいずれか一に記載の真空圧空成形用粘着シート。
〔6〕〔1〕~〔5〕のいずれか一に記載の真空圧空成形用粘着シートを製造する方法であって、
前記薄膜層を剥離フィルム上に形成する、真空圧空成形用粘着シートの製造方法。
〔7〕真空圧空成形用粘着シートを製造する方法であって、薄膜層を形成する工程と、前記薄膜層の上に粘着剤組成物を塗布して粘着剤層を形成する工程と、を含み、前記薄膜層は前記粘着剤層よりも厚みが薄く、当該薄膜層の融点、軟化点又はガラス転移温度(Tg)が70℃以上である、真空圧空成形用粘着シートの製造方法。
〔8〕〔1〕~〔5〕のいずれか一に記載の真空圧空成形用粘着シートを有する加飾フィルム。
〔9〕〔8〕に記載の加飾フィルムを成形体に貼着してなる加飾成形体。
[1] It has an adhesive layer formed from an adhesive composition and a thin film layer, the thin film layer is disposed on at least one side of the adhesive layer, is thinner than the adhesive layer, and has a thin film layer. The melting point, softening point, or glass transition temperature (Tg) of the layer is 70°C or higher, or the thin film layer is a surface layer of the adhesive layer, and is obtained by X-ray photoelectron spectroscopy analysis of the adhesive layer. A pressure-sensitive adhesive sheet for vacuum-pressure forming, which has a Tg calculated from the composition of its surface layer portion of 70° C. or higher.
[2] The pressure-sensitive adhesive sheet for vacuum-pressure forming according to [1], wherein the pressure-sensitive adhesive composition is an acrylic pressure-sensitive adhesive composition.
[3] The acrylic adhesive composition includes a vinyl polymer (A) and an acrylic adhesive polymer (B), and the vinyl polymer (A) has a Tg of 30°C or more and 200°C or less, The adhesive layer has a number average molecular weight of 500 to 10,000, and is contained in an amount of 0.5 parts by mass or more and 60 parts by mass or less based on 100 parts by mass of the acrylic adhesive polymer (B). The first Tg, which is the Tg of the entire adhesive layer, is -80°C or more and 20°C or less, and the second Tg, which is the Tg calculated from the composition of the surface layer portion obtained by X-ray photoelectron spectroscopy analysis of the adhesive layer. The pressure-sensitive adhesive sheet for vacuum-pressure forming according to [2], wherein the Tg is 30° C. or more higher than the first Tg.
[4] The pressure-sensitive adhesive sheet for vacuum-pressure forming according to [3], which contains the vinyl polymer (A) at a higher concentration in at least one surface layer portion of the pressure-sensitive adhesive layer.
[5] Any one of [1] to [4], wherein the thin film layer contains at least one selected from the group consisting of polyolefin resin, rosin ester resin, polyester resin, and (meth)acrylic resin. 1. The pressure-sensitive adhesive sheet for vacuum-pressure forming as described in 1.
[6] A method for producing the pressure-sensitive adhesive sheet for vacuum-pressure forming according to any one of [1] to [5], comprising:
A method for producing a pressure-sensitive adhesive sheet for vacuum-pressure forming, comprising forming the thin film layer on a release film.
[7] A method for producing a pressure-sensitive adhesive sheet for vacuum-pressure forming, comprising the steps of forming a thin film layer, and applying a pressure-sensitive adhesive composition on the thin film layer to form a pressure-sensitive adhesive layer. A method for producing a pressure-sensitive adhesive sheet for vacuum-pressure forming, wherein the thin film layer is thinner than the pressure-sensitive adhesive layer, and the thin film layer has a melting point, softening point, or glass transition temperature (Tg) of 70° C. or higher.
[8] A decorative film comprising the pressure-sensitive adhesive sheet for vacuum-pressure forming according to any one of [1] to [5].
[9] A decorated molded article obtained by adhering the decorative film described in [8] to a molded article.

本開示の真空圧空成形用粘着シートによれば、基材へ貼着した後に加飾フィルムにショックラインが発生することを抑制できる。また、このような加飾フィルムを備える加飾成形体を得ることができる。 According to the pressure-sensitive adhesive sheet for vacuum-pressure forming of the present disclosure, it is possible to suppress the occurrence of shock lines in the decorative film after it is attached to a base material. Moreover, a decorated molded article including such a decorative film can be obtained.

以下、本明細書に開示される技術の各種実施形態を詳しく説明する。なお、本明細書において、「(メタ)アクリル」とは、アクリル及び/又はメタクリルを意味し、「(メタ)アクリレート」とは、アクリレート及び/又はメタクリレートを意味する。また、「(メタ)アクリロイル基」とは、アクリロイル基及び/又はメタクリロイル基を意味する。 Various embodiments of the technology disclosed in this specification will be described in detail below. In addition, in this specification, "(meth)acrylic" means acrylic and/or methacryl, and "(meth)acrylate" means acrylate and/or methacrylate. Moreover, "(meth)acryloyl group" means an acryloyl group and/or a methacryloyl group.

本開示の真空圧空成形用粘着シートは、粘着剤組成物から形成される粘着剤層と、薄膜層とを有する。本開示の真空圧空成形用粘着シートの薄膜層は、以下の[1]又は[2]である。
[1]前記薄膜層は前記粘着剤層の少なくとも片面に配置され、当該薄膜層は前記粘着剤層よりも厚みが薄く、当該薄膜層の融点、軟化点若しくはガラス転移温度(Tg)が70℃以上である。
[2]前記薄膜層は前記粘着剤層の表層部分であり、前記粘着剤層のX線光電子分光分析により得られるその表層部分の組成から計算されるTgが70℃以上である。
The pressure-sensitive adhesive sheet for vacuum-pressure forming of the present disclosure includes a pressure-sensitive adhesive layer formed from a pressure-sensitive adhesive composition and a thin film layer. The thin film layer of the pressure-sensitive adhesive sheet for vacuum-pressure forming of the present disclosure is the following [1] or [2].
[1] The thin film layer is disposed on at least one side of the adhesive layer, the thin film layer is thinner than the adhesive layer, and the melting point, softening point, or glass transition temperature (Tg) of the thin film layer is 70°C. That's all.
[2] The thin film layer is a surface layer of the adhesive layer, and has a Tg of 70° C. or higher calculated from the composition of the surface layer obtained by X-ray photoelectron spectroscopy of the adhesive layer.

本開示の真空圧空成形用粘着シートは、薄膜層の接着性が発現しない温度で予備賦形した後、薄膜層の接着性が発現する温度で真空圧空成形する場合に、特に有効である。本開示に係る粘着剤組成物(以下、「本粘着剤組成物」ともいう。)、本開示に係る薄膜層(以下、「本薄膜層」ともいう。)、本開示の真空圧空成形用粘着シート(以下、「本粘着シート」という。)の製造方法、加飾フィルム及び加飾成形体、並びに、本粘着剤組成物の好ましい態様の詳細について、順次説明する。 The pressure-sensitive adhesive sheet for vacuum-pressure forming of the present disclosure is particularly effective when preforming at a temperature at which the adhesiveness of the thin film layer does not develop, and then vacuum-pressure forming at a temperature at which the adhesiveness of the thin film layer develops. Adhesive composition according to the present disclosure (hereinafter also referred to as "the present adhesive composition"), thin film layer according to the present disclosure (hereinafter also referred to as "the present thin film layer"), adhesive for vacuum pressure air forming of the present disclosure The details of the manufacturing method of the sheet (hereinafter referred to as "the present adhesive sheet"), the decorative film and the decorative molded article, and the preferred embodiments of the present adhesive composition will be explained in sequence.

1.本粘着剤組成物
本粘着剤組成物の種類としては、接着性、耐熱性、耐侯性、耐薬品性等の用途に応じた要求性能を満たすものであれば特に限定されず、アクリル系粘着剤組成物、ポリエステル系粘着剤組成物、ウレタン系粘着剤組成物、シリコーン系粘着剤組成物、ゴム系粘着剤組成物等が挙げられる。これらの中でも、耐久性とコストのバランスが優れる点で、アクリル系粘着剤組成物が好ましい。
1. This adhesive composition The type of this adhesive composition is not particularly limited as long as it satisfies the required performance according to the application such as adhesiveness, heat resistance, weather resistance, chemical resistance, etc. Acrylic adhesive composition compositions, polyester adhesive compositions, urethane adhesive compositions, silicone adhesive compositions, rubber adhesive compositions, and the like. Among these, acrylic pressure-sensitive adhesive compositions are preferred because of their excellent balance between durability and cost.

前記アクリル系粘着剤組成物は、アクリル系粘着性ポリマー(B)を含有することが好ましい。さらに、前記アクリル系粘着剤組成物は、特定のガラス転移温度と数平均分子量とを有するビニル重合体(A)及びアクリル系粘着性ポリマー(B)を含有することが好ましい。前記アクリル系粘着剤組成物がビニル重合体(A)及びアクリル系粘着性ポリマー(B)を含有する場合、ビニル重合体(A)を粘着剤層の表層へ偏析させることにより、粘着剤層の表層部分のガラス転移温度を制御することが好ましい。 The acrylic adhesive composition preferably contains an acrylic adhesive polymer (B). Further, the acrylic adhesive composition preferably contains a vinyl polymer (A) and an acrylic adhesive polymer (B) having a specific glass transition temperature and number average molecular weight. When the acrylic pressure-sensitive adhesive composition contains a vinyl polymer (A) and an acrylic pressure-sensitive adhesive polymer (B), the vinyl polymer (A) is segregated to the surface layer of the pressure-sensitive adhesive layer. It is preferable to control the glass transition temperature of the surface layer portion.

粘着剤層におけるビニル重合体(A)の偏析により、粘着剤層のX線光電子分光分析により得られるその表層部分の組成から計算されるTgを、粘着剤層全体のTgよりも30℃以上高くすることが好ましい。これにより、粘着剤層の接着特性を制御して良好な接着強度を得ることができる。すなわち、粘着剤の表層で構成される接着界面近傍において相対的に高いTgを備えるため、従来にはない良好な接着性を呈することができる。さらに、高温下であっても粘着剤層のずれや剥がれを抑制でき、良好な耐久性を呈することができる。なお、ビニル重合体(A)の粘着剤層表層への偏析挙動は、特定のビニル重合体(A)とアクリル系粘着性ポリマー(B)とが完全には相溶しない一方、完全に相分離しないことに基づいている。好ましくは、ビニル重合体(A)がアクリル系粘着性ポリマー(B)よりも低極性である。 Due to the segregation of the vinyl polymer (A) in the adhesive layer, the Tg calculated from the composition of the surface layer obtained by X-ray photoelectron spectroscopy of the adhesive layer is 30°C or more higher than the Tg of the entire adhesive layer. It is preferable to do so. This makes it possible to control the adhesive properties of the pressure-sensitive adhesive layer and obtain good adhesive strength. That is, since the adhesive has a relatively high Tg near the adhesive interface constituted by the surface layer of the adhesive, it is possible to exhibit excellent adhesiveness that has not been seen in the past. Furthermore, even under high temperatures, the adhesive layer can be prevented from shifting or peeling off, and can exhibit good durability. The segregation behavior of the vinyl polymer (A) on the surface layer of the adhesive layer is such that while the specific vinyl polymer (A) and the acrylic adhesive polymer (B) are not completely compatible, they are completely phase separated. It's based on what you don't do. Preferably, the vinyl polymer (A) has lower polarity than the acrylic adhesive polymer (B).

ビニル重合体(A)としては、アクリル系粘着性ポリマー(B)に対して完全には相溶しないビニル重合体を用いることが好ましい。その際、粘着剤組成物におけるビニル重合体(A)の使用量を適宜調整することにより、偏析の程度を調節することができる。ビニル重合体(A)の使用量が少なすぎると、粘着剤層表層への偏析が不十分となり、十分な効果が得られない場合がある。一方、ビニル重合体(A)の使用量が多すぎると、アクリル系粘着性ポリマー(B)と相分離する結果、粘着剤層の透明性や接着性能が低下する傾向がある。その他にも、ビニル重合体(A)のガラス転移温度や架橋剤量等が適宜調整され、それにより粘着剤層の表層部分のガラス転移温度を調節可能となっている。なお、ビニル重合体(A)、アクリル系粘着性ポリマー(B)及びその他の成分については、後述の「5.本粘着剤組成物の好ましい態様」において、詳細に説明する。 As the vinyl polymer (A), it is preferable to use a vinyl polymer that is not completely compatible with the acrylic adhesive polymer (B). At that time, the degree of segregation can be adjusted by appropriately adjusting the amount of vinyl polymer (A) used in the adhesive composition. If the amount of vinyl polymer (A) used is too small, segregation to the surface layer of the adhesive layer will be insufficient, and sufficient effects may not be obtained. On the other hand, if the amount of the vinyl polymer (A) used is too large, it tends to undergo phase separation from the acrylic adhesive polymer (B), resulting in a decrease in the transparency and adhesive performance of the adhesive layer. In addition, the glass transition temperature of the vinyl polymer (A), the amount of crosslinking agent, etc. are adjusted as appropriate, thereby making it possible to adjust the glass transition temperature of the surface layer portion of the adhesive layer. The vinyl polymer (A), acrylic adhesive polymer (B), and other components will be explained in detail in "5. Preferred embodiments of the present adhesive composition" below.

本発明で使用される粘着剤組成物から形成される粘着剤層の厚さは、粘着剤組成物の種類や使用目的に応じて適宜選定されるものであり、特に限定されない。例えば、層全体の平均値として、2~200μmであり、また、例えば15~100μmであり、また、例えば20~70μmである。 The thickness of the adhesive layer formed from the adhesive composition used in the present invention is appropriately selected depending on the type of the adhesive composition and the purpose of use, and is not particularly limited. For example, the average value of the entire layer is from 2 to 200 μm, for example from 15 to 100 μm, and for example from 20 to 70 μm.

2.本薄膜層
本薄膜層は、真空圧空成形により本粘着シートを被着体に接着させる際の被着体との接着面を有する。本薄膜層は、前記の通り、粘着剤層の少なくとも一方の面に配置され、粘着剤層よりも厚みが薄い層であって、融点、軟化点若しくはTgが70℃以上の薄膜層(以下、「薄膜層1」ともいう。)であるか、又は、粘着剤層の表層部分を構成し、粘着剤層のX線光電子分光分析により得られるその表層部分の組成から計算されるTgが70℃以上の薄膜層(以下、「薄膜層2」ともいう。)である。薄膜層の厚さは、使用目的に応じて適宜選定されるものであり、特に限定されない。薄膜層の厚さは、薄膜層全体の平均値として、例えば、0.001~50μmであり、また、例えば0.005~20μmであり、また、例えば0.01~15μmであり、また、例えば0.01~10μmである。
2. This thin film layer This thin film layer has an adhesion surface to an adherend when the present adhesive sheet is adhered to an adherend by vacuum pressure forming. As mentioned above, this thin film layer is a layer that is disposed on at least one side of the adhesive layer, is thinner than the adhesive layer, and has a melting point, softening point, or Tg of 70°C or higher (hereinafter referred to as a thin film layer). (Also referred to as "thin film layer 1." The above thin film layer (hereinafter also referred to as "thin film layer 2"). The thickness of the thin film layer is appropriately selected depending on the purpose of use and is not particularly limited. The thickness of the thin film layer is, for example, 0.001 to 50 μm, for example, 0.005 to 20 μm, or, for example, 0.01 to 15 μm, as an average value of the entire thin film layer, and, for example, It is 0.01 to 10 μm.

ここで、本薄膜層を有する真空圧空成形用粘着シートは、本薄膜層が室温等の低温条件下では無~微タック性であるため、取り扱いが容易である。また、本粘着シート、及び本粘着シートを有する加飾フィルムは、薄膜層の接着性が発現しない温度(以下、「第1の温度」ともいう。)で予備賦形した後、薄膜層の接着性が発現する温度(以下、「第2の温度」ともいう。)で加熱及び加圧して被着体に接着する場合に、特に有効であるという特徴を有している。前記の予備賦形を行う場合は、予備賦形から接着までを同一の真空圧空成形機内で行っても良いし、予備賦形を真空圧空成形機とは異なる装置で行った後、真空圧空成形機へ投入し、加熱及び加圧による接着を行っても良い。真空圧空成形機の例としては、浅野研究所製の熱板式減圧被覆成形機(TFHシリーズ)、布施真空製TOM成形機(NGFシリーズ)、ナビタス製のNATS空気転写機等が挙げられる。これらの中でも、高温スチームで成形体を均一に加熱圧空することができるNATS空気転写機が、ショックライン抑制と高い接着性発現とを奏するため好ましい。また、真空圧空成形機と類似の原理を有する真空成形機や圧空成形機を利用することも可能である。 Here, the pressure-sensitive adhesive sheet for vacuum-pressure forming having the present thin film layer is easy to handle because the present thin film layer has no to slight tackiness under low temperature conditions such as room temperature. In addition, the present adhesive sheet and the decorative film having the present adhesive sheet are preformed at a temperature at which the adhesiveness of the thin film layer does not develop (hereinafter also referred to as "first temperature"), and then the adhesiveness of the thin film layer is It has the characteristic that it is particularly effective when bonding to an adherend by heating and pressurizing at a temperature at which the adhesive properties are expressed (hereinafter also referred to as "second temperature"). When performing the above-mentioned pre-shaping, the steps from pre-shaping to adhesion may be performed in the same vacuum-pressure forming machine, or after performing the pre-shaping in a device different from the vacuum-pressure forming machine, vacuum-pressure forming can be performed. It may be put into a machine and bonded by heating and pressure. Examples of the vacuum-pressure forming machine include a hot plate vacuum coating machine (TFH series) manufactured by Asano Institute, a TOM forming machine (NGF series) manufactured by Fuse Vacuum, and a NATS air transfer machine manufactured by Navitas. Among these, the NATS air transfer machine, which can uniformly heat and pressurize the molded body with high-temperature steam, is preferable because it suppresses shock lines and exhibits high adhesiveness. Further, it is also possible to use a vacuum forming machine or a pressure forming machine having a principle similar to that of a vacuum forming machine.

第1の温度は、例えば100℃未満であり、95℃以下であることが好ましい。第1の温度の下限は、例えば20℃以上であり、40℃以上であることが好ましく、50℃以上であることがより好ましい。第2の温度は、第1の温度よりの高温側の温度であればよいが、例えば100℃以上であり、110℃以上であることが好ましい。第2の温度の上限は、例えば230℃以下であり、200℃以下であることが好ましい。 The first temperature is, for example, less than 100°C, preferably 95°C or less. The lower limit of the first temperature is, for example, 20°C or higher, preferably 40°C or higher, and more preferably 50°C or higher. The second temperature may be any temperature higher than the first temperature, but is, for example, 100°C or higher, preferably 110°C or higher. The upper limit of the second temperature is, for example, 230°C or less, and preferably 200°C or less.

2-1.薄膜層1
薄膜層1は、融点、軟化点又はTgが70℃以上である。薄膜層1としては、融点、軟化点又はTgが70℃以上の熱可塑性樹脂から形成される薄膜層が挙げられる。前記熱可塑性樹脂としては、ポリオレフィン系樹脂、ロジンエステル系樹脂、ポリエステル系樹脂、(メタ)アクリル系樹脂、テルペン系樹脂、スチレン系等の石油樹脂、エチレン・酢酸ビニル系樹脂、塩化ビニル・酢酸ビニル系樹脂、ウレタン系樹脂等やこれらの樹脂を含む接着剤組成物等が挙げられる。これらの中でも、本開示の奏する効果が大きい点で、ポリオレフィン系樹脂、ロジンエステル系樹脂、ポリエステル系樹脂及び(メタ)アクリル系樹脂からなる群より選択される少なくとも1種を含むことが好ましく、ポリオレフィン系樹脂、ロジンエステル系樹脂、及びポリエステル系樹脂からなる群より選択される少なくとも1種を含むことがより好ましく、ポリオレフィン系樹脂が特に好ましい。
2-1. Thin film layer 1
The thin film layer 1 has a melting point, softening point, or Tg of 70° C. or higher. Examples of the thin film layer 1 include a thin film layer formed from a thermoplastic resin having a melting point, softening point, or Tg of 70° C. or higher. The thermoplastic resins include polyolefin resins, rosin ester resins, polyester resins, (meth)acrylic resins, terpene resins, petroleum resins such as styrene, ethylene/vinyl acetate resins, vinyl chloride/vinyl acetate, etc. Examples thereof include urethane-based resins, urethane-based resins, and adhesive compositions containing these resins. Among these, it is preferable to contain at least one selected from the group consisting of polyolefin resins, rosin ester resins, polyester resins, and (meth)acrylic resins, in terms of the great effects of the present disclosure; It is more preferable that the resin contains at least one selected from the group consisting of resins, rosin ester resins, and polyester resins, and polyolefin resins are particularly preferable.

薄膜層1の作製方法は、特に限定されないが、熱可塑性樹脂を含む組成物を、グラビアコーター、ナイフコーター、スロットダイコーター等の塗工機や、グラビア印刷、オフセット印刷、スクリーン印刷、インクジェット印刷等の印刷機を用いて基材に塗布する方法が好ましい。これらのうち、生産性の観点から、グラビアコーターを用いる方法がより好ましい。以下、ポリオレフィン系樹脂、ロジンエステル系樹脂及びポリエステル系樹脂について、説明する。 The method for producing the thin film layer 1 is not particularly limited, but the composition containing the thermoplastic resin may be coated with a coating machine such as a gravure coater, a knife coater, or a slot die coater, or by gravure printing, offset printing, screen printing, inkjet printing, etc. A method of coating the base material using a printing machine is preferred. Among these, from the viewpoint of productivity, the method using a gravure coater is more preferable. Hereinafter, polyolefin resin, rosin ester resin, and polyester resin will be explained.

<ポリオレフィン系樹脂>
ポリオレフィン系樹脂としては、エチレン、プロピレン、1-ブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、1-ヘプテン、4-メチル-1-ヘキセン、1-オクテン、4,4-ジメチル-1-ヘキセン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン等の炭素数2~20のα-オレフィン類や、ブタジエン、1,5-ヘキサジエン、エチリデンノルボルネン、ジシクロペンタジエン等の炭素数2~20の共役又は非共役ジエン類の単独重合体又は共重合体を挙げることができる。また、エチレン/アクリル酸エチル共重合体、エチレン/酢酸ビニル共重合体、スチレン/ブタジエン共重合体、スチレン/イソプレン共重合体等であっても良い。共重合体を用いる場合は、ランダム共重合体、ブロック共重合体、グラフト共重合体を適宜選択することができる。また、これらのポリオレフィンは、二種以上を併用しても良い。
<Polyolefin resin>
Examples of polyolefin resins include ethylene, propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 3-methyl-1-pentene, 4-methyl-1-pentene, 1-heptene, α-olefins having 2 to 20 carbon atoms such as 4-methyl-1-hexene, 1-octene, 4,4-dimethyl-1-hexene, 1-nonene, 1-decene, 1-undecene, and 1-dodecene; Examples include homopolymers or copolymers of conjugated or non-conjugated dienes having 2 to 20 carbon atoms, such as butadiene, 1,5-hexadiene, ethylidene norbornene, and dicyclopentadiene. Further, ethylene/ethyl acrylate copolymer, ethylene/vinyl acetate copolymer, styrene/butadiene copolymer, styrene/isoprene copolymer, etc. may be used. When using a copolymer, a random copolymer, a block copolymer, or a graft copolymer can be appropriately selected. Moreover, two or more types of these polyolefins may be used in combination.

ポリオレフィン系樹脂の好ましい例としては、ポリプロピレン、プロピレン/エチレン共重合体、プロピレン/1-ブテン共重合体、プロピレン/エチレン/1-ブテン共重合体、プロピレン/エチレン/1-オクテン共重合体を挙げることができる。プロピレン共重合体を使用する場合のプロピレン含量は、プロピレン共重合体全体を100質量%とした場合、50質量%以上が好ましく、より好ましくは、60質量%以上、さらに好ましくは、75質量%以上である。 Preferred examples of polyolefin resins include polypropylene, propylene/ethylene copolymer, propylene/1-butene copolymer, propylene/ethylene/1-butene copolymer, and propylene/ethylene/1-octene copolymer. be able to. When using a propylene copolymer, the propylene content is preferably 50% by mass or more, more preferably 60% by mass or more, still more preferably 75% by mass or more, when the entire propylene copolymer is 100% by mass. It is.

ポリオレフィン系樹脂は、ポリプロピレン等の低極性材料に対する接着性が高い点で、変性ポリオレフィン系樹脂であることが好ましい。変性ポリオレフィン系樹脂の種類としては、酸変性ポリオレフィン系樹脂、塩素化ポリオレフィン系樹脂、カルボジイミド変性ポリオレフィン系樹脂、ウレア変性ポリオレフィン系樹脂、イミン変性ポリオレフィン系樹脂等を挙げることができる。これらの変性は、二種以上の変性を順次施したものであっても良い。二種以上の変性を順次施した変性ポリオレフィン系樹脂の具体例としては、酸変性塩素化ポリオレフィン系樹脂、アクリル変性塩素化ポリオレフィン系樹脂、ウレタン変性塩素化ポリオレフィン系樹脂等を挙げることができる。これらの内では、酸変性ポリオレフィン系樹脂、塩素化ポリオレフィン系樹脂、及び酸変性塩素化ポリオレフィン系樹脂よりなる群から選択される少なくとも1種を好適に使用することができ、酸変性ポリオレフィン系樹脂が特に好ましい。 The polyolefin resin is preferably a modified polyolefin resin because it has high adhesiveness to low polarity materials such as polypropylene. Examples of the modified polyolefin resin include acid-modified polyolefin resin, chlorinated polyolefin resin, carbodiimide-modified polyolefin resin, urea-modified polyolefin resin, and imine-modified polyolefin resin. These modifications may be made by sequentially performing two or more modifications. Specific examples of modified polyolefin resins that have been sequentially subjected to two or more modifications include acid-modified chlorinated polyolefin resins, acrylic-modified chlorinated polyolefin resins, urethane-modified chlorinated polyolefin resins, and the like. Among these, at least one selected from the group consisting of acid-modified polyolefin resins, chlorinated polyolefin resins, and acid-modified chlorinated polyolefin resins can be preferably used, and acid-modified polyolefin resins Particularly preferred.

酸変性ポリオレフィン系樹脂は、上記のポリオレフィン系樹脂に対して、好ましくは不飽和カルボン酸又はその無水物をグラフト共重合させることによりることができる。本変性反応には従来公知の方法を用いることができ、例えば、押出機を用いて溶融したポリオレフィン系樹脂に不飽和カルボン酸又はその無水物を添加して共重合させる方法、溶媒に溶解したポリオレフィン系樹脂に不飽和カルボン酸又はその無水物を添加して共重合させる方法、水懸濁液としたポリオレフィン系樹脂に不飽和カルボン酸又はその無水物を添加して共重合させる方法等を挙げることができる。なお、本変性反応によるポリオレフィン鎖の変性箇所は、分子鎖の片末端又は両末端であっても良く、分子鎖の途中であっても良く、複数個所であっても良い。The acid-modified polyolefin resin can be obtained by preferably graft copolymerizing an unsaturated carboxylic acid or an anhydride thereof to the above-mentioned polyolefin resin. Conventionally known methods can be used for this modification reaction, such as a method in which an unsaturated carboxylic acid or its anhydride is added to a polyolefin resin melted using an extruder and copolymerized, or a method in which polyolefin is dissolved in a solvent. A method of copolymerizing by adding an unsaturated carboxylic acid or its anhydride to a system resin, a method of copolymerizing by adding an unsaturated carboxylic acid or its anhydride to a polyolefin resin made into an aqueous suspension, etc. I can do it. Note that the modification site of the polyolefin chain by this modification reaction may be at one end or both ends of the molecular chain, may be in the middle of the molecular chain, or may be at multiple locations.

上記変性反応で使用できる不飽和カルボン酸又はその無水物としては、(メタ)アクリル酸、クロトン酸、イソクロトン酸、桂皮酸等の不飽和モノカルボン酸類、フマル酸、マレイン酸、シトラコン酸、クロロマレイン酸、グルタコン酸、イタコン酸等の不飽和ジカルボン酸類、これらの不飽和ジカルボン酸類のハーフエステル又はハーフアミド類、trans-アニコット酸等の不飽和トリカルボン酸類、マレイン酸無水物、シトラコン酸無水物、クロロマレイン酸無水物、イタコン酸無水物、3,4,5,6-テトラヒドロフタル酸無水物等の酸無水物が挙げられる。これらの中では、(メタ)アクリル酸、マレイン酸及びマレイン酸無水物が好ましく、マレイン酸無水物が特に好ましい。 Examples of unsaturated carboxylic acids or anhydrides thereof that can be used in the above modification reaction include unsaturated monocarboxylic acids such as (meth)acrylic acid, crotonic acid, isocrotonic acid, and cinnamic acid, fumaric acid, maleic acid, citraconic acid, and chloromaleic acid. acids, unsaturated dicarboxylic acids such as glutaconic acid and itaconic acid, half esters or half amides of these unsaturated dicarboxylic acids, unsaturated tricarboxylic acids such as trans-anicottic acid, maleic anhydride, citraconic anhydride, chloro Examples include acid anhydrides such as maleic anhydride, itaconic anhydride, and 3,4,5,6-tetrahydrophthalic anhydride. Among these, (meth)acrylic acid, maleic acid and maleic anhydride are preferred, and maleic anhydride is particularly preferred.

酸変性ポリオレフィン系樹脂中の無水マレイン酸等のグラフト重量は、酸変性ポリオレフィン系樹脂全体を100質量%とした場合、好ましくは、0.1~20質量%、より好ましくは、0.5~10質量%である。グラフト重量がこの範囲内であれば、酸変性ポリオレフィン系樹脂を含む薄膜層1は、粘着剤組成物から形成された粘着剤層やポリプロピレン等の低極性材料の両方に対して高い接着性を発揮することができる。 The graft weight of maleic anhydride, etc. in the acid-modified polyolefin resin is preferably 0.1 to 20% by mass, more preferably 0.5 to 10% by mass when the entire acid-modified polyolefin resin is 100% by mass. Mass%. If the graft weight is within this range, the thin film layer 1 containing the acid-modified polyolefin resin exhibits high adhesion to both the adhesive layer formed from the adhesive composition and a low polarity material such as polypropylene. can do.

酸変性ポリオレフィン系樹脂は、前記の不飽和カルボン酸又はその無水物による変性反応の際、その他の変性剤を併用して変性されたものであっても良い。その他の変性剤としては、(メタ)アクリル酸アルキルエステル、官能基含有(メタ)アクリル酸アルキルエステル、芳香族ビニル化合物、シクロヘキシルビニルエーテルなどが挙げられる。 The acid-modified polyolefin resin may be one that has been modified using other modifiers in combination with the aforementioned unsaturated carboxylic acid or its anhydride during the modification reaction. Other modifiers include (meth)acrylic acid alkyl esters, functional group-containing (meth)acrylic acid alkyl esters, aromatic vinyl compounds, cyclohexyl vinyl ether, and the like.

(メタ)アクリル酸アルキルエステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸デシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸トリデシル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸シクロヘキシル等が例示される。これらの化合物は、単独で用いても良いし、二種以上を併用しても良い。本開示では、耐熱接着性が改良されることから、炭素数8~18のアルキル基を有する(メタ)アクリル酸エステルを更に含む変性剤を用いることが好ましく、特に、(メタ)アクリル酸オクチル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸トリデシル又は(メタ)アクリル酸ステアリルを含むことが好ましい。 Examples of (meth)acrylic acid alkyl esters include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, pentyl (meth)acrylate, and (meth)acrylate. Hexyl acrylate, heptyl (meth)acrylate, octyl (meth)acrylate, decyl (meth)acrylate, lauryl (meth)acrylate, tridecyl (meth)acrylate, stearyl (meth)acrylate, (meth)acrylate Examples include acid cyclohexyl. These compounds may be used alone or in combination of two or more. In the present disclosure, it is preferable to use a modifier that further contains a (meth)acrylic acid ester having an alkyl group having 8 to 18 carbon atoms, and in particular, octyl (meth)acrylate, It is preferable that lauryl (meth)acrylate, tridecyl (meth)acrylate, or stearyl (meth)acrylate is included.

官能基含有(メタ)アクリル酸アルキルエステルとしては、例えば、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、(メタ)アクリル酸グリシジル、イソシアネート含有(メタ)アクリル酸エステル等が挙げられる。芳香族ビニル化合物としては、(メタ)アクリル酸ベンジル、スチレン、o-メチルスチレン、p-メチルスチレン、α-メチルスチレン等が挙げられる。上記変性剤として、不飽和カルボン酸又はその無水物と、他の変性剤とを併用することで、変性剤によるグラフト率を向上させたり、接着性を更に向上させたりすることができる。 Examples of functional group-containing (meth)acrylic acid alkyl esters include hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, glycidyl (meth)acrylate, and isocyanate-containing (meth)acrylic ester. . Examples of the aromatic vinyl compound include benzyl (meth)acrylate, styrene, o-methylstyrene, p-methylstyrene, α-methylstyrene, and the like. By using an unsaturated carboxylic acid or its anhydride together with another modifier as the modifier, the grafting rate by the modifier can be improved and the adhesiveness can be further improved.

その他の変性剤による変性ポリオレフィン系樹脂のグラフト重量は、酸変性ポリオレフィン系樹脂全体を100質量%とした場合、好ましくは、0.1~20質量%、より好ましくは、0.5~10質量%である。グラフト重量がこの範囲内であれば、マレイン酸無水物等の変性剤によるグラフト率を向上させたり、薄膜層1の高い接着性を発揮することができる。なお、グラフト重量は、フーリエ変換赤外分光法等の公知の方法で求めることができる。 The graft weight of the modified polyolefin resin with other modifiers is preferably 0.1 to 20% by mass, more preferably 0.5 to 10% by mass when the entire acid-modified polyolefin resin is 100% by mass. It is. If the graft weight is within this range, it is possible to improve the grafting rate using a modifier such as maleic anhydride, and to exhibit high adhesiveness of the thin film layer 1. Note that the graft weight can be determined by a known method such as Fourier transform infrared spectroscopy.

変性ポリオレフィン系樹脂の重量平均分子量は、3,000~500,000であることが好ましく、25,000~250,000であることがより好ましい。酸変性ポリオレフィン樹脂系樹脂の重量平均分子量が3,000以上であれば、耐熱性が良好となり、500,000以下であれば、溶剤への溶解性が向上し、取扱い性に優れる。 The weight average molecular weight of the modified polyolefin resin is preferably 3,000 to 500,000, more preferably 25,000 to 250,000. If the weight average molecular weight of the acid-modified polyolefin resin is 3,000 or more, the heat resistance will be good, and if it is 500,000 or less, the solubility in a solvent will be improved and the handleability will be excellent.

変性ポリオレフィン系樹脂は、融点又は軟化点が70℃以上のものを用いることが、真空圧空成形の際に加飾フィルムのショックラインの発生を抑制できる観点、及び耐熱性の観点で好ましい。変性ポリオレフィン系樹脂の融点又は軟化点は、80℃以上のものがより好適であり、90℃以上のものがさらに好適である。一方、融点、軟化点が高すぎる場合は、被着体に対する濡れ性が劣ることから、融点又は軟化点は160℃以下のものが好適である。 It is preferable to use a modified polyolefin resin having a melting point or softening point of 70° C. or higher from the viewpoint of suppressing the generation of shock lines in the decorative film during vacuum-pressure molding and from the viewpoint of heat resistance. The melting point or softening point of the modified polyolefin resin is more preferably 80°C or higher, and even more preferably 90°C or higher. On the other hand, if the melting point or softening point is too high, the wettability to the adherend will be poor, so it is preferable that the melting point or softening point is 160° C. or lower.

また、酸変性ポリオレフィン系樹脂の代わりに、ポリオレフィン系樹脂の基本骨格中カルボン酸及び/又は酸無水物構造が組み込まれた共重合体を用いても良く、例えば、エチレン/アクリル酸/無水マレイン酸の三元共重合体等を用いても良い。 Furthermore, instead of the acid-modified polyolefin resin, a copolymer in which a carboxylic acid and/or acid anhydride structure is incorporated in the basic skeleton of a polyolefin resin may be used, such as ethylene/acrylic acid/maleic anhydride. A terpolymer or the like may also be used.

変性ポリオレフィン系樹脂としては市販品を用いても良い。具体的には、プラスチック表面改質剤、自動車プラスチック基材用プライマー、エレクトロニクス基材用プライマー、建築材用プライマー等に用いられる市販の変性ポリオレフィン系樹脂を使用して薄膜層1を形成することができる。また、変性ポリオレフィン系樹脂を含む接着剤組成物を用いて薄膜層1を形成しても良い。 Commercially available products may be used as the modified polyolefin resin. Specifically, the thin film layer 1 can be formed using a commercially available modified polyolefin resin used as a plastic surface modifier, a primer for automobile plastic base materials, a primer for electronics base materials, a primer for construction materials, etc. can. Alternatively, the thin film layer 1 may be formed using an adhesive composition containing a modified polyolefin resin.

具体的には、酸変性ポリオレフィン系樹脂としては、三井化学(株)製のアドマーAT1000、HE810、東洋紡(株)製のトーヨータックPMA-L及びPMA-T等が例示される。塩素化ポリオレフィン系樹脂としては、日本製紙(株)製のスーパークロン814HS、390S、及び、東洋紡(株)製のハードレン13-LP、13-LLP等が例示される。酸変性塩素化ポリオレフィン系樹脂としては、日本製紙(株)製のスーパークロン3228S、2319S、東洋紡(株)製のハードレンHM-21P等が例示される。アクリル変性塩素化ポリオレフィン系樹脂としては、日本製紙(株)製のスーパークロン224H、240H等が例示される。エチレン/アクリル酸/無水マレイン酸の三元共重合体としては、アルケマ社製ボンダインシリーズ等が例示される。これらの変性ポリオレフィン系樹脂は、単独でも2種以上を併用しても良い。変性ポリオレフィン系樹脂を含む接着剤組成物としては、東亞合成(株)製のPPET-1303、PPET-1405SG、PPET-1505SG等が例示される。 Specifically, examples of the acid-modified polyolefin resin include Admer AT1000 and HE810 manufactured by Mitsui Chemicals, Inc., and Toyotac PMA-L and PMA-T manufactured by Toyobo Co., Ltd. Examples of the chlorinated polyolefin resin include Superklon 814HS and 390S manufactured by Nippon Paper Industries, Ltd., and Hardren 13-LP and 13-LLP manufactured by Toyobo Co., Ltd. Examples of acid-modified chlorinated polyolefin resins include Superklon 3228S and 2319S manufactured by Nippon Paper Industries, Ltd., and Hardren HM-21P manufactured by Toyobo Co., Ltd. Examples of the acrylic-modified chlorinated polyolefin resin include Superchron 224H and 240H manufactured by Nippon Paper Industries, Ltd. Examples of the terpolymer of ethylene/acrylic acid/maleic anhydride include the Bondine series manufactured by Arkema. These modified polyolefin resins may be used alone or in combination of two or more. Examples of adhesive compositions containing modified polyolefin resins include PPET-1303, PPET-1405SG, and PPET-1505SG manufactured by Toagosei Co., Ltd.

<ロジンエステル系樹脂>
ロジンエステル系樹脂としては、不均化ロジンエステル樹脂、水添ロジンエステル樹脂、重合ロジンエステル樹脂等が挙げられる。これらは市販品を用いても良く、不均化ロジンエステル樹脂としては、荒川化学工業(株)製のスーパーエステルA-100、A-115、及び、A-125等が例示される。水添ロジンエステル樹脂としては、荒川化学工業(株)製のパインクリスタルKE-604、KE-140及びKE-311等が例示される。また、重合ロジンエステル樹脂としては、荒川化学工業(株)製のペンセルA、ペンセルC、ペンセルD-125、ペンセルD-135及びペンセルD-160等が例示される。
<Rosin ester resin>
Examples of the rosin ester resin include disproportionated rosin ester resin, hydrogenated rosin ester resin, and polymerized rosin ester resin. Commercially available products may be used, and examples of the disproportionated rosin ester resin include Superester A-100, A-115, and A-125 manufactured by Arakawa Chemical Industries, Ltd. Examples of the hydrogenated rosin ester resin include Pine Crystal KE-604, KE-140, and KE-311 manufactured by Arakawa Chemical Industry Co., Ltd. Examples of polymerized rosin ester resins include Pencel A, Pencel C, Pencel D-125, Pencel D-135, and Pencel D-160 manufactured by Arakawa Chemical Industries, Ltd.

<ポリエステル系樹脂>
ポリエステル樹脂としては、ジカルボン酸単位およびジオール単位を構成単位とする縮合型の重合体または共重合体が挙げられる。
<Polyester resin>
Examples of the polyester resin include condensation type polymers or copolymers having dicarboxylic acid units and diol units as constituent units.

ジカルボン酸単位を形成するために使用される原料の例としては、芳香族ジカルボン酸またはそのジアルキルエステルもしくはジアリールエステルが挙げられる。芳香族ジカルボン酸の具体例としては、テレフタル酸、イソフタル酸、フタル酸、ナフタレン1,4-ジカルボン酸、ナフタレン2,6-ジカルボン酸、ビス(p-カルボキシフェニル)メタン、アントラセンジカルボン酸、4,4’-ジフェニルジカルボン酸および4,4’-ジフェニルエーテルジカルボン酸等が挙げられる。また、脂肪族ジカルボン酸またはそのジアルキルエステルもしくはジアリールエステルを併用することもできる。脂肪族ジカルボン酸の具体例としては、グルタル酸、アジピン酸、セバシン酸、シュウ酸およびコハク酸等が挙げられる。
ジオール単位を形成するために使用される原料の具体例としては、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、デカメチレングリコール、1,4-シクロヘキサンジメタノール、2,2-ビス(4-ヒドロキシフェニル)プロパン、ポリエチレングリコール、ポリ-1,3-プロピレングリコールおよびポリテトラメチレングリコール等が挙げられる。
Examples of raw materials used to form dicarboxylic acid units include aromatic dicarboxylic acids or dialkyl or diaryl esters thereof. Specific examples of aromatic dicarboxylic acids include terephthalic acid, isophthalic acid, phthalic acid, naphthalene 1,4-dicarboxylic acid, naphthalene 2,6-dicarboxylic acid, bis(p-carboxyphenyl)methane, anthracenedicarboxylic acid, 4, Examples include 4'-diphenyl dicarboxylic acid and 4,4'-diphenyl ether dicarboxylic acid. Further, an aliphatic dicarboxylic acid or a dialkyl ester or diaryl ester thereof can also be used in combination. Specific examples of aliphatic dicarboxylic acids include glutaric acid, adipic acid, sebacic acid, oxalic acid, and succinic acid.
Specific examples of raw materials used to form the diol unit include ethylene glycol, propylene glycol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, 1,6-hexanediol, decamethylene Examples include glycol, 1,4-cyclohexanedimethanol, 2,2-bis(4-hydroxyphenyl)propane, polyethylene glycol, poly-1,3-propylene glycol, and polytetramethylene glycol.

前記ポリエステル樹脂のうち、ジカルボン酸単位としてテレフタル酸単位および/またはイソフタル酸単位を含み、ジオール単位としてエチレングリコール単位を含む結晶性ホモポリエチレンテレフタレート樹脂および結晶性コポリエステル樹脂が好ましい。また、ジカルボン酸単位としてテレフタル酸単位を含み、ジオール単位としてエチレングリコール単位および1,4-シクロヘキサンジメタノール単位を含む非結晶性コポリエステル樹脂が好ましい。また、その他のポリエステル樹脂として、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレートおよび生分解性ポリエステル樹脂等が挙げられる。これらのポリエステル樹脂は、単独でまたは2種以上を混合して使用することができる。 Among the polyester resins, crystalline homopolyethylene terephthalate resins and crystalline copolyester resins containing terephthalic acid units and/or isophthalic acid units as dicarboxylic acid units and ethylene glycol units as diol units are preferred. Further, an amorphous copolyester resin containing a terephthalic acid unit as a dicarboxylic acid unit and an ethylene glycol unit and a 1,4-cyclohexanedimethanol unit as a diol unit is preferable. Other polyester resins include polybutylene terephthalate, polyethylene-2,6-naphthalate, biodegradable polyester resins, and the like. These polyester resins can be used alone or in combination of two or more.

前記ポリエステル樹脂の製造法としては、ジカルボン酸とジオールを直接反応させる、いわゆる直接重合法、ジカルボン酸のジメチルエステルとジオールとをエステル交換反応させる、いわゆるエステル交換反応法など、任意の方法を採用することができる。
ポリエステル系樹脂としては、市販品を用いても良く、また、ポリエステル系樹脂を含む接着剤組成物を用いてもよい。具体的には、互応化学工業(株)製プラスコートZ-730、東洋紡(株)製のバイロン237、290、296等が例示される。また、ポリエステル樹脂を含む接着剤組成物としては、東亞合成(株)製のアロンメルトPES-320SK、PES-360HVXM30、PES-310S30、等が例示される。
As the method for producing the polyester resin, any method can be adopted, such as the so-called direct polymerization method in which a dicarboxylic acid and a diol are directly reacted, and the so-called transesterification method in which a dimethyl ester of a dicarboxylic acid and a diol are transesterified. be able to.
As the polyester resin, a commercially available product may be used, or an adhesive composition containing a polyester resin may be used. Specific examples include Pluscoat Z-730 manufactured by Gooh Kagaku Kogyo Co., Ltd. and Byron 237, 290, and 296 manufactured by Toyobo Co., Ltd. Examples of adhesive compositions containing polyester resins include Aronmelt PES-320SK, PES-360HVXM30, and PES-310S30 manufactured by Toagosei Co., Ltd.

薄膜層1を形成する熱可塑性樹脂の融点、軟化点又はTgは70℃以上であることが好ましい。当該熱可塑性樹脂の融点、軟化点又はTgが70℃以上であることにより、真空圧空成形の際に加飾フィルムのショックラインの発生を抑制できる点、及び耐熱性を良好にできる点で好ましい。薄膜層1を形成する熱可塑性樹脂の融点、軟化点又はTgは、80℃以上であることがより好適であり、90℃以上であることがさらに好適である。一方、融点、軟化点又はTgが高すぎる場合は、被着体に対する濡れ性が劣ることがある。このため、当該熱可塑性樹脂の融点、軟化点又はTgは、160℃以下であることが好適である。なお、薄膜層1を形成する熱可塑性樹脂の融点及びTgは、JISK7121に準拠し、DSCにより昇温速度10℃/minで測定した値を採用する。軟化点は、JISK6863に準拠した環球法の値を採用する。ただし、ロジンエステル系樹脂の軟化点は、JISK5902に準拠した環球法の値とする。 The melting point, softening point, or Tg of the thermoplastic resin forming the thin film layer 1 is preferably 70° C. or higher. It is preferable that the melting point, softening point, or Tg of the thermoplastic resin is 70° C. or higher, since it is possible to suppress the occurrence of shock lines in the decorative film during vacuum-pressure molding and to improve heat resistance. The melting point, softening point, or Tg of the thermoplastic resin forming the thin film layer 1 is more preferably 80°C or higher, and even more preferably 90°C or higher. On the other hand, if the melting point, softening point or Tg is too high, the wettability to the adherend may be poor. Therefore, it is preferable that the melting point, softening point, or Tg of the thermoplastic resin is 160° C. or lower. Note that the melting point and Tg of the thermoplastic resin forming the thin film layer 1 are based on JIS K7121, and the values measured by DSC at a temperature increase rate of 10° C./min are adopted. For the softening point, the value of the ring and ball method based on JIS K6863 is adopted. However, the softening point of the rosin ester resin is determined by the ring and ball method according to JIS K5902.

薄膜層1を形成する熱可塑性樹脂の重量平均分子量は、3,000~500,000であることが好ましく、25,000~250,000であることがより好ましい。薄膜層1を形成する熱可塑性樹脂の重量平均分子量が3,000以上であれば、耐熱性が良好となり、500,000以下であれば、溶剤への溶解性が向上し、取扱い性に優れる。
薄膜層1の厚さは、粘着剤層よりも薄い層である限り特に限定されない。薄膜層1の厚さは、薄膜層1全体の平均値として、例えば0.01~50μmであり、好ましくは0.1~20μmであり、より好ましくは0.3~15μmである。
The weight average molecular weight of the thermoplastic resin forming the thin film layer 1 is preferably 3,000 to 500,000, more preferably 25,000 to 250,000. If the weight average molecular weight of the thermoplastic resin forming the thin film layer 1 is 3,000 or more, the heat resistance will be good, and if it is 500,000 or less, the solubility in a solvent will improve and the handleability will be excellent.
The thickness of the thin film layer 1 is not particularly limited as long as it is thinner than the adhesive layer. The thickness of the thin film layer 1 is, for example, 0.01 to 50 μm, preferably 0.1 to 20 μm, and more preferably 0.3 to 15 μm, as an average value of the entire thin film layer 1.

2-2.薄膜層2
薄膜層2としては、本開示の効果を奏する点で、特定のガラス転移温度と数平均分子量とを有するビニル重合体(A)及びアクリル系粘着性ポリマー(B)を含有するアクリル系粘着剤組成物において、ビニル重合体(A)を粘着剤層の表層へ偏析させることにより得られる、粘着剤層の表層部分であることが特に好ましい。
2-2. Thin film layer 2
As the thin film layer 2, an acrylic adhesive composition containing a vinyl polymer (A) and an acrylic adhesive polymer (B) having a specific glass transition temperature and number average molecular weight is used in order to achieve the effects of the present disclosure. In the product, it is particularly preferable that the surface layer portion of the adhesive layer is obtained by segregating the vinyl polymer (A) to the surface layer of the adhesive layer.

3.本粘着シートの製造方法
本粘着シートは、粘着剤組成物から形成された粘着剤層の少なくとも片面に薄膜層1を有するか、又は、粘着剤組成物からなる粘着剤層の表層部分を構成する薄膜層2を有する。すなわち、粘着剤組成物からなる粘着剤層の片面又は両面の、全面又は一部の面に、上記薄膜層1を有するか、又は、粘着剤組成物からなる粘着剤層の少なくとも一方の表層部分に、薄膜層2を有する。
3. Manufacturing method of the present pressure-sensitive adhesive sheet The present pressure-sensitive adhesive sheet has a thin film layer 1 on at least one side of the pressure-sensitive adhesive layer formed from the pressure-sensitive adhesive composition, or constitutes a surface layer portion of the pressure-sensitive adhesive layer formed from the pressure-sensitive adhesive composition. It has a thin film layer 2. That is, the above-mentioned thin film layer 1 is provided on one or both sides, the entire surface or a part of the adhesive layer made of the adhesive composition, or at least one surface layer portion of the adhesive layer made of the adhesive composition. It has a thin film layer 2.

薄膜層1を有する本粘着シートの製造方法としては、例えば、剥離フィルム(以下、「セパレーター」ともいう。)上に成膜した薄膜層1を、粘着剤組成物から形成された粘着剤層の表面に転写することで、前記粘着剤組成物から形成された粘着剤層の表面に、薄膜層1を形成することができる(転写方式)。また、例えば、セパレーター上に成膜した薄膜層1の上に、粘着剤組成物を重ね塗りすることで前記粘着剤組成物から形成された粘着剤層の表面に、薄膜層1を形成することができる(重ね塗り方式)。これらの製造方法の中では、被着体に対する高い剥離強度が得られる傾向があること、及び、剥離フィルムの使用枚数を削減できることから、重ね塗り方式がより好ましい。なお、薄膜層1を有する本粘着シートの製造方法としては、薄膜層2を有する本粘着シートを作成した後、薄膜層2の上に、薄膜層1を形成しても良い。 As a method for manufacturing the present pressure-sensitive adhesive sheet having the thin film layer 1, for example, the thin film layer 1 formed on a release film (hereinafter also referred to as a "separator") is bonded to a pressure-sensitive adhesive layer formed from a pressure-sensitive adhesive composition. By transferring to the surface, the thin film layer 1 can be formed on the surface of the adhesive layer formed from the adhesive composition (transfer method). For example, the thin film layer 1 may be formed on the surface of the adhesive layer formed from the adhesive composition by overcoating the adhesive composition on the thin film layer 1 formed on the separator. (layered coating method). Among these manufacturing methods, the overcoating method is more preferable because it tends to provide high peel strength to the adherend and can reduce the number of release films used. In addition, as a manufacturing method of the present adhesive sheet having the thin film layer 1, after creating the present adhesive sheet having the thin film layer 2, the thin film layer 1 may be formed on the thin film layer 2.

一方、薄膜層2を有する本粘着シートの製造方法としては、セパレーター上に、特定のガラス転移温度と数平均分子量とを有するビニル重合体(A)及びアクリル系粘着性ポリマー(B)を含有するアクリル系粘着剤組成物を塗布、成膜することで、ビニル重合体(A)を粘着剤層の表層部分へ偏析させることにより得られる。この場合、前記表層部分が本開示の薄膜層として機能する。 On the other hand, the method for producing the present adhesive sheet having the thin film layer 2 includes the step of containing a vinyl polymer (A) and an acrylic adhesive polymer (B) having a specific glass transition temperature and number average molecular weight on a separator. It is obtained by coating and forming an acrylic pressure-sensitive adhesive composition to segregate the vinyl polymer (A) to the surface layer of the pressure-sensitive adhesive layer. In this case, the surface layer portion functions as a thin film layer of the present disclosure.

上記のように製造した本粘着シートの薄膜層側を、被着体に対して加熱圧着することで、積層体を形成することができる。本粘着シートが、粘着剤組成物から形成された粘着剤層の片面に薄膜層を有する場合、又は、粘着剤層の片側の表層部分が薄膜層により構成されている場合、粘着剤層側には、加飾フィルム等を積層することもできる。また、本粘着シートが、粘着剤組成物から形成された粘着剤層の両面に薄膜層を有する場合、又は、粘着剤層の両側の表層部分が薄膜層により構成されている場合、被着体で当該本粘着シートを挟むように積層することもできる。セパレーター上に薄膜層を形成することにより、セパレーター上に薄膜層が隣接して配置されたセパレーター付き粘着シートを得ることができる。 A laminate can be formed by heat-pressing the thin film layer side of the pressure-sensitive adhesive sheet produced as described above to an adherend. When this adhesive sheet has a thin film layer on one side of the adhesive layer formed from the adhesive composition, or when the surface layer on one side of the adhesive layer is composed of a thin film layer, the adhesive layer side It is also possible to laminate a decorative film or the like. In addition, when the present adhesive sheet has thin film layers on both sides of the adhesive layer formed from the adhesive composition, or when the surface layer portions on both sides of the adhesive layer are composed of thin film layers, the adherend may They can also be laminated so that the present adhesive sheet is sandwiched therebetween. By forming the thin film layer on the separator, it is possible to obtain a pressure-sensitive adhesive sheet with a separator in which the thin film layer is disposed adjacent to the separator.

4.加飾フィルム及び加飾成形体
4-1.加飾フィルム
本粘着シートは、加飾フィルムの粘着剤層を構成することができる。本粘着シートを備える加飾フィルム(以後、「本加飾フィルム」ともいう。)は、高温条件下において高い接着性を示すとともに、基材へ貼着後の加飾フィルムのショックラインを抑制できる。
4. Decorative film and decorative molded body
4-1. The decorative film adhesive sheet can constitute the adhesive layer of the decorative film. The decorative film equipped with this adhesive sheet (hereinafter also referred to as "this decorative film") exhibits high adhesion under high temperature conditions and can suppress shock lines of the decorative film after being attached to the base material. .

本加飾フィルムは、上述した粘着剤層に加え、加飾層、基材層を備えることができる。係る構成を有する加飾フィルムは、成形体に貼合して加飾成形体を得る場合(ラミネート方式)に好適に用いることができる。 In addition to the above-mentioned adhesive layer, the present decorative film can include a decoration layer and a base material layer. A decorative film having such a configuration can be suitably used when laminating a molded product to obtain a decorated molded product (laminate method).

基材層は、加飾フィルムが成形体へと加飾された後は、後述する加飾成形体の最外層に位置し、加飾成形体の保護層としての機能を果たすものである。基材層を構成する材料は、柔軟性を有する材料であればよく、プラスチックが好ましい。より好ましくは、熱可塑性プラスチックである。熱可塑性プラスチックとしては、特に制限されるものではないが、塩化ビニル(PVC)樹脂、ポリエステル樹脂、(メタ)アクリル樹脂、ABS樹脂、ポリカーボネート樹脂、ポリプロピレン樹脂及びポリエチレン樹脂等が挙げられる。これらのうち、基材層に用いる材料としては、PVC樹脂、ポリエステル樹脂、(メタ)アクリル樹脂及びABS樹脂が好ましい。 After the decorative film is applied to the molded product, the base layer is located at the outermost layer of the decorated molded product, which will be described later, and functions as a protective layer of the decorated molded product. The material constituting the base layer may be any flexible material, and plastic is preferred. More preferably, it is a thermoplastic. Examples of thermoplastic plastics include, but are not particularly limited to, vinyl chloride (PVC) resins, polyester resins, (meth)acrylic resins, ABS resins, polycarbonate resins, polypropylene resins, and polyethylene resins. Among these, PVC resin, polyester resin, (meth)acrylic resin, and ABS resin are preferable as materials used for the base layer.

基材層の厚さは、好ましくは25μm~500μm、より好ましくは50μm~400μm、さらに好ましくは100~300μmである。基材層の厚さが上記範囲内であれば、加飾成形体を真空圧空成形法により製造する際に、加工成形性、形状追従性及び取扱い性が良好となる。 The thickness of the base material layer is preferably 25 μm to 500 μm, more preferably 50 μm to 400 μm, and even more preferably 100 to 300 μm. If the thickness of the base layer is within the above range, the processability, shape followability, and handleability will be good when producing the decorative molded product by vacuum-pressure forming.

加飾層は、加飾フィルムの意匠性を付与するために設けられる層であり、テキスト、図形、模様及び商標等の図柄を印刷等により形成したものである。加飾層に形成される図柄は、印刷インクによるグラビア印刷、オフセット印刷、シルクスクリーン印刷、転写シートからの転写印刷、昇華転写印刷、及びインクジェット印刷等公知の印刷法により形成することができる。 The decorative layer is a layer provided to impart design to the decorative film, and is formed by printing or the like with designs such as texts, figures, patterns, and trademarks. The pattern formed on the decoration layer can be formed by a known printing method such as gravure printing using printing ink, offset printing, silk screen printing, transfer printing from a transfer sheet, sublimation transfer printing, and inkjet printing.

加飾層の厚さは、好ましくは1~40μm、より好ましくは1~30μmである。加飾層の厚さが、上記範囲内であると、グラデーション等の複雑な意匠を表現するために十分な厚さを確保できる。本加飾フィルムの意匠性を向上させる目的で、加飾フィルム表面に凹凸模様を付与してもよい。凹凸模様は、凹凸模様が施されたエンボスローラーを通すことで転写することができる。 The thickness of the decorative layer is preferably 1 to 40 μm, more preferably 1 to 30 μm. When the thickness of the decorative layer is within the above range, a sufficient thickness can be ensured to express complex designs such as gradation. For the purpose of improving the design of the decorative film, an uneven pattern may be provided on the surface of the decorative film. The uneven pattern can be transferred by passing it through an embossing roller with an uneven pattern.

本加飾フィルムの耐候性、耐薬品性、耐汚染性、摩耗性、電気絶縁性等を向上させる目的で、加飾フィルムは最表面に保護層を備えることもできる。保護層は、前記性能を有する高分子材料等をコーティングしてもよいし、前記性能を有するフィルムを積層してもよい。保護層は前記基材層であってもよい。 In order to improve the weather resistance, chemical resistance, stain resistance, abrasion resistance, electrical insulation properties, etc. of the decorative film, the decorative film can also be provided with a protective layer on the outermost surface. The protective layer may be coated with a polymeric material having the above-mentioned properties, or may be formed by laminating films having the above-mentioned properties. The protective layer may be the base layer.

本加飾フィルムは、剥離層をさらに備えることもできる。剥離層は、意図しない接着を防止するものであり、加飾フィルムを成形体に接着する際には剥離される。剥離層を構成する材料は特に限定されないが、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム、ポリプロピレンやポリエチレン等のポリオレフィンフィルムなどのプラスチックフィルム;グラシン紙、クラフト紙、クレーコート紙などの紙といった材料を用いることができる。これらの厚みは、10~400μm程度とすることができる。 The decorative film may further include a release layer. The peeling layer prevents unintended adhesion, and is peeled off when the decorative film is adhered to the molded article. The material constituting the release layer is not particularly limited, but includes, for example, polyester films such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; plastic films such as polyolefin films such as polypropylene and polyethylene; glassine paper, kraft paper, and clay coated paper. Materials such as paper can be used. The thickness of these can be approximately 10 to 400 μm.

上記の他、本加飾フィルムは、離型層を備えた剥離フィルムの当該離型層上に、ハードコート層(保護層)、加飾層及び粘着剤層を備えた構成とすることもできる。係る構成を有する加飾フィルムは、転写フィルムとして好適に用いることができ、ハードコート層から粘着剤層までを成形体に転写すること(転写方式)により加飾成形体を得ることができる。上記ラミネート方式の場合、加飾成形後、余ったフィルムをトリミングにより除去する必要があるが、転写方式ではトリミング処理が不要であるため、生産効率の点で有利である。 In addition to the above, the present decorative film may also have a structure in which a release film is provided with a release layer, and a hard coat layer (protective layer), a decoration layer, and an adhesive layer are provided on the release layer. . A decorative film having such a configuration can be suitably used as a transfer film, and a decorated molded product can be obtained by transferring everything from the hard coat layer to the adhesive layer onto the molded product (transfer method). In the case of the above-mentioned lamination method, it is necessary to remove the excess film by trimming after decorative molding, but in the transfer method, trimming is not necessary, which is advantageous in terms of production efficiency.

上記ハードコート層は、転写される前の状態ではタックフリーの状態であり、成形体に転写した後には、活性エネルギー線を照射すること等により硬化及び/又は架橋反応を行うことができる材料から構成されることが好ましい。ハードコート層を構成する材料としては、例えば、(メタ)アクリロイル基を有するポリマー若しくはオリゴマー、活性エネルギー線硬化性組成物に活性エネルギー線を適量照射して半硬化状態としたもの、又は、活性エネルギー線硬化性樹脂組成物にイソシアネート化合物及びポリオール樹脂等を配合して適度に架橋したもの等が挙げられる。ハードコート層の厚みは特に制限されるものではないが、1~50μm程度とすることができ、好ましくは2~40μm程度である。 The above-mentioned hard coat layer is in a tack-free state before being transferred, and after being transferred to the molded product, it is made of a material that can be cured and/or crosslinked by irradiation with active energy rays, etc. Preferably, the configuration is configured. Examples of the material constituting the hard coat layer include a polymer or oligomer having a (meth)acryloyl group, an active energy ray-curable composition irradiated with an appropriate amount of active energy rays to a semi-cured state, or an active energy ray-curable composition Examples include those obtained by blending an isocyanate compound, a polyol resin, etc. with a line-curable resin composition and appropriately crosslinking it. The thickness of the hard coat layer is not particularly limited, but can be about 1 to 50 μm, preferably about 2 to 40 μm.

4-2.加飾成形体
本開示によれば、本加飾フィルムを備える加飾成形体(以下、「本加飾成形体」ともいう。)が提供される。本加飾成形体は、本開示の真空圧空成形用粘着シートを有する加飾フィルムを備えるため、高温条件下において高い接着性を示すとともに、基材へ貼着後の加飾フィルムのショックラインを抑制できる。
4-2. Decorated Molded Body According to the present disclosure, a decorated molded body (hereinafter also referred to as "this decorated molded body") including the present decorative film is provided. Since the present decorative molded article is equipped with a decorative film having the adhesive sheet for vacuum-pressure forming of the present disclosure, it exhibits high adhesion under high temperature conditions and reduces the shock line of the decorative film after being attached to the base material. It can be suppressed.

加飾フィルムが接着される成形体は、特に限定されるものではなく、加飾フィルムを接着することが可能な物品等であればよく、例えば、樹脂製品、金属製品、セラミックス製品、ガラス製品等が挙げられる。具体的には、例えば、生活家電、キッチン家電、健康家電、季節家電等の各種家電製品;トイレ、浴室、扉、壁等の住宅設備;バンパー、ダッシュボード、ドア、ルーフ、ボンネット等の自動車内装品及び自動車外装品;生活雑貨、日用雑貨等の各種雑貨品;電子部品、介護・医療用品、船舶の内外装品、航空機の内外装品等が挙げられる。 The molded object to which the decorative film is adhered is not particularly limited, and may be any article to which the decorative film can be adhered, such as resin products, metal products, ceramic products, glass products, etc. can be mentioned. Specifically, for example, various home appliances such as household appliances, kitchen appliances, health appliances, and seasonal appliances; housing equipment such as toilets, bathrooms, doors, and walls; and automobile interiors such as bumpers, dashboards, doors, roofs, and hoods. various miscellaneous goods such as miscellaneous goods and daily necessities; electronic parts, nursing care and medical supplies, interior and exterior parts of ships, interior and exterior parts of aircraft, etc.

上記の通り、本加飾成形体の製造には、真空圧空成形法を用いることができる。真空圧空成形法では、減圧下で加熱して軟化させた加飾フィルムを減圧下で被着体と接触させ、続いて被着体と反対側の空間を加圧することにより、本加飾フィルムを成形体の表面形状に沿って成形しつつ接着する。 As mentioned above, the vacuum-pressure forming method can be used to manufacture the present decorative molded product. In the vacuum-pressure forming method, a decorative film that has been softened by heating under reduced pressure is brought into contact with an adherend under reduced pressure, and then the space on the opposite side of the adherend is pressurized to form the decorative film. Adhesion is performed while molding along the surface shape of the molded object.

5.本粘着剤組成物の好ましい態様
前記した通り、本粘着剤組成物は、アクリル系粘着性ポリマー(B)を含有することが好ましく、ビニル重合体(A)及びアクリル系粘着性ポリマー(B)を含有することがより好ましい。以下、ビニル重合体(A)、アクリル系粘着性ポリマー(B)及び本粘着剤層の好ましい態様等について説明する。
5. Preferred embodiments of the present adhesive composition As described above, the present adhesive composition preferably contains an acrylic adhesive polymer (B), and a vinyl polymer (A) and an acrylic adhesive polymer (B). It is more preferable to contain it. Preferred embodiments of the vinyl polymer (A), the acrylic adhesive polymer (B), and the present adhesive layer will be described below.

5-1.ビニル重合体(A)
本明細書に開示するビニル重合体(A)は、30℃以上200℃以下のガラス転移温度(Tg)を有する重合体であることが好ましい。Tgの下限は、40℃以上であってもよく、50℃以上であってもよく、60℃以上であってもよく、70℃以上であってもよい。Tgの上限は、180℃以下であってもよく、150℃以下であってもよく、120℃以下であってもよく、110℃以下であってもよい。また、Tgの範囲は、これらの上限及び下限を適宜組み合わせることができるが、例えば40℃以上180℃以下であり、60℃以上150℃以下であることが好ましい。本明細書において、ビニル重合体(A)のTgは、示差走査熱量測定(DSC)により昇温速度10℃/minで測定した値をTgとして採用する。Tgが30℃未満であると、粘着剤層の表層部分のTgが十分に高くなりにくく、各種被着体への接着強度が十分でなく耐久性に劣る場合がある。また、原料単量体の制約等から、一般にTgは200℃以下である。
5-1. Vinyl polymer (A)
The vinyl polymer (A) disclosed herein is preferably a polymer having a glass transition temperature (Tg) of 30°C or higher and 200°C or lower. The lower limit of Tg may be 40°C or higher, 50°C or higher, 60°C or higher, or 70°C or higher. The upper limit of Tg may be 180°C or less, 150°C or less, 120°C or less, or 110°C or less. Further, the range of Tg can be a combination of these upper and lower limits as appropriate, but is, for example, 40°C or more and 180°C or less, and preferably 60°C or more and 150°C or less. In this specification, the Tg of the vinyl polymer (A) is determined by differential scanning calorimetry (DSC) at a heating rate of 10° C./min. If the Tg is less than 30° C., the Tg of the surface layer portion of the pressure-sensitive adhesive layer will not be sufficiently high, and the adhesive strength to various adherends may be insufficient, resulting in poor durability. Further, due to restrictions on raw material monomers, etc., Tg is generally 200° C. or less.

ビニル重合体(A)を構成する単量体としては、ラジカル重合性を有する種々のビニル系不飽和化合物を用いることができ、例えば、(メタ)アクリル酸系化合物、芳香族ビニル化合物、不飽和カルボン酸、不飽和酸無水物、ヒドロキシル基含有不飽和化合物、アミノ基含有不飽和化合物、アミド基含有不飽和化合物、アルコキシル基含有不飽和化合物、シアノ基含有不飽和化合物、ニトリル基含有不飽和化合物、マレイミド系化合物等が挙げられる。これらの化合物は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 As the monomer constituting the vinyl polymer (A), various vinyl-based unsaturated compounds having radical polymerizability can be used, such as (meth)acrylic acid-based compounds, aromatic vinyl compounds, unsaturated Carboxylic acids, unsaturated acid anhydrides, hydroxyl group-containing unsaturated compounds, amino group-containing unsaturated compounds, amide group-containing unsaturated compounds, alkoxyl group-containing unsaturated compounds, cyano group-containing unsaturated compounds, nitrile group-containing unsaturated compounds , maleimide compounds, and the like. These compounds may be used alone or in combination of two or more.

これらの中でも、アクリル系粘着性ポリマーに対して適切な相溶性を得られることから、(メタ)アクリル酸系化合物を主体とすることが好ましい。ビニル重合体(A)の全単量体組成物における、(メタ)アクリル酸系化合物の具体的な使用量は、例えば10質量%以上100質量%以下の範囲であり、30質量%以上95質量%以下の範囲であってもよく、50質量%以上90質量%以下の範囲であってもよい。使用量の下限は、40質量%以上であってもよく、50質量%以上であってもよい。また、使用量の上限は、90質量%以下であってもよく、80質量%以下であってもよい。 Among these, it is preferable to use (meth)acrylic acid-based compounds as the main component since appropriate compatibility with acrylic adhesive polymers can be obtained. The specific amount of the (meth)acrylic acid compound used in the total monomer composition of the vinyl polymer (A) is, for example, in the range of 10% by mass or more and 100% by mass or less, and 30% by mass or more and 95% by mass. % or less, or 50% by mass or more and 90% by mass or less. The lower limit of the amount used may be 40% by mass or more, or 50% by mass or more. Further, the upper limit of the amount used may be 90% by mass or less, or 80% by mass or less.

(メタ)アクリル酸系化合物としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸アミル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸エチルヘキシル、(メタ)アクリル酸n-ドデシル、(メタ)アクリル酸n-オクタデシル等の(メタ)アクリル酸アルキルエステル類;(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸メチルシクロヘキシル、(メタ)アクリル酸tert-ブチルシクロヘキシル、(メタ)アクリル酸シクロドデシル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸アダマンチル、(メタ)アクリル酸ジシクロペンテニル、(メタ)アクリル酸ジシクロペンタニル等の脂肪族環系ビニル単量体;(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル等の芳香族環系ビニル重合体が挙げられる。これらの化合物は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of (meth)acrylic acid compounds include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, and n-butyl (meth)acrylate. , isobutyl (meth)acrylate, tert-butyl (meth)acrylate, amyl (meth)acrylate, n-hexyl (meth)acrylate, n-octyl (meth)acrylate, ethylhexyl (meth)acrylate, ( (meth)acrylic acid alkyl esters such as n-dodecyl meth)acrylate and n-octadecyl (meth)acrylate; cyclohexyl (meth)acrylate, methylcyclohexyl (meth)acrylate, tert-butyl (meth)acrylate Aliphatic vinyl monomers such as cyclohexyl, cyclododecyl (meth)acrylate, isobornyl (meth)acrylate, adamantyl (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentanyl (meth)acrylate, etc. Polymer: aromatic ring-based vinyl polymers such as phenyl (meth)acrylate and benzyl (meth)acrylate. These compounds may be used alone or in combination of two or more.

これらの中でも、比較的Tgを高く設定することができ、本粘着シートの浮きや剥がれを抑制する効果が高く、オレフィン系重合体の被着体への接着性が良好となる点から、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸シクロヘキシル及び(メタ)アクリル酸アダマンチル等の脂肪族環系ビニル単量体を用いることが好ましい。脂肪族環系ビニル単量体の具体的な使用量は、ビニル重合体(A)の全構成単量体に対して1質量%以上が好ましく、5質量%以上がより好ましく、10質量%以上がさらに好ましい。脂肪族環系ビニル単量体の使用量の上限は、ビニル重合体(A)の全構成単量体に対して90質量%以下が好ましく、80質量%以下がより好ましい。脂肪族環系ビニル単量体の使用量の範囲は、ビニル重合体(A)の全構成単量体に対して1質量%以上90質量%以下の範囲が好ましく、5質量%以上80質量%以下がより好ましく、10質量%以上70質量%以下がさらに好ましい。 Among these, (meth) can be set relatively high, has a high effect of suppressing lifting and peeling of the adhesive sheet, and has good adhesion of the olefin polymer to the adherend. ) It is preferable to use aliphatic cyclic vinyl monomers such as isobornyl acrylate, dicyclopentanyl (meth)acrylate, cyclohexyl (meth)acrylate, and adamantyl (meth)acrylate. The specific usage amount of the aliphatic cyclic vinyl monomer is preferably 1% by mass or more, more preferably 5% by mass or more, and 10% by mass or more based on the total constituent monomers of the vinyl polymer (A). is even more preferable. The upper limit of the amount of the aliphatic cyclic vinyl monomer used is preferably 90% by mass or less, more preferably 80% by mass or less, based on the total constituent monomers of the vinyl polymer (A). The amount of the aliphatic cyclic vinyl monomer used is preferably 1% by mass or more and 90% by mass or less, and 5% by mass or more and 80% by mass based on the total constituent monomers of the vinyl polymer (A). The following is more preferable, and 10% by mass or more and 70% by mass or less is even more preferable.

芳香族ビニル化合物としては、例えば、スチレン、α-メチルスチレン、o-メチルスチレン、p-メチルスチレン、ビニルトルエン、β-メチルスチレン、エチルスチレン、p-tert-ブチルスチレン、ビニルキシレン、ビニルナフタレン等が挙げられる。これらの化合物は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。ビニル重合体(A)を構成する単量体として芳香族ビニル化合物を使用する場合、芳香族ビニル化合物の具体的な使用量は、ビニル重合体(A)の全構成単量体に対して1質量%以上40質量%以下の範囲が好ましく、5質量%以上30質量%以下がより好ましく、5質量%以上20質量%以下がさらに好ましい。 Examples of aromatic vinyl compounds include styrene, α-methylstyrene, o-methylstyrene, p-methylstyrene, vinyltoluene, β-methylstyrene, ethylstyrene, p-tert-butylstyrene, vinylxylene, vinylnaphthalene, etc. can be mentioned. These compounds may be used alone or in combination of two or more. When an aromatic vinyl compound is used as a monomer constituting the vinyl polymer (A), the specific amount of the aromatic vinyl compound to be used is 1% to the total monomers constituting the vinyl polymer (A). The range is preferably from 5% by mass to 40% by mass, more preferably from 5% by mass to 30% by mass, and even more preferably from 5% by mass to 20% by mass.

不飽和カルボン酸としては、例えば、(メタ)アクリル酸、エタクリル酸、マレイン酸、フマル酸、イタコン酸、クロトン酸、シトラコン酸、桂皮酸、さらには、不飽和ジカルボン酸のモノアルキルエステル(マレイン酸、フマル酸、イタコン酸、シトラコン酸、無水マレイン酸、無水イタコン酸、無水シトラコン酸等のモノアルキルエステル)等が挙げられる。これらの化合物は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
不飽和酸無水物としては、例えば、無水マレイン酸、無水イタコン酸、無水シトラコン酸等が挙げられる。これらの化合物は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
Examples of unsaturated carboxylic acids include (meth)acrylic acid, ethacrylic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid, citraconic acid, cinnamic acid, and monoalkyl esters of unsaturated dicarboxylic acids (maleic acid, etc.). , monoalkyl esters of fumaric acid, itaconic acid, citraconic acid, maleic anhydride, itaconic anhydride, citraconic anhydride, etc.). These compounds may be used alone or in combination of two or more.
Examples of the unsaturated acid anhydride include maleic anhydride, itaconic anhydride, citraconic anhydride, and the like. These compounds may be used alone or in combination of two or more.

ヒドロキシル基含有不飽和化合物としては、例えば、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル、(メタ)アクリル酸4-ヒドロキシブチル、ポリエチレングリコール、ポリプロピレングリコール等のポリアルキレングリコールのモノ(メタ)アクリル酸エステルや、p-ヒドロキシスチレン、m-ヒドロキシスチレン、o-ヒドロキシスチレン、p-イソプロペニルフェノール、m-イソプロペニルフェノール、o-イソプロペニルフェノール等が挙げられる。これらの化合物は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of the hydroxyl group-containing unsaturated compound include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, and 2-hydroxybutyl (meth)acrylate. , 3-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, mono(meth)acrylate ester of polyalkylene glycol such as polyethylene glycol, polypropylene glycol, p-hydroxystyrene, m-hydroxystyrene , o-hydroxystyrene, p-isopropenylphenol, m-isopropenylphenol, o-isopropenylphenol and the like. These compounds may be used alone or in combination of two or more.

アミノ基含有不飽和化合物としては、例えば、(メタ)アクリル酸ジメチルアミノメチル、(メタ)アクリル酸ジエチルアミノメチル、(メタ)アクリル酸2-ジメチルアミノエチル、(メタ)アクリル酸2-ジエチルアミノエチル、(メタ)アクリル酸2-(ジ-n-プロピルアミノ)エチル、(メタ)アクリル酸2-ジメチルアミノプロピル、(メタ)アクリル酸2-ジエチルアミノプロピル、(メタ)アクリル酸2-(ジ-n-プロピルアミノ)プロピル、(メタ)アクリル酸3-ジメチルアミノプロピル、(メタ)アクリル酸3-ジエチルアミノプロピル、(メタ)アクリル酸3-(ジ-n-プロピルアミノ)プロピル等が挙げられる。これらの化合物は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of the amino group-containing unsaturated compound include dimethylaminomethyl (meth)acrylate, diethylaminomethyl (meth)acrylate, 2-dimethylaminoethyl (meth)acrylate, 2-diethylaminoethyl (meth)acrylate, ( 2-(di-n-propylamino)ethyl meth)acrylate, 2-dimethylaminopropyl (meth)acrylate, 2-diethylaminopropyl (meth)acrylate, 2-(di-n-propyl (meth)acrylate) Examples include amino)propyl, 3-dimethylaminopropyl (meth)acrylate, 3-diethylaminopropyl (meth)acrylate, and 3-(di-n-propylamino)propyl (meth)acrylate. These compounds may be used alone or in combination of two or more.

アミド基含有不飽和化合物としては、例えば、(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジメチルアミノプロピル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド等が挙げられる。これらの化合物は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of the amide group-containing unsaturated compound include (meth)acrylamide, N,N-dimethyl(meth)acrylamide, N,N-dimethylaminopropyl(meth)acrylamide, and N-methylol(meth)acrylamide. These compounds may be used alone or in combination of two or more.

アルコキシル基含有不飽和化合物としては、例えば、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸2-エトキシエチル、(メタ)アクリル酸2-(n-プロポキシ)エチル、(メタ)アクリル酸2-(n-ブトキシ)エチル、(メタ)アクリル酸3-メトキシプロピル、(メタ)アクリル酸3-エトキシプロピル、(メタ)アクリル酸2-(n-プロポキシ)プロピル、(メタ)アクリル酸2-(n-ブトキシ)プロピル等が挙げられる。これらの化合物は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of the alkoxyl group-containing unsaturated compound include 2-methoxyethyl (meth)acrylate, 2-ethoxyethyl (meth)acrylate, 2-(n-propoxy)ethyl (meth)acrylate, and (meth)acrylic acid. 2-(n-butoxy)ethyl, 3-methoxypropyl (meth)acrylate, 3-ethoxypropyl (meth)acrylate, 2-(n-propoxy)propyl (meth)acrylate, 2-(meth)acrylate Examples include (n-butoxy)propyl. These compounds may be used alone or in combination of two or more.

シアノ基含有不飽和化合物としては、例えば、(メタ)アクリル酸シアノメチル、(メタ)アクリル酸1-シアノエチル、(メタ)アクリル酸2-シアノエチル、(メタ)アクリル酸1-シアノプロピル、(メタ)アクリル酸2-シアノプロピル、(メタ)アクリル酸3-シアノプロピル、(メタ)アクリル酸4-シアノブチル、(メタ)アクリル酸6-シアノヘキシル、(メタ)アクリル酸2-エチル-6-シアノヘキシル、(メタ)アクリル酸8-シアノオクチル等が挙げられる。これらの化合物は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of the cyano group-containing unsaturated compound include cyanomethyl (meth)acrylate, 1-cyanoethyl (meth)acrylate, 2-cyanoethyl (meth)acrylate, 1-cyanopropyl (meth)acrylate, and (meth)acrylate. 2-cyanopropyl acid, 3-cyanopropyl (meth)acrylate, 4-cyanobutyl (meth)acrylate, 6-cyanohexyl (meth)acrylate, 2-ethyl-6-cyanohexyl (meth)acrylate, ( Examples include 8-cyanooctyl meth)acrylate. These compounds may be used alone or in combination of two or more.

ニトリル基含有不飽和化合物としては、例えば、(メタ)アクリロニトリル、α-エチルアクリロニトリル、α-イソプロピルアクリロニトリル、α-クロロアクリロニトリル、α-フルオロアクリロニトリル等が挙げられる。これらの化合物は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of the nitrile group-containing unsaturated compound include (meth)acrylonitrile, α-ethyl acrylonitrile, α-isopropylacrylonitrile, α-chloroacrylonitrile, α-fluoroacrylonitrile, and the like. These compounds may be used alone or in combination of two or more.

マレイミド系化合物としては、例えば、マレイミド、N-メチルマレイミド、N-イソプロピルマレイミド、N-ブチルマレイミド、N-ドデシルマレイミド、N-シクロヘキシルマレイミド、N-フェニルマレイミド、N-(2-メチルフェニル)マレイミド、N-(4-メチルフェニル)マレイミド、N-(2、6-ジメチルフェニル)マレイミド、N-(2、6-ジエチルフェニル)マレイミド、N-ベンジルマレイミド、N-ナフチルマレイミド等が挙げられる。これらの化合物は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of maleimide compounds include maleimide, N-methylmaleimide, N-isopropylmaleimide, N-butylmaleimide, N-dodecylmaleimide, N-cyclohexylmaleimide, N-phenylmaleimide, N-(2-methylphenyl)maleimide, Examples include N-(4-methylphenyl)maleimide, N-(2,6-dimethylphenyl)maleimide, N-(2,6-diethylphenyl)maleimide, N-benzylmaleimide, N-naphthylmaleimide, and the like. These compounds may be used alone or in combination of two or more.

上記化合物以外に、不飽和ジカルボン酸のジアルキルエステル、ビニルエステル化合物、ビニルエーテル化合物等を用いることもできる。不飽和ジカルボン酸のジアルキルエステルとしては、例えば、マレイン酸、フマル酸、イタコン酸、シトラコン酸、無水マレイン酸、無水イタコン酸、無水シトラコン酸等のジアルキルエステルが挙げられる。ビニルエステル化合物としては、例えば、メチレン脂肪族モノカルボン酸エステル、酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニル、酪酸ビニル、安息香酸ビニル、ギ酸ビニル、桂皮酸ビニル等が挙げられる。上記ビニルエーテル化合物としては、例えば、ビニルメチルエーテル、ビニルエチルエーテル、ビニル-n-ブチルエーテル、ビニルイソブチルエーテル、ビニルフェニルエーテル、ビニルシクロヘキシルエーテル等が挙げられる。 In addition to the above compounds, dialkyl esters of unsaturated dicarboxylic acids, vinyl ester compounds, vinyl ether compounds, etc. can also be used. Examples of dialkyl esters of unsaturated dicarboxylic acids include dialkyl esters such as maleic acid, fumaric acid, itaconic acid, citraconic acid, maleic anhydride, itaconic anhydride, and citraconic anhydride. Examples of the vinyl ester compound include methylene aliphatic monocarboxylic acid ester, vinyl acetate, vinyl propionate, vinyl pivalate, vinyl butyrate, vinyl benzoate, vinyl formate, vinyl cinnamate, and the like. Examples of the vinyl ether compound include vinyl methyl ether, vinyl ethyl ether, vinyl-n-butyl ether, vinyl isobutyl ether, vinyl phenyl ether, vinyl cyclohexyl ether, and the like.

ビニル重合体(A)の数平均分子量(Mn)は、500以上10,000以下とすることができる。ビニル重合体(A)のMnは、500以上であることが好ましく、1,000以上であることがより好ましく、2,000以上であることがさらに好ましい。ビニル重合体(A)のMnの上限は、10,000以下であることが好ましく、8,000以下であることがより好ましく、7,000以下であることがさらに好ましい。Mnは、500以上7,000以下であってもよく、1,000以上5,000以下であってもよい。Mnが10,000を超えると、アクリル系粘着性ポリマー(B)との相溶性が悪くなる場合がある。一方、Mnが500未満の重合体を製造するには、重合開始剤や連鎖移動剤を多量に用いる必要性や、生産性の低下等が生じる場合がある。 The number average molecular weight (Mn) of the vinyl polymer (A) can be 500 or more and 10,000 or less. The Mn of the vinyl polymer (A) is preferably 500 or more, more preferably 1,000 or more, and even more preferably 2,000 or more. The upper limit of Mn in the vinyl polymer (A) is preferably 10,000 or less, more preferably 8,000 or less, and even more preferably 7,000 or less. Mn may be 500 or more and 7,000 or less, or 1,000 or more and 5,000 or less. When Mn exceeds 10,000, compatibility with the acrylic adhesive polymer (B) may deteriorate. On the other hand, in order to produce a polymer having an Mn of less than 500, it may be necessary to use a large amount of a polymerization initiator or a chain transfer agent, and there may be a decrease in productivity.

また、重量平均分子量(Mw)と上記(Mn)との比(Mw/Mn)は、良好な接着強度が得られやすいという観点から、3.0以下が好ましい。より好ましくは2.5以下であり、さらに好ましくは2.0以下であり、一層好ましくは1.8以下である。なお、重量平均分子量Mw及び数平均分子量Mnは、ゲルパーミエーションクロマトグラフィー(GPC)を用いて得られた標準ポリスチレン換算値である。 Further, the ratio (Mw/Mn) between the weight average molecular weight (Mw) and the above (Mn) is preferably 3.0 or less from the viewpoint of easily obtaining good adhesive strength. More preferably it is 2.5 or less, still more preferably 2.0 or less, even more preferably 1.8 or less. Note that the weight average molecular weight Mw and the number average molecular weight Mn are standard polystyrene equivalent values obtained using gel permeation chromatography (GPC).

ビニル重合体(A)は、その製造方法について特段の制約はないが、例えば、溶液重合法等の公知のラジカル重合方法を採用して上記単量体を重合することにより容易に得ることができる。溶液重合法による場合、有機溶剤及びビニル単量体原料を反応器に仕込み、有機過酸化物、アゾ系化合物等の熱重合開始剤を添加して、50~300℃に加熱して共重合することにより目的とするビニル重合体を得ることができる。当該ビニル重合体は、有機溶剤に溶解された溶液として用いてもよいし、加熱減圧処理等により溶剤を留去して用いてもよい。 Although there are no particular restrictions on the method of producing the vinyl polymer (A), it can be easily obtained, for example, by polymerizing the above monomers using a known radical polymerization method such as a solution polymerization method. . When using the solution polymerization method, an organic solvent and vinyl monomer raw materials are charged into a reactor, a thermal polymerization initiator such as an organic peroxide or an azo compound is added, and the mixture is heated to 50 to 300°C to copolymerize. By doing this, the desired vinyl polymer can be obtained. The vinyl polymer may be used as a solution dissolved in an organic solvent, or may be used after the solvent is distilled off by heating under reduced pressure or the like.

単量体を含む各原料の仕込み方法は、すべての原料を一括して仕込むバッチ式の初期一括仕込みでもよく、少なくとも一つの原料を連続的に反応器中に供給するセミ連続仕込みでもよく、全原料を連続供給し、同時に反応器から連続的に生成樹脂を抜き出す連続重合方式でもよい。 The method for charging each raw material including monomers may be batch-type initial batch charging in which all raw materials are charged at once, or semi-continuous charging in which at least one raw material is continuously fed into the reactor. A continuous polymerization method may be used in which the raw materials are continuously supplied and at the same time, the produced resin is continuously extracted from the reactor.

溶液重合法に使用する有機溶剤としては、有機炭化水素系化合物が適当であり、テトラヒドロフラン及びジオキサン等の環状エーテル類、ベンゼン、トルエン及びキシレン等の芳香族炭化水素化合物、酢酸エチル及び酢酸ブチル等のエステル類、アセトン、メチルエチルケトン及びシクロヘキサノン等のケトン類等、オルトギ酸メチル、オルト酢酸メチル、メタノール、エタノール、イソプロパノール等のアルコール類が例示され、これらの1種又は2種以上を用いることができる。これらの有機溶剤の中では、ビニル系重合体をよく溶解し、精製しやすいように沸点が比較的低い、酢酸エチル、酢酸ブチル、アセトン、メチルエチルケトンが好ましい。 Suitable organic solvents used in the solution polymerization method are organic hydrocarbon compounds, including cyclic ethers such as tetrahydrofuran and dioxane, aromatic hydrocarbon compounds such as benzene, toluene and xylene, and ethyl acetate and butyl acetate. Examples include esters, ketones such as acetone, methyl ethyl ketone, and cyclohexanone, and alcohols such as methyl orthoformate, methyl orthoacetate, methanol, ethanol, and isopropanol, and one or more of these may be used. Among these organic solvents, ethyl acetate, butyl acetate, acetone, and methyl ethyl ketone are preferable because they dissolve the vinyl polymer well and have a relatively low boiling point for easy purification.

本明細書で使用する開始剤は、アゾ系化合物、有機過酸化物、無機過酸化物等を用いることができるが、特に限定されるものではない。公知の酸化剤及び還元剤からなるレドックス型重合開始剤を用いてもよい。また、公知の連鎖移動剤を併用することもできる。 The initiator used herein may be an azo compound, an organic peroxide, an inorganic peroxide, etc., but is not particularly limited. A redox type polymerization initiator consisting of a known oxidizing agent and reducing agent may be used. Moreover, a known chain transfer agent can also be used in combination.

アゾ系化合物としては、例えば、2,2’-アゾビス(イソブチロニトリル)、1,1-アゾビス(シクロヘキサン-1-カルボニトリル)、アゾクメン、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビスジメチルバレロニトリル、4,4’-アゾビス(4-シアノ吉草酸)、2-(tert-ブチルアゾ)-2-シアノプロパン、2,2’-アゾビス(2,4,4-トリメチルペンタン)、2,2’-アゾビス(2-メチルプロパン)、ジメチル2,2’-アゾビス(2-メチルプロピオネート)等が挙げられる。 Examples of azo compounds include 2,2'-azobis(isobutyronitrile), 1,1-azobis(cyclohexane-1-carbonitrile), azocumene, and 2,2'-azobis(2-methylbutyronitrile). ), 2,2'-azobisdimethylvaleronitrile, 4,4'-azobis(4-cyanovaleric acid), 2-(tert-butylazo)-2-cyanopropane, 2,2'-azobis(2,4 , 4-trimethylpentane), 2,2'-azobis(2-methylpropane), dimethyl 2,2'-azobis(2-methylpropionate), and the like.

有機過酸化物としては、例えば、シクロヘキサノンパーオキサイド、3,3,5-トリメチルシクロヘキサノンパーオキサイド、メチルシクロヘキサノンパーオキサイド、1,1-ビス(tert-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(tert-ブチルパーオキシ)シクロヘキサン、n-ブチル-4,4-ビス(tert-ブチルパーオキシ)バレレート、クメンハイドロパーオキサイド、2,5-ジメチルヘキサン-2,5-ジハイドロパーオキサイド、1,3-ビス[(tert-ブチルパーオキシ)-m-イソプロピル]ベンゼン、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキサン、ジイソプロピルベンゼンパーオキサイド、tert-ブチルクミルパーオキサイド、デカノイルパーオキサイド、ラウロイルパーオキサイド、ベンゾイルパーオキサイド、2,4-ジクロロベンゾイルパーオキサイド、ビス(tert-ブチルシクロヘキシル)パーオキシジカーボネート、tert-ブチルパーオキシベンゾエート、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン等が挙げられる。
無機過酸化物としては、例えば、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等が挙げられる。
Examples of organic peroxides include cyclohexanone peroxide, 3,3,5-trimethylcyclohexanone peroxide, methylcyclohexanone peroxide, 1,1-bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane , 1,1-bis(tert-butylperoxy)cyclohexane, n-butyl-4,4-bis(tert-butylperoxy)valerate, cumene hydroperoxide, 2,5-dimethylhexane-2,5-di Hydroperoxide, 1,3-bis[(tert-butylperoxy)-m-isopropyl]benzene, 2,5-dimethyl-2,5-di(tert-butylperoxy)hexane, diisopropylbenzene peroxide, tert -Butylcumyl peroxide, decanoyl peroxide, lauroyl peroxide, benzoyl peroxide, 2,4-dichlorobenzoyl peroxide, bis(tert-butylcyclohexyl) peroxydicarbonate, tert-butyl peroxybenzoate, 2,5 -dimethyl-2,5-di(benzoylperoxy)hexane and the like.
Examples of the inorganic peroxide include potassium persulfate, sodium persulfate, ammonium persulfate, and the like.

レドックス型重合開始剤としては、例えば、亜硫酸ナトリウム、チオ硫酸ナトリウム、ナトリウムホルムアルデヒドスルホキシレート、アスコルビン酸、硫酸第一鉄等を還元剤とし、ペルオキソ二硫酸カリウム、過酸化水素、tert-ブチルハイドロパーオキサイド等を酸化剤としたものを用いることができる。 Examples of redox-type polymerization initiators include sodium sulfite, sodium thiosulfate, sodium formaldehyde sulfoxylate, ascorbic acid, ferrous sulfate, etc., and potassium peroxodisulfate, hydrogen peroxide, tert-butyl hydroperoxide, etc. An oxidizing agent such as oxide can be used.

ビニル重合体(A)の分子量を調整するため、必要に応じて公知の連鎖移動剤を使用してもよい。連鎖移動剤としては、エタンチオール、ブタンチオール、ドデカンチオール、ベンゼンチオール、トルエンチオール、α-トルエンチオール、フェネチルメルカプタン、メルカプトエタノール、3-メルカプトプロパノール、チオグリセリン、チオグリコール酸、2-メルカプトプロピオン酸、3-メルカプトプロピオン酸、α-メルカプトイソ酪酸、メルカプトプロピオン酸メチル、メルカプトプロピオン酸エチル、チオ酢酸、チオリンゴ酸、チオサリチル酸、オクチルメルカプタン、n-ドデシルメルカプタン、tert-ドデシルメルカプタン、n-ヘキサデシルメルカプタン、n-テトラデシルメルカプタン、tert-テトラデシルメルカプタン等が挙げられる。 In order to adjust the molecular weight of the vinyl polymer (A), a known chain transfer agent may be used as necessary. Chain transfer agents include ethanethiol, butanethiol, dodecanethiol, benzenethiol, toluenethiol, α-toluenethiol, phenethylmercaptan, mercaptoethanol, 3-mercaptopropanol, thioglycerin, thioglycolic acid, 2-mercaptopropionic acid, 3-mercaptopropionic acid, α-mercaptoisobutyric acid, methyl mercaptopropionate, ethyl mercaptopropionate, thioacetic acid, thiomalic acid, thiosalicylic acid, octyl mercaptan, n-dodecyl mercaptan, tert-dodecyl mercaptan, n-hexadecyl mercaptan, Examples include n-tetradecyl mercaptan and tert-tetradecyl mercaptan.

また、ビニル重合体(A)は、撹拌槽型反応器を使用し、180~350℃の温度範囲において連続重合することにより得ることもできる。この重合方法では、重合開始剤や連鎖移動剤を実質的に使用することなく比較的低分子量のビニル重合体を得ることができるため純度の高い重合体が得られ、後述する着色や臭気の点でも有利であるため好ましい。重合温度が180℃未満の場合には、重合反応に重合開始剤や多量の連鎖移動剤が必要となり、得られた共重合体は着色しやすく、また好ましくない臭気を発生する。一方、重合温度が350℃を超える場合には、重合反応中に分解反応が起こりやすく、得られる共重合体が着色するため、これを含む粘着剤組成物から得られる粘着剤層の透明性の低下が懸念される。さらに、このような重合方法によれば、分子量の分布範囲の小さいビニル重合体が得られる。なお、重合開始剤は随意に使用してもよいが、全単量体に対して約1質量%以下で使用するのが好ましい。 The vinyl polymer (A) can also be obtained by continuous polymerization in a temperature range of 180 to 350°C using a stirred tank reactor. With this polymerization method, a relatively low molecular weight vinyl polymer can be obtained without using a polymerization initiator or a chain transfer agent, resulting in a highly pure polymer, and there are no problems with coloration or odor, which will be discussed later. However, it is preferable because it is advantageous. If the polymerization temperature is less than 180° C., a polymerization initiator and a large amount of chain transfer agent are required for the polymerization reaction, and the resulting copolymer is likely to be colored and generate an undesirable odor. On the other hand, if the polymerization temperature exceeds 350°C, a decomposition reaction is likely to occur during the polymerization reaction, and the resulting copolymer will be colored, which may reduce the transparency of the adhesive layer obtained from the adhesive composition containing it. There are concerns about a decline. Furthermore, according to such a polymerization method, a vinyl polymer having a narrow molecular weight distribution range can be obtained. The polymerization initiator may be optionally used, but it is preferably used in an amount of about 1% by mass or less based on the total monomers.

5-2.アクリル系粘着性ポリマー(B)
本明細書に開示するアクリル系粘着性ポリマー(B)は、(メタ)アクリル酸エステル類を主要構成単位として含有する重合体である。アクリル系粘着性ポリマー(B)としては、アクリル系ランダム共重合体及びアクリル系ブロック共重合体が挙げられる。
5-2. Acrylic adhesive polymer (B)
The acrylic adhesive polymer (B) disclosed herein is a polymer containing (meth)acrylic acid esters as a main structural unit. Examples of the acrylic adhesive polymer (B) include acrylic random copolymers and acrylic block copolymers.

<アクリル系ランダム共重合体について>
アクリル系粘着性ポリマー(B)がランダム共重合体である場合、アクリル系粘着性ポリマー(B)は、ガラス転移温度(Tg)が、例えば-80℃以上10℃以下の範囲にある粘着性を有する重合体である。Tgの下限は、-70℃以上であってもよく、-60℃以上であってもよく、-50℃以上であってもよく、-40℃以上であってもよい。Tgの上限は、0℃以下であってもよく、-10℃以下であってもよく、-20℃以下であってもよく、-30℃以下であってもよい。また、Tgの範囲は、これらの上限及び下限を適宜組み合わせることができるが、例えば、-70℃以上0℃以下の範囲であることが好ましく、また例えば-60℃以上-10℃以下であり、また例えば-50℃以上-20℃以下である。なお、Tgが-80℃以上であれば、十分な凝集力と良好な接着性を有する粘着剤が得られる。また、Tgが10℃以下であれば、良好な段差追随性を備えることができる。アクリル系粘着性ポリマー(B)のTgは、DSCにより昇温速度10℃/minで測定した値である。
<About acrylic random copolymer>
When the acrylic adhesive polymer (B) is a random copolymer, the acrylic adhesive polymer (B) has adhesiveness whose glass transition temperature (Tg) is, for example, in the range of -80°C or higher and 10°C or lower. It is a polymer with The lower limit of Tg may be -70°C or higher, -60°C or higher, -50°C or higher, or -40°C or higher. The upper limit of Tg may be 0°C or less, -10°C or less, -20°C or less, or -30°C or less. Further, the range of Tg can be a combination of these upper and lower limits as appropriate, but for example, it is preferably in the range of -70°C or more and 0°C or less, and for example, it is -60°C or more and -10°C or less, For example, the temperature is -50°C or more and -20°C or less. Note that when Tg is −80° C. or higher, a pressure-sensitive adhesive having sufficient cohesive force and good adhesiveness can be obtained. Moreover, if Tg is 10° C. or less, good step followability can be provided. The Tg of the acrylic adhesive polymer (B) is a value measured by DSC at a temperature increase rate of 10° C./min.

さらに、アクリル系粘着性ポリマー(B)の重量平均分子量(Mw)は、十分な凝集力と良好な接着性とを発揮する観点から、好ましくは100,000以上である。Mwの下限値は、300,000以上であってもよく、400,000以上であってもよく、500,000以上であってもよい。また、Mwが400,000以上であると耐熱性がより向上する点で好ましい。一方、Mwが大きすぎると、段差追随性が低下する傾向があり、製造上の扱いも困難となる場合がある。したがって、Mwの上限値は、5,000,000以下であることが好ましい。Mwの上限値は3,000,000以下であってもよく、2,000,000以下であってもよく、1,000,000以下であってもよい。 Furthermore, the weight average molecular weight (Mw) of the acrylic adhesive polymer (B) is preferably 100,000 or more from the viewpoint of exhibiting sufficient cohesive force and good adhesiveness. The lower limit of Mw may be 300,000 or more, 400,000 or more, or 500,000 or more. Further, it is preferable that the Mw is 400,000 or more because the heat resistance is further improved. On the other hand, if Mw is too large, the level difference followability tends to decrease, and handling in manufacturing may become difficult. Therefore, the upper limit of Mw is preferably 5,000,000 or less. The upper limit value of Mw may be 3,000,000 or less, 2,000,000 or less, or 1,000,000 or less.

アクリル系粘着性ポリマー(B)の数平均分子量(Mn)は、十分な凝集力と良好な接着性とを発揮する観点から、好ましくは30,000以上である。Mnの下限値は、40,000以上であってもよく、50,000以上であってもよく、60,000以上であってもよい。Mnの上限値は、良好な段差追随性を確保するために、3,000,000以下であることが好ましい。Mnの上限値は、1,000,000以下であってもよく、800,000以下であってもよい。 The number average molecular weight (Mn) of the acrylic adhesive polymer (B) is preferably 30,000 or more from the viewpoint of exhibiting sufficient cohesive force and good adhesiveness. The lower limit of Mn may be 40,000 or more, 50,000 or more, or 60,000 or more. The upper limit value of Mn is preferably 3,000,000 or less in order to ensure good step followability. The upper limit value of Mn may be 1,000,000 or less, or may be 800,000 or less.

また、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は、良好な接着強度が得られやすいという観点から、例えば6.0以下である。Mw/Mnは5.0以下であってもよく、4.7以下であってもよく、4.5以下であってもよく、4.0以下であってもよく、3.8以下であってもよく、3.6以下であってもよい。なお、重量平均分子量Mw及び数平均分子量Mnは、ゲルパーミエーションクロマトグラフィー(GPC)を用いて得られた標準ポリスチレン換算値である。 Further, the ratio (Mw/Mn) between weight average molecular weight (Mw) and number average molecular weight (Mn) is, for example, 6.0 or less from the viewpoint of easily obtaining good adhesive strength. Mw/Mn may be 5.0 or less, 4.7 or less, 4.5 or less, 4.0 or less, 3.8 or less. It may be 3.6 or less. Note that the weight average molecular weight Mw and the number average molecular weight Mn are standard polystyrene equivalent values obtained using gel permeation chromatography (GPC).

アクリル系粘着性ポリマー(B)を構成する単量体としては、良好な粘着性を有するアクリル系共重合体が得られる点で、炭素数1~12のアルキル基を有する(メタ)アクリル酸アルキルエステル、及び炭素数2~12のアルコキシアルキル基を有する(メタ)アクリル酸アルコキシアルキルエステル等を挙げることができる。アクリル系粘着性ポリマー(B)を構成する単量体としては、これらの内の1種又は2種以上を使用することができる。 As monomers constituting the acrylic adhesive polymer (B), alkyl (meth)acrylates having an alkyl group having 1 to 12 carbon atoms are used, since an acrylic copolymer having good adhesiveness can be obtained. Examples include esters and (meth)acrylic acid alkoxyalkyl esters having an alkoxyalkyl group having 2 to 12 carbon atoms. As the monomers constituting the acrylic adhesive polymer (B), one or more of these can be used.

炭素数1~12のアルキル基を有する(メタ)アクリル酸アルキルエステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸n-ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸n-デシル、(メタ)アクリル酸ラウリル等が挙げられ、好ましい単量体としては(メタ)アクリル酸n-ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸n-ノニル、(メタ)アクリル酸イソノニル等が挙げられる。 Examples of the (meth)acrylic acid alkyl ester having an alkyl group having 1 to 12 carbon atoms include methyl (meth)acrylate, ethyl (meth)acrylate, isopropyl (meth)acrylate, and n-(meth)acrylate. Butyl, isobutyl (meth)acrylate, n-hexyl (meth)acrylate, n-octyl (meth)acrylate, isooctyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, n-(meth)acrylate Nonyl, isononyl (meth)acrylate, n-decyl (meth)acrylate, lauryl (meth)acrylate, etc., and preferred monomers include n-butyl (meth)acrylate, (meth)acrylate 2 -ethylhexyl, n-octyl (meth)acrylate, isooctyl (meth)acrylate, n-nonyl (meth)acrylate, isononyl (meth)acrylate, and the like.

炭素数2~12のアルコキシアルキル基を有する(メタ)アクリル酸アルコキシアルキルエステルとしては、例えば、(メタ)アクリル酸メトキシメチル、(メタ)アクリル酸エトキシメチル、(メタ)アクリル酸ブトキシメチル、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシエチル、(メタ)アクリル酸ブトキシエチル、(メタ)アクリル酸メトキシブチル、(メタ)アクリル酸エトキシブチル、(メタ)アクリル酸ブトキシブチル等が挙げられる。 Examples of the (meth)acrylic acid alkoxyalkyl ester having an alkoxyalkyl group having 2 to 12 carbon atoms include methoxymethyl (meth)acrylate, ethoxymethyl (meth)acrylate, butoxymethyl (meth)acrylate, and ) Methoxyethyl acrylate, ethoxyethyl (meth)acrylate, butoxyethyl (meth)acrylate, methoxybutyl (meth)acrylate, ethoxybutyl (meth)acrylate, butoxybutyl (meth)acrylate, and the like.

炭素数1~12のアルキル基を有する(メタ)アクリル酸アルキルエステル及び/又は炭素数2~12のアルコキシアルキル基を有する(メタ)アクリル酸アルコキシアルキルエステルの使用量は、特に限定するものではないが、良好な粘着性能が得られる傾向がある点で、その下限は、アクリル系共重合体の全構成単量体を基準にして、10質量%以上とすることができ、20質量%以上であってもよく、30質量%以上であってもよく、40質量%以上であってもよく、50質量%以上であってもよい。また、その上限は、100質量%以下であり、99質量%であってもよく、95質量%以下であってもよく、90質量%以下であってもよく、80%質量%以下であってもよい。使用量の範囲は、これらの上限及び下限を適宜組み合わせることで設定できるが、例えば10質量%以上100質量%以下であり、10質量%以上99質量%以下、20質量%以上95質量%以下、また例えば30質量%以上90質量%以下などとすることができる。10質量%以上であれば、良好な粘着力、初期接着力(タック)及び低温粘着性等を備える粘着剤組成物が得られる点で好ましい。 The amount of the (meth)acrylic acid alkyl ester having an alkyl group having 1 to 12 carbon atoms and/or the (meth)acrylic acid alkoxyalkyl ester having an alkoxyalkyl group having 2 to 12 carbon atoms to be used is not particularly limited. However, since good adhesive performance tends to be obtained, the lower limit can be 10% by mass or more, and 20% by mass or more, based on the total constituent monomers of the acrylic copolymer. The content may be 30% by mass or more, 40% by mass or more, or 50% by mass or more. Further, the upper limit thereof is 100% by mass or less, may be 99% by mass, may be 95% by mass or less, may be 90% by mass or less, and may be 80% by mass or less. Good too. The range of the usage amount can be set by appropriately combining these upper and lower limits, but for example, 10% by mass or more and 100% by mass or less, 10% by mass or more and 99% by mass or less, 20% by mass or more and 95% by mass or less, Further, for example, the content may be 30% by mass or more and 90% by mass or less. If it is 10% by mass or more, it is preferable in that a pressure-sensitive adhesive composition having good adhesive strength, initial adhesive strength (tack), low-temperature tackiness, etc. can be obtained.

上記の内でも、炭素数1~3のアルキル基を有する(メタ)アクリル酸アルキルエステルを用いることができる。こうした(メタ)アクリル酸アルキルエステルを用いることで、アクリル系粘着性ポリマー(B)のTg及び後述する粘着剤層の弾性率を向上させることができ、粘着剤層の耐熱性向上に有利である。好適には、炭素数1~2のアルキル基を有する(メタ)アクリル酸アルキルエステル、より好適には、(メタ)アクリル酸メチルである。 Among the above, (meth)acrylic acid alkyl esters having an alkyl group having 1 to 3 carbon atoms can be used. By using such a (meth)acrylic acid alkyl ester, it is possible to improve the Tg of the acrylic adhesive polymer (B) and the elastic modulus of the adhesive layer described below, which is advantageous for improving the heat resistance of the adhesive layer. . Preferably, an alkyl (meth)acrylate having an alkyl group having 1 to 2 carbon atoms, more preferably methyl (meth)acrylate.

アクリル系粘着性ポリマー(B)は、上記の(メタ)アクリル酸アルキルエステル及び(メタ)アクリル酸アルコキシアルキルエステル以外にも、粘着性を損なわない範囲で、これらと共重合可能な他の単量体を使用することができる。 In addition to the above-mentioned (meth)acrylic acid alkyl ester and (meth)acrylic acid alkoxyalkyl ester, the acrylic adhesive polymer (B) may contain other monomers that can be copolymerized with these to the extent that the adhesiveness is not impaired. body can be used.

その他のビニル系単量体としては、例えば、(メタ)アクリル酸、イタコン酸、マレイン酸、フマル酸等のα,β-エチレン性不飽和カルボン酸単量体;スチレン、α-メチルスチレン、ビニルトルエン等の芳香族系ビニル単量体;(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸メチルシクロヘキシル、(メタ)アクリル酸tert-ブチルシクロヘキシル、(メタ)アクリル酸シクロドデシル、(メタ)アクリル酸イソボルニル等の脂肪族環系ビニル単量体;イタコン酸モノエチルエステル、フマル酸モノブチルエステル等の不飽和ジカルボン酸のモノアルキルエステル;(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、ポリエチレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート及びポリエチレン-ポリプロピレングリコールモノ(メタ)アクリレート等の水酸基含有ビニル単量体;アクリルアミド、N-メチロールアクリルアミド、N-メトキシメチルアクリルアミド、N-メトキシブチルアクリルアミド等のエチレン系不飽和カルボン酸アミド及びN-置換化合物;アリルアルコール等の不飽和アルコール;(メタ)アクリロニトリル、酢酸ビニル、(メタ)アクリル酸グリシジル、ダイアセトンアクリルアミド等が挙げられ、これらのうちの1種又は2種以上を使用することができる。 Examples of other vinyl monomers include α,β-ethylenically unsaturated carboxylic acid monomers such as (meth)acrylic acid, itaconic acid, maleic acid, and fumaric acid; styrene, α-methylstyrene, and vinyl Aromatic vinyl monomers such as toluene; cyclohexyl (meth)acrylate, methylcyclohexyl (meth)acrylate, tert-butylcyclohexyl (meth)acrylate, cyclododecyl (meth)acrylate, isobornyl (meth)acrylate aliphatic cyclic vinyl monomers such as; monoalkyl esters of unsaturated dicarboxylic acids such as monoethyl itaconate and monobutyl fumarate; 2-hydroxyethyl (meth)acrylate, 3-(meth)acrylate Hydroxyl group-containing vinyl monomers such as hydroxypropyl, 4-hydroxybutyl (meth)acrylate, polyethylene glycol (meth)acrylate, polypropylene glycol (meth)acrylate, and polyethylene-polypropylene glycol mono(meth)acrylate; acrylamide, N-methylol Ethylenically unsaturated carboxylic acid amides and N-substituted compounds such as acrylamide, N-methoxymethylacrylamide, N-methoxybutylacrylamide; Unsaturated alcohols such as allyl alcohol; (meth)acrylonitrile, vinyl acetate, glycidyl (meth)acrylate , diacetone acrylamide, etc., and one or more of these can be used.

α,β-エチレン性不飽和カルボン酸単量体を用いた場合、得られる粘着剤組成物は、例えばガラス、金属、ABS板等の被着体に対する接着強度が高くなる観点から好ましい。α,β-エチレン性不飽和カルボン酸単量体を用いる場合、α,β-エチレン性不飽和カルボン酸単量体の使用量は、アクリル系共重合体の全構成単量体を基準にして、好ましくは1質量%以上20質量%以下であり、より好ましくは2質量%以上15質量%以下であり、さらに好ましくは3質量%以上10質量%以下である。使用量が1質量%以上であれば被着体に対する接着力向上の効果が得られ、20質量%以下であれば、良好な接着性が保持される。α,β-エチレン性不飽和カルボン酸単量体は1種又は2種以上を使用してよい。重合性の観点から、好ましくは(メタ)アクリル酸である。 When an α,β-ethylenically unsaturated carboxylic acid monomer is used, the resulting pressure-sensitive adhesive composition is preferred from the viewpoint of increasing adhesive strength to adherends such as glass, metal, and ABS plates. When using an α,β-ethylenically unsaturated carboxylic acid monomer, the amount of α,β-ethylenically unsaturated carboxylic acid monomer to be used is based on the total constituent monomers of the acrylic copolymer. , preferably 1% by mass or more and 20% by mass or less, more preferably 2% by mass or more and 15% by mass or less, still more preferably 3% by mass or more and 10% by mass or less. If the amount used is 1% by mass or more, the effect of improving the adhesive force to the adherend can be obtained, and if the amount used is 20% by mass or less, good adhesiveness is maintained. One type or two or more types of α,β-ethylenically unsaturated carboxylic acid monomers may be used. From the viewpoint of polymerizability, (meth)acrylic acid is preferred.

その他にも、(メタ)アクリロイル基、アルケニル基等の重合性官能基を分子内に2つ以上有する多官能重合性単量体を用いてもよい。多官能重合性単量体は、いわゆる架橋剤としても作用し、これを使用することにより本粘着性ポリマーに架橋構造を形成することができる。 In addition, a polyfunctional polymerizable monomer having two or more polymerizable functional groups such as a (meth)acryloyl group or an alkenyl group in the molecule may be used. The polyfunctional polymerizable monomer also acts as a so-called crosslinking agent, and by using it, a crosslinked structure can be formed in the adhesive polymer.

多官能(メタ)アクリレート化合物としては、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等の2価アルコールのジ(メタ)アクリレート類;トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエチレンオキサイド変性体のトリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等の3価以上の多価アルコールのトリ(メタ)アクリレート、テトラ(メタ)アクリレート等のポリ(メタ)アクリレート等を挙げることができる。 Examples of polyfunctional (meth)acrylate compounds include ethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, polyethylene glycol di(meth)acrylate, and polypropylene glycol di(meth)acrylate. Di(meth)acrylates of dihydric alcohols such as meth)acrylate; trimethylolpropane tri(meth)acrylate, tri(meth)acrylate modified with trimethylolpropane ethylene oxide, glycerin tri(meth)acrylate, pentaerythritol tri( Examples include poly(meth)acrylates such as tri(meth)acrylates of trihydric or higher polyhydric alcohols such as meth)acrylates and pentaerythritol tetra(meth)acrylates, and tetra(meth)acrylates.

多官能アルケニル化合物としては、トリメチロールプロパンジアリルエーテル、ペンタエリスリトールジアリルエーテル、ペンタエリスリトールトリアリルエーテル、テトラアリルオキシエタン、ポリアリルサッカロース等の多官能アリルエーテル化合物;ジアリルフタレート等の多官能アリル化合物;メチレンビスアクリルアミド、ヒドロキシエチレンビスアクリルアミド等のビスアミド類;ジビニルベンゼン等の多官能ビニル化合物等を挙げることができる。 Examples of polyfunctional alkenyl compounds include polyfunctional allyl ether compounds such as trimethylolpropane diallyl ether, pentaerythritol diallyl ether, pentaerythritol triallyl ether, tetraallyloxyethane, and polyallyl sucrose; polyfunctional allyl compounds such as diallyl phthalate; methylene Examples include bisamides such as bisacrylamide and hydroxyethylenebisacrylamide; polyfunctional vinyl compounds such as divinylbenzene, and the like.

(メタ)アクリロイル基及びアルケニル基の両方を有する化合物としては、(メタ)アクリル酸アリル、(メタ)アクリル酸イソプロペニル、(メタ)アクリル酸ブテニル、(メタ)アクリル酸ペンテニル、(メタ)アクリル酸2-(2-ビニロキシエトキシ)エチル等を挙げることができる。 Compounds having both a (meth)acryloyl group and an alkenyl group include allyl (meth)acrylate, isopropenyl (meth)acrylate, butenyl (meth)acrylate, pentenyl (meth)acrylate, and (meth)acrylic acid. Examples include 2-(2-vinyloxyethoxy)ethyl.

アクリル系粘着性ポリマー(B)もまた、溶液重合法、懸濁重合法、乳化重合法等の公知のラジカル重合法により得ることができる。また、アクリル系粘着性ポリマー(B)としては、市販品を用いても良い。当該市販品としては、綜研化学社製のSKダイン2950、2953、及び、2943H、あるいは、日本合成化学社製のコーポニール8711、N-2411TF等を例示することができる。 The acrylic adhesive polymer (B) can also be obtained by known radical polymerization methods such as solution polymerization, suspension polymerization, and emulsion polymerization. Furthermore, a commercially available product may be used as the acrylic adhesive polymer (B). Examples of such commercial products include SK Dyne 2950, 2953, and 2943H manufactured by Soken Kagaku Co., Ltd., and Coponil 8711 and N-2411TF manufactured by Nippon Gosei Kagaku Co., Ltd.

この他、アクリル系粘着性ポリマー(B)は、アクリル系粘着性ポリマーシロップからも得ることができる。この場合、アクリル系粘着性ポリマーシロップは、アクリル系粘着性ポリマー(B)の一部であるポリマー成分と、アクリル系粘着性ポリマー(B)の残余を構成する(メタ)アクリル系モノマーとを含有することができる。アクリル系粘着性ポリマーシロップに熱又は活性エネルギー線等のエネルギーを加え、当該シロップに含まれるモノマー成分を重合することにより、アクリル系粘着性ポリマー(B)が得られる。 In addition, the acrylic adhesive polymer (B) can also be obtained from an acrylic adhesive polymer syrup. In this case, the acrylic adhesive polymer syrup contains a polymer component that is a part of the acrylic adhesive polymer (B) and a (meth)acrylic monomer that constitutes the remainder of the acrylic adhesive polymer (B). can do. The acrylic adhesive polymer (B) is obtained by applying energy such as heat or active energy rays to the acrylic adhesive polymer syrup and polymerizing the monomer components contained in the syrup.

<アクリル系ブロック共重合体について>
アクリル系粘着性ポリマー(B)がアクリル系ブロック共重合体(以下、「本ブロック共重合体」という)である場合、本ブロック共重合体は、重合体ブロック(a)及び(メタ)アクリル系重合体ブロック(b)を各々1つ以上有していることが好ましい。本ブロック共重合体は、例えば、重合体ブロック(a)及び(メタ)アクリル系重合体ブロック(b)からなる(ab)ジブロック体、重合体ブロック(a)/(メタ)アクリル系重合体ブロック(b)/重合体ブロック(a)からなる(aba)トリブロック体、又は(メタ)アクリル系重合体ブロック(b)/重合体ブロック(a)/(メタ)アクリル系重合体ブロック(b)からなる(bab)トリブロック体等が挙げられる。また、重合体ブロック(a)及び(メタ)アクリル系重合体ブロック(b)以外の重合体ブロック(c)を含む、(abc)又は(abca)等の構造を有するものであってもよい。中でも、本ブロック共重合体は、a-(ba)n(nは1以上の整数)構造を有することが好ましい。かかる構造であると、重合体ブロック(a)が擬似架橋構造を形成し、粘着物性の観点から好適である。尚、上記a-(ba)n構造は共重合体の全部又は一部に存在すればよく、例えば(babab)構造からなる共重合体などであってもよい。
ここで、本ブロック共重合体のガラス転移点については、示差走査熱量測定を行うことにより、各重合体ブロックに対応する変曲点が得られ、これらから各重合体ブロックのTgを求めることができる。本開示において、本ブロック共重合体のTgは、主成分である重合体ブロック(より具体的には、アクリル系重合体ブロック(b))のTgを意味する。
<About acrylic block copolymer>
When the acrylic adhesive polymer (B) is an acrylic block copolymer (hereinafter referred to as "this block copolymer"), the present block copolymer is composed of polymer block (a) and (meth)acrylic It is preferable that each of them has one or more polymer blocks (b). This block copolymer is, for example, an (ab) diblock consisting of a polymer block (a) and a (meth)acrylic polymer block (b), a polymer block (a)/(meth)acrylic polymer (aba) triblock consisting of block (b)/polymer block (a), or (meth)acrylic polymer block (b)/polymer block (a)/(meth)acrylic polymer block (b) ) and the like (bab) triblock. Moreover, it may have a structure such as (abc) or (abca) containing a polymer block (c) other than the polymer block (a) and the (meth)acrylic polymer block (b). Among these, the present block copolymer preferably has an a-(ba)n (n is an integer of 1 or more) structure. With such a structure, the polymer block (a) forms a pseudo-crosslinked structure, which is suitable from the viewpoint of adhesive properties. The above a-(ba)n structure may be present in all or part of the copolymer, and for example, a copolymer having a (babab) structure may be used.
Here, regarding the glass transition point of this block copolymer, the inflection point corresponding to each polymer block can be obtained by performing differential scanning calorimetry, and the Tg of each polymer block can be determined from these. can. In the present disclosure, the Tg of the present block copolymer means the Tg of the main component polymer block (more specifically, the acrylic polymer block (b)).

(重合体ブロック(a))
本ブロック共重合体の重合体ブロック(a)は、マレイミド化合物及びアミド基含有ビニル化合物よりなる群から選択される少なくとも1種の単量体に由来する構成単位を有するブロックとすることができる。
(Polymer block (a))
The polymer block (a) of the present block copolymer can be a block having a structural unit derived from at least one monomer selected from the group consisting of maleimide compounds and amide group-containing vinyl compounds.

マレイミド化合物には、マレイミド及びN-置換マレイミド化合物が含まれる。N-置換マレイミド化合物としては、例えば、N-メチルマレイミド、N-エチルマレイミド、N-n-プロピルマレイミド、N-イソプロピルマレイミド、N-n-ブチルマレイミド、N-イソブチルマレイミド、N-tert-ブチルマレイミド、N-ペンチルマレイミド、N-ヘキシルマレイミド、N-ヘプチルマレイミド、N-オクチルマレイミド、N-ラウリルマレイミド、N-ステアリルマレイミド等のN-アルキル置換マレイミド化合物;N-シクロペンチルマレイミド、N-シクロヘキシルマレイミド等のN-シクロアルキル置換マレイミド化合物;N-フェニルマレイミド、N-(4-ヒドロキシフェニル)マレイミド、N-(4-アセチルフェニル)マレイミド、N-(4-メトキシフェニル)マレイミド、N-(4-エトキシフェニル)マレイミド、N-(4-クロロフェニル)マレイミド、N-(4-ブロモフェニル)マレイミド、N-ベンジルマレイミド等のN-アリール又はN-アラルキル置換マレイミド化合物等が挙げられ、これらのうちの1種又は2種以上を用いることができる。マレイミド化合物を含む単量体を重合することにより、重合体ブロック(a)にマレイミド化合物に由来する構成単位を導入することができる。重合体ブロック(a)においては、上記の内でも、得られるブロック共重合体の耐熱性及び接着性がより優れるものとなる点で、以下の一般式(1)で表される化合物が好ましい。

Figure 0007347508000001
(式中、Rは水素、炭素数1~3のアルキル基又はPhRを表す。ただし、Phはフェニル基を表し、Rは水素、ヒドロキシ基、炭素数1~2のアルコキシ基、アセチル基又はハロゲンを表す。)Maleimide compounds include maleimide and N-substituted maleimide compounds. Examples of the N-substituted maleimide compound include N-methylmaleimide, N-ethylmaleimide, Nn-propylmaleimide, N-isopropylmaleimide, Nn-butylmaleimide, N-isobutylmaleimide, N-tert-butylmaleimide. , N-alkyl-substituted maleimide compounds such as N-pentylmaleimide, N-hexylmaleimide, N-heptylmaleimide, N-octylmaleimide, N-laurylmaleimide, N-stearylmaleimide; N-cyclopentylmaleimide, N-cyclohexylmaleimide, etc. N-cycloalkyl substituted maleimide compound; N-phenylmaleimide, N-(4-hydroxyphenyl)maleimide, N-(4-acetylphenyl)maleimide, N-(4-methoxyphenyl)maleimide, N-(4-ethoxyphenyl) ) Maleimide, N-(4-chlorophenyl)maleimide, N-(4-bromophenyl)maleimide, N-benzylmaleimide, and other N-aryl- or N-aralkyl-substituted maleimide compounds, and one of these or Two or more types can be used. By polymerizing a monomer containing a maleimide compound, a structural unit derived from the maleimide compound can be introduced into the polymer block (a). In the polymer block (a), among the above compounds, the compound represented by the following general formula (1) is preferable because the resulting block copolymer has better heat resistance and adhesiveness.
Figure 0007347508000001
(In the formula, R 1 represents hydrogen, an alkyl group having 1 to 3 carbon atoms, or PhR 2. However, Ph represents a phenyl group, and R 2 represents hydrogen, a hydroxy group, an alkoxy group having 1 to 2 carbon atoms, or an acetyl group. (represents a group or halogen)

アミド基含有ビニル化合物としては、例えば、(メタ)アクリルアミド、tert-ブチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N,N-ジメチルアミノプロピル(メタ)アクリルアミド、(メタ)アクリロイルモルホリン等の(メタ)アクリルアミド誘導体;N-ビニルアセトアミド、N-ビニルホルムアミド、N-ビニルイソブチルアミド等のN-ビニルアミド系単量体などが挙げられ、これらのうちの1種又は2種以上を用いることができる。アミド基含有ビニル化合物を含む単量体を重合することにより、重合体ブロック(a)にアミド基含有ビニル化合物に由来する構成単位を導入することができる。 Examples of amide group-containing vinyl compounds include (meth)acrylamide, tert-butyl (meth)acrylamide, N,N-dimethyl (meth)acrylamide, N,N-diethyl (meth)acrylamide, and N-isopropyl (meth)acrylamide. , N,N-dimethylaminopropyl (meth)acrylamide, (meth)acrylamide derivatives such as (meth)acryloylmorpholine; N-vinylamide monomers such as N-vinylacetamide, N-vinylformamide, N-vinylisobutyramide, etc. etc., and one or more types of these can be used. By polymerizing a monomer containing an amide group-containing vinyl compound, a structural unit derived from the amide group-containing vinyl compound can be introduced into the polymer block (a).

重合体ブロック(a)において、マレイミド化合物及びアミド基含有ビニル化合物よりなる群から選択される少なくとも1種に由来する構成単位は、重合体ブロック(a)の全構成単位に対して、10質量%以上100質量%以下とすることができる。かかる構成単位は、例えば15質量%以上であり、また例えば20質量%以上であり、また例えば30質量%以上であり、また例えば40質量%以上であり、また例えば50質量%以上であり、また例えば60質量%以上である。マレイミド化合物及びアミド基含有ビニル化合物よりなる群から選択される少なくとも1種に由来する構成単位は、例えば99質量%以下であり、また例えば90質量%以下であり、また例えば80質量%以下であり、また例えば75質量%以下であり、また例えば70質量%以下である。マレイミド化合物及びアミド基含有ビニル化合物よりなる群から選択される少なくとも1種に由来する構造単位が10質量%未満の場合、得られるブロック共重合体の耐熱性、耐久性及び耐剥がれ性が十分でないときがある。 In the polymer block (a), the structural unit derived from at least one selected from the group consisting of a maleimide compound and an amide group-containing vinyl compound is 10% by mass based on the total structural units of the polymer block (a). The content can be 100% by mass or less. Such structural units are, for example, 15% by mass or more, for example 20% by mass or more, for example 30% by mass or more, for example 40% by mass or more, and for example 50% by mass or more, and For example, it is 60% by mass or more. The amount of structural units derived from at least one selected from the group consisting of maleimide compounds and amide group-containing vinyl compounds is, for example, 99% by mass or less, for example, 90% by mass or less, and for example, 80% by mass or less. , for example, 75% by mass or less, and for example, 70% by mass or less. If the structural unit derived from at least one selected from the group consisting of maleimide compounds and amide group-containing vinyl compounds is less than 10% by mass, the resulting block copolymer will not have sufficient heat resistance, durability, and peeling resistance. There are times.

重合体ブロック(a)は、さらに芳香族系ビニル単量体に由来する構成単位を有するブロックとすることができる。芳香族系ビニル単量体には、スチレン及びその誘導体が含まれる。具体的な化合物としては、例えば、スチレン、α-メチルスチレン、β-メチルスチレン、ビニルキシレン、ビニルナフタレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、o-エチルスチレン、m-エチルスチレン、p-エチルスチレン、p-n-ブチルスチレン、p-イソブチルスチレン、p-t-ブチルスチレン、o-メトキシスチレン、m-メトキシスチレン、p-メトキシスチレン、o-クロロメチルスチレン、p-クロロメチルスチレン、o-クロロスチレン、p-クロロスチレン、o-ヒドロキシスチレン、m-ヒドロキシスチレン、p-ヒドロキシスチレン、ジビニルベンゼン等が挙げられ、これらのうちの1種又は2種以上を用いることができる。芳香族系ビニル単量体を含む単量体を重合することにより、重合体ブロック(a)に芳香族系ビニル単量体に由来する構造単位を導入することができる。 The polymer block (a) may further include a structural unit derived from an aromatic vinyl monomer. Aromatic vinyl monomers include styrene and its derivatives. Specific compounds include, for example, styrene, α-methylstyrene, β-methylstyrene, vinylxylene, vinylnaphthalene, o-methylstyrene, m-methylstyrene, p-methylstyrene, o-ethylstyrene, m-ethyl Styrene, p-ethylstyrene, p-n-butylstyrene, p-isobutylstyrene, p-t-butylstyrene, o-methoxystyrene, m-methoxystyrene, p-methoxystyrene, o-chloromethylstyrene, p-chloro Examples include methylstyrene, o-chlorostyrene, p-chlorostyrene, o-hydroxystyrene, m-hydroxystyrene, p-hydroxystyrene, divinylbenzene, etc., and one or more of these can be used. . By polymerizing a monomer containing an aromatic vinyl monomer, a structural unit derived from the aromatic vinyl monomer can be introduced into the polymer block (a).

上記の内でも、重合性の観点から、重合体ブロック(a)を構成する芳香族系ビニル単量体は、スチレン、o-メトキシスチレン、m-メトキシスチレン、p-メトキシスチレン、o-ヒドロキシスチレン、m-ヒドロキシスチレン、p-ヒドロキシスチレンが好ましい。また、α-メチルスチレン、β-メチルスチレン、ビニルナフタレンは、重合体ブロック(a)のガラス転移点(Tg)を高めることができ、耐熱性に優れるブロックを得ることができる点において好ましい。 Among the above, from the viewpoint of polymerizability, the aromatic vinyl monomers constituting the polymer block (a) are styrene, o-methoxystyrene, m-methoxystyrene, p-methoxystyrene, o-hydroxystyrene. , m-hydroxystyrene, and p-hydroxystyrene are preferred. Further, α-methylstyrene, β-methylstyrene, and vinylnaphthalene are preferable because they can increase the glass transition point (Tg) of the polymer block (a) and provide a block with excellent heat resistance.

重合体ブロック(a)において、芳香族系ビニル単量体に由来する構成単位は、重合体ブロック(a)の全構成単位に対して、1質量%以上70質量%以下とすることができる。かかる構成単位は、例えば5質量%以上であり、また例えば10質量%以上であり、また例えば20質量%以上である。芳香族系ビニル単量体に由来する構造単位は、例えば60質量%以下であり、また例えば50質量%以下であり、また例えば40質量%以下である。芳香族系ビニル単量体に由来する構造単位が1質量%以上であれば、特にマレイミド化合物の重合性を向上することができる。一方、70質量%以下であれば、マレイミド化合物及び/又はアミド基含有ビニル化合物由来の構成単位の必要量を確保することが可能となるため、耐熱性、耐久性及び耐剥がれ性に優れるブロック共重合体を得ることができる。 In the polymer block (a), the structural unit derived from the aromatic vinyl monomer can be 1% by mass or more and 70% by mass or less with respect to all the structural units of the polymer block (a). The content of such structural units is, for example, 5% by mass or more, further, for example, 10% by mass or more, and further, for example, 20% by mass or more. The structural unit derived from the aromatic vinyl monomer is, for example, 60% by mass or less, further, for example, 50% by mass or less, and, for example, 40% by mass or less. If the structural unit derived from the aromatic vinyl monomer is 1% by mass or more, the polymerizability of the maleimide compound can be particularly improved. On the other hand, if it is 70% by mass or less, it is possible to secure the necessary amount of structural units derived from maleimide compounds and/or amide group-containing vinyl compounds, so it is possible to create blocks with excellent heat resistance, durability, and peeling resistance. Polymers can be obtained.

また、重合体ブロック(a)は、架橋性官能基を有するビニル系単量体に由来する構成単位(以下、「架橋性構成単位」ともいう)を含むブロックであってもよい。架橋性構成単位は、例えば、ヒドロキシ基等の官能基を有するマレイミド化合物及び/又はアミド基含有ビニル化合物を用いて導入してもよいし、架橋性官能基を有するビニル化合物を共重合することによって導入してもよい。 Moreover, the polymer block (a) may be a block containing a structural unit derived from a vinyl monomer having a crosslinkable functional group (hereinafter also referred to as a "crosslinkable structural unit"). The crosslinkable structural unit may be introduced using, for example, a maleimide compound and/or an amide group-containing vinyl compound having a functional group such as a hydroxy group, or by copolymerizing a vinyl compound having a crosslinkable functional group. May be introduced.

架橋性官能基を有するビニル系単量体は、特に限定しないで、公知の各種単量体化合物を用いることができる。架橋性官能基を有するビニル系単量体としては、例えば、α,β-エチレン性不飽和カルボン酸単量体、不飽和酸無水物単量体、水酸基含有ビニル単量体、エポキシ基含有ビニル単量体、1級又は2級アミノ基含有ビニル単量体、及び反応性ケイ素基含有ビニル単量体等が挙げられる。重合体ブロック(a)の製造において、架橋性官能基を有するビニル系単量体としては、公知の化合物から1種又は2種以上組み合わせて用いることができる。 The vinyl monomer having a crosslinkable functional group is not particularly limited, and various known monomer compounds can be used. Examples of vinyl monomers having a crosslinkable functional group include α,β-ethylenically unsaturated carboxylic acid monomers, unsaturated acid anhydride monomers, hydroxyl group-containing vinyl monomers, and epoxy group-containing vinyl monomers. Monomers, primary or secondary amino group-containing vinyl monomers, reactive silicon group-containing vinyl monomers, and the like. In the production of the polymer block (a), the vinyl monomer having a crosslinkable functional group can be used singly or in combination of two or more of known compounds.

α,β-エチレン性不飽和カルボン酸単量体としては、(メタ)アクリル酸、マレイン酸、フマル酸、イタコン酸、クロトン酸、シトラコン酸、桂皮酸等が挙げられる。これらの化合物は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。不飽和酸無水物単量体としては、無水マレイン酸、無水イタコン酸、無水シトラコン酸等が挙げられる。これらの化合物は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。水酸基含有ビニル単量体としては、アクリル系粘着性ポリマー(B)のその他の単量体として例示した水酸基含有ビニル単量体が挙げられる。 Examples of the α,β-ethylenically unsaturated carboxylic acid monomer include (meth)acrylic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid, citraconic acid, and cinnamic acid. These compounds may be used alone or in combination of two or more. Examples of the unsaturated acid anhydride monomer include maleic anhydride, itaconic anhydride, citraconic anhydride, and the like. These compounds may be used alone or in combination of two or more. Examples of the hydroxyl group-containing vinyl monomer include the hydroxyl group-containing vinyl monomers exemplified as other monomers of the acrylic adhesive polymer (B).

エポキシ基含有ビニル単量体としては、(メタ)アクリル酸グリシジル、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート等が挙げられる。これらの化合物は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of the epoxy group-containing vinyl monomer include glycidyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate glycidyl ether, and 3,4-epoxycyclohexylmethyl (meth)acrylate. These compounds may be used alone or in combination of two or more.

1級又は2級アミノ基含有ビニル単量体としては、アミノエチル(メタ)アクリレート、アミノプロピル(メタ)アクリレート、N-メチルアミノエチル(メタ)アクリレート、N-エチルアミノエチル(メタ)アクリレート等のアミノ基含有(メタ)アクリル酸エステル;アミノエチル(メタ)アクリルアミド、アミノプロピル(メタ)アクリルアミド、N-メチルアミノエチル(メタ)アクリルアミド、N-エチルアミノエチル(メタ)アクリルアミド等のアミノ基含有(メタ)アクリルアミド等が挙げられる。 Examples of vinyl monomers containing primary or secondary amino groups include aminoethyl (meth)acrylate, aminopropyl (meth)acrylate, N-methylaminoethyl (meth)acrylate, N-ethylaminoethyl (meth)acrylate, etc. Amino group-containing (meth)acrylic acid ester; ) acrylamide, etc.

反応性ケイ素基含有ビニル単量体としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジメトキシシラン、ビニルジメチルメトキシシランン等のビニルシラン類;(メタ)アクリル酸トリメトキシシリルプロピル、(メタ)アクリル酸トリエトキシシリルプロピル、(メタ)アクリル酸メチルジメトキシシリルプロピル、(メタ)アクリル酸ジメチルメトキシシリルプロピル等のシリル基含有(メタ)アクリル酸エステル類;トリメトキシシリルプロピルビニルエーテル等のシリル基含有ビニルエーテル類;トリメトキシシリルウンデカン酸ビニル等のシリル基含有ビニルエステル類等を挙げることができる。これらの化合物は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。2以上の架橋性官能基数を容易に導入できることから、反応性ケイ素基含有ビニル単量体は好適である。また、かかるビニル単量体は、反応性ケイ素基同士が脱水縮合(重合)することができる。このため、ブロック共重合体を製造する重合反応及びその後の上記架橋反応を効率的に行うことができる点において好適である。 Examples of the reactive silicon group-containing vinyl monomer include vinyl silanes such as vinyltrimethoxysilane, vinyltriethoxysilane, vinylmethyldimethoxysilane, and vinyldimethylmethoxysilane; trimethoxysilylpropyl (meth)acrylate, (meth)acrylate; Silyl group-containing (meth)acrylic acid esters such as triethoxysilylpropyl acrylate, methyldimethoxysilylpropyl (meth)acrylate, and dimethylmethoxysilylpropyl (meth)acrylate; silyl group-containing vinyl ethers such as trimethoxysilylpropyl vinyl ether silyl group-containing vinyl esters such as vinyl trimethoxysilyl undecanoate. These compounds may be used alone or in combination of two or more. Reactive silicon group-containing vinyl monomers are preferred because they can easily incorporate two or more crosslinkable functional groups. Further, in such a vinyl monomer, reactive silicon groups can undergo dehydration condensation (polymerization) with each other. Therefore, it is suitable in that the polymerization reaction for producing the block copolymer and the subsequent crosslinking reaction can be efficiently carried out.

上記の外にも、オキサゾリン基含有ビニル単量体及び/又はイソシアネート基含有ビニル単量体を共重合することにより、架橋性官能基としてオキサゾリン基及び/又はイソシアネート基を重合体ブロック(a)に導入することができる。 In addition to the above, by copolymerizing an oxazoline group-containing vinyl monomer and/or an isocyanate group-containing vinyl monomer, an oxazoline group and/or an isocyanate group can be added to the polymer block (a) as a crosslinkable functional group. can be introduced.

さらに、分子内に2個以上の重合性不飽和基を有する多官能重合性単量体を共重合することにより、重合体ブロック(a)に架橋性官能基として重合性不飽和基を導入し得る。上記多官能重合性単量体としては、(メタ)アクリロイル基、アルケニル基等の重合性官能基を分子内に2つ以上有する化合物であり、多官能(メタ)アクリレート化合物、多官能アルケニル化合物、(メタ)アクリロイル基及びアルケニル基の両方を有する化合物等が挙げられる。例えば、ヘキサンジオールジアクリレートなどのアルキレンジオールジアクリレートの他、(メタ)アクリル酸アリル、(メタ)アクリル酸イソプロペニル、(メタ)アクリル酸ブテニル、(メタ)アクリル酸ペンテニル、(メタ)アクリル酸2-(2-ビニロキシエトキシ)エチル等の分子内に(メタ)アクリロイル基及びアルケニル基の両方を有する化合物が挙げられる。これらの化合物は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Furthermore, by copolymerizing a polyfunctional polymerizable monomer having two or more polymerizable unsaturated groups in the molecule, a polymerizable unsaturated group is introduced as a crosslinkable functional group into the polymer block (a). obtain. The above-mentioned polyfunctional polymerizable monomer is a compound having two or more polymerizable functional groups such as a (meth)acryloyl group or an alkenyl group in the molecule, and includes a polyfunctional (meth)acrylate compound, a polyfunctional alkenyl compound, Examples include compounds having both a (meth)acryloyl group and an alkenyl group. For example, in addition to alkylene diol diacrylates such as hexanediol diacrylate, allyl (meth)acrylate, isopropenyl (meth)acrylate, butenyl (meth)acrylate, pentenyl (meth)acrylate, and di(meth)acrylate. Examples include compounds having both a (meth)acryloyl group and an alkenyl group in the molecule, such as -(2-vinyloxyethoxy)ethyl. These compounds may be used alone or in combination of two or more.

重合体ブロック(a)が架橋性構成単位を有する場合、例えば、重合体ブロック(a)の全構成単位に対して架橋性構成単位を0.01質量%以上備えることができる。また、架橋性構成単位の含有量は、例えば0.1質量%以上であり、また例えば1.0質量%以上であり、また例えば2.0質量%以上である。架橋性構成単位を0.01質量%以上備えることで、良好な架橋構造を得られ易くなり、高い耐熱性及び耐久性を備えるブロック共重合体を得易くなる。なお、架橋性構成単位の含有量の上限は特に限定するものではないが、架橋反応の制御性の観点から、例えば60質量%以下であり、また例えば40質量%以下であり、また例えば20質量%以下であり、また例えば10質量%以下である。架橋性構成単位の含有量の範囲は、既述の下限及び上限を適宜組み合わせることができるが、例えば、1質量%以上60質量%以下、また例えば5質量%以上50質量%以下、10質量%以上40質量%以下などとすることができる。 When the polymer block (a) has a crosslinkable structural unit, for example, the crosslinkable structural unit can be included in an amount of 0.01% by mass or more based on all the structural units of the polymer block (a). Further, the content of the crosslinkable structural unit is, for example, 0.1% by mass or more, for example, 1.0% by mass or more, and, for example, 2.0% by mass or more. By including 0.01% by mass or more of the crosslinkable structural unit, it becomes easier to obtain a good crosslinked structure, and it becomes easier to obtain a block copolymer having high heat resistance and durability. Note that the upper limit of the content of the crosslinkable structural unit is not particularly limited, but from the viewpoint of controllability of the crosslinking reaction, it is, for example, 60% by mass or less, for example, 40% by mass or less, and, for example, 20% by mass. % or less, and for example, 10% by mass or less. The range of the content of the crosslinkable structural unit can be appropriately combined with the above-mentioned lower limit and upper limit, but for example, 1% by mass or more and 60% by mass or less, and for example 5% by mass or more and 50% by mass or less, 10% by mass. It can be more than 40% by mass or less.

重合体ブロック(a)は、本ブロック共重合体の作用を損なわない範囲で、これらの単量体と共重合可能な他の単量体に由来する構成単位を備えることもできる。当該他の単量体は、例えば、(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸アルコキシアルキルエステル、(メタ)アクリル酸の脂肪族環系ビニル単量体などを含むことができる。これらの化合物は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸アルコキシアルキルエステル及び脂肪族環系ビニル単量体の具体例としては、アクリル系粘着性ポリマー(B)の製造で用いることができる(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸アルコキシアルキルエステル、脂肪族環系ビニル単量体を挙げることができる。 The polymer block (a) can also include structural units derived from other monomers copolymerizable with these monomers, within a range that does not impair the effects of the block copolymer. The other monomers can include, for example, (meth)acrylic acid alkyl esters, (meth)acrylic acid alkoxyalkyl esters, aliphatic cyclic vinyl monomers of (meth)acrylic acid, and the like. These compounds may be used alone or in combination of two or more. Specific examples of (meth)acrylic acid alkyl esters, (meth)acrylic acid alkoxyalkyl esters, and aliphatic cyclic vinyl monomers include (meth)acrylic acid that can be used in the production of acrylic adhesive polymer (B). Examples include acid alkyl esters, (meth)acrylic acid alkoxyalkyl esters, and aliphatic cyclic vinyl monomers.

上記以外の他の単量体としては、N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート及びN,N-ジメチルアミノプロピル(メタ)アクリレート等が挙げられる。
重合体ブロック(a)において、上記の他の単量体に由来する構成単位が占める割合は、例えば、重合体ブロック(a)の全構成単位に対して0質量%以上50質量%以下の範囲とすることができる。また、上記の他の単量体に由来する構成単位が占める割合は、例えば5質量%以上であり、また例えば10質量%以上である。また、上記の他の単量体に由来する構成単位が占める割合は、例えば45質量%以下であり、また例えば40質量%以下である。
Other monomers other than those mentioned above include N,N-dimethylaminoethyl (meth)acrylate, N,N-diethylaminoethyl (meth)acrylate, and N,N-dimethylaminopropyl (meth)acrylate.
In the polymer block (a), the proportion occupied by the structural units derived from the other monomers mentioned above is, for example, in the range of 0% by mass or more and 50% by mass or less based on the total structural units of the polymer block (a). It can be done. Further, the proportion of the structural units derived from the other monomers mentioned above is, for example, 5% by mass or more, and for example, 10% by mass or more. Further, the proportion of the structural units derived from the other monomers mentioned above is, for example, 45% by mass or less, and for example, 40% by mass or less.

(ガラス転移温度)
重合体ブロック(a)のガラス転移温度(Tg)は、100℃以上であることが好ましい。重合体ブロック(a)のTgは、本ブロック共重合体の耐熱性に寄与することができる。したがって、Tgが100℃以上であると、良好な耐熱性を本ブロック共重合体に付与することができる点で好ましい。また、重合体ブロック(a)のTgは、例えば120℃以上であり、また例えば140℃以上であり、また例えば160℃以上であり、また例えば180℃以上であり、また例えば190℃以上であり、また例えば200℃以上である。また、Tgは、使用可能な構成単量体単位の制限から350℃以下であることが好ましい。また、Tgは、例えば280℃以下であり、また例えば270℃以下であり、また例えば260℃以下である。
(Glass-transition temperature)
The glass transition temperature (Tg) of the polymer block (a) is preferably 100°C or higher. The Tg of the polymer block (a) can contribute to the heat resistance of the block copolymer. Therefore, it is preferable that the Tg is 100° C. or higher because good heat resistance can be imparted to the block copolymer. Furthermore, the Tg of the polymer block (a) is, for example, 120°C or higher, for example 140°C or higher, for example 160°C or higher, for example 180°C or higher, or for example 190°C or higher. , and for example, 200°C or higher. Further, Tg is preferably 350° C. or lower due to limitations on usable constituent monomer units. Further, Tg is, for example, 280°C or lower, for example 270°C or lower, or, for example, 260°C or lower.

なお、本明細書において、重合体ブロック(a)及び(メタ)アクリル系重合体ブロック(b)のほかブロック共重合体のガラス転移点は、後述する実施例において記載するとおり、示差走査熱量測定(DSC)によって測定することができる。また、DSCが不可能であるときには、重合体ブロックを構成する単量体単位から計算により求めることができる。 In addition, in this specification, the glass transition point of the block copolymer in addition to the polymer block (a) and the (meth)acrylic polymer block (b) is determined by differential scanning calorimetry as described in the Examples below. (DSC). Furthermore, when DSC is not possible, it can be determined by calculation from the monomer units constituting the polymer block.

(相分離性)
重合体ブロック(a)は、(メタ)アクリル系重合体ブロック(b)と相分離する性質を有することが好ましい。かかる性質を有することで、ミクロ相分離構造を形成することができる。本願出願時の技術常識に基づいて当業者であれば容易に、(メタ)アクリル系重合体ブロック(b)と相分離するブロックを設計することができる。例えば、公知の溶解パラメータの算出方法、例えば、以下に示すFedors法により計算した重合体ブロック(a)のSP値が、(メタ)アクリル系重合体ブロック(b)のSP値と比較したときの差分が0.01(絶対値)以上などとすることができる。また、当該差分は、例えば0.05以上、また例えば0.1以上、また例えば0.2以上であってもよい。さらに例えば0.5以上であってもよい。また例えば、意図する重合体ブロック(a)と(メタ)アクリル系重合体ブロック(b)のポリマーブレンドを調製して、これらを混合して得られる構造を電子顕微鏡、原子間力顕微鏡又は小角X線散乱等で観察することにより、ブロック間の相分離性を容易に推測することができる。
(phase separation)
It is preferable that the polymer block (a) has the property of phase-separating from the (meth)acrylic polymer block (b). By having such properties, a microphase-separated structure can be formed. A person skilled in the art can easily design a block that phase separates from the (meth)acrylic polymer block (b) based on the common general knowledge at the time of filing this application. For example, when the SP value of the polymer block (a) calculated by a known solubility parameter calculation method, for example, the Fedors method shown below, is compared with the SP value of the (meth)acrylic polymer block (b), The difference may be 0.01 (absolute value) or more. Further, the difference may be, for example, 0.05 or more, for example, 0.1 or more, or, for example, 0.2 or more. Furthermore, it may be, for example, 0.5 or more. Alternatively, for example, a polymer blend of the intended polymer block (a) and (meth)acrylic polymer block (b) is prepared, and the structure obtained by mixing these is examined using an electron microscope, an atomic force microscope, or a small-angle X-ray microscope. Phase separation between blocks can be easily estimated by observing with line scattering or the like.

SP値は、R.F.Fedorsにより著された「Polymer Engineering and Science」14(2),147(1974)に記載の計算方法によって、算出することができる。具体的には、式(2)に示す計算方法による。

Figure 0007347508000002
(ただし、数式(2)中、δ、ΔEvap及びVは以下のとおりである。
δ :SP値((cal/cm1/2
ΔEvap :各原子団のモル蒸発熱(cal/mol)
V :各原子団のモル体積(cm/mol))The SP value is R. F. It can be calculated by the calculation method described in "Polymer Engineering and Science" 14(2), 147 (1974) written by John Fedors. Specifically, the calculation method shown in equation (2) is used.
Figure 0007347508000002
(However, in formula (2), δ, ΔEvap, and V are as follows.
δ: SP value ((cal/cm 3 ) 1/2 )
ΔEvap: Molar heat of vaporization of each atomic group (cal/mol)
V: molar volume of each atomic group (cm 3 /mol))

((メタ)アクリル系重合体ブロック(b))
本ブロック共重合体の(メタ)アクリル系重合体ブロック(b)は、(メタ)アクリル系単量体に由来する構成単位を有する重合体ブロックであり、下記の一般式(3)で表される化合物から選択される少なくとも一種を構成単位とするブロックとすることができる。一般式(3)で表される化合物としては、(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸アルコキシアルキルエステル及びポリアルキレングリコールモノ(メタ)アクリレート等が挙げられる。
CH=CR-C(=O)O-(RO)-R (3)
(式(3)中、Rは水素又はメチル基を表し、Rは炭素数2~6の直鎖状又は分岐状アルキレン基を表し、Rは水素、炭素数1~20のアルキル基又は炭素数6~20のアリール基を表す。nは0又は1~100の整数を表す。)
((meth)acrylic polymer block (b))
The (meth)acrylic polymer block (b) of this block copolymer is a polymer block having a structural unit derived from a (meth)acrylic monomer, and is represented by the following general formula (3). A block having at least one constituent unit selected from the following compounds can be used. Examples of the compound represented by general formula (3) include (meth)acrylic acid alkyl ester, (meth)acrylic acid alkoxyalkyl ester, polyalkylene glycol mono(meth)acrylate, and the like.
CH 2 =CR 3 -C(=O)O-(R 4 O) n -R 5 (3)
(In formula (3), R 3 represents hydrogen or a methyl group, R 4 represents a linear or branched alkylene group having 2 to 6 carbon atoms, and R 5 represents hydrogen or an alkyl group having 1 to 20 carbon atoms. or represents an aryl group having 6 to 20 carbon atoms. n represents 0 or an integer of 1 to 100.)

(メタ)アクリル酸アルキルエステル及び(メタ)アクリル酸アルコキシアルキルエステルとしては、アクリル系粘着性ポリマー(B)の製造に用いることができる(メタ)アクリル酸アルキルエステル及び(メタ)アクリル酸アルコキシアルキルエステルを挙げることができる。 The (meth)acrylic acid alkyl ester and (meth)acrylic acid alkoxyalkyl ester can be used for producing the acrylic adhesive polymer (B). can be mentioned.

ポリアルキレングリコールモノ(メタ)アクリレートとしては、上記一般式(3)における(RO)は1種類のみであってもよいし、2種類以上の構造単位を含んでもよい。(RO)を2種類以上有する場合、nは各構造単位の繰返し単位数の総和を表す。nは1~100であってもよく、1~50であってもよく、1~30であってもよい。具体的な化合物としては、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、ポリエチレングリコール-ポリプロピレングリコールモノ(メタ)アクリレート、ポリエチレングリコール-ポリテトラエチレングリコールモノ(メタ)アクリレート、メトキシポリエチレングリコールモノ(メタ)アクリレート、ラウロキシポリエチレングリコールモノ(メタ)アクリレート、ステアロキシポリエチレングリコールモノ(メタ)アクリレート、オクトキシポリエチレングリコール-ポリプロピレングリコールモノ(メタ)アクリレート、フェノキシポリエチレングリコールモノ(メタ)アクリレート、フェノキシポリエチレングリコール-ポリプロピレングリコールモノ(メタ)アクリレート、ノニルフェノキシポリエチレングリコールモノ(メタ)アクリレート、ノニルフェノキシポリプロピレングリコールモノ(メタ)アクリレート、ノニルフェノキシポリエチレングリコール-ポリプロピレングリコールモノ(メタ)アクリレート等を挙げることができる。上記の化合物は市販品としても入手可能であり、例えばメトキシポリエチレングリコールモノメタクリレートとしては、「ブレンマーPMEシリーズ」(n=2、4、9、23、90等、ブレンマーは登録商標)が挙げられる。その他にも、アミド基、アミノ基、カルボキシ基、ヒドロキシ基等の官能基を有する(メタ)アクリル酸エステル化合物を用いることもできる。The polyalkylene glycol mono(meth)acrylate may contain only one type of (R 4 O) in the above general formula (3), or may contain two or more types of structural units. When there are two or more types of (R 4 O), n represents the total number of repeating units of each structural unit. n may be 1 to 100, 1 to 50, or 1 to 30. Specific compounds include polyethylene glycol mono(meth)acrylate, polypropylene glycol mono(meth)acrylate, polyethylene glycol-polypropylene glycol mono(meth)acrylate, polyethylene glycol-polytetraethylene glycol mono(meth)acrylate, and methoxypolyethylene glycol. Mono(meth)acrylate, lauroxypolyethylene glycol mono(meth)acrylate, stearoxypolyethylene glycol mono(meth)acrylate, octoxypolyethylene glycol-polypropylene glycol mono(meth)acrylate, phenoxypolyethylene glycol mono(meth)acrylate, phenoxypolyethylene Examples include glycol-polypropylene glycol mono(meth)acrylate, nonylphenoxypolyethylene glycol mono(meth)acrylate, nonylphenoxypolypropylene glycol mono(meth)acrylate, nonylphenoxypolyethylene glycol-polypropylene glycol mono(meth)acrylate, and the like. The above-mentioned compounds are also available as commercial products, and examples of methoxypolyethylene glycol monomethacrylate include "Blemmer PME series" (n=2, 4, 9, 23, 90, etc., Blemmer is a registered trademark). In addition, (meth)acrylic acid ester compounds having functional groups such as amide groups, amino groups, carboxy groups, and hydroxy groups can also be used.

(メタ)アクリル系重合体ブロック(b)は、上記のうちでも、柔軟性に優れたブロック共重合体が得られる点で、炭素数1~12のアルキル基又は炭素数2~8のアルコキシアルキル基を有するアクリル酸アルキルエステル化合物に由来する構成単位を有することが好ましい。また、粘着性能の観点を加味した場合、(メタ)アクリル系重合体ブロック(b)は、炭素数1~8のアルキル基又は炭素数2~3のアルコキシアルキル基を有するアクリル酸アルキルエステル化合物に由来する構成単位を含むものであることがより好ましい。 Among the above, the (meth)acrylic polymer block (b) is an alkyl group having 1 to 12 carbon atoms or an alkoxyalkyl group having 2 to 8 carbon atoms, since a block copolymer with excellent flexibility can be obtained. It is preferable to have a structural unit derived from an acrylic acid alkyl ester compound having a group. In addition, when considering the adhesive performance, the (meth)acrylic polymer block (b) is an acrylic acid alkyl ester compound having an alkyl group having 1 to 8 carbon atoms or an alkoxyalkyl group having 2 to 3 carbon atoms. It is more preferable that it contains a structural unit derived from.

(メタ)アクリル系重合体ブロック(b)においては、一般式(3)で表される化合物に由来する構成単位を、(メタ)アクリル系重合体ブロック(b)の全構成単位に対して、20質量%以上100質量%以下とすることができる。かかる構成単位は、例えば50質量%以上100質量%以下であり、また例えば80質量%以上100質量%以下であり、また例えば90質量%以上100質量%以下である。上記構成単位が上記範囲にある場合は、粘着物性の点で良好なブロック共重合体が得られる傾向にある。また、上記構成単位が50質量%以上の場合、(メタ)アクリル系重合体ブロック(b)は、一般式(3)で表される化合物から選択される少なくとも一種を主な構成単量体とするブロックとなる。 In the (meth)acrylic polymer block (b), the structural units derived from the compound represented by the general formula (3) are added to all the structural units of the (meth)acrylic polymer block (b). It can be 20% by mass or more and 100% by mass or less. Such structural units are, for example, 50% by mass or more and 100% by mass or less, for example 80% by mass or more and 100% by mass or less, and for example 90% by mass or more and 100% by mass or less. When the above structural unit is within the above range, a block copolymer with good adhesive properties tends to be obtained. In addition, when the above-mentioned structural unit is 50% by mass or more, the (meth)acrylic polymer block (b) contains at least one type of compound represented by the general formula (3) as the main constituent monomer. It becomes a block.

また、(メタ)アクリル系重合体ブロック(b)は、架橋性構成単位を含むブロックとすることができる。架橋性構成単位は、例えば、架橋性官能基を有するビニル化合物を共重合することによって導入することができる。 Moreover, the (meth)acrylic polymer block (b) can be a block containing a crosslinkable structural unit. The crosslinkable structural unit can be introduced, for example, by copolymerizing a vinyl compound having a crosslinkable functional group.

(メタ)アクリル系重合体ブロック(b)が架橋性構成単位を有する場合、例えば、(メタ)アクリル系重合体ブロック(b)の全構成単位に対して架橋性構成単位を0.01質量%以上備えるものとすることができる。また、架橋性構成単位の含有量は、例えば0.1質量%以上であり、また例えば0.5質量%以上である。架橋性構成単位の導入量を0.01質量%以上とすることで、耐熱性に優れるブロック共重合体を得易くなる。なお、架橋性構成単位の含有量の上限は特に限定するものではないが、柔軟性の観点から、例えば20質量%以下であり、また例えば10質量%以下であり、また例えば8質量%以下である。架橋性構成単位の範囲は、既述の下限及び上限を適宜組み合わせることができるが、例えば、0.01質量%以上20質量%以下、また例えば0.1質量%以上10質量%以下、0.5質量%以上8質量%以下などとすることができる。 When the (meth)acrylic polymer block (b) has a crosslinkable structural unit, for example, the crosslinkable structural unit is 0.01% by mass based on the total structural units of the (meth)acrylic polymer block (b). The above may be provided. Further, the content of the crosslinkable structural unit is, for example, 0.1% by mass or more, and for example, 0.5% by mass or more. When the amount of crosslinkable structural units introduced is 0.01% by mass or more, it becomes easier to obtain a block copolymer with excellent heat resistance. The upper limit of the content of the crosslinkable structural unit is not particularly limited, but from the viewpoint of flexibility, it is, for example, 20% by mass or less, for example, 10% by mass or less, and, for example, 8% by mass or less. be. The range of the crosslinkable structural unit can be appropriately combined with the above-mentioned lower and upper limits. The content may be 5% by mass or more and 8% by mass or less.

本開示により奏される効果を妨げない限りにおいて、(メタ)アクリル系重合体ブロック(b)は、上記(メタ)アクリル系単量体以外の単量体を構成単量体単位として使用することができる。(メタ)アクリル系単量体以外の単量体としては、(メタ)アクリロイル基以外の不飽和基を有する単量体を用いることができる。その具体例としては、アルキルビニルエステル、アルキルビニルエーテル及びスチレン類等の脂肪族又は芳香族ビニル化合物などが挙げられる。 The (meth)acrylic polymer block (b) may contain monomers other than the above-mentioned (meth)acrylic monomers as constituent monomer units, as long as this does not impede the effects achieved by the present disclosure. Can be done. As the monomer other than the (meth)acrylic monomer, a monomer having an unsaturated group other than the (meth)acryloyl group can be used. Specific examples thereof include aliphatic or aromatic vinyl compounds such as alkyl vinyl esters, alkyl vinyl ethers, and styrenes.

(ガラス転移温度)
(メタ)アクリル系重合体ブロック(b)のガラス転移温度(Tg)は、10℃以下であることが好ましい。(メタ)アクリル系重合体ブロック(b)のTgは、本ブロック共重合体の粘着性に寄与することができる。したがって、Tgが10℃以下であると、より良好な粘着性を本ブロック共重合体に付与することができる。また、(メタ)アクリル系重合体ブロック(b)のTgは、例えば0℃以下であり、また例えば-5℃以下であり、また例えば-10℃以下であり、また例えば-20℃以下であり、また例えば-25℃以下であり、また例えば-30℃以下である。(メタ)アクリル系重合体ブロック(b)のTgの下限は、例えば-80℃以上である。
(Glass-transition temperature)
The glass transition temperature (Tg) of the (meth)acrylic polymer block (b) is preferably 10°C or lower. The Tg of the (meth)acrylic polymer block (b) can contribute to the tackiness of the block copolymer. Therefore, when Tg is 10°C or less, better adhesiveness can be imparted to the block copolymer. Further, the Tg of the (meth)acrylic polymer block (b) is, for example, 0°C or lower, for example, -5°C or lower, for example, -10°C or lower, or, for example, -20°C or lower. , and, for example, -25°C or lower, and, for example, -30°C or lower. The lower limit of Tg of the (meth)acrylic polymer block (b) is, for example, −80° C. or higher.

(相分離性)
既述のとおり、(メタ)アクリル系重合体ブロック(b)は、重合体ブロック(a)と相分離する性質を有することが好ましく、重合体ブロック(a)のSP値との所定の差分を有することが好適である。
(phase separation)
As mentioned above, the (meth)acrylic polymer block (b) preferably has the property of phase separation from the polymer block (a), and has a predetermined difference from the SP value of the polymer block (a). It is preferable to have

本ブロック共重合体は、重合体ブロック(a)及び(メタ)アクリル系重合体ブロック(b)を有するブロック共重合体を得る限りにおいて特段の制限を受けるものではなく、公知の製造方法を採用することができる。例えば、リビングラジカル重合及びリビングアニオン重合等の各種制御重合法を利用する方法や、官能基を有する重合体同士をカップリングする方法等を挙げることができる。これらの中でも、操作が簡便であり、広い範囲の単量体に対して適用することができる観点から、リビングラジカル重合法が好ましい。 This block copolymer is not subject to any particular restrictions as long as a block copolymer having a polymer block (a) and a (meth)acrylic polymer block (b) is obtained, and a known production method is adopted. can do. Examples include methods that utilize various controlled polymerization methods such as living radical polymerization and living anionic polymerization, and methods that couple polymers having functional groups. Among these, the living radical polymerization method is preferred because it is easy to operate and can be applied to a wide range of monomers.

リビングラジカル重合法の種類についても特段の制限はなく、可逆的付加-開裂連鎖移動重合法(RAFT法)、ニトロキシラジカル法(NMP法)、原子移動ラジカル重合法(ATRP法)、有機テルル化合物を用いる重合法(TERP法)、有機アンチモン化合物を用いる重合法(SBRP法)、有機ビスマス化合物を用いる重合法(BIRP法)及びヨウ素移動重合法等の各種重合方法を採用することができる。これらの内でも、重合の制御性と実施の簡便さの観点から、RAFT法、NMP法及びATRP法が好ましい。 There are no particular restrictions on the type of living radical polymerization, and examples include reversible addition-fragmentation chain transfer polymerization (RAFT), nitroxy radical polymerization (NMP), atom transfer radical polymerization (ATRP), and organic tellurium compounds. Various polymerization methods can be employed, such as a polymerization method using an organic antimony compound (TERP method), a polymerization method using an organic antimony compound (SBRP method), a polymerization method using an organic bismuth compound (BIRP method), and an iodine transfer polymerization method. Among these, the RAFT method, NMP method and ATRP method are preferred from the viewpoint of polymerization controllability and ease of implementation.

RAFT法では、特定の重合制御剤(RAFT剤)及び一般的なフリーラジカル重合開始剤の存在下、可逆的な連鎖移動反応を介して制御された重合が進行する。RAFT剤としては、ジチオエステル化合物、ザンテート化合物、トリチオカーボネート化合物及びジチオカーバメート化合物等、公知の各種RAFT剤を使用することができる。RAFT剤は活性点を1箇所のみ有する一官能のものを用いてもよいし、二官能以上のものを用いてもよい。上記a-(ba)n型構造のブロック共重合体を効率的に得やすい点では、二官能型のRAFT剤を用いることが好ましい。また、RAFT剤の使用量は、用いる単量体及びRAFT剤の種類等により適宜調整される。 In the RAFT method, controlled polymerization proceeds via a reversible chain transfer reaction in the presence of a specific polymerization control agent (RAFT agent) and a general free radical polymerization initiator. As the RAFT agent, various known RAFT agents such as dithioester compounds, xanthate compounds, trithiocarbonate compounds, and dithiocarbamate compounds can be used. As the RAFT agent, a monofunctional agent having only one active site may be used, or a bifunctional or more functional agent may be used. It is preferable to use a bifunctional RAFT agent in that it is easy to efficiently obtain the block copolymer having the a-(ba)n type structure. Further, the amount of the RAFT agent used is appropriately adjusted depending on the monomer used, the type of RAFT agent, etc.

RAFT法による重合の際に用いる重合開始剤としては、アゾ系化合物、有機過酸化物及び過硫酸塩等の公知のラジカル重合開始剤を使用することができるが、取り扱い易く、ラジカル重合時の副反応が起こりにくい点からアゾ系化合物が好ましい。アゾ系化合物の具体例としては、前記したものが挙げられる。上記ラジカル重合開始剤は1種類のみ使用しても又は2種以上を併用してもよい。 As the polymerization initiator used in polymerization by the RAFT method, known radical polymerization initiators such as azo compounds, organic peroxides, and persulfates can be used. Azo compounds are preferred because they are less likely to cause a reaction. Specific examples of azo compounds include those mentioned above. The above radical polymerization initiators may be used alone or in combination of two or more.

ラジカル重合開始剤の使用割合は特に制限されないが、分子量分布がより小さい重合体を得る点から、RAFT剤1質量部に対するラジカル重合開始剤の使用量を0.5質量部以下とすることが好ましく、0.3質量部以下とすることがより好ましい。また、重合反応を安定的に行う観点から、RAFT剤1質量部に対するラジカル重合開始剤の使用量の下限は、0.01質量部以上とすることが好ましい。したがって、RAFT剤1質量部に対するラジカル重合開始剤の使用量は、0.01~0.5質量部の範囲が好ましく、0.05~0.3質量部の範囲がより好ましい。 The usage ratio of the radical polymerization initiator is not particularly limited, but from the viewpoint of obtaining a polymer with a smaller molecular weight distribution, it is preferable that the usage amount of the radical polymerization initiator is 0.5 parts by mass or less with respect to 1 part by mass of the RAFT agent. , more preferably 0.3 parts by mass or less. Further, from the viewpoint of stably performing the polymerization reaction, the lower limit of the amount of the radical polymerization initiator to be used per 1 part by mass of the RAFT agent is preferably 0.01 part by mass or more. Therefore, the amount of the radical polymerization initiator used per 1 part by mass of the RAFT agent is preferably in the range of 0.01 to 0.5 parts by mass, more preferably in the range of 0.05 to 0.3 parts by mass.

RAFT法による重合反応の際の反応温度は、好ましくは40℃以上100℃以下であり、より好ましくは45℃以上90℃以下であり、さらに好ましくは50℃以上80℃以下である。反応温度が40℃以上であれば、重合反応を円滑に進めることができる。一方、反応温度が100℃以下であれば、副反応が抑制できるとともに、使用できる開始剤や溶剤に関する制限が緩和される。 The reaction temperature during the polymerization reaction by the RAFT method is preferably 40°C or higher and 100°C or lower, more preferably 45°C or higher and 90°C or lower, and still more preferably 50°C or higher and 80°C or lower. When the reaction temperature is 40° C. or higher, the polymerization reaction can proceed smoothly. On the other hand, if the reaction temperature is 100° C. or lower, side reactions can be suppressed and restrictions regarding usable initiators and solvents are relaxed.

NMP法では、ニトロキシドを有する特定のアルコキシアミン化合物等をリビングラジカル重合開始剤として用い、これに由来するニトロキシドラジカルを介して重合が進行する。本発明で使用されるブロック共重合体の製造においては、用いるニトロキシドラジカルの種類に特に制限はなく、商業的に入手可能のニトロキシド系重合開始剤を用いることができる。また、アクリレートを含む単量体を重合する際の重合制御性の観点から、ニトロキシド化合物として一般式(4)で表される化合物を用いることが好ましい。

Figure 0007347508000003
(式(4)中、Rは炭素数1~2のアルキル基又は水素原子であり、Rは炭素数1~2のアルキル基又はニトリル基であり、Rは-(CH)m-、mは0~2であり、R、R10は炭素数1~4のアルキル基である。)In the NMP method, a specific alkoxyamine compound having nitroxide or the like is used as a living radical polymerization initiator, and polymerization proceeds via nitroxide radicals derived therefrom. In the production of the block copolymer used in the present invention, there are no particular limitations on the type of nitroxide radical used, and commercially available nitroxide polymerization initiators can be used. Further, from the viewpoint of polymerization controllability when polymerizing a monomer containing an acrylate, it is preferable to use a compound represented by general formula (4) as the nitroxide compound.
Figure 0007347508000003
(In formula (4), R 6 is an alkyl group having 1 to 2 carbon atoms or a hydrogen atom, R 7 is an alkyl group having 1 to 2 carbon atoms or a nitrile group, and R 8 is -(CH 2 )m -, m are 0 to 2, and R 9 and R 10 are alkyl groups having 1 to 4 carbon atoms.)

上記一般式(4)で表されるニトロキシド化合物は、70~80℃程度の加熱により一次解離し、ビニル系単量体と付加反応を起こす。この際、2以上のビニル基を有するビニル系単量体にニトロキシド化合物を付加することにより多官能性の重合前駆体を得ることが可能である。次いで、上記重合前駆体を加熱下で二次解離することにより、ビニル系単量体をリビング重合することができる。この場合、重合前駆体は分子内に2以上の活性点を有するため、より分子量分布の狭い重合体を得ることができる。上記a-(ba)n型構造のブロック共重合体を効率的に得やすい観点から、分子内に活性点を2つ有する二官能型の重合前駆体を用いることが好ましい。また、ニトロキシド化合物の使用量は、用いる単量体及びニトロキシド化合物の種類等により適宜調整される。 The nitroxide compound represented by the above general formula (4) undergoes primary dissociation by heating to about 70 to 80°C and causes an addition reaction with the vinyl monomer. At this time, it is possible to obtain a polyfunctional polymerization precursor by adding a nitroxide compound to a vinyl monomer having two or more vinyl groups. Next, the vinyl monomer can be subjected to living polymerization by subjecting the polymerization precursor to secondary dissociation under heating. In this case, since the polymerization precursor has two or more active sites in the molecule, a polymer with a narrower molecular weight distribution can be obtained. From the viewpoint of easily obtaining the block copolymer having the above a-(ba)n type structure, it is preferable to use a bifunctional polymerization precursor having two active sites in the molecule. Further, the amount of the nitroxide compound to be used is appropriately adjusted depending on the type of monomer and nitroxide compound used.

本ブロック共重合体をNMP法により製造する場合、上記一般式(4)で表されるニトロキシド化合物1molに対し、下記一般式(5)で表されるニトロキシドラジカルを0.001~0.2molの範囲で添加して重合を行ってもよい。

Figure 0007347508000004
(式(5)中、R11、R12は炭素数1~4のアルキル基である。)When producing this block copolymer by the NMP method, 0.001 to 0.2 mol of the nitroxide radical represented by the following general formula (5) is added to 1 mol of the nitroxide compound represented by the above general formula (4). Polymerization may be carried out by adding within a certain range.
Figure 0007347508000004
(In formula (5), R 11 and R 12 are alkyl groups having 1 to 4 carbon atoms.)

上記一般式(5)で表されるニトロキシドラジカルを0.001mol以上添加することにより、ニトロキシドラジカルの濃度が定常状態に達する時間が短縮される。これにより、重合をより高度に制御することが可能となり、より分子量分布の狭い重合体を得ることができる。一方、上記ニトロキシドラジカルの添加量が多すぎると重合が進行しない場合がある。上記ニトロキシド化合物1molに対する上記ニトロキシドラジカルのより好ましい添加量は0.01~0.5molの範囲であり、さらに好ましい添加量は0.05~0.2molの範囲である。 By adding 0.001 mol or more of the nitroxide radical represented by the above general formula (5), the time required for the concentration of the nitroxide radical to reach a steady state is shortened. This makes it possible to control polymerization to a higher degree and to obtain a polymer with a narrower molecular weight distribution. On the other hand, if the amount of the nitroxide radical added is too large, polymerization may not proceed. A more preferable amount of the nitroxide radical added is in the range of 0.01 to 0.5 mol, and a still more preferable amount is in the range of 0.05 to 0.2 mol per mol of the nitroxide compound.

NMP法における反応温度は、好ましくは50℃以上140℃以下であり、より好ましくは60℃以上130℃以下であり、さらに好ましくは70℃以上120℃以下であり、特に好ましくは80℃以上120℃以下である。反応温度が50℃以上であれば、重合反応を円滑に進めることができる。一方、反応温度が140℃以下であれば、ラジカル連鎖移動等の副反応が抑制される傾向がある。 The reaction temperature in the NMP method is preferably 50°C or more and 140°C or less, more preferably 60°C or more and 130°C or less, even more preferably 70°C or more and 120°C or less, particularly preferably 80°C or more and 120°C. It is as follows. When the reaction temperature is 50° C. or higher, the polymerization reaction can proceed smoothly. On the other hand, if the reaction temperature is 140° C. or lower, side reactions such as radical chain transfer tend to be suppressed.

ATRP法では、一般に有機ハロゲン化物を開始剤とし、触媒に遷移金属錯体を用いて重合反応が行われる。開始剤である有機ハロゲン化物は、一官能性のものを用いてもよいし、二官能以上のものを用いてもよい。上記a-(ba)n型構造のブロック共重合体を効率的に得やすい点では、二官能性の化合物を用いることが好ましい。また、ハロゲンの種類としては臭化物及び塩化物が好ましい。ATRP法における反応温度は、好ましくは20℃以上200℃以下であり、より好ましくは50℃以上150℃以下である。反応温度20℃以上であれば、重合反応を円滑に進めることができる。 In the ATRP method, a polymerization reaction is generally performed using an organic halide as an initiator and a transition metal complex as a catalyst. The organic halide used as the initiator may be monofunctional, or may be difunctional or more functional. It is preferable to use a difunctional compound because it is easy to efficiently obtain the block copolymer having the a-(ba)n type structure. Further, as the type of halogen, bromide and chloride are preferable. The reaction temperature in the ATRP method is preferably 20°C or more and 200°C or less, more preferably 50°C or more and 150°C or less. If the reaction temperature is 20° C. or higher, the polymerization reaction can proceed smoothly.

リビングラジカル重合法により、重合体ブロック(a)-(メタ)アクリル系重合体ブロック(b)-重合体ブロック(a)からなる、(aba)トリブロック共重合体等のa-(ba)n型構造体を得る場合、例えば、各ブロックを順次重合することにより目的とするブロック共重合体を得てもよい。この場合、まず、第一重合工程として、重合体ブロック(a)の構成単量体を用いて重合体ブロック(a)を得る。次いで、第二重合工程として、(メタ)アクリル系重合体ブロック(b)の構成単量体を用いて(メタ)アクリル系重合体ブロック(b)を得る。さらに、第三重合工程として、重合体ブロック(a)の構成単量体を用いて重合することにより(aba)トリブロック共重合体を得ることができる。この場合、重合開始剤は、上記した一官能性の重合開始剤又は重合前駆体を用いることが好ましい。上記の第二重合工程及び第三重合工程を繰り返すことにより、ペンタブロック共重合体等のより高次のブロック共重合体を得ることができる。 By a living radical polymerization method, a-(ba)n such as an (aba) triblock copolymer consisting of a polymer block (a)-(meth)acrylic polymer block (b)-polymer block (a) When obtaining a mold structure, for example, the desired block copolymer may be obtained by sequentially polymerizing each block. In this case, first, as a first polymerization step, a polymer block (a) is obtained using constituent monomers of the polymer block (a). Next, in a second polymerization step, a (meth)acrylic polymer block (b) is obtained using the constituent monomers of the (meth)acrylic polymer block (b). Furthermore, as a third polymerization step, a triblock copolymer (aba) can be obtained by polymerizing using the constituent monomers of the polymer block (a). In this case, it is preferable to use the monofunctional polymerization initiator or polymerization precursor described above as the polymerization initiator. By repeating the above-mentioned second polymerization step and third polymerization step, a higher order block copolymer such as a pentablock copolymer can be obtained.

また、以下に示す二段階の重合工程を含む方法により製造した場合は、より効率的に目的物が得られることから好ましい。すなわち、第一重合工程として、(メタ)アクリル系重合体ブロック(b)の構成単量体を用いて(メタ)アクリル系重合体ブロック(b)を得た後、第二重合工程として、重合体ブロック(a)の構成単量体を重合して重合体ブロック(a)を得る。これにより、重合体ブロック(a)-(メタ)アクリル系重合体ブロック(b)-重合体ブロック(a)からなる、(aba)トリブロック共重合体を得ることができる。この場合、重合開始剤は、二官能性の重合開始剤又は重合前駆体を用いることが好ましい。この方法によれば、各ブロックを順次重合して製造する場合に比較して工程を簡略化することができる。また、上記の第一重合工程及び第二重合工程を繰り返すことにより、テトラブロック共重合体等のより高次のブロック共重合体を得ることができる。 Furthermore, it is preferable to produce the product by a method including the two-stage polymerization process described below, since the desired product can be obtained more efficiently. That is, as a first polymerization step, after obtaining a (meth)acrylic polymer block (b) using the constituent monomers of the (meth)acrylic polymer block (b), as a second polymerization step, The constituent monomers of the combined block (a) are polymerized to obtain the polymer block (a). As a result, a (aba) triblock copolymer consisting of a polymer block (a)-(meth)acrylic polymer block (b)-polymer block (a) can be obtained. In this case, it is preferable to use a bifunctional polymerization initiator or a polymerization precursor as the polymerization initiator. According to this method, the process can be simplified compared to the case where each block is manufactured by sequentially polymerizing each block. Further, by repeating the first polymerization step and the second polymerization step described above, a higher order block copolymer such as a tetra block copolymer can be obtained.

本発明で使用するブロック共重合体の重合は、その重合方法によらず、必要に応じて連鎖移動剤の存在下で実施しても良い。連鎖移動剤は公知のものを使用することができ、具体的には、エタンチオール、1-プロパンチオール、2-プロパンチオール、1-ブタンチオール、2-ブタンチオール、1-ヘキサンチオール、2-ヘキサンチオール、2-メチルヘプタン-2-チオール、2-ブチルブタン-1-チオール、1,1-ジメチル-1-ペンタンチオール、1-オクタンチオール、2-オクタンチオール、1-デカンチオール、3-デカンチオール、1-ウンデカンチオール、1-ドデカンチオール、2-ドデカンチオール、1-トリデカンチオール、1-テトラデカンチオール、3-メチル-3-ウンデカンチオール、5-エチル-5-デカンチオール、tert-テトラデカンチオール、1-ヘキサデカンチオール、1-ヘプタデカンチオール及び1-オクタデカンチオール等の炭素数2~20のアルキル基を有するアルキルチオール化合物の他、メルカプト酢酸、メルカプトプロピオン酸、2-メルカプトエタノール等が挙げられ、これらの内の1種又は2種以上を用いることができる。 Polymerization of the block copolymer used in the present invention may be carried out in the presence of a chain transfer agent, if necessary, regardless of the polymerization method. Known chain transfer agents can be used, and specifically, ethanethiol, 1-propanethiol, 2-propanethiol, 1-butanethiol, 2-butanethiol, 1-hexanethiol, 2-hexane. Thiol, 2-methylheptane-2-thiol, 2-butylbutane-1-thiol, 1,1-dimethyl-1-pentanethiol, 1-octanethiol, 2-octanethiol, 1-decanethiol, 3-decanethiol, 1-undecanethiol, 1-dodecanethiol, 2-dodecanethiol, 1-tridecanethiol, 1-tetradecanethiol, 3-methyl-3-undecanethiol, 5-ethyl-5-decanethiol, tert-tetradecanethiol, 1 - In addition to alkylthiol compounds having an alkyl group having 2 to 20 carbon atoms such as hexadecanethiol, 1-heptadecanethiol and 1-octadecanethiol, mercaptoacetic acid, mercaptopropionic acid, 2-mercaptoethanol, etc. One or more of these can be used.

本開示で使用するブロック共重合体の製造においては、リビングラジカル重合において公知の重合溶媒を用いることができる。具体的には、ベンゼン、トルエン、キシレン、アニソール等の芳香族化合物;酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル等のエステル化合物;アセトン、メチルエチルケトン等のケトン化合物;ジメチルホルムアミド、アセトニトリル、ジメチルスルホキシド、アルコール、水等が挙げられる。また、重合溶媒を使用せず、塊状重合等の態様で行ってもよい。 In producing the block copolymer used in the present disclosure, polymerization solvents known in living radical polymerization can be used. Specifically, aromatic compounds such as benzene, toluene, xylene, and anisole; ester compounds such as methyl acetate, ethyl acetate, propyl acetate, and butyl acetate; ketone compounds such as acetone and methyl ethyl ketone; dimethylformamide, acetonitrile, dimethyl sulfoxide, Examples include alcohol and water. Alternatively, the polymerization may be carried out in a manner such as bulk polymerization without using a polymerization solvent.

5-3.本粘着剤層の好ましい態様
本粘着シートの薄膜層が薄膜層1である場合、本粘着剤組成物は、アクリル系粘着性ポリマー(B)を含有しているとよく、ビニル重合体(A)及びアクリル系粘着性ポリマー(B)を含有していることがより好ましい。本粘着シートの薄膜層が薄膜層2である場合、本粘着剤組成物は、ビニル重合体(A)及びアクリル系粘着性ポリマー(B)を含有しているとよい。本粘着剤組成物がビニル重合体(A)及びアクリル系粘着性ポリマー(B)を含有する場合、ビニル重合体(A)は、アクリル系粘着性ポリマー(B)に対して適度な相溶性を有することが好ましい。この場合、ビニル重合体(A)及びアクリル系粘着性ポリマー(B)を含む粘着剤組成物から得られる粘着剤層は、良好な透明性を示すと共に、粘着剤層中においてビニル重合体(A)が一部偏析し、その表層におけるビニル重合体(A)の濃度が他の部分よりも高くなる場合がある。
5-3. Preferred embodiment of the present adhesive layer When the thin film layer of the present adhesive sheet is thin film layer 1, the present adhesive composition preferably contains an acrylic adhesive polymer (B), and a vinyl polymer (A). and acrylic adhesive polymer (B). When the thin film layer of the present adhesive sheet is thin film layer 2, the present adhesive composition preferably contains a vinyl polymer (A) and an acrylic adhesive polymer (B). When the present adhesive composition contains a vinyl polymer (A) and an acrylic adhesive polymer (B), the vinyl polymer (A) has appropriate compatibility with the acrylic adhesive polymer (B). It is preferable to have. In this case, the adhesive layer obtained from the adhesive composition containing the vinyl polymer (A) and the acrylic adhesive polymer (B) exhibits good transparency, and the adhesive layer contains the vinyl polymer (A). ) may be partially segregated, and the concentration of vinyl polymer (A) in the surface layer may be higher than in other parts.

このように、粘着剤層の表層におけるビニル重合体(A)の濃度が他より高くなる構成を取った場合、接着界面近傍の粘着剤層は比較的高いTgを有するため、高温条件下でも良好な接着性を発揮することができる。さらに、粘着剤層全体としてはTgが低く十分に柔軟であるため、加飾フィルムに適用した場合には、例えばフィルム基材が熱膨張収縮した場合であってもこれに追従し、応力を好適に緩和することができる。これにより、真空圧空成形により本加飾フィルムを被着体に接着した場合に、加飾フィルムのショックラインの発生の抑制効果を高くできる。本粘着剤組成物におけるビニル重合体(A)のこうした偏析挙動のほか、後述する粘着剤層の表層と粘着剤層全体のTgの差は、アクリル系粘着性ポリマー(B)に対するビニル重合体(A)の配合比、ビニル重合体(A)の単量体組成(極性)や分子量のほか、Tg、Mw/Mn等を適宜設定することにより調整することができる。 In this way, if the surface layer of the adhesive layer has a higher concentration of vinyl polymer (A) than the other layers, the adhesive layer near the adhesive interface will have a relatively high Tg, so it will work well even under high temperature conditions. It can exhibit excellent adhesive properties. Furthermore, since the adhesive layer as a whole has a low Tg and is sufficiently flexible, when applied to a decorative film, it can follow the thermal expansion and contraction of the film base material and suppress stress in an appropriate manner. can be relaxed. Thereby, when the present decorative film is adhered to an adherend by vacuum-pressure forming, the effect of suppressing the generation of shock lines in the decorative film can be increased. In addition to this segregation behavior of the vinyl polymer (A) in the present adhesive composition, the difference in Tg between the surface layer of the adhesive layer and the entire adhesive layer, which will be described later, is due to the difference in Tg between the vinyl polymer (A) and the acrylic adhesive polymer (B). It can be adjusted by appropriately setting the blending ratio of A), the monomer composition (polarity) and molecular weight of the vinyl polymer (A), as well as Tg, Mw/Mn, etc.

本粘着剤組成物がビニル重合体(A)を含有する場合、本粘着剤組成物は、ビニル重合体(A)を、固形分換算で、アクリル系粘着性ポリマー(B)100質量部に対して0.5質量部以上60質量部以下含有することが好ましい。好ましい含有量の下限は1質量部以上であり、より好ましくは3質量部以上であり、さらに好ましくは4質量部以上である。また、好ましい含有量の上限は50質量部以下であり、より好ましくは40質量部以下であり、さらに好ましくは30質量部以下である。また、好ましい含有量の範囲は1質量部以上40質量部以下であり、より好ましくは3質量部以上30質量部以下である。ビニル重合体(A)の使用量が0.5質量部未満の場合、粘着剤層におけるビニル重合体(A)の偏析が不十分であり、特に高温接着性において満足する結果が得られないことがある。一方、60質量部を超えると、ビニル重合体(A)が過度に偏析する結果、段差追随性、及びタックを含む接着性が不十分となる場合がある。また、アクリル系粘着性ポリマー(B)と相分離し、粘着剤層の透明性が低下する場合がある。 When the present adhesive composition contains the vinyl polymer (A), the present adhesive composition contains the vinyl polymer (A) per 100 parts by mass of the acrylic adhesive polymer (B) in terms of solid content. The content is preferably 0.5 parts by mass or more and 60 parts by mass or less. The lower limit of the preferable content is 1 part by mass or more, more preferably 3 parts by mass or more, and still more preferably 4 parts by mass or more. Further, the upper limit of the content is preferably 50 parts by mass or less, more preferably 40 parts by mass or less, and even more preferably 30 parts by mass or less. Further, the preferred content range is 1 part by mass or more and 40 parts by mass or less, more preferably 3 parts by mass or more and 30 parts by mass or less. If the amount of the vinyl polymer (A) used is less than 0.5 parts by mass, the segregation of the vinyl polymer (A) in the adhesive layer will be insufficient, and satisfactory results, especially in high temperature adhesion, will not be obtained. There is. On the other hand, if it exceeds 60 parts by mass, the vinyl polymer (A) may segregate excessively, resulting in insufficient level followability and adhesiveness including tackiness. In addition, it may phase separate from the acrylic adhesive polymer (B) and the transparency of the adhesive layer may decrease.

〔本粘着剤組成物より形成される粘着剤層全体のTg(第1のTg)〕
本粘着剤組成物より形成される粘着剤層(以下、「本粘着剤層」ともいう。)全体のガラス転移温度(Tg)、すなわち、第1のTgは、-80℃以上20℃以下の範囲とすることができる。Tgの下限は、-70℃以上であってもよく、-60℃以上であってもよく、-50℃以上であってもよく、-40℃以上であってもよい。また、第1のTgの上限は、15℃以下であってもよく、10℃以下であってもよく、0℃以下であってもよく、-10℃以下であってもよく、-20℃以下であってもよい。また、第1のTgの範囲は、これらの上限及び下限を適宜組み合わせることができるが、例えば、-70℃以上30℃以下の範囲であり、また例えば-60℃以上20℃以下であり、また例えば-50℃以上-10℃以下である。第1のTgが-80℃未満の場合は、得られる粘着剤層の凝集力が不十分となり、曲面接着性等が悪化する傾向がある。第1のTgが20℃を超える場合は、段差追随性及び低温条件下での粘着力等が十分でない場合がある。なお、本粘着剤層全体のTgは、DSCにて、昇温速度10℃/min、窒素雰囲気を測定雰囲気として得ることができる。
[Tg of the entire adhesive layer formed from the present adhesive composition (first Tg)]
The glass transition temperature (Tg) of the entire adhesive layer formed from the present adhesive composition (hereinafter also referred to as "this adhesive layer"), that is, the first Tg, is -80°C or more and 20°C or less. It can be a range. The lower limit of Tg may be -70°C or higher, -60°C or higher, -50°C or higher, or -40°C or higher. Further, the upper limit of the first Tg may be 15°C or less, 10°C or less, 0°C or less, -10°C or less, -20°C or less. It may be the following. Further, the range of the first Tg can be a combination of these upper and lower limits as appropriate, and is, for example, in the range of -70°C or more and 30°C or less, or -60°C or more and 20°C or less, and For example, the temperature is -50°C or more and -10°C or less. If the first Tg is less than -80°C, the cohesive force of the resulting pressure-sensitive adhesive layer will be insufficient, and curved surface adhesion etc. will tend to deteriorate. If the first Tg exceeds 20° C., the step followability and adhesive strength under low temperature conditions may not be sufficient. Note that the Tg of the entire adhesive layer can be obtained by DSC at a temperature increase rate of 10° C./min and a nitrogen atmosphere as the measurement atmosphere.

〔粘着剤層の表層部分の組成から計算されるTg(第2のTg)〕
本粘着シートの薄膜層が薄膜層2である場合、第2のTg、すなわち、本粘着剤組成物をセパレーターに塗工後、乾燥又は活性エネルギー線の照射により粘着剤層を得た際に、当該粘着剤層のX線光電子分光分析により得られるその表層部分の組成から計算されるTgは、70℃以上である。具体的には、第2のTgは、X線光電子分光測定(XPS)から得られるビニル重合体(A)とアクリル系粘着性ポリマー(B)との組成比率から、計算によって求められ、粘着剤層の表面から該20nm程度の深さまでの表層を形成する組成物のTgとして捉えることができる。すなわち、XPSでは、粘着剤層の表面にX線を照射することにより発生する光電子を検出し、その運動エネルギーから組成情報を得ることができ、検出深さは一般に数nmである。したがって、XPSにより粘着剤層の表面から数nm程度の表層部分に関する組成情報を得ることができ、これを薄膜層2のTgとして捉えることができる。測定方法の詳細は、後述する実施例に記載の操作に従うことができる。
[Tg calculated from the composition of the surface layer portion of the adhesive layer (second Tg)]
When the thin film layer of the present pressure-sensitive adhesive sheet is thin film layer 2, the second Tg, that is, when the pressure-sensitive adhesive layer is obtained by drying or irradiation with active energy rays after coating the present pressure-sensitive adhesive composition on a separator, The Tg calculated from the composition of the surface layer portion of the adhesive layer obtained by X-ray photoelectron spectroscopy is 70° C. or higher. Specifically, the second Tg is calculated from the composition ratio of the vinyl polymer (A) and the acrylic adhesive polymer (B) obtained from X-ray photoelectron spectroscopy (XPS). It can be regarded as the Tg of the composition forming the surface layer from the surface of the layer to a depth of about 20 nm. That is, in XPS, photoelectrons generated by irradiating the surface of the adhesive layer with X-rays are detected, and composition information can be obtained from the kinetic energy of the photoelectrons, and the detection depth is generally several nm. Therefore, by XPS, it is possible to obtain composition information regarding the surface layer portion of about several nm from the surface of the adhesive layer, and this can be taken as the Tg of the thin film layer 2. The details of the measurement method can follow the operations described in the Examples below.

本粘着シートの薄膜層が薄膜層2である場合、第2のTgが70℃以上であることで、常温では粘着性を発現せず、予備賦形する際に取り扱い性を良好にすることができるとともに、真空圧空成形に適用した場合にショックラインの発生を抑制することができる。また、第2のTgが70℃以上であることで、第1のTgと第2のTgとの差を十分に大きくし易くなり、この結果、曲面接着性とともに被着体の高温接着性及び耐久性を確保できる。第2のTgは、より好ましくは75℃以上であり、さらに好ましくは80℃以上であり、なお好ましくは85℃以上である。なお、第2のTgは、ビニル重合体(A)のTgや配合比等によって適宜調節することができる。第2のTgの上限は、特に制限されないが、例えば180℃以下である。 When the thin film layer of the adhesive sheet is thin film layer 2, the second Tg is 70°C or higher, so that it does not develop adhesiveness at room temperature and has good handling properties when preforming. In addition, it is possible to suppress the occurrence of shock lines when applied to vacuum pressure forming. In addition, by setting the second Tg to 70°C or higher, it becomes easy to sufficiently increase the difference between the first Tg and the second Tg, and as a result, it is possible to improve not only the curved surface adhesion but also the high temperature adhesion of the adherend. Durability can be ensured. The second Tg is more preferably 75°C or higher, still more preferably 80°C or higher, still more preferably 85°C or higher. Note that the second Tg can be adjusted as appropriate by adjusting the Tg of the vinyl polymer (A), the blending ratio, and the like. The upper limit of the second Tg is, for example, 180° C. or lower, although it is not particularly limited.

本粘着シートの薄膜層が薄膜層1である場合、第2のTgは、特に限定されないが、0℃以上であることが好ましい。第2のTgは、より好ましくは10℃以上であり、さらに好ましくは30℃以上であり、なお好ましくは40℃以上であり、一層好ましくは50℃以上であり、より一層好ましくは60℃以上である。 When the thin film layer of the adhesive sheet is thin film layer 1, the second Tg is not particularly limited, but is preferably 0° C. or higher. The second Tg is more preferably 10°C or higher, still more preferably 30°C or higher, still more preferably 40°C or higher, even more preferably 50°C or higher, even more preferably 60°C or higher. be.

〔粘着剤層全体のTg(第1のTg)と粘着剤層の表層部分の組成から計算されるTg(第2のTg)の差〕
本粘着剤組成物は、第2のTg(粘着剤層の表層部分の組成から計算されるTg)が、第1のTg(粘着剤層全体のTg)よりも30℃以上高いものとなることが好ましい。こうしたTg組成を有する粘着剤層によれば、従来の一般的な粘着剤による粘着剤層が高温になればなるほど接着性が低下するのに対し、高温での高い接着性(被着体に対する剥離強度)や高い曲面接着性を発揮することができる。さらに、第2のTgが第1のTgよりも30℃以上高いものである場合、本粘着剤組成物から形成された粘着剤層を備えた加飾フィルムは、曲面や凹凸部等の複雑な形状に追従し、良好な接着性を示す。また、例えば、高温条件下におけるフィルム基材の収縮が生じた場合等であっても、これに伴うずれ、剥がれ又は浮き等の外観不良を抑制し、優れた耐久性が発揮される。
[Difference between Tg of the entire adhesive layer (first Tg) and Tg calculated from the composition of the surface layer portion of the adhesive layer (second Tg)]
This adhesive composition has a second Tg (Tg calculated from the composition of the surface layer of the adhesive layer) that is 30°C or more higher than the first Tg (Tg of the entire adhesive layer). is preferred. An adhesive layer having such a Tg composition has high adhesion at high temperatures (peelability to adherends), whereas adhesive layers using conventional general adhesives exhibit lower adhesion as the temperature increases. strength) and high curved surface adhesion. Furthermore, if the second Tg is 30°C or more higher than the first Tg, the decorative film with the adhesive layer formed from the present adhesive composition may have complex surfaces such as curved surfaces or uneven parts. It follows the shape and shows good adhesion. Further, even if the film base material shrinks under high-temperature conditions, for example, appearance defects such as shifting, peeling, or lifting are suppressed, and excellent durability is exhibited.

第2のTgは、第1のTgよりも、好ましくは40℃以上高く、より好ましくは50℃以上高く、さらに好ましくは60℃以上高く、なお好ましくは65℃以上高く、70℃以上高いことが一層好ましい。第1のTgに対する第2のTgの高さの上限は特に制限されるものではないが、第1のTg及び第2のTgが取り得る値から280℃が限度であり、一般的に200℃以下である。 The second Tg is higher than the first Tg by preferably 40°C or more, more preferably 50°C or more, still more preferably 60°C or more, still more preferably 65°C or more, and even more preferably 70°C or more. More preferred. The upper limit of the height of the second Tg relative to the first Tg is not particularly limited, but the upper limit is 280°C from the values that the first Tg and the second Tg can take, and generally 200°C. It is as follows.

〔粘着剤層の表層部分におけるビニル重合体(A)とアクリル系粘着性ポリマー(B)の総質量に対するビニル重合体(A)の質量分率(A/A+B)〕
第2のTgの測定に際しては、本粘着剤層の表層のX線光電子分光分析よる組成分析を行うが、その際に、表層におけるビニル重合体(A)の質量分率を求めることができる。この質量分率を、本粘着剤層の表層部分におけるビニル重合体(A)の偏析状態の指標とすることができる。
[Mass fraction (A/A+B) of vinyl polymer (A) relative to the total mass of vinyl polymer (A) and acrylic adhesive polymer (B) in the surface layer portion of the adhesive layer]
When measuring the second Tg, the composition of the surface layer of the adhesive layer is analyzed by X-ray photoelectron spectroscopy, and at that time, the mass fraction of the vinyl polymer (A) in the surface layer can be determined. This mass fraction can be used as an index of the segregation state of the vinyl polymer (A) in the surface layer portion of the adhesive layer.

例えば、粘着剤層の表層部分におけるビニル重合体(A)の質量分率は、55%以上95%以下であることが好ましい。この範囲であると、ビニル重合体(A)の表層部分への偏析が生じており、高温高湿下においても曲面接着性と耐久性を得ることができる。ビニル重合体(A)の質量分率は、より好ましくは60%以上であり、さらに好ましくは65%以上であり、なお好ましくは70%以上であり、一層好ましくは75%以上であり、より一層好ましくは80%以上である。また、質量分率は、95%以下であることが好ましく、90%以下であることがより好ましい。 For example, the mass fraction of the vinyl polymer (A) in the surface layer portion of the adhesive layer is preferably 55% or more and 95% or less. Within this range, segregation of the vinyl polymer (A) to the surface layer portion occurs, and curved surface adhesion and durability can be obtained even under high temperature and high humidity conditions. The mass fraction of the vinyl polymer (A) is more preferably 60% or more, still more preferably 65% or more, still more preferably 70% or more, still more preferably 75% or more, and even more preferably Preferably it is 80% or more. Further, the mass fraction is preferably 95% or less, more preferably 90% or less.

〔透明性(ヘイズ値)〕
本粘着剤組成物から得られる粘着剤層の透明性を評価する指標として、ヘイズ値を用いることができる。本粘着剤組成物から得られる粘着剤層は良好な透明性を示す。また、粘着剤組成物がビニル重合体(A)及びアクリル系粘着性ポリマー(B)を含む態様において、ビニル重合体(A)がアクリル系粘着性ポリマー(B)に対して適度な相溶性を有する場合、これらを含む粘着剤層は、良好な透明性を示す。
[Transparency (haze value)]
The haze value can be used as an index for evaluating the transparency of the adhesive layer obtained from the present adhesive composition. The adhesive layer obtained from this adhesive composition exhibits good transparency. Further, in an embodiment in which the adhesive composition includes a vinyl polymer (A) and an acrylic adhesive polymer (B), the vinyl polymer (A) has appropriate compatibility with the acrylic adhesive polymer (B). When the adhesive layer contains these, the adhesive layer exhibits good transparency.

ヘイズ値は、例えば、以下の方法で評価することができる。すなわち、本粘着シートに貼り付けられた一方のセパレーターを剥がし、本粘着シートをガラスプレートに転写し、他方のセパレーターを剥がした後、23℃、50%RH条件下で1日静置し、ヘイズメーターを使用してヘイズ値を測定する。このヘイズ値が低いほど透明性が良好であると評価することができる。好ましいヘイズ値は2.0以下である。ヘイズ値が2.0以下であると、一定の好ましい透明性があるといえる。より好ましいヘイズ値は1.6以下であり、さらに好ましくは1.4以下であり、一層好ましくは1.0以下である。 The haze value can be evaluated, for example, by the following method. That is, after peeling off one separator pasted on the adhesive sheet, transferring the adhesive sheet onto a glass plate, and peeling off the other separator, it was left to stand at 23°C and 50% RH for one day, and the haze was removed. Measure the haze value using a meter. It can be evaluated that the lower the haze value, the better the transparency. A preferred haze value is 2.0 or less. When the haze value is 2.0 or less, it can be said that there is a certain desirable transparency. A more preferable haze value is 1.6 or less, still more preferably 1.4 or less, and still more preferably 1.0 or less.

5-4.その他の成分
本粘着剤組成物の好ましい態様は、ビニル重合体(A)及びアクリル系粘着性ポリマー(B)以外にも、必要に応じて、架橋剤、粘着付与剤、可塑剤、酸化防止剤、紫外線吸収剤、老化防止剤、難燃剤、防かび剤、シランカップリング剤、充填剤、着色剤等の添加剤を含有した組成物とすることもできる。
5-4. Other Components In a preferred embodiment of the adhesive composition, in addition to the vinyl polymer (A) and the acrylic adhesive polymer (B), optionally a crosslinking agent, a tackifier, a plasticizer, and an antioxidant are added. The composition may also contain additives such as ultraviolet absorbers, anti-aging agents, flame retardants, fungicides, silane coupling agents, fillers, and colorants.

〔架橋剤〕
本粘着剤組成物は、架橋剤を含有することができる。架橋剤は、必ずしも必要ではないが、意図する接着特性のほか、本粘着剤組成物の形態、例えば、エマルジョン形態であるか溶液形態であるか等にも応じて、その添加が検討される。架橋剤を含有することで、本粘着剤組成物から得られる粘着剤層の凝集力や接着力を調整し、さらに、高温高湿下での接着性や曲面への接着性を付与したりすることができる。架橋剤としては、エポキシ基を2つ以上有するエポキシ化合物、イソシアネート基を2つ以上有するイソシアネート化合物、アジリジニル基を2つ以上有するアジリジン化合物、オキサゾリン基を有するオキサゾリン化合物、金属キレート化合物、ブチル化メラミン化合物等が挙げられる。これらのうち、アジリジン化合物、エポキシ化合物及びイソシアネート化合物を用いることが好ましい。
[Crosslinking agent]
This adhesive composition can contain a crosslinking agent. Although a crosslinking agent is not necessarily required, its addition is considered depending on the intended adhesive properties as well as the form of the pressure-sensitive adhesive composition, for example, whether it is in an emulsion form or a solution form. By containing a crosslinking agent, the cohesive force and adhesive force of the adhesive layer obtained from this adhesive composition can be adjusted, and furthermore, it can provide adhesiveness under high temperature and high humidity conditions and adhesiveness to curved surfaces. be able to. As a crosslinking agent, an epoxy compound having two or more epoxy groups, an isocyanate compound having two or more isocyanate groups, an aziridine compound having two or more aziridinyl groups, an oxazoline compound having an oxazoline group, a metal chelate compound, a butylated melamine compound etc. Among these, it is preferable to use aziridine compounds, epoxy compounds and isocyanate compounds.

アジリジン化合物としては、例えば、1,6-ビス(1-アジリジニルカルボニルアミノ)ヘキサン、1,1’-(メチレン-ジ-p-フェニレン)ビス-3,3-アジリジル尿素、1,1’-(ヘキサメチレン)ビス-3,3-アジリジル尿素、エチレンビス-(2-アジリジニルプロピオネート)、トリス(1-アジリジニル)ホスフィンオキサイド、2,4,6-トリアジリジニル-1,3,5-トリアジン、トリメチロールプロパン-トリス-(2-アジリジニルプロピオネート)等が挙げられる。 Examples of the aziridine compound include 1,6-bis(1-aziridinylcarbonylamino)hexane, 1,1'-(methylene-di-p-phenylene)bis-3,3-aziridylurea, 1,1' -(hexamethylene)bis-3,3-aziridylurea, ethylenebis-(2-aziridinylpropionate), tris(1-aziridinyl)phosphine oxide, 2,4,6-triaziridinyl-1,3,5 -triazine, trimethylolpropane-tris-(2-aziridinylpropionate), and the like.

エポキシ化合物としては、例えば、ビスフェノールAエピクロルヒドリン型のエポキシ系樹脂、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、グリセリンジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、ジグリシジルアニリン、テトラグリシジルキシレンジアミン、N,N ,N’,N’-テトラグリシジル-m-キシリレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、トリメチロールプロパンポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ソルビトールポリグリシジルエーテル等の多官能グリシジル化合物が挙げられる。 Examples of the epoxy compound include bisphenol A epichlorohydrin type epoxy resin, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, glycerin diglycidyl ether, and neopentyl glycol diglycidyl ether. Ether, 1,6-hexanediol diglycidyl ether, diglycidylaniline, tetraglycidylxylylenediamine, N,N ,N',N'-tetraglycidyl-m-xylylenediamine, 1,3-bis(N,N- Examples include polyfunctional glycidyl compounds such as diglycidylaminomethyl) cyclohexane, trimethylolpropane polyglycidyl ether, diglycerol polyglycidyl ether, polyglycerol polyglycidyl ether, and sorbitol polyglycidyl ether.

イソシアネート化合物としては、好ましくは、イソシアネート基を2つ以上有する化合物が用いられる。上記イソシアネート化合物としては、芳香族系、脂肪族系、脂環族系の各種イソシアネート化合物、さらには、これらのイソシアネート化合物の変性物(プレポリマー等)を用いることができる。 As the isocyanate compound, preferably a compound having two or more isocyanate groups is used. As the above-mentioned isocyanate compound, various aromatic, aliphatic, and alicyclic isocyanate compounds, and modified products (prepolymers, etc.) of these isocyanate compounds can be used.

芳香族イソシアネートとしては、例えば、ジフェニルメタンジイソシアネート(MDI)、粗製ジフェニルメタンジイソシアネート、トリレンジイソシアネート、ナフタレンジイソシアネート(NDI)、p-フェニレンジイソシアネート(PPDI)、キシレンジイソシアネート(XDI)、テトラメチルキシリレンジイソシアネート(TMXDI)、トリジンジイソシアネート(TODI)等が挙げられる。脂肪族イソシアネートとしては、ヘキサメチレンジイソシアネート(HDI)、リシンジイソシアネート(LDI)、リシントリイソシアネート(LTI)等が挙げられる。脂環族イソシアネートとしては、イソホロンジイソシアネート(IPDI)、シクロヘキシルジイソシアネート(CHDI)、水添化XDI(H6XDI)、水添化MDI(H12MDI)等が挙げられる。また、変性イソシアネートとしては、上記イソシアネート化合物のウレタン変性体、2量体、3量体、カルボジイミド変性体、アロファネート変性体、ビューレット変性体、ウレア変性体、イソシアヌレート変性体、オキサゾリドン変性体、イソシアネート基末端プレポリマー等が挙げられる。 Examples of aromatic isocyanates include diphenylmethane diisocyanate (MDI), crude diphenylmethane diisocyanate, tolylene diisocyanate, naphthalene diisocyanate (NDI), p-phenylene diisocyanate (PPDI), xylylene diisocyanate (XDI), and tetramethylxylylene diisocyanate (TMXDI). , tolidine diisocyanate (TODI), and the like. Examples of the aliphatic isocyanate include hexamethylene diisocyanate (HDI), lysine diisocyanate (LDI), lysine triisocyanate (LTI), and the like. Examples of the alicyclic isocyanate include isophorone diisocyanate (IPDI), cyclohexyl diisocyanate (CHDI), hydrogenated XDI (H6XDI), hydrogenated MDI (H12MDI), and the like. Examples of modified isocyanates include urethane-modified products, dimers, trimers, carbodiimide-modified products, allophanate-modified products, biuret-modified products, urea-modified products, isocyanurate-modified products, oxazolidone-modified products, and isocyanates of the above-mentioned isocyanate compounds. Examples include group-terminated prepolymers.

架橋剤の含有量は、アクリル系粘着性ポリマー(B)100質量部に対して、好ましくは0.01質量部以上10質量部以下とすることができる。より好ましい下限は0.03質量部以上、さらに好ましくは0.05質量部以上である。また、より好ましい上限は5質量部以下、さらに好ましくは2質量部以下である。また、より好ましい範囲は0.03質量部以上5量部以下、さらに好ましい範囲は0.05質量部以上2質量部以下である。 The content of the crosslinking agent can be preferably 0.01 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the acrylic adhesive polymer (B). The lower limit is more preferably 0.03 parts by mass or more, and even more preferably 0.05 parts by mass or more. Further, the upper limit is more preferably 5 parts by mass or less, and even more preferably 2 parts by mass or less. Further, a more preferable range is 0.03 parts by weight or more and 5 parts by weight or less, and an even more preferable range is 0.05 parts by weight or more and 2 parts by weight or less.

〔粘着付与剤〕
粘着付与剤としては、ロジンエステル、ガムロジン、トール油ロジン、水添ロジンエステル、マレイン化ロジン、不均化ロジンエステル等のロジン誘導体;テルペンフェノール樹脂、α-ピネン、β-ピネン、リモネン等を主体とするテルペン系樹脂;(水添)石油樹脂;クマロン-インデン系樹脂;水素化芳香族コポリマー;スチレン系樹脂;フェノール系樹脂;キシレン系樹脂;(メタ)アクリル系重合体等が挙げられる。
[Tackifier]
Tackifiers mainly include rosin derivatives such as rosin ester, gum rosin, tall oil rosin, hydrogenated rosin ester, maleated rosin, and disproportionated rosin ester; terpene phenol resin, α-pinene, β-pinene, limonene, etc. Examples include terpene resins; (hydrogenated) petroleum resins; coumaron-indene resins; hydrogenated aromatic copolymers; styrene resins; phenolic resins; xylene resins; (meth)acrylic polymers.

〔可塑剤〕
可塑剤としては、ジn-ブチルフタレート、ジn-オクチルフタレート、ビス(2-エチルヘキシル)フタレート、ジn-デシルフタレート、ジイソデシルフタレート等のフタル酸エステル類;ビス(2-エチルヘキシル)アジペート、ジn-オクチルアジペート等のアジピン酸エステル類;ビス(2-エチルヘキシル)セバケート、ジn-ブチルセバケート等のセバシン酸エステル類;ビス(2-エチルヘキシル)アゼレート等のアゼライン酸エステル類;塩素化パラフィン等のパラフィン類;ポリプロピレングリコール等のグリコール類;エポキシ化大豆油、エポキシ化アマニ油等のエポキシ変性植物油類;トリオクチルホスフェート、トリフェニルホスフェート等のリン酸エステル類;トリフェニルホスファイト等の亜リン酸エステル類;アジピン酸と1,3-ブチレングリコールとのエステル化物等のエステルオリゴマー類;低分子量ポリブテン、低分子量ポリイソブチレン、低分子量ポリイソプレン等の低分子量重合体;プロセスオイル、ナフテン系オイル等のオイル類等が挙げられる。
[Plasticizer]
Examples of plasticizers include phthalic acid esters such as di-n-butyl phthalate, di-n-octyl phthalate, bis(2-ethylhexyl) phthalate, di-n-decyl phthalate, and diisodecyl phthalate; bis(2-ethylhexyl) adipate, di-n - Adipate esters such as octyl adipate; Sebacate esters such as bis(2-ethylhexyl) sebacate and di-n-butyl sebacate; Azelaic acid esters such as bis(2-ethylhexyl) azelate; Paraffins such as chlorinated paraffin Glycols such as polypropylene glycol; Epoxy-modified vegetable oils such as epoxidized soybean oil and epoxidized linseed oil; Phosphate esters such as trioctyl phosphate and triphenyl phosphate; Phosphite esters such as triphenyl phosphite; Ester oligomers such as esters of adipic acid and 1,3-butylene glycol; low molecular weight polymers such as low molecular weight polybutene, low molecular weight polyisobutylene, and low molecular weight polyisoprene; oils such as process oils and naphthenic oils, etc. can be mentioned.

〔酸化防止剤〕
酸化防止剤としては、2,6-ジ-tert-ブチル-p-クレゾール、ブチル化ヒドロキシアニソール、2,6-ジ-tert-ブチル-4-エチルフェノール、ステアリル-β-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-tert-ブチルフェノール)、4,4’-チオビス(3-メチル-6-tert-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、3,9-ビス[1,1-ジメチル-2-[β-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]エチル]2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、1,3-トリス(2-メチル-4-ヒドロキシ-5-tert-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン、テトラキス-[メチレン-3-(3’,5’-ジ-tert-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタン、ビス[3,3’-ビス-(4’-ヒドロキシ-3’-tert-ブチルフェニル)ブチリックアシッド]グリコールエステル、1,3,5-トリス(3’,5’-ジ-tert-ブチル-4’-ヒドロキシベンジル)-S-トリアジン-2,4,6-(1H,3H,5H)トリオン、トコフェロール類等のフェノール系酸化防止剤;ジラウリル3,3’-チオジプロピオネート、ジミリスチル3,3’-チオジプロピオネート、ステアリル3,3’-チオジプロピオネート等の硫黄系酸化防止剤;トリフェニルホスファイト、ジフェニルイソデシルホスファイト、4,4’-ブチリデン-ビス(3-メチル-6-tert-ブチルフェニルジトリデシル)ホスファイト、サイクリックネオペンタンテトライルビス(オクタデシルホスファイト)、トリス(ノニルフェニル)ホスファイト、トリス(モノノニルフェニル)ホスファイト、トリス(ジノニルフェニル)ホスファイト、ジイソデシルペンタエリスリトールジフォスファイト、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10-(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10-デシロキシ-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(2,4-ジ-tert-ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ホスファイト、2,2-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチルホスファイト等のリン系酸化防止剤等が挙げられる。
〔Antioxidant〕
As antioxidants, 2,6-di-tert-butyl-p-cresol, butylated hydroxyanisole, 2,6-di-tert-butyl-4-ethylphenol, stearyl-β-(3,5-di -tert-butyl-4-hydroxyphenyl) propionate, 2,2'-methylenebis(4-methyl-6-tert-butylphenol), 2,2'-methylenebis(4-ethyl-6-tert-butylphenol), 4, 4'-thiobis(3-methyl-6-tert-butylphenol), 4,4'-butylidenebis(3-methyl-6-tert-butylphenol), 3,9-bis[1,1-dimethyl-2-[β -(3-tert-butyl-4-hydroxy-5-methylphenyl)propionyloxy]ethyl]2,4,8,10-tetraoxaspiro[5.5]undecane, 1,3-tris(2-methyl- 4-hydroxy-5-tert-butylphenyl)butane, 1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl)benzene, tetrakis-[methylene -3-(3',5'-di-tert-butyl-4'-hydroxyphenyl)propionate]methane, bis[3,3'-bis-(4'-hydroxy-3'-tert-butylphenyl)butyl ric acid] glycol ester, 1,3,5-tris(3',5'-di-tert-butyl-4'-hydroxybenzyl)-S-triazine-2,4,6-(1H,3H,5H) Phenolic antioxidants such as trione and tocopherols; sulfur-based antioxidants such as dilauryl 3,3'-thiodipropionate, dimyristyl 3,3'-thiodipropionate, and stearyl 3,3'-thiodipropionate Agent; triphenyl phosphite, diphenylisodecyl phosphite, 4,4'-butylidene-bis(3-methyl-6-tert-butylphenylditridecyl) phosphite, cyclic neopentanetetrylbis(octadecyl phosphite) , tris(nonylphenyl) phosphite, tris(monononylphenyl) phosphite, tris(dinonylphenyl) phosphite, diisodecylpentaerythritol diphosphite, 9,10-dihydro-9-oxa-10-phosphaphenanthrene- 10-oxide, 10-(3,5-di-tert-butyl-4-hydroxybenzyl)-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 10-decyloxy-9,10 -dihydro-9-oxa-10-phosphaphenanthrene, tris(2,4-di-tert-butylphenyl) phosphite, cyclic neopentanetetrayl bis(2,4-di-tert-butylphenyl) phosphite , cyclic neopentanetetrayl bis(2,6-di-tert-butyl-4-methylphenyl) phosphite, 2,2-methylenebis(4,6-di-tert-butylphenyl)octyl phosphite, etc. Examples include antioxidants.

〔紫外線吸収剤〕
紫外線吸収剤としては、フェニルサリシレート、p-tert-ブチルフェニルサリシレート、p-オクチルフェニルサリシレート等のサリチル酸系紫外線吸収剤;2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、2-ヒドロキシ-4-ドデシルオキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホベンゾフェノン、ビス(2-メトキシ-4-ヒドロキシ-5-ベンゾイルフェニル)メタン等のベンゾフェノン系紫外線吸収剤;2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-tert-ブチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-tert-ブチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’-tert-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-tert-ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-tert-アミルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-4’-オクトキシフェニル)ベンゾトリアゾール、2-[2’-ヒドロキシ-3’-(3”,4”,5”,6”-テトラヒドロフタルイミドメチル)-5’-メチルフェニル]ベンゾトリアゾール、2,2-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]、2-(2’-ヒドロキシ-5’-メタクリロキシフェニル)-2H-ベンゾトリアゾール、2,2’-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]等のベンゾトリアゾール系紫外線吸収剤;2-エチルヘキシル-2-シアノ-3,3’-ジフェニルアクリレート、エチル-2-シアノ-3,3’-ジフェニルアクリレート等のシアノアクリレート系紫外線吸収剤;ニッケルビス(オクチルフェニル)サルファイド、[2,2’-チオビス(4-tert-オクチルフェノラート)]-n-ブチルアミンニッケル、ニッケルコンプレックス-3,5-ジ-tert-ブチル-4-ヒドロキシベンジル-リン酸モノエチレート、ニッケル-ジブチルジチオカルバメート等のニッケル系紫外線安定剤等が挙げられる。
[Ultraviolet absorber]
Examples of UV absorbers include salicylic acid UV absorbers such as phenyl salicylate, p-tert-butylphenyl salicylate, and p-octylphenyl salicylate; 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, and 2-hydroxy- 4-Octoxybenzophenone, 2-hydroxy-4-dodecyloxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2-hydroxy-4-methoxy Benzophenone UV absorbers such as -5-sulfobenzophenone and bis(2-methoxy-4-hydroxy-5-benzoylphenyl)methane; 2-(2'-hydroxy-5'-methylphenyl)benzotriazole, 2-( 2'-Hydroxy-5'-tert-butylphenyl)benzotriazole, 2-(2'-hydroxy-3',5'-di-tert-butylphenyl)benzotriazole, 2-(2'-hydroxy-3'-tert-butyl-5'-methylphenyl)-5-chlorobenzotriazole,2-(2'-hydroxy-3',5'-di-tert-butylphenyl)-5-chlorobenzotriazole, 2-(2 '-hydroxy-3',5'-di-tert-amylphenyl)benzotriazole, 2-(2'-hydroxy-4'-octoxyphenyl)benzotriazole, 2-[2'-hydroxy-3'-( 3",4",5",6"-tetrahydrophthalimidomethyl)-5'-methylphenyl]benzotriazole, 2,2-methylenebis[4-(1,1,3,3-tetramethylbutyl)-6- (2H-benzotriazol-2-yl)phenol], 2-(2'-hydroxy-5'-methacryloxyphenyl)-2H-benzotriazole, 2,2'-methylenebis[4-(1,1,3, Benzotriazole UV absorbers such as 3-tetramethylbutyl)-6-(2H-benzotriazol-2-yl)phenol; 2-ethylhexyl-2-cyano-3,3'-diphenylacrylate, ethyl-2- Cyanoacrylate UV absorbers such as cyano-3,3'-diphenylacrylate; nickel bis(octylphenyl) sulfide, [2,2'-thiobis(4-tert-octylphenolate)]-n-butylamine nickel, nickel Examples include nickel-based ultraviolet stabilizers such as complex-3,5-di-tert-butyl-4-hydroxybenzyl-phosphate monoethylate and nickel-dibutyldithiocarbamate.

〔老化防止剤〕
老化防止剤としては、ポリ(2,2,4-トリメチル-1,2-ジヒドロキノリン)、6-エトキシ-1,2-ジヒドロ-2,2,4-トリメチルキノリン、1-(N-フェニルアミノ)-ナフタレン、スチレン化ジフェニルアミン、ジアルキルジフェニルアミン、N,N’-ジフェニル-p-フェニレンジアミン、N-フェニル-N’-イソプロピル-p-フェニレンジアミン、N,N’-ジ-2-ナフチル-p-フェニレンジアミン、2,6-ジ-tert-ブチル-4-メチルフェノール、モノ(α-メチルベンジル)フェノール、ジ(α-メチルベンジル)フェノール、トリ(α-メチルベンジル)フェノール、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-tert-ブチルフェノール)、4,4’-ブチリデンビス(6-tert-ブチル-3-メチルフェノール)、4,4’-チオビス(6-tert-ブチル-3-メチルフェノール)、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、2,5-ジ-tert-ブチルハイドロキノン、2,5-ジ-tert-アミルハイドロキノン、2-メルカプトベンズイミダゾール、2-メルカプトベンズイミダゾールの亜鉛塩、2-メルカプトメチルベンズイミダゾール、ジブチルジチオカルバミン酸ニッケル、トリス(ノニルフェニル)ホスファイト、チオジプロピオン酸ジラウリル、チオジプロピオン酸ジステアリル等が挙げられる。
[Anti-aging agent]
As anti-aging agents, poly(2,2,4-trimethyl-1,2-dihydroquinoline), 6-ethoxy-1,2-dihydro-2,2,4-trimethylquinoline, 1-(N-phenylamino )-naphthalene, styrenated diphenylamine, dialkyldiphenylamine, N,N'-diphenyl-p-phenylenediamine, N-phenyl-N'-isopropyl-p-phenylenediamine, N,N'-di-2-naphthyl-p- Phenylendiamine, 2,6-di-tert-butyl-4-methylphenol, mono(α-methylbenzyl)phenol, di(α-methylbenzyl)phenol, tri(α-methylbenzyl)phenol, 2,2'- Methylenebis(4-methyl-6-tert-butylphenol), 2,2'-methylenebis(4-ethyl-6-tert-butylphenol), 4,4'-butylidenebis(6-tert-butyl-3-methylphenol), 4,4'-thiobis(6-tert-butyl-3-methylphenol), 1,1-bis(4-hydroxyphenyl)cyclohexane, 2,5-di-tert-butylhydroquinone, 2,5-di-tert -Amylhydroquinone, 2-mercaptobenzimidazole, zinc salt of 2-mercaptobenzimidazole, 2-mercaptomethylbenzimidazole, nickel dibutyldithiocarbamate, tris(nonylphenyl)phosphite, dilauryl thiodipropionate, dithiodipropionate Examples include stearyl.

〔難燃剤〕
難燃剤としては、テトラブロモビスフェノールA、2,2-ビス(4-ヒドロキシ-3,5-ジブロモフェニル)プロパン、ヘキサブロモベンゼン、トリス(2,3-ジブロモプロピル)イソシアヌレート、2,2-ビス(4-ヒドロキシエトキシ-3,5-ジブロモフェニル)プロパン、デカブロモジフェニルオキサイド、含ハロゲンポリフォスフェート等のハロゲン系難燃剤;リン酸アンモニウム、トリクレジルホスフェート、トリエチルホスフェート、トリス(β-クロロエチル)ホスフェート、トリスクロロエチルホスフェート、トリスジクロロプロピルホスフェート、クレジルジフェニルホスフェート、キシレニルジフェニルホスフェート、酸性リン酸エステル、含窒素リン化合物等のリン系難燃剤;赤燐、酸化スズ、三酸化アンチモン、水酸化ジルコニウム、メタホウ酸バリウム、水酸化アルミニウム、水酸化マグネシウム等の無機系難燃剤;ポリ(ジメトキシシロキサン)、ポリ(ジエトキシシロキサン)、ポリ(ジフェノキシシロキサン)、ポリ(メトキシフェノキシシロキサン)、メチルシリケート、エチルシリケート、フェニルシリケートのようなシロキサン系難燃剤等が挙げられる。
〔Flame retardants〕
Flame retardants include tetrabromobisphenol A, 2,2-bis(4-hydroxy-3,5-dibromophenyl)propane, hexabromobenzene, tris(2,3-dibromopropyl)isocyanurate, 2,2-bis (4-hydroxyethoxy-3,5-dibromophenyl)propane, decabromodiphenyl oxide, halogen-based flame retardants such as halogen-containing polyphosphate; ammonium phosphate, tricresyl phosphate, triethyl phosphate, tris(β-chloroethyl) Phosphorous flame retardants such as phosphate, trischloroethyl phosphate, trisdichloropropyl phosphate, cresyl diphenyl phosphate, xylenyl diphenyl phosphate, acidic phosphoric acid ester, nitrogen-containing phosphorus compounds; red phosphorus, tin oxide, antimony trioxide, water Inorganic flame retardants such as zirconium oxide, barium metaborate, aluminum hydroxide, magnesium hydroxide; poly(dimethoxysiloxane), poly(diethoxysiloxane), poly(diphenoxysiloxane), poly(methoxyphenoxysiloxane), methyl silicate , ethyl silicate, phenyl silicate, and other siloxane flame retardants.

〔防かび剤〕
防かび剤としては、ベンズイミダゾール、ベンゾチアゾール、トリハロアリル、トリアゾール、有機窒素硫黄化合物等が挙げられる。
〔シランカップリング剤〕
シランカップリング剤としては、ビニルトリエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、γ-メタクリロキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-クロロプロピルメトキシシラン、ビニルトリクロロシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-β(アミノエチル)-γ-アミノプロピルトリメトキシシラン等が挙げられる。
〔充填剤〕
充填剤としては、炭酸カルシウム、酸化チタン、マイカ、タルク等の無機粉末充填剤;ガラス繊維、有機補強用繊維等の繊維状充填剤等が挙げられる。
[Fungicide]
Examples of fungicides include benzimidazole, benzothiazole, trihaloallyl, triazole, organic nitrogen sulfur compounds, and the like.
〔Silane coupling agent〕
Examples of the silane coupling agent include vinyltriethoxysilane, vinyltris(β-methoxyethoxy)silane, γ-methacryloxypropyltrimethoxysilane, vinyltriacetoxysilane, γ-glycidoxypropyltrimethoxysilane, and γ-glycidoxysilane. Propyltriethoxysilane, β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, γ-chloropropylmethoxysilane, vinyltrichlorosilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-β (Aminoethyl)-γ-aminopropyltrimethoxysilane and the like.
〔filler〕
Examples of the filler include inorganic powder fillers such as calcium carbonate, titanium oxide, mica, and talc; fibrous fillers such as glass fiber and organic reinforcing fiber.

5-5.本粘着剤組成物の形態
本粘着剤組成物は、その形態に特段の制約はない。例えば、酢酸エチル等の有機溶剤に溶解した溶剤型粘着剤組成物の形態として用いてもよいし、水媒体中にアクリル系粘着性ポリマー及び粘着付与剤が分散したエマルション型粘着剤組成物の形態として用いてもよい。溶液型粘着剤組成物及びエマルション型粘着剤組成物の場合、用いられる有機溶剤又は水等の媒体は、粘着剤組成物の総量100質量部の内、通常20~95質量部である。
5-5. Form of the present pressure-sensitive adhesive composition There are no particular restrictions on the form of the present pressure-sensitive adhesive composition. For example, it may be used in the form of a solvent-type adhesive composition dissolved in an organic solvent such as ethyl acetate, or in the form of an emulsion-type adhesive composition in which an acrylic adhesive polymer and a tackifier are dispersed in an aqueous medium. It may also be used as In the case of solution-type adhesive compositions and emulsion-type adhesive compositions, the amount of the medium such as the organic solvent or water used is usually 20 to 95 parts by weight out of 100 parts by weight of the total amount of the adhesive composition.

エマルション型粘着剤として用いる場合には、安定剤が配合されてなるものとすることができる。この安定剤としては、ステアリン酸カドミウム、ステアリン酸亜鉛、ステアリン酸バリウム、ステアリン酸カルシウム、ジブチルスズジラウリン酸鉛、トリス(ノニルフェニル)ホスファイト、トリフェニルホスファイト、ジフェニルイソデシルホスファイト等の塩化ビニル用安定剤;ジ-n-オクチルスズビス(イソオクチルチオグリコール酸エステル)塩、ジ-n-オクチルスズマレイン酸塩ポリマー、ジ-n-オクチルスズジラウリン酸塩、ジ-n-オクチルスズマレイン酸エステル塩、ジ-n-ブチルスズビスマレイン酸エステル塩、ジ-n-ブチルスズマレイン酸塩ポリマー、ジ-n-ブチルスズビスオクチルチオグリコールエステル塩、ジ-n-ブチルスズβ-メルカプトプロピオン酸塩ポリマー、ジ-n-ブチルスズジラウレート、ジ-n-メチルスズビス(イソオクチルメルカプトアセテート)塩、ポリ(チオビス-n-ブチルスズサルファイド)、モノオクチルスズトリス(イソオクチルチオグリコール酸エステル)、ジブチルスズマレエート、ジ-n-ブチルスズマレートエステル・カルボキシレート、及びジ-n-ブチルスズマレートエステル・メルカプチド等の有機スズ系安定剤;三塩基性硫酸鉛、二塩基性亜リン酸鉛、塩基性亜硫酸鉛、二塩基性フタル酸鉛、ケイ酸鉛、二塩基性ステアリン酸鉛、ステアリン酸鉛等の鉛系安定剤;カドミウム系石けん、亜鉛系石けん、バリウム系石けん、鉛系石けん、複合型金属石けん、ステアリン酸カルシウム等の金属石けん系安定剤等が挙げられる。 When used as an emulsion type adhesive, a stabilizer may be added. Stabilizers for vinyl chloride include cadmium stearate, zinc stearate, barium stearate, calcium stearate, lead dibutyltin dilaurate, tris(nonylphenyl) phosphite, triphenyl phosphite, diphenylisodecyl phosphite, etc. Stabilizer; di-n-octyltin bis(isooctylthioglycolic acid ester) salt, di-n-octyltin maleate polymer, di-n-octyltin dilaurate, di-n-octyltin maleic acid Ester salt, di-n-butyltin bismaleate salt, di-n-butyltin maleate polymer, di-n-butyltin bisoctylthioglycol ester salt, di-n-butyltin β-mercaptopropionate polymer, di-n-butyltin bisoctylthioglycol ester salt, -n-butyltin dilaurate, di-n-methyltin bis(isooctylmercaptoacetate) salt, poly(thiobis-n-butyltin sulfide), monooctyltin tris(isooctylthioglycolic acid ester), dibutyltin maleate, di-n- Organotin stabilizers such as butyl tin maleate ester/carboxylate and di-n-butyl tin maleate ester/mercaptide; tribasic lead sulfate, dibasic lead phosphite, basic lead sulfite, dibasic phthalate Lead stabilizers such as acid lead, lead silicate, dibasic lead stearate, lead stearate; metals such as cadmium soap, zinc soap, barium soap, lead soap, composite metal soap, calcium stearate, etc. Examples include soap stabilizers.

その他にも、本粘着剤組成物は、上記ビニル重合体(A)及び上記アクリル系粘着性ポリマー(B)以外に、単官能及び/又は多官能の(メタ)アクリル酸系単量体、並びに光重合開始剤等を含む組成物とすることにより、紫外線等の活性エネルギー線により硬化するいわゆるシロップ型の光硬化型粘着剤組成物の形態として用いてもよい。 In addition to the vinyl polymer (A) and the acrylic adhesive polymer (B), the adhesive composition also contains monofunctional and/or polyfunctional (meth)acrylic acid monomers, and By forming the composition to include a photopolymerization initiator and the like, it may be used in the form of a so-called syrup-type photocurable adhesive composition that is cured by active energy rays such as ultraviolet rays.

光硬化型粘着剤組成物の場合、当該組成物中は有機溶剤等を含んでも良いが、一般的には溶剤類を含まない無溶剤型として用いられる。 In the case of a photocurable pressure-sensitive adhesive composition, the composition may contain an organic solvent or the like, but is generally used as a solvent-free type that does not contain any solvents.

単官能(メタ)アクリル酸系単量体としては、炭素数1~12のアルキル基を有する(メタ)アクリル酸アルキルエステル類;(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ジシクロペンチル、(メタ)アクリル酸イソボルニル等の環状構造を有する(メタ)アクリル酸エステル類;(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、(メタ)アクリル酸ヒドロキブチル等の(メタ)アクリル酸ヒドロキシアルキルエステル類;(メタ)アクリル酸等が挙げられる。これらの化合物は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of monofunctional (meth)acrylic acid monomers include (meth)acrylic acid alkyl esters having an alkyl group having 1 to 12 carbon atoms; cyclohexyl (meth)acrylate, dicyclopentyl (meth)acrylate, and ) (meth)acrylic acid esters having a cyclic structure such as isobornyl acrylate; hydroxyalkyl (meth)acrylates such as hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, and hydroxybutyl (meth)acrylate; Esters; (meth)acrylic acid and the like. These compounds may be used alone or in combination of two or more.

多官能(メタ)アクリル酸系単量体としては、ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート等のアルキレングリコールのジ(メタ)アクリレート類;トリエチレングリコールのジ(メタ)アクリレート等のポリアルキレングリコールのジ(メタ)アクリレート類;トリメチロールプロパントリ(メタ)アクリレート及びそのエチレンオキサイド及び/又はプロピレンオキサイド変性物、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等が挙げられる。この他にも、ポリウレタン(メタ)アクリレート及びポリイソプレン系(メタ)アクリレート等の(メタ)アクリロイル基を有する重合体(マクロモノマー)を使用することもできる。ポリイソプレン系(メタ)アクリレートの具体的な化合物としては、例えば、イソプレン重合物の無水マレイン酸付加物と2-ヒドロキシエチルメタクリレートとのエステル化物等が該当する。これらの化合物は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Polyfunctional (meth)acrylic acid monomers include alkylene glycol di(meth)acrylates such as butanediol di(meth)acrylate and hexanediol di(meth)acrylate; triethylene glycol di(meth)acrylate Di(meth)acrylates of polyalkylene glycols such as trimethylolpropane tri(meth)acrylate and its modified products with ethylene oxide and/or propylene oxide, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, etc. Can be mentioned. In addition, polymers (macromonomers) having (meth)acryloyl groups such as polyurethane (meth)acrylate and polyisoprene (meth)acrylate can also be used. Specific examples of polyisoprene-based (meth)acrylates include, for example, esterified products of maleic anhydride adducts of isoprene polymers and 2-hydroxyethyl methacrylate. These compounds may be used alone or in combination of two or more.

光重合開始剤としては、ベンゾインとそのアルキルエーテル類、アセトフェノン類、アントラキノン類、チオキサントン類、ケタール類、ベンゾフェノン類、キサントン類、アシルホスフィンオキシド類、α-ジケトン類等が挙げられる。また、活性エネルギー線による感度を向上させるため、光増感剤を併用することもできる。光増感剤としては、安息香酸系及びアミン系光増感剤等が挙げられる。これらは、2種以上を組み合わせて用いることもできる。光開始剤及び光増感剤の使用量は、単官能及び/又は多官能の(メタ)アクリル酸系単量体100質量部に対して0.01~10質量部が好ましい。 Examples of the photopolymerization initiator include benzoin and its alkyl ethers, acetophenones, anthraquinones, thioxanthones, ketals, benzophenones, xanthones, acylphosphine oxides, α-diketones, and the like. Moreover, in order to improve the sensitivity to active energy rays, a photosensitizer can also be used in combination. Examples of the photosensitizer include benzoic acid-based and amine-based photosensitizers. These can also be used in combination of two or more types. The amount of the photoinitiator and photosensitizer used is preferably 0.01 to 10 parts by weight per 100 parts by weight of the monofunctional and/or polyfunctional (meth)acrylic acid monomer.

さらに、本粘着剤組成物は、上記にて説明した光硬化型粘着剤組成物以外にも上記ビニル重合体(A)、単官能及び/又は多官能の(メタ)アクリル酸系単量体、並びに光重合開始剤を含む組成物による光硬化型接着剤組成物としても使用することができる。当該光硬化型接着剤組成物には、必要に応じて上記アクリル系粘着性ポリマー(B)を混合することができる。 Furthermore, in addition to the photocurable adhesive composition described above, the present adhesive composition also includes the vinyl polymer (A), monofunctional and/or polyfunctional (meth)acrylic acid monomer, It can also be used as a photocurable adhesive composition containing a photopolymerization initiator. The above-mentioned acrylic adhesive polymer (B) can be mixed into the photocurable adhesive composition, if necessary.

以下、本明細書の開示を具現化した具体例を示す。但し、本明細書の開示は、以下の具体例に限定されるものではない。なお、以下の記載において「部」は質量部を意味し、「%」は質量%を意味する。 Specific examples that embody the disclosure of this specification will be shown below. However, the disclosure of this specification is not limited to the following specific examples. In the following description, "part" means part by mass, and "%" means % by mass.

本明細書における各種分析は、以下に記載の方法により実施した。
<固形分>
測定サンプル約1gを秤量(a)し、次いで、通風乾燥機155℃、30分間乾燥後の残分を測定(b)し、以下の式より算出した。測定には秤量ビンを使用した。その他の操作については、JIS K 0067-1992(化学製品の減量及び残分試験方法)に準拠した。
固形分(%)=(b/a)×100
Various analyzes herein were carried out by the methods described below.
<Solid content>
Approximately 1 g of the measurement sample was weighed (a), and then the residue after drying in a ventilation dryer at 155° C. for 30 minutes was measured (b), and calculated from the following formula. A weighing bottle was used for the measurement. Other operations were conducted in accordance with JIS K 0067-1992 (methods for weight loss and residue testing of chemical products).
Solid content (%) = (b/a) x 100

<分子量測定>
分子量はGPCにて下記の条件で測定した。
GPC:東ソー(HLC-8120)
カラム:東ソー(TSKgel-Super MP-M×4本)
試料濃度:0.1%
流量:0.6ml/分
溶離液:テトラヒドロフラン
カラム温度:40℃
検出器:示差屈折計(RI)
標準物質:ポリスチレン
<Molecular weight measurement>
The molecular weight was measured by GPC under the following conditions.
GPC: Tosoh (HLC-8120)
Column: Tosoh (TSKgel-Super MP-M x 4)
Sample concentration: 0.1%
Flow rate: 0.6ml/min Eluent: Tetrahydrofuran Column temperature: 40°C
Detector: Differential refractometer (RI)
Standard material: polystyrene

<ガラス転移温度(Tg)及び融点>
ポリオレフィン系樹脂、ビニル重合体(A)、アクリル系粘着性ポリマー(B)、及び粘着剤組成物から形成された粘着剤層全体のTg及び融点は、JISK7121に準拠し、DSCにて以下の条件で測定した。
DSC:TA Instrument製(Q-100)
昇温温度:10℃/分
測定雰囲気:窒素
<軟化点>
ポリオレフィン系樹脂及びポリエステル系樹脂の軟化点は、JISK6863に準拠して、環球法にて測定した。薄膜層がロジンエステル系樹脂の場合は、JIS5902に準拠して、環球法にて測定した。
<Glass transition temperature (Tg) and melting point>
The Tg and melting point of the entire adhesive layer formed from the polyolefin resin, vinyl polymer (A), acrylic adhesive polymer (B), and adhesive composition were determined by DSC under the following conditions in accordance with JIS K7121. It was measured with
DSC: Manufactured by TA Instrument (Q-100)
Heating temperature: 10℃/min Measurement atmosphere: Nitrogen <softening point>
The softening points of polyolefin resins and polyester resins were measured by the ring and ball method in accordance with JIS K6863. When the thin film layer was made of rosin ester resin, it was measured by the ring and ball method in accordance with JIS5902.

<ポリマー組成>
ポリマー組成はモノマー仕込量とガスクロマトグラフィー(GC)測定によるモノマー消費量から算出した。
GC:Agilent Technolosies製(7820A GC System)
検出器:FID
カラム:100%ジメチルシロキサン(CP-Sil 5CB) 長さ30m、内径0.32mm
算出方法:内部標準法
<Polymer composition>
The polymer composition was calculated from the amount of monomer charged and the amount of monomer consumption measured by gas chromatography (GC).
GC: Manufactured by Agilent Technologies (7820A GC System)
Detector: FID
Column: 100% dimethylsiloxane (CP-Sil 5CB) length 30m, inner diameter 0.32mm
Calculation method: Internal standard method

1.ビニル重合体(A)の合成
〔合成例1:重合体A-1の合成〕
内容積1リットルの4つ口フラスコに、酢酸ブチル(200質量部)とジメチル-2,2’-アゾビス(2-メチルプロピオネート)(和光純薬工業(株)製、商品名「V-601」)(0.9質量部)とからなる混合液を仕込み、この混合液を窒素ガスのバブリングにより十分に脱気し、混合液の内温を90℃に上昇した。別途、メタクリル酸メチル(以下、「MMA」という)(165質量部)、メタクリル酸イソボルニル(以下、「IBXMA」という)(44質量部)、V-601(17質量部)、酢酸ブチル(90質量部)からなる混合液を滴下ロートからフラスコ内に5時間かけて滴下することにより重合を行った。滴下終了後、重合溶液をメタノール(4800質量部)、蒸留水(1200質量部)からなる混合溶液に滴下することにより、重合溶液中のビニル重合体を単離して、重合体A-1を得た。得られた重合体A-1のポリマー組成は、仕込量とGC測定によるモノマー消費量から計算した結果、MMA80質量%及びIBXMA20質量%であった。重合体A-1のMwは6,700、Mnは4,370、Mw/Mnは1.53、Tgは108℃であった。
1. Synthesis of vinyl polymer (A) [Synthesis example 1: Synthesis of polymer A-1]
In a four-neck flask with an internal volume of 1 liter, butyl acetate (200 parts by mass) and dimethyl-2,2'-azobis(2-methylpropionate) (manufactured by Wako Pure Chemical Industries, Ltd., product name "V-") were added. 601'') (0.9 parts by mass) was charged, the mixed liquid was sufficiently degassed by bubbling nitrogen gas, and the internal temperature of the mixed liquid was raised to 90°C. Separately, methyl methacrylate (hereinafter referred to as "MMA") (165 parts by mass), isobornyl methacrylate (hereinafter referred to as "IBXMA") (44 parts by mass), V-601 (17 parts by mass), butyl acetate (90 parts by mass) Polymerization was carried out by dropping a mixed solution consisting of the following parts) from a dropping funnel into a flask over a period of 5 hours. After completion of the dropping, the vinyl polymer in the polymerization solution was isolated by dropping the polymerization solution into a mixed solution consisting of methanol (4800 parts by mass) and distilled water (1200 parts by mass) to obtain polymer A-1. Ta. The polymer composition of the obtained polymer A-1 was calculated from the amount charged and the amount of monomer consumed by GC measurement, and was found to be 80% by mass of MMA and 20% by mass of IBXMA. Polymer A-1 had Mw of 6,700, Mn of 4,370, Mw/Mn of 1.53, and Tg of 108°C.

2.アクリル系粘着性ポリマー(B)の合成
〔合成例2:重合体B-1の合成〕
内容積3リットルの4つ口フラスコに、アクリル酸メトキシエチル(以下、「MEA」という)(413質量部)、アクリル酸2-ヒドロキシエチル(以下、「HEA」という)(27質量部)、アクリル酸n-ブチル(以下、「BA」という)(90質量部)、酢酸エチル(980質量部)を仕込み、この混合液を窒素ガスのバブリングにより十分に脱気し、混合液の内温を75℃に上昇し、2,2’-アゾビス(2,4-ジメチルバレロニトリル)(和光純薬工業(株)製、商品名「V-65」)(0.25質量部)を仕込み、5時間重合した。酢酸エチルを固形分濃度が30%となるように追加して、重合体B-1の酢酸エチル溶液を得た。得られた重合体B-1のポリマー組成は、MEA78質量%、HEA5質量%、BA17質量部%であった。重合体B-1のMwは572,000、Mnは160,000、Mw/Mnは3.58、Tgは-35℃であった。
2. Synthesis of acrylic adhesive polymer (B) [Synthesis example 2: Synthesis of polymer B-1]
In a 4-neck flask with an internal volume of 3 liters, methoxyethyl acrylate (hereinafter referred to as "MEA") (413 parts by mass), 2-hydroxyethyl acrylate (hereinafter referred to as "HEA") (27 parts by mass), and acrylic. n-Butyl acid (hereinafter referred to as "BA") (90 parts by mass) and ethyl acetate (980 parts by mass) were charged, and this mixed solution was sufficiently degassed by bubbling nitrogen gas to bring the internal temperature of the mixed solution to 75%. ℃, charged with 2,2'-azobis(2,4-dimethylvaleronitrile) (manufactured by Wako Pure Chemical Industries, Ltd., trade name "V-65") (0.25 parts by mass), and heated for 5 hours. Polymerized. Ethyl acetate was added so that the solid content concentration was 30% to obtain an ethyl acetate solution of Polymer B-1. The polymer composition of the obtained polymer B-1 was 78% by mass of MEA, 5% by mass of HEA, and 17 parts by mass of BA. Polymer B-1 had an Mw of 572,000, an Mn of 160,000, an Mw/Mn of 3.58, and a Tg of -35°C.

〔合成例3:重合体B-2の合成〕
内容積3リットルの4つ口フラスコに、アクリル酸(以下、「AA」という)(30質量部)、BA(210質量部)、アクリル酸メチル(以下、「MA」という)(360質量部)、酢酸エチル(1000質量部)を仕込み、この混合液を窒素ガスのバブリングにより十分に脱気し、混合液の内温を75℃に上昇し、V-65(0.30質量部)を仕込み、5時間重合した。酢酸エチルを固形分濃度が30%となるように追加して、重合体B-2の酢酸エチル溶液を得た。得られた重合体B-2のポリマー組成は、AA5質量%、BA35質量%及びMA60質量部%であった。重合体B-2のMwは529,000、Mnは142,000、Mw/Mnは3.73、Tgは6℃であった。
[Synthesis Example 3: Synthesis of Polymer B-2]
In a four-necked flask with an internal volume of 3 liters, acrylic acid (hereinafter referred to as "AA") (30 parts by mass), BA (210 parts by mass), and methyl acrylate (hereinafter referred to as "MA") (360 parts by mass). , ethyl acetate (1000 parts by mass) was charged, this mixture was sufficiently degassed by bubbling nitrogen gas, the internal temperature of the mixture was raised to 75°C, and V-65 (0.30 parts by mass) was charged. , polymerized for 5 hours. Ethyl acetate was added so that the solid content concentration was 30% to obtain an ethyl acetate solution of Polymer B-2. The polymer composition of the obtained polymer B-2 was 5% by mass of AA, 35% by mass of BA, and 60 parts by mass of MA. Polymer B-2 had an Mw of 529,000, an Mn of 142,000, an Mw/Mn of 3.73, and a Tg of 6°C.

〔合成例4:重合体B-3の合成〕
内容積1Lの4つ口フラスコに、RAFT剤としてジベンジルトリチオカーボネート(3.18質量部)、単量体としてスチレン(75質量部、以下「St」という)、及び、N-フェニルマレイミド(125質量部、以下「PhMI」という)、溶媒としてアセトニトリル(466質量部)を仕込み、窒素バブリングにより十分脱気し、混合液の内温を70℃に上昇した。次いで、重合開始剤として2,2’-アゾビス(2-メチルブチロニトリル)(0.51質量部、以下「ABN-E」という)を仕込み、重合を開始した。3時間後、室温まで冷却して反応を停止した。上記重合溶液を、メタノールから再沈殿精製、真空乾燥することで重合体ブロック(a)を得た。得られた重合体ブロック(a)は、Mn10,900であった。Tgは206℃であった。
内容積1Lの4つ口フラスコに、得られた重合体ブロック(a)(21.1質量部)、単量体としてMEA(234質量部)、BA(51質量部)、及びHEA(15質量部)、溶媒としてアセトニトリル(107質量部)を仕込み、窒素バブリングで十分脱気し、混合液の内温を70℃に上昇した。次いで、重合開始剤としてABN-E(0.08質量部)を仕込み、重合を開始した。6時間後、室温まで冷却し、アセトニトリルを追加することで固形分濃度が30%になるように調整し、粘着剤溶液を得た。得られた(a)-(b)-(a)ブロック共重合体(これを「重合体B-3」とする)は、PhMI3質量%、St2質量%、MEA74質量%、BA16質量%、HEA5質量%からなり、Mwは358,000、Mnは16,0000、Mw/Mnは2.24、Tgは-35℃であった。重合体B-3の組成及び分析結果を表1に示す。
[Synthesis Example 4: Synthesis of Polymer B-3]
In a four-necked flask with an internal volume of 1 L, dibenzyl trithiocarbonate (3.18 parts by mass) as a RAFT agent, styrene (75 parts by mass, hereinafter referred to as "St") as a monomer, and N-phenylmaleimide ( (125 parts by mass, hereinafter referred to as "PhMI") and acetonitrile (466 parts by mass) as a solvent were charged, and the mixture was sufficiently degassed by nitrogen bubbling, and the internal temperature of the mixture was raised to 70°C. Next, 2,2'-azobis(2-methylbutyronitrile) (0.51 parts by mass, hereinafter referred to as "ABN-E") was charged as a polymerization initiator to initiate polymerization. After 3 hours, the reaction was stopped by cooling to room temperature. The polymer block (a) was obtained by purifying the above polymerization solution by reprecipitation from methanol and vacuum drying. The obtained polymer block (a) had an Mn of 10,900. Tg was 206°C.
In a four-necked flask with an internal volume of 1 L, the obtained polymer block (a) (21.1 parts by mass), monomers MEA (234 parts by mass), BA (51 parts by mass), and HEA (15 parts by mass) were placed. parts) and acetonitrile (107 parts by mass) as a solvent were charged, and the mixture was sufficiently degassed by nitrogen bubbling, and the internal temperature of the mixture was raised to 70°C. Next, ABN-E (0.08 parts by mass) was added as a polymerization initiator to start polymerization. After 6 hours, the mixture was cooled to room temperature and the solid content concentration was adjusted to 30% by adding acetonitrile to obtain an adhesive solution. The obtained (a)-(b)-(a) block copolymer (this will be referred to as "Polymer B-3") contains 3% by mass of PhMI, 2% by mass of St, 74% by mass of MEA, 16% by mass of BA, and 5% by mass of HEA. Mw was 358,000, Mn was 16,0000, Mw/Mn was 2.24, and Tg was -35°C. Table 1 shows the composition and analysis results of Polymer B-3.

Figure 0007347508000005
Figure 0007347508000005

3.粘着シートの製造及び評価
実施例1
(1)薄膜層1の塗工
酸変性ポリオレフィン系樹脂C-1(東洋紡(株)製トーヨータックPMA-T)をトルエンに溶解し、固形分濃度5質量%の溶液を調製した。この溶液を、厚さ50μmのポリエチレンテレフタレート(以下、「PET」という)製セパレーター上に、乾燥後の厚みが数μmとなるようにドクターブレードを用いて塗布した。塗膜の乾燥は80℃、1分間で行った。
3. Manufacture and evaluation of adhesive sheets
Example 1
(1) Coating of thin film layer 1 Acid-modified polyolefin resin C-1 (Toyotac PMA-T manufactured by Toyobo Co., Ltd.) was dissolved in toluene to prepare a solution with a solid content concentration of 5% by mass. This solution was applied onto a polyethylene terephthalate (hereinafter referred to as "PET") separator having a thickness of 50 μm using a doctor blade so that the thickness after drying would be several μm. The coating film was dried at 80° C. for 1 minute.

(2)粘着剤組成物の調製及び塗工
上記合成例2で得られた重合体B-1を含む溶液(固形分濃度30%)に、架橋剤としてタケネートD-110N(三井化学(株)製イソシアネート系架橋剤、固形分濃度75質量%)(0.16質量部)を混合し、粘着剤組成物1を得た。
(2) Preparation and coating of adhesive composition Takenate D-110N (Mitsui Chemicals, Inc.) was added as a crosslinking agent to a solution (solid content concentration 30%) containing the polymer B-1 obtained in Synthesis Example 2 above. A pressure-sensitive adhesive composition 1 was obtained by mixing an isocyanate-based crosslinking agent (solid content concentration: 75% by mass) (0.16 parts by mass).

(3)粘着シートの製造
前記(1)で作製した薄膜付きPET製セパレーター上に、粘着剤組成物1を、乾燥後の粘着剤層の厚みが50μmとなるようにドクターブレードを用いて塗布した。塗膜の乾燥は80℃、4分間で行った。その後、前記セパレーターとは剥離力の異なる厚さ38μmのPET製セパレーターを貼りあわせて、40℃で5日間静置して熟成(エージング)することにより、両面セパレーター付き粘着シートを得た。なお、実施例10、11及び比較例5、6では、厚さ50μmのPET製セパレーター上に粘着剤組成物を直接塗布した。
(3) Manufacture of adhesive sheet Adhesive composition 1 was applied onto the PET separator with thin film prepared in (1) above using a doctor blade so that the thickness of the adhesive layer after drying was 50 μm. . The coating film was dried at 80° C. for 4 minutes. Thereafter, a PET separator with a thickness of 38 μm having a different peeling force from the separator was bonded to the separator, and the mixture was aged at 40° C. for 5 days to obtain a pressure-sensitive adhesive sheet with double-sided separators. In Examples 10 and 11 and Comparative Examples 5 and 6, the adhesive composition was directly applied onto a 50 μm thick PET separator.

(4)粘着シートの各種測定及び評価
前記(3)で得られた粘着シートについて、次に示す方法により各種測定及び評価を行った。なお、「粘着剤層の表層部分のTg」の測定については、実施例9~11、比較例4で行った。得られた結果を表2、3に示す。
(4) Various measurements and evaluations of the pressure-sensitive adhesive sheet The pressure-sensitive adhesive sheet obtained in (3) above was subjected to various measurements and evaluations by the following methods. Note that the measurement of "Tg of the surface layer portion of the adhesive layer" was carried out in Examples 9 to 11 and Comparative Example 4. The results obtained are shown in Tables 2 and 3.

<アクリル系粘着性ポリマー(B)に対するゲル分率>
粘着シートから粘着剤を0.2g採取し、粘着剤の初期重量を秤量した。その粘着剤を50gの酢酸エチルに浸漬し、室温で16時間静置した。その後、200メッシュ金網でろ過し、メッシュに残った残分を80℃で3時間乾燥し、秤量した。初期の質量と残分の質量から、下記式によりアクリル系粘着性ポリマー(B)に対するゲル分率を算出した。
ゲル分率(%)={(残分の質量)/[(初期の質量)×(アクリル系粘着性ポリマー(B)の固形分)/(粘着剤組成物全体の固形分)]}×100
<Gel fraction relative to acrylic adhesive polymer (B)>
0.2 g of the adhesive was sampled from the adhesive sheet, and the initial weight of the adhesive was weighed. The adhesive was immersed in 50 g of ethyl acetate and allowed to stand at room temperature for 16 hours. Thereafter, it was filtered through a 200-mesh wire mesh, and the residue remaining on the mesh was dried at 80° C. for 3 hours and weighed. The gel fraction for the acrylic adhesive polymer (B) was calculated from the initial mass and the mass of the residue using the following formula.
Gel fraction (%) = {(mass of residue) / [(initial mass) x (solid content of acrylic adhesive polymer (B)) / (solid content of entire adhesive composition)]} x 100

<透明性(ヘイズ値)>
粘着シートから剥離フィルムを剥がし、ガラスプレート(1mm厚)に転写し、もう一方の剥離フィルムを剥がした。23℃、50%RH条件下で1日静置した後、日本電色(株)製ヘイズメーター「ヘイズメーターNDH2000」(型式名)を使用してヘイズ値(%)を測定することにより、その配合組成における透明性を評価した。
<Transparency (haze value)>
The release film was peeled off from the adhesive sheet, transferred to a glass plate (1 mm thick), and the other release film was peeled off. After standing for one day at 23°C and 50% RH, the haze value (%) was measured using a haze meter "Haze Meter NDH2000" (model name) manufactured by Nippon Denshoku Co., Ltd. The transparency of the formulation was evaluated.

<粘着剤層の表層部分のTg>
粘着シートのX線光電子分光装置(XPS)測定によるO1sとC1sのピーク面積比から、粘着剤層の表層部分を形成する組成物のTgとして捉えることができる。粘着剤層の表層部分におけるビニル重合体(A)及びアクリル系粘着性ポリマー(B)の総量に対する、ビニル重合体(A)及びアクリル系粘着性ポリマー(B)の各質量分率(w及びw)を算出し、FOXの式に基づき表層部分のTgを算出した。
なお、XPS測定は以下の条件で測定した。
装置: アルバック・ファイ社製 PHI5000 VersaProbe
X線: Al-Kα (1486.6eV)
試料へのX線入射角: 0° (試料測定面の法線に対する角度)
光電子検出角: 45° (試料測定面の法線に対する角度)
<Tg of surface layer portion of adhesive layer>
The Tg of the composition forming the surface layer portion of the adhesive layer can be determined from the peak area ratio of O1s and C1s measured by X-ray photoelectron spectroscopy (XPS) of the adhesive sheet. Each mass fraction (w A and w B ) was calculated, and Tg of the surface layer portion was calculated based on the FOX formula.
Note that the XPS measurement was performed under the following conditions.
Equipment: PHI5000 VersaProbe manufactured by ULVAC-PHI
X-ray: Al-Kα (1486.6eV)
X-ray incident angle to the sample: 0° (angle with respect to the normal to the sample measurement surface)
Photoelectron detection angle: 45° (angle with respect to the normal to the sample measurement surface)

上記質量分率の具体的な算出方法について以下に記載する。
XPS測定によるO1sとC1sのピーク面積比から算出される酸素原子数と炭素原子数の比は、下記式(1)の通り、ビニル重合体(A)及びアクリル系粘着性ポリマー(B)からなる粘着剤組成物から形成された粘着剤層表層部の単位重量当りに存在する酸素原子数と炭素原子数の比で表される。

Figure 0007347508000006
ここで、
(O/C)A+B:粘着剤組成物を乾燥して得られた粘着剤層のXPS測定から求められるO1sとC1sのピーク面積比から算出される酸素原子数と炭素原子数の比
:ビニル重合体(A)及びアクリル系粘着性ポリマー(B)の総量に対するビニル重合体(A)の質量分率
w-A:ビニル重合体(A)の全構成単量体単位の加重平均分子量
w-B:アクリル系粘着剤組成物(B)の全構成単量体単位の加重平均分子量
O-A:ビニル重合体(A)を構成する全構成単量体の平均単量体構造式中に含まれる酸素原子数
O-B:アクリル系粘着性ポリマー(B)を構成する全構成単量体の平均単量体構造式中に含まれる酸素原子数
C-A:ビニル重合体(A)を構成する全構成単量体の平均単量体構造式中に含まれる炭素原子数
C-B:アクリル系粘着性ポリマー(B)を構成する全構成単量体の平均単量体構造式中に含まれる炭素原子数A specific method for calculating the mass fraction will be described below.
The ratio of the number of oxygen atoms and the number of carbon atoms calculated from the peak area ratio of O1s and C1s by XPS measurement is as shown in the following formula (1), consisting of a vinyl polymer (A) and an acrylic adhesive polymer (B). It is expressed as the ratio of the number of oxygen atoms to the number of carbon atoms present per unit weight of the surface layer of the adhesive layer formed from the adhesive composition.
Figure 0007347508000006
here,
(O/C) A+B : Ratio of the number of oxygen atoms to the number of carbon atoms calculated from the peak area ratio of O1s and C1s determined from XPS measurement of the adhesive layer obtained by drying the adhesive composition W A : Mass fraction of vinyl polymer (A) with respect to the total amount of vinyl polymer (A) and acrylic adhesive polymer (B) M w-A : Weighted average molecular weight of all constituent monomer units of vinyl polymer (A) Mw -B : Weighted average molecular weight of all constituent monomer units of the acrylic pressure-sensitive adhesive composition (B) NOA : Average monomer structure of all constituent monomers constituting the vinyl polymer (A) Number of oxygen atoms contained in the formula N O-B : Average number of oxygen atoms contained in the monomer structural formula of all constituent monomers constituting the acrylic adhesive polymer (B) N C-A : Vinyl heavy Average number of carbon atoms contained in the monomer structural formula of all constituent monomers constituting the aggregate (A) N CB : Average number of carbon atoms contained in the monomer structural formula of all constituent monomers constituting the acrylic adhesive polymer (B) Number of carbon atoms contained in the mer structure

また、ビニル重合体(A)及びアクリル系粘着性ポリマー(B)の各単体を乾燥して得られたフィルムのXPS測定により求められるO1sとC1sのピーク面積比から算出される炭素原子数と酸素原子数の比は、各々下記式(2)及び(3)で表される。

Figure 0007347508000007
ここで、
(O/C):ビニル重合体(A)を乾燥して得られたフィルムのXPS測定から求められるO1sとC1sのピーク面積比から算出される酸素原子数と炭素原子数の比
Figure 0007347508000008
ここで、
(O/C):アクリル系粘着性ポリマー(B)を乾燥して得られたフィルムのXPS測定から求められるO1sとC1sのピーク面積比から算出される酸素原子数と炭素原子数の比In addition, the number of carbon atoms and oxygen calculated from the peak area ratio of O1s and C1s determined by XPS measurement of the film obtained by drying each of the vinyl polymer (A) and the acrylic adhesive polymer (B) alone. The ratio of the number of atoms is represented by the following formulas (2) and (3), respectively.
Figure 0007347508000007
here,
(O/C) A : Ratio of the number of oxygen atoms to the number of carbon atoms calculated from the peak area ratio of O1s and C1s determined from XPS measurement of the film obtained by drying the vinyl polymer (A)
Figure 0007347508000008
here,
(O/C) B : Ratio of the number of oxygen atoms to the number of carbon atoms calculated from the peak area ratio of O1s and C1s determined from XPS measurement of the film obtained by drying the acrylic adhesive polymer (B)

上記の式(1)~(3)より下記式(4)が導かれ、これよりビニル重合体(A)及びアクリル系粘着性ポリマー(B)の総量に対するビニル重合体(A)の質量分率(W)が算出される。

Figure 0007347508000009
さらに、上記で求めたWの値と下記式(5)から、アクリル系粘着性ポリマー(B)の質量分率(W)が算出される。
Figure 0007347508000010
ここで、
:ビニル重合体(A)及びアクリル系粘着性ポリマー(B)の総量に対するアクリル系粘着性ポリマー(B)の質量分率The following formula (4) is derived from the above formulas (1) to (3), and from this, the mass fraction of the vinyl polymer (A) with respect to the total amount of the vinyl polymer (A) and the acrylic adhesive polymer (B) (W A ) is calculated.
Figure 0007347508000009
Furthermore, the mass fraction (W B ) of the acrylic adhesive polymer ( B ) is calculated from the value of W A determined above and the following formula (5).
Figure 0007347508000010
here,
W B : Mass fraction of acrylic adhesive polymer (B) with respect to the total amount of vinyl polymer (A) and acrylic adhesive polymer (B)

実施例9について、上記式(4)における各要素を以下に示す。
(O/C)A+B:0.316(実測値)
(O/C):0.290(実測値)
(O/C):0.465(実測値)
C-A:MMA1分子中の炭素原子数(5)、IBXMA1分子中の炭素原子数(14)及び組成比より、5×89.9(mol%)+14×10.1(mol%)=5.91
C-B:MEA1分子中の炭素原子数(6)、HEA1分子中の炭素原子数(5)、BA1分子中の炭素原子数(7)及び組成比より、6×84.4(mol%)+5×5.6(mol%)+7×10.1(mol%)+4×20.9(mol%)=6.05
w-A:MMAの分子量(100)、IBXMAの分子量(222)及び組成比より、100×89.9(mol%)+222×10.1(mol%)=112.3
w-B:MEAの分子量(130)、HEAの分子量(116)、BAの分子量(128)及び組成比より、130×84.4(mol%)+116×5.6(mol%)+128×10.1(mol%)=119.6
これらの値を式(4)に代入することによりW=0.836が得られ、(5)式よりW=0.164が得られた。
Regarding Example 9, each element in the above formula (4) is shown below.
(O/C) A+B : 0.316 (actual value)
(O/C) A : 0.290 (actual value)
(O/C) B : 0.465 (actual value)
N CA : From the number of carbon atoms in one molecule of MMA (5), the number of carbon atoms in one molecule of IBXMA (14), and the composition ratio, 5 × 89.9 (mol%) + 14 × 10.1 (mol%) = 5.91
N C-B : 6×84.4 (mol%) from the number of carbon atoms in one molecule of MEA (6), the number of carbon atoms in one molecule of HEA (5), the number of carbon atoms in one molecule of BA (7), and the composition ratio. )+5×5.6(mol%)+7×10.1(mol%)+4×20.9(mol%)=6.05
M w-A : From the molecular weight of MMA (100), the molecular weight of IBXMA (222), and the composition ratio, 100 x 89.9 (mol%) + 222 x 10.1 (mol%) = 112.3
M w-B : From the molecular weight of MEA (130), the molecular weight of HEA (116), the molecular weight of BA (128) and the composition ratio, 130 x 84.4 (mol%) + 116 x 5.6 (mol%) + 128 x 10.1 (mol%) = 119.6
By substituting these values into equation (4), W A =0.836 was obtained, and from equation (5), W B =0.164 was obtained.

次いで、測定に得られた表面組成から下記式(6)で表されるFOXの式に従って、表層部分のTgを計算し、73.8℃という値を得た。
1/〔表層部分のTg〕(K)=WA/Tg+W/Tg (6)
ここで、
Tg:ビニル重合体(A)のTg(108℃)
Tg:アクリル系粘着性ポリマー(B)のTg(-35℃)
Next, the Tg of the surface layer portion was calculated from the surface composition obtained in the measurement according to the FOX equation expressed by the following equation (6), and a value of 73.8° C. was obtained.
1/[Tg of surface layer portion] (K)=WA/Tg A +W B /Tg B (6)
here,
Tg A : Tg of vinyl polymer (A) (108°C)
Tg B : Tg of acrylic adhesive polymer (B) (-35°C)

<加飾フィルムの真空圧空成形試験>
粘着シートを貼り合わせた塩化ビニル製加飾フィルム(日本ウェーブロック(株)製、200μm厚)を、真空圧空成形機(ナビタス(株)製、NATS-0612B型)を用いて、アルミニウム製カーシェイプ模型(TP技研(株)製、200mm×100mm×40mm)に成形した。成形条件は、フィルム加熱温度80℃又は90℃で予備賦形させておき、次いで、130℃、15秒のスチーム圧空を行うことで加飾フィルムをカーシェイプ模型に接着させる二段成形とした。その後、真空圧空成形された加飾フィルムの外観を目視で確認し、以下の基準に沿って評価した。
○:ショックラインなし
△:ショックライン1本又は2本
×:ショックライン3本以上あり
<Vacuum-pressure forming test of decorative film>
A vinyl chloride decorative film (manufactured by Nippon Wavelock Co., Ltd., 200 μm thick) laminated with an adhesive sheet is shaped into an aluminum car shape using a vacuum-pressure forming machine (manufactured by Navitas Co., Ltd., NATS-0612B model). It was molded into a model (manufactured by TP Giken Co., Ltd., 200 mm x 100 mm x 40 mm). The molding conditions were two-stage molding, in which the film was preformed at a heating temperature of 80° C. or 90° C., and then steam pressure was applied at 130° C. for 15 seconds to adhere the decorative film to the car shape model. Thereafter, the appearance of the vacuum-pressure-formed decorative film was visually confirmed and evaluated according to the following criteria.
○: No shock line △: 1 or 2 shock lines ×: 3 or more shock lines

実施例2~13及び比較例1~6
表2及び表3に示したように、粘着剤組成物の組成、薄膜層の種類及び膜厚を変更した以外は、実施例1と同様の操作を行い、真空圧空成形を行った(但し、比較例5及び6では薄膜層を形成していない)。結果を表2及び表3に示す。
Examples 2 to 13 and Comparative Examples 1 to 6
As shown in Tables 2 and 3, vacuum-pressure forming was performed in the same manner as in Example 1, except that the composition of the adhesive composition and the type and thickness of the thin film layer were changed. In Comparative Examples 5 and 6, no thin film layer was formed). The results are shown in Tables 2 and 3.

尚、表2及び表3における粘着剤組成物の各成分の数字は、固形分の質量部を意味する。又、表2及び表3における略号は、下記を意味する。
◆架橋剤
・D-110N:三井化学製タケネートD-110N、メタキシリレンジイソシアネートのトリメチロールプロパンアダクト体、固形分濃度75.0%、NCO含量11.5%
・CO-L:東ソー(株)製コロネートL、トリレンジイソシアネートのトリメチロールプロパンアダクト体、固形分濃度75.0%、NCO含量13.2%
◆ポリオレフィン系樹脂
・C-1:酸変性ポリオレフィン系樹脂、東洋紡(株)製トーヨータックPMA-T、無水マレイン酸変性プロピレン/ブテン共重合体、変性度1.5質量%、重量平均分子量55,000、融点95℃
・C-4:酸変性ポリオレフィン系樹脂、東亞合成(株)製アロンメルトPPET-1303S、軟化点100℃
・C-6:酸変性ポリオレフィン系樹脂、東洋紡(株)製トーヨータックPMA-L、無水マレイン酸変性プロピレン/ブテン共重合体、変性度1.5質量%、重量平均分子量75,000、融点70℃
・C-7:酸変性ポリオレフィン系樹脂、日本製紙(株)製アウローレン200S、無水マレイン酸変性エチレン酢酸ビニル、重量平均分子量65,000、融点60~70℃
・C-8:塩素化ポリオレフィン系樹脂:日本製紙(株)製スーパークロン814HS、塩素化プロピレン、塩素化変性度41質量%、重量平均分子量20,000、融点65℃
◆ロジンエステル系樹脂
・C-2:荒川化学工業(株)製パインクリスタルKE-311、軟化点90~100℃
◆ポリエステル系樹脂
・C-3:東亞合成(株)製アロンメルトPES-320SK、軟化点110℃
・C-5:互応化学工業(株)製プラスコートZ-730、重量平均分子量3,000、軟化点80~85℃
Note that the numbers for each component of the adhesive composition in Tables 2 and 3 mean parts by mass of solid content. Further, the abbreviations in Tables 2 and 3 have the following meanings.
◆Crosslinking agent
・D-110N: Mitsui Chemicals Takenate D-110N, trimethylolpropane adduct of metaxylylene diisocyanate, solid concentration 75.0%, NCO content 11.5%
・CO-L: Coronate L manufactured by Tosoh Corporation, trimethylolpropane adduct of tolylene diisocyanate, solid concentration 75.0%, NCO content 13.2%
◆Polyolefin resin
・C-1: Acid-modified polyolefin resin, Toyobo Co., Ltd. Toyotac PMA-T, maleic anhydride-modified propylene/butene copolymer, degree of modification 1.5% by mass, weight average molecular weight 55,000, melting point 95 ℃
・C-4: Acid-modified polyolefin resin, Aronmelt PPET-1303S manufactured by Toagosei Co., Ltd., softening point 100°C
・C-6: Acid-modified polyolefin resin, Toyobo Co., Ltd. Toyotac PMA-L, maleic anhydride-modified propylene/butene copolymer, degree of modification 1.5% by mass, weight average molecular weight 75,000, melting point 70 ℃
・C-7: Acid-modified polyolefin resin, Auroren 200S manufactured by Nippon Paper Industries, maleic anhydride-modified ethylene vinyl acetate, weight average molecular weight 65,000, melting point 60-70°C
・C-8: Chlorinated polyolefin resin: Nippon Paper Industries Co., Ltd. Super Chron 814HS, chlorinated propylene, degree of chlorination modification 41% by mass, weight average molecular weight 20,000, melting point 65°C
◆Rosin ester resin
・C-2: Pine Crystal KE-311 manufactured by Arakawa Chemical Industry Co., Ltd., softening point 90-100°C
◆Polyester resin
・C-3: Aronmelt PES-320SK manufactured by Toagosei Co., Ltd., softening point 110°C
・C-5: Pluscoat Z-730 manufactured by Gooo Kagaku Kogyo Co., Ltd., weight average molecular weight 3,000, softening point 80-85°C

Figure 0007347508000011
Figure 0007347508000011

Figure 0007347508000012
Figure 0007347508000012

実施例1~13の結果から明らかなように、本開示の粘着シートを加飾フィルムの真空圧空成形に適用した場合、ショックラインの抑制効果に優れるものであった(表2)。これらの中でも、薄膜層の融点、軟化点又はTgが85℃超である実施例1~5、8、9、12、13、及び、薄膜層のX線光電子分光分析により得られる組成から計算されるTgが85℃超である実施例11はショックラインの抑制効果が大きかった。
一方、本開示で規定する薄膜層を有しない粘着シートを用いた比較例1~6では、ショックラインが発生し、真空圧空成形には適さないものであった(表3)。
As is clear from the results of Examples 1 to 13, when the pressure-sensitive adhesive sheet of the present disclosure was applied to vacuum-pressure forming of a decorative film, it was excellent in suppressing shock lines (Table 2). Among these, Examples 1 to 5, 8, 9, 12, and 13 in which the melting point, softening point, or Tg of the thin film layer is over 85°C, and those calculated from the composition obtained by X-ray photoelectron spectroscopy of the thin film layer. Example 11, in which the Tg was higher than 85°C, had a great shock line suppressing effect.
On the other hand, in Comparative Examples 1 to 6 using pressure-sensitive adhesive sheets that do not have the thin film layer specified in the present disclosure, shock lines occurred and were not suitable for vacuum-pressure forming (Table 3).

本開示の粘着シートは、加飾フィルムの真空圧空成形において、曲面や凹凸部等の複雑な形状に追従し、ショックラインの発生を抑制することができる。このため、本開示の粘着シートは、樹脂製品、金属製品、セラミックス製品、ガラス製品等の各種成形体を加飾するための材料として好適である。具体的には、家電製品;トイレ、浴室、扉、壁等の住宅設備;バンパー、ダッシュボード、ドア、ルーフ、ボンネット等の自動車内外装用部材;電子部品、介護・医療用品、船舶の内外装部材、航空機の内外装部材の製造等に好適に使用できる。 The pressure-sensitive adhesive sheet of the present disclosure can follow complicated shapes such as curved surfaces and uneven portions and suppress the occurrence of shock lines in vacuum-pressure forming of decorative films. Therefore, the adhesive sheet of the present disclosure is suitable as a material for decorating various molded products such as resin products, metal products, ceramic products, glass products, and the like. Specifically, home appliances; housing equipment such as toilets, bathrooms, doors, and walls; automobile interior and exterior parts such as bumpers, dashboards, doors, roofs, and bonnets; electronic components, nursing care and medical supplies, and interior and exterior parts of ships. It can be suitably used for manufacturing interior and exterior parts of aircraft.

Claims (9)

粘着剤組成物から形成される粘着剤層と、薄膜層とを有し、真空圧空成形時に前記薄膜層側が被着体に対して圧着される真空圧空成形用粘着シートであって、
記薄膜層は前記粘着剤層の表層部分を構成し、前記粘着剤層のX線光電子分光分析により得られる前記粘着剤層の表層部分の組成から計算されるTgが70℃以上である、真空圧空成形用粘着シート。
A pressure-sensitive adhesive sheet for vacuum-pressure forming, which has an adhesive layer formed from a pressure-sensitive adhesive composition and a thin film layer, and the thin film layer side is pressure-bonded to an adherend during vacuum-pressure forming,
The thin film layer constitutes a surface layer portion of the adhesive layer, and has a Tg of 70° C. or higher calculated from the composition of the surface layer portion of the adhesive layer obtained by X-ray photoelectron spectroscopy analysis of the adhesive layer. Adhesive sheet for vacuum pressure forming.
粘着剤組成物から形成される粘着剤層と、薄膜層とを有し、真空圧空成形時に前記薄膜層側が被着体に対して圧着される真空圧空成形用粘着シートであって、
前記薄膜層は前記粘着剤層の少なくとも片面に配置され、前記粘着剤層よりも厚みが薄く、当該薄膜層の融点、軟化点若しくはガラス転移温度(Tg)が70℃以上であり、
前記薄膜層がポリオレフィン系樹脂及びロジンエステル系樹脂よりなる群から選択される少なくとも1種を含む、真空圧空成形用粘着シート。
A pressure-sensitive adhesive sheet for vacuum-pressure forming, which has an adhesive layer formed from a pressure-sensitive adhesive composition and a thin film layer, and the thin film layer side is pressure-bonded to an adherend during vacuum-pressure forming,
The thin film layer is disposed on at least one side of the adhesive layer, is thinner than the adhesive layer, and has a melting point, softening point, or glass transition temperature (Tg) of 70° C. or higher,
An adhesive sheet for vacuum-pressure forming, wherein the thin film layer contains at least one selected from the group consisting of polyolefin resins and rosin ester resins .
前記粘着剤組成物が、アクリル系粘着剤組成物であり、ビニル重合体(A)及びアクリル系粘着性ポリマー(B)を含み、
前記ビニル重合体(A)は、Tgが30℃以上200℃以下であり、数平均分子量が500~10,000であり、前記アクリル系粘着性ポリマー(B)100質量部に対して0.5質量部以上60質量部以下含有されており、
前記粘着剤層は、当該粘着剤層全体のTgである第1のTgが-80℃以上20℃以下であり、
前記粘着剤層のX線光電子分光分析により得られる前記粘着剤層の表層部分の組成から計算されるTgである第2のTgが、前記第1のTgよりも30℃以上高い、請求項に記載の真空圧空成形用粘着シート。
The adhesive composition is an acrylic adhesive composition and includes a vinyl polymer (A) and an acrylic adhesive polymer (B),
The vinyl polymer (A) has a Tg of 30°C or more and 200°C or less, a number average molecular weight of 500 to 10,000, and 0.5 parts by mass per 100 parts by mass of the acrylic adhesive polymer (B). Contains not less than 60 parts by mass,
The adhesive layer has a first Tg, which is the Tg of the entire adhesive layer, of −80° C. or more and 20° C. or less,
1 . The second Tg, which is the Tg calculated from the composition of the surface layer portion of the adhesive layer obtained by X-ray photoelectron spectroscopy of the adhesive layer, is higher than the first Tg by 30° C. or more. Adhesive sheet for vacuum pressure forming described in .
前記粘着剤層の少なくとも一方の表層部分において、前記ビニル重合体(A)をより高濃度で含有する、請求項3に記載の真空圧空成形用粘着シート。 The pressure-sensitive adhesive sheet for vacuum-pressure forming according to claim 3, wherein the vinyl polymer (A) is contained in a higher concentration in at least one surface layer portion of the pressure-sensitive adhesive layer. 前記粘着剤組成物が、アクリル系粘着剤組成物である、請求項に記載の真空圧空成形用粘着シート。 The pressure-sensitive adhesive sheet for vacuum-pressure forming according to claim 2 , wherein the pressure-sensitive adhesive composition is an acrylic pressure-sensitive adhesive composition. 請求項2又は5に記載の真空圧空成形用粘着シートを製造する方法であって、
前記薄膜層を剥離フィルム上に形成する、真空圧空成形用粘着シートの製造方法。
A method for producing a pressure-sensitive adhesive sheet for vacuum-pressure forming according to claim 2 or 5 , comprising:
A method for producing a pressure-sensitive adhesive sheet for vacuum-pressure forming, comprising forming the thin film layer on a release film.
粘着剤組成物から形成される粘着剤層と、薄膜層とを有し、真空圧空成形時に前記薄膜層側が被着体に対して圧着される真空圧空成形用粘着シートを製造する方法であって、
前記薄膜層を形成する工程と、
前記薄膜層の上に前記粘着剤組成物を塗布して前記粘着剤層を形成する工程と、を含み、
前記薄膜層は前記粘着剤層よりも厚みが薄く、当該薄膜層の融点、軟化点又はガラス転移温度(Tg)が70℃以上であり、
前記薄膜層がポリオレフィン系樹脂及びロジンエステル系樹脂よりなる群から選択される少なくとも1種を含む、真空圧空成形用粘着シートの製造方法。
A method for producing a pressure-sensitive adhesive sheet for vacuum-pressure forming, the pressure-sensitive adhesive sheet having a pressure-sensitive adhesive layer formed from a pressure-sensitive adhesive composition and a thin film layer, the thin film layer side being pressure-bonded to an adherend during vacuum-pressure forming. ,
forming the thin film layer;
forming the adhesive layer by applying the adhesive composition on the thin film layer,
The thin film layer is thinner than the adhesive layer, and the melting point, softening point, or glass transition temperature (Tg) of the thin film layer is 70° C. or higher,
A method for producing a pressure -sensitive adhesive sheet for vacuum-pressure forming, wherein the thin film layer contains at least one selected from the group consisting of a polyolefin resin and a rosin ester resin .
請求項1~5のいずれか1項に記載の真空圧空成形用粘着シートを有する加飾フィルム。 A decorative film comprising the pressure-sensitive adhesive sheet for vacuum-pressure forming according to any one of claims 1 to 5. 請求項8に記載の加飾フィルムを成形体に貼着してなる加飾成形体。 A decorated molded article obtained by adhering the decorative film according to claim 8 to a molded article.
JP2021526927A 2019-06-21 2020-06-19 Adhesive sheet for vacuum pressure forming and its use Active JP7347508B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019115239 2019-06-21
JP2019115239 2019-06-21
PCT/JP2020/024173 WO2020256118A1 (en) 2019-06-21 2020-06-19 Adhesive sheet for vacuum pressure molding and use of same

Publications (2)

Publication Number Publication Date
JPWO2020256118A1 JPWO2020256118A1 (en) 2021-12-09
JP7347508B2 true JP7347508B2 (en) 2023-09-20

Family

ID=74040501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021526927A Active JP7347508B2 (en) 2019-06-21 2020-06-19 Adhesive sheet for vacuum pressure forming and its use

Country Status (2)

Country Link
JP (1) JP7347508B2 (en)
WO (1) WO2020256118A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7348449B1 (en) * 2022-12-08 2023-09-21 東洋インキScホールディングス株式会社 Adhesive composition for decorative sheet, decorative sheet, decorative structure and manufacturing method thereof
JP7427855B1 (en) 2023-09-01 2024-02-06 artience株式会社 Adhesive composition for decorative sheet, decorative sheet, decorative structure and manufacturing method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010189579A (en) 2009-02-19 2010-09-02 Kuramoto Sangyo:Kk Film base material and adhesive sheet
JP2014088549A (en) 2012-10-05 2014-05-15 Toagosei Co Ltd Adhesive composition and applications thereof
WO2016121868A1 (en) 2015-01-28 2016-08-04 株式会社クラレ Multilayer film
WO2016203304A1 (en) 2015-06-15 2016-12-22 王子ホールディングス株式会社 Adhesive film, laminate, and decorative molded product
JP2017052146A (en) 2015-09-08 2017-03-16 バンドー化学株式会社 Film for wrapping and wrapping processed product
JP2017154410A (en) 2016-03-03 2017-09-07 王子ホールディングス株式会社 Laminated body for decoration, decorative molded body, and method for producing decorative molded body
JP2018002891A (en) 2016-07-01 2018-01-11 東亞合成株式会社 Decorative film and decorative molding having the same
WO2018021460A1 (en) 2016-07-27 2018-02-01 株式会社クラレ Film, decorated molded article having film adhered to surface of adherend, and method for manufacturing decorated molded article
JP2019112574A (en) 2017-12-26 2019-07-11 東亞合成株式会社 Decorative film and decorative molding having the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50141625A (en) * 1974-04-30 1975-11-14

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010189579A (en) 2009-02-19 2010-09-02 Kuramoto Sangyo:Kk Film base material and adhesive sheet
JP2014088549A (en) 2012-10-05 2014-05-15 Toagosei Co Ltd Adhesive composition and applications thereof
WO2016121868A1 (en) 2015-01-28 2016-08-04 株式会社クラレ Multilayer film
WO2016203304A1 (en) 2015-06-15 2016-12-22 王子ホールディングス株式会社 Adhesive film, laminate, and decorative molded product
JP2017052146A (en) 2015-09-08 2017-03-16 バンドー化学株式会社 Film for wrapping and wrapping processed product
JP2017154410A (en) 2016-03-03 2017-09-07 王子ホールディングス株式会社 Laminated body for decoration, decorative molded body, and method for producing decorative molded body
JP2018002891A (en) 2016-07-01 2018-01-11 東亞合成株式会社 Decorative film and decorative molding having the same
WO2018021460A1 (en) 2016-07-27 2018-02-01 株式会社クラレ Film, decorated molded article having film adhered to surface of adherend, and method for manufacturing decorated molded article
JP2019112574A (en) 2017-12-26 2019-07-11 東亞合成株式会社 Decorative film and decorative molding having the same

Also Published As

Publication number Publication date
JPWO2020256118A1 (en) 2021-12-09
WO2020256118A1 (en) 2020-12-24

Similar Documents

Publication Publication Date Title
JP7052340B2 (en) Decorative film and decorative molded body provided with it
JP5924324B2 (en) Adhesive composition and use thereof
JP6547827B2 (en) Pressure-sensitive adhesive composition, method for producing the same, and pressure-sensitive adhesive product
JP7035507B2 (en) A laminate having an adhesive layer and a method for manufacturing the laminate
TWI732971B (en) Adhesive composition and its utilization
JP7347508B2 (en) Adhesive sheet for vacuum pressure forming and its use
JP6714921B2 (en) Adhesive composition and use thereof
JP6740753B2 (en) Laminate comprising an adhesive composition and an adhesive layer
JP6241838B2 (en) Tackifier and pressure-sensitive adhesive composition and use thereof
JP7173144B2 (en) Decorative film and decorative molding
JP6801266B2 (en) Decorative film and decorative molded body provided with it
JP7052809B2 (en) Adhesive composition and its use
WO2021261585A1 (en) Adhesive composition for decorative film, and use thereof
JP7052810B2 (en) Adhesive composition and its use
JP7047851B2 (en) Adhesive composition and its use
JP7302159B2 (en) Tackifier and adhesive composition
JP2018002890A (en) Adhesive sheet for linear luminous body, and linear luminous body
JP7110593B2 (en) Adhesive composition and its use
JP2020007545A (en) Adhesive sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230821

R150 Certificate of patent or registration of utility model

Ref document number: 7347508

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150