JP7347173B2 - crystal growth equipment - Google Patents

crystal growth equipment Download PDF

Info

Publication number
JP7347173B2
JP7347173B2 JP2019219257A JP2019219257A JP7347173B2 JP 7347173 B2 JP7347173 B2 JP 7347173B2 JP 2019219257 A JP2019219257 A JP 2019219257A JP 2019219257 A JP2019219257 A JP 2019219257A JP 7347173 B2 JP7347173 B2 JP 7347173B2
Authority
JP
Japan
Prior art keywords
crucible
crystal growth
growth apparatus
height direction
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019219257A
Other languages
Japanese (ja)
Other versions
JP2021088476A (en
Inventor
麟平 金田一
好成 奥野
智博 庄内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Priority to JP2019219257A priority Critical patent/JP7347173B2/en
Publication of JP2021088476A publication Critical patent/JP2021088476A/en
Application granted granted Critical
Publication of JP7347173B2 publication Critical patent/JP7347173B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、結晶成長装置に関する。 The present invention relates to a crystal growth apparatus.

炭化珪素(SiC)は、シリコン(Si)に比べて絶縁破壊電界が1桁大きく、バンドギャップが3倍大きい。また、炭化珪素(SiC)は、シリコン(Si)に比べて熱伝導率が3倍程度高い等の特性を有する。そのため炭化珪素(SiC)は、パワーデバイス、高周波デバイス、高温動作デバイス等への応用が期待されている。このため、近年、上記のような半導体デバイスにSiCエピタキシャルウェハが用いられるようになっている。 Silicon carbide (SiC) has a dielectric breakdown field one order of magnitude larger and a band gap three times larger than silicon (Si). Furthermore, silicon carbide (SiC) has characteristics such as a thermal conductivity that is approximately three times higher than that of silicon (Si). Therefore, silicon carbide (SiC) is expected to be applied to power devices, high-frequency devices, high-temperature operation devices, and the like. For this reason, in recent years, SiC epitaxial wafers have been used for semiconductor devices such as those described above.

SiCエピタキシャルウェハは、SiC単結晶基板上に化学的気相成長法(Chemical Vapor Deposition:CVD)によってSiC半導体デバイスの活性領域となるSiCエピタキシャル膜を成長させることによって製造される。 A SiC epitaxial wafer is manufactured by growing an SiC epitaxial film, which will become an active region of a SiC semiconductor device, on a SiC single crystal substrate by chemical vapor deposition (CVD).

SiC単結晶基板は、SiC単結晶を切り出して作製する。このSiC単結晶は、一般に昇華法によって得ることができる。昇華法は、黒鉛製の坩堝内に配置した台座にSiC単結晶からなる種結晶を配置し、坩堝を加熱することで坩堝内の原料粉末から昇華した昇華ガスを種結晶に供給し、種結晶をより大きなSiC単結晶へ成長させる方法である。 The SiC single crystal substrate is manufactured by cutting out a SiC single crystal. This SiC single crystal can generally be obtained by a sublimation method. In the sublimation method, a seed crystal made of SiC single crystal is placed on a pedestal placed in a crucible made of graphite, and sublimation gas sublimated from the raw material powder in the crucible is supplied to the seed crystal by heating the crucible. This is a method of growing SiC into a larger SiC single crystal.

近年、市場の要求に伴い、SiC単結晶の大口径化、長尺化の要望も高まっている。またSiC単結晶の大口径化、長尺化の要望と共に、SiC単結晶の高品質化及び生産効率の向上も求められている。 In recent years, with market demands, demands for larger diameter and longer SiC single crystals have also increased. In addition to the demand for larger diameter and longer SiC single crystals, there is also a demand for higher quality and improved production efficiency of SiC single crystals.

特許文献1には、高さ方向に分割されたヒータの間に仕切壁部を設けることが記載されている。仕切壁部は、分割されたヒータ間の熱伝導を制御し、ヒータから坩堝へ伝わる輻射熱を制御し、種結晶側と原料側とを断熱する。特許文献1に記載の炭化珪素単結晶の製造装置は、仕切壁部により坩堝の種結晶側と原料側とを別々に制御する。 Patent Document 1 describes that a partition wall portion is provided between heaters divided in the height direction. The partition wall portion controls heat conduction between the divided heaters, controls radiant heat transmitted from the heaters to the crucible, and insulates the seed crystal side and the raw material side. The silicon carbide single crystal manufacturing apparatus described in Patent Document 1 separately controls the seed crystal side and the raw material side of the crucible using a partition wall portion.

特開2008-290885号公報JP2008-290885A

昇華法においてSiC単結晶は、原料粉末から昇華した昇華ガスが再結晶化することで成長する。原料粉末は、坩堝の外周側から加熱される。坩堝の中央部は、外周側と比較して低温になる。低温部(例えば坩堝の中央部)に位置する原料は昇華しづらい。つまり低温部の原料は、SiC単結晶の結晶成長に効率的に利用できているとは言えない。 In the sublimation method, SiC single crystals grow by recrystallization of sublimation gas sublimated from raw material powder. The raw material powder is heated from the outer circumferential side of the crucible. The center part of the crucible has a lower temperature than the outer circumference. Raw materials located in a low-temperature area (for example, the center of the crucible) are difficult to sublimate. In other words, it cannot be said that the raw material in the low-temperature section is efficiently utilized for crystal growth of SiC single crystals.

また低温部には生成物が生じる場合がある。生成物は、昇華ガスが再結晶化したものであり、SiCと同様の組成を有する。生成物も高温になると昇華するが、生成物と原料粉末とは昇華条件が異なり、生成物から昇華した昇華ガスがSiC単結晶の品質の劣化の原因となる場合もある。 Further, products may be generated in the low temperature section. The product is recrystallized sublimation gas and has a similar composition to SiC. The product also sublimes at high temperatures, but the sublimation conditions for the product and the raw material powder are different, and sublimation gas sublimated from the product may cause deterioration in the quality of the SiC single crystal.

SiC単結晶の高品質化及び生産効率の向上のためには、原料粉末を均一に加熱することが求められている。大口径のSiC単結晶を得るためには、直径の大きな坩堝を用いる必要があり、直径の大きな坩堝は特に原料内に温度分布が生じやすい。特許文献1に記載の炭化珪素単結晶の製造装置は、坩堝の種結晶側の温度と原料側の温度とを別々に制御することはできるが、原料粉末の温度を均熱にすることはできない。 In order to improve the quality and production efficiency of SiC single crystals, it is required to uniformly heat the raw material powder. In order to obtain a large-diameter SiC single crystal, it is necessary to use a large-diameter crucible, and a large-diameter crucible is particularly likely to cause temperature distribution within the raw material. The silicon carbide single crystal production apparatus described in Patent Document 1 can separately control the temperature on the seed crystal side and the temperature on the raw material side of the crucible, but cannot uniformly heat the temperature of the raw material powder. .

本発明は上記問題に鑑みてなされたものであり、坩堝内に収容された原料の温度を均熱化できる結晶成長装置を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a crystal growth apparatus that can equalize the temperature of raw materials contained in a crucible.

本発明は、上記課題を解決するため、以下の手段を提供する。 The present invention provides the following means to solve the above problems.

(1)第1の態様にかかる結晶成長装置は、内部に原料と種結晶を収容できる坩堝と、前記坩堝の側面を囲む誘導コイルと、前記坩堝と前記誘導コイルとの間に位置し、前記坩堝を輻射熱によって加熱する複数の加熱部と、を備え、それぞれの加熱部は、前記坩堝の高さ方向に間隔を置いて配置され、前記複数の加熱部の前記間隔のうちのいずれかは、前記坩堝の高さ方向の中心よりも種結晶から遠くに位置する。 (1) A crystal growth apparatus according to a first aspect includes a crucible capable of accommodating a raw material and a seed crystal therein, an induction coil surrounding a side surface of the crucible, and a crystal growth apparatus located between the crucible and the induction coil, a plurality of heating parts that heat the crucible with radiant heat, each heating part is arranged at intervals in the height direction of the crucible, and any one of the intervals of the plurality of heating parts is It is located farther from the seed crystal than the center of the crucible in the height direction.

(2)上記態様にかかる結晶成長装置において、前記複数の加熱部の前記間隔のうちのいずれかは、前記高さ方向において、前記誘導コイルの上端と下端との間に位置してもよい。 (2) In the crystal growth apparatus according to the above aspect, any one of the intervals between the plurality of heating parts may be located between the upper end and the lower end of the induction coil in the height direction.

(3)上記態様にかかる結晶成長装置において、前記複数の加熱部の前記間隔のうちのいずれかは、前記誘導コイルの前記高さ方向の中心と、前記高さ方向において重なる位置にあってもよい。 (3) In the crystal growth apparatus according to the above aspect, any one of the intervals between the plurality of heating parts may be located at a position overlapping the center of the induction coil in the height direction. good.

(4)上記態様にかかる結晶成長装置において、前記複数の加熱部のうちのいずれかは、前記誘導コイルの上端と下端との間の領域と、前記高さ方向において、少なくとも一部で重なってもよい。 (4) In the crystal growth apparatus according to the above aspect, any one of the plurality of heating parts overlaps, at least in part, with a region between the upper end and the lower end of the induction coil in the height direction. Good too.

(5)上記態様にかかる結晶成長装置において、前記複数の加熱部の前記間隔は、断熱材を含んでもよい。 (5) In the crystal growth apparatus according to the above aspect, the interval between the plurality of heating parts may include a heat insulating material.

(6)上記態様にかかる結晶成長装置において、前記複数の加熱部は、2つの加熱部からなってもよい。 (6) In the crystal growth apparatus according to the above aspect, the plurality of heating sections may include two heating sections.

上記態様にかかる結晶成長装置によれば、坩堝内に収容された原料の温度を均熱化できる。 According to the crystal growth apparatus according to the above aspect, the temperature of the raw material contained in the crucible can be equalized.

第1実施形態に係る結晶成長装置の断面模式図である。FIG. 1 is a schematic cross-sectional view of a crystal growth apparatus according to a first embodiment. 比較例にかかる結晶成長装置の断面図である。FIG. 3 is a cross-sectional view of a crystal growth apparatus according to a comparative example. 変形例1にかかる結晶成長装置の断面図である。3 is a cross-sectional view of a crystal growth apparatus according to Modification 1. FIG. 実施例1のシミュレーションのモデル図である。FIG. 3 is a model diagram of simulation of Example 1. 実施例3の結果を示す図である。FIG. 7 is a diagram showing the results of Example 3.

以下、本実施形態にかかる結晶成長装置について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材質、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。 Hereinafter, the crystal growth apparatus according to this embodiment will be described in detail with reference to the drawings as appropriate. In the drawings used in the following explanation, characteristic parts of the present invention may be shown enlarged for convenience in order to make it easier to understand, and the dimensional ratio of each component may differ from the actual one. be. The materials, dimensions, etc. exemplified in the following description are merely examples, and the present invention is not limited thereto, and can be practiced with appropriate changes within the scope of the invention.

(結晶成長装置)
「第1実施形態」
図1は、第1実施形態にかかる結晶成長装置の断面模式図である。図1に示す結晶成長装置100は、坩堝10と複数のヒータ20と誘導コイル30とを備える。ヒータ20は、加熱部の一例である。図1では、理解を容易にするために、原料G、種結晶S、種結晶S上に結晶成長した単結晶Cを同時に図示している。
(crystal growth device)
"First embodiment"
FIG. 1 is a schematic cross-sectional view of a crystal growth apparatus according to a first embodiment. A crystal growth apparatus 100 shown in FIG. 1 includes a crucible 10, a plurality of heaters 20, and an induction coil 30. The heater 20 is an example of a heating section. In FIG. 1, for ease of understanding, a raw material G, a seed crystal S, and a single crystal C grown on the seed crystal S are illustrated at the same time.

以下図示において、原料Gと単結晶Cとが向き合う方向を高さ方向とし、高さ方向に対して垂直な方向を径方向とする。図1は、坩堝10の結晶設置部13の中央を通る任意の面で切断した断面図である。 In the illustrations below, the direction in which the raw material G and the single crystal C face each other is defined as the height direction, and the direction perpendicular to the height direction is defined as the radial direction. FIG. 1 is a cross-sectional view taken along an arbitrary plane passing through the center of the crystal installation part 13 of the crucible 10.

坩堝10は、単結晶Cを結晶成長させる成長空間Kを囲む。坩堝10は、例えば、蓋体11と容器12と結晶設置部13とを有する。 The crucible 10 surrounds a growth space K in which a single crystal C is grown. The crucible 10 includes, for example, a lid 11, a container 12, and a crystal installation part 13.

蓋体11と容器12は、成長空間Kを形成する。蓋体11は、成長空間K側に、結晶設置部13を有する。容器12は、原料Gを収容する。原料Gは、例えば、坩堝10の高さHの中心の高さH/2の位置より種結晶Sから遠くに収容される。原料Gは、また例えば、坩堝10の高さHの1/3の高さ位置より下方に収容される。 The lid 11 and the container 12 form a growth space K. The lid 11 has a crystal installation part 13 on the growth space K side. Container 12 accommodates raw material G. The raw material G is stored, for example, farther from the seed crystal S than the center height H/2 of the height H of the crucible 10. The raw material G is also stored, for example, below a height position of 1/3 of the height H of the crucible 10.

結晶設置部13は、原料Gと対向する位置にある。種結晶Sは、結晶設置部13に設置される。原料Gは、加熱により昇華ガスを発生する。原料Gから昇華した原料ガスが、種結晶Sの表面で再結晶化し、単結晶Cが結晶成長する。 The crystal installation part 13 is located at a position facing the raw material G. The seed crystal S is installed in the crystal installation section 13. The raw material G generates sublimation gas when heated. The raw material gas sublimated from the raw material G is recrystallized on the surface of the seed crystal S, and a single crystal C is grown.

坩堝10は、単結晶Cを成長する際の高温に耐えることができる材料からなる。坩堝10は、例えば、黒鉛、又は、被覆層を有する黒鉛からなる。被覆層は、例えば、炭化珪素、タンタルカーバイド(TaC)である。坩堝10内の温度は、3550℃程度まで至ることがあり、これらの材料であれば高温にも耐えうる。 The crucible 10 is made of a material that can withstand high temperatures when growing single crystal C. The crucible 10 is made of, for example, graphite or graphite having a coating layer. The covering layer is, for example, silicon carbide or tantalum carbide (TaC). The temperature inside the crucible 10 can reach up to about 3550° C., and these materials can withstand high temperatures.

誘導コイル30は、坩堝10の側面を囲む。誘導コイル30は、坩堝10及びヒータ20の径方向外側に位置する。誘導コイル30は、例えば、坩堝10の外周を螺旋状に囲む。誘導コイル30は、一つの導体からなり、第1端と第2端との間に高周波電流を流すことで磁場を生み出す。 Induction coil 30 surrounds the sides of crucible 10 . The induction coil 30 is located outside the crucible 10 and the heater 20 in the radial direction. For example, the induction coil 30 spirally surrounds the outer periphery of the crucible 10 . The induction coil 30 is made of a single conductor, and generates a magnetic field by passing a high frequency current between a first end and a second end.

複数のヒータ20は、坩堝10と誘導コイル30との間に位置する。複数のヒータ20は、坩堝10の径方向外側、誘導コイル30の径方向内側に位置する。ヒータ20は、例えば、黒鉛部材である。ヒータ20は、坩堝10を囲む円環状である。ヒータ20は、誘導コイル30が生じる磁場を受けて、誘導加熱により加熱される。発熱したヒータ20は自身が熱輻射の発生源となり、坩堝10を輻射熱により加熱する。 The plurality of heaters 20 are located between the crucible 10 and the induction coil 30. The plurality of heaters 20 are located radially outside the crucible 10 and radially inside the induction coil 30. The heater 20 is, for example, a graphite member. The heater 20 has an annular shape surrounding the crucible 10. The heater 20 receives a magnetic field generated by the induction coil 30 and is heated by induction heating. The heater 20 that generates heat becomes a source of thermal radiation, and heats the crucible 10 with the radiant heat.

それぞれのヒータ20は、坩堝10の高さ方向に間隔を置いて配置されている。坩堝10を加熱するヒータ20は、一つの場合が多く、一つのヒータを分割したとみなすこともできる。図1に示すヒータ20は、二つである。二つのヒータ20は、空間を挟んで高さ方向に配列している。それぞれのヒータ20の径方向の位置は、異なっていてもよい。 The respective heaters 20 are arranged at intervals in the height direction of the crucible 10. The number of heaters 20 that heat the crucible 10 is often one, and it can also be considered that one heater is divided. There are two heaters 20 shown in FIG. The two heaters 20 are arranged in the height direction with a space in between. The radial position of each heater 20 may be different.

それぞれのヒータ20のうち少なくとも一つは、例えば、誘導コイル30の上端と下端との間の領域(以下、コイル領域31という。)と、高さ方向において一部で重なっている。図1に示すようにヒータ20が2つの場合、それぞれのヒータの一部は、高さ方向においていずれもコイル領域31と重なっていることが好ましい。誘導コイル30から生じる磁場をそれぞれのヒータ20が受けやすくなり、ヒータ20が効率的に加熱される。 At least one of the respective heaters 20 partially overlaps, for example, a region between the upper end and the lower end of the induction coil 30 (hereinafter referred to as coil region 31) in the height direction. When there are two heaters 20 as shown in FIG. 1, it is preferable that a portion of each heater overlaps the coil region 31 in the height direction. Each heater 20 is more likely to receive the magnetic field generated from the induction coil 30, and the heater 20 is efficiently heated.

それぞれのヒータ20の間には空間が形成される。以下、隣接するヒータ20の間の空間を断熱領域21と称する。図1において断熱領域21は、坩堝10の高さHの中心の高さH/2の位置より種結晶Sから遠くに位置する。断熱領域21が複数存在する場合は、いずれかの断熱領域21が、坩堝10の高さHの中心の高さH/2の位置より種結晶Sから遠くに位置すればよい。ここで、断熱領域21が、坩堝10の高さHの中心の高さH/2の位置より種結晶Sから遠くに位置するとは、断熱領域21の高さ方向の中心が、坩堝10の高さHの中心の高さH/2の位置より種結晶Sから遠くに位置することを指す。 A space is formed between each heater 20. Hereinafter, the space between adjacent heaters 20 will be referred to as a heat insulation region 21. In FIG. 1, the heat insulating region 21 is located farther from the seed crystal S than the center height H/2 of the height H of the crucible 10. If there are a plurality of heat insulating regions 21, any one of the heat insulating regions 21 may be located farther from the seed crystal S than the center height H/2 of the height H of the crucible 10. Here, the heat insulation region 21 is located farther from the seed crystal S than the height H/2 of the center of the height H of the crucible 10 means that the center of the heat insulation region 21 in the height direction is located at the height H/2 of the center of the crucible 10. It refers to being located farther from the seed crystal S than the position of the height H/2 of the center of the height H.

断熱領域21は、好ましくは、高さ方向において誘導コイル30の上端と下端との間(コイル領域31)に位置する。また断熱領域21は、より好ましくは、コイル領域31の高さ方向の中心c31と重なる位置にある。 The heat insulating region 21 is preferably located between the upper end and the lower end of the induction coil 30 (coil region 31) in the height direction. Further, the heat insulating region 21 is more preferably located at a position overlapping the center c31 of the coil region 31 in the height direction.

第1実施形態にかかる結晶成長装置100によれば、原料G内の温度差を小さくすることができる。以下、その理由について説明する。 According to the crystal growth apparatus 100 according to the first embodiment, the temperature difference within the raw material G can be reduced. The reason for this will be explained below.

図2は、比較例にかかる結晶成長装置101の断面図である。図2に示す結晶成長装置101は、坩堝10と誘導コイル30との間に、連続する一つのヒータ40が設けられている点が、図1に示す結晶成長装置100と異なる。その他の構成については図1と同様であり、図1と同様の符号を付す。 FIG. 2 is a cross-sectional view of a crystal growth apparatus 101 according to a comparative example. The crystal growth apparatus 101 shown in FIG. 2 differs from the crystal growth apparatus 100 shown in FIG. 1 in that one continuous heater 40 is provided between the crucible 10 and the induction coil 30. The other configurations are the same as those in FIG. 1, and are given the same reference numerals as in FIG. 1.

ヒータ40は、坩堝10の径方向外側、誘導コイル30の径方向内側に位置し、高さ方向に連続する。誘導コイル30で生じた磁場は、ヒータ40を誘導加熱により加熱する。坩堝10は、加熱されたヒータ40が生じる熱輻射を受けて加熱される。 The heater 40 is located outside the crucible 10 in the radial direction and inside the induction coil 30 in the radial direction, and is continuous in the height direction. The magnetic field generated by the induction coil 30 heats the heater 40 by induction heating. The crucible 10 is heated by receiving thermal radiation generated by the heated heater 40.

高さ方向にヒータ40の形状及び構成が変化せず、ヒータ40が一様な場合、コイル領域31の高さ方向の中心c31と重なる位置が坩堝10の加熱中心p1となる。加熱中心p1は、坩堝10において最も高温となる点である。原料Gの温度は、加熱中心p1から離れるほど低下する。 When the shape and configuration of the heater 40 do not change in the height direction and the heater 40 is uniform, the heating center p1 of the crucible 10 overlaps with the center c31 of the coil region 31 in the height direction. The heating center p1 is the point at the highest temperature in the crucible 10. The temperature of the raw material G decreases as the distance from the heating center p1 increases.

これに対し、第1実施形態にかかる結晶成長装置100は、ヒータ20が高さ方向に複数ある。それぞれのヒータ20は、誘導コイル30で生じた磁場を受けて発熱し、坩堝10を輻射熱により加熱する。坩堝10は、それぞれのヒータ20の寄与により加熱されるため、加熱中心が高さ方向に広がる、又は、加熱中心p2は複数になる。加熱中心p2が一か所に集中しないことで、原料G内の温度分布が変化する。その結果、原料G内の温度分布が均熱化する。 In contrast, the crystal growth apparatus 100 according to the first embodiment has a plurality of heaters 20 in the height direction. Each heater 20 generates heat in response to the magnetic field generated by the induction coil 30, and heats the crucible 10 with radiant heat. Since the crucible 10 is heated by the contribution of each heater 20, the heating center spreads in the height direction, or there are multiple heating centers p2. Since the heating center p2 is not concentrated in one place, the temperature distribution within the raw material G changes. As a result, the temperature distribution within the raw material G becomes uniform.

また断熱領域21が坩堝10の高さHの中心の高さH/2の位置より種結晶Sから遠くに位置することで、坩堝10の高さHの中心の高さH/2の位置より種結晶Sから遠くに収容される原料Gの温度分布を効率的に均熱化できる。 Furthermore, since the heat insulating region 21 is located farther from the seed crystal S than the center height H/2 of the height H of the crucible 10, The temperature distribution of the raw material G stored far away from the seed crystal S can be uniformized efficiently.

また比較例1において加熱中心p1となるコイル領域31の高さ方向の中心c31と重なる位置に断熱領域21を設けることで、坩堝10の加熱中心が一か所に集中することを避けることができ、より効果的に均熱化することができる。 Furthermore, in Comparative Example 1, by providing the heat insulating region 21 at a position overlapping the center c31 in the height direction of the coil region 31, which is the heating center p1, it is possible to prevent the heating center of the crucible 10 from concentrating in one place. , it is possible to more effectively equalize the heat.

以上、第1実施形態について詳述したが、本発明は特定の実施の形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the first embodiment has been described in detail above, the present invention is not limited to a specific embodiment, and various modifications and variations can be made within the scope of the gist of the present invention as described in the claims. Changes are possible.

(変形例1)
図3は、変形例1にかかる結晶成長装置102の断面図である。図3に示す結晶成長装置102は、複数のヒータ20の間に断熱材50を有する点が、図1に示す結晶成長装置100と異なる。その他の構成については図1と同様であり、図1と同様の符号を付す。
(Modification 1)
FIG. 3 is a cross-sectional view of the crystal growth apparatus 102 according to the first modification. The crystal growth apparatus 102 shown in FIG. 3 differs from the crystal growth apparatus 100 shown in FIG. 1 in that a heat insulating material 50 is provided between the plurality of heaters 20. The other configurations are the same as those in FIG. 1, and are given the same reference numerals as in FIG. 1.

断熱材50は、複数のヒータ20の間に位置する。図1における断熱領域21が断熱材50に置き換わっている。 The heat insulating material 50 is located between the plurality of heaters 20. The heat insulating region 21 in FIG. 1 has been replaced by a heat insulating material 50.

断熱材50は、2000℃以上の高温で熱伝導率が10W/mK以下である材料により構成されていることが好ましい。2000℃以上の高温で熱伝導率が10W/mK以下の材料としては、黒鉛、炭素を主成分としたフェルト材があげられる。また、断熱材50は5W/mK以下の部材であることが望ましい。 The heat insulating material 50 is preferably made of a material having a thermal conductivity of 10 W/mK or less at a high temperature of 2000° C. or higher. Examples of materials having a thermal conductivity of 10 W/mK or less at high temperatures of 2000° C. or higher include felt materials containing graphite and carbon as main components. Further, it is desirable that the heat insulating material 50 is a member having a power of 5 W/mK or less.

変形例1にかかる結晶成長装置102は、断熱領域21が断熱材50に置き換わっただけであり、第1実施形態にかかる結晶成長装置100と同様の効果を奏する。 In the crystal growth apparatus 102 according to the first modification, the heat insulation region 21 is simply replaced with the heat insulation material 50, and the crystal growth apparatus 102 according to the first embodiment has the same effects as the crystal growth apparatus 100 according to the first embodiment.

(実施例1)
図4に示す構成をシミュレーションで再現し、坩堝を加熱時の坩堝内の温度を求めた。シミュレーションには、気相結晶成長解析ソフトVirtual Reactor PVT SiCを用いた。図4に示す構成は、図1に示す結晶成長装置100に対応する。
(Example 1)
The configuration shown in FIG. 4 was reproduced by simulation, and the temperature inside the crucible when the crucible was heated was determined. For the simulation, we used the vapor phase crystal growth analysis software Virtual Reactor PVT SiC. The configuration shown in FIG. 4 corresponds to the crystal growth apparatus 100 shown in FIG.

シミュレーションは、計算負荷を低減するために、中心軸を通る任意の断面の半分(径方向の半分)の構造のみで行った。シミュレーションの条件は以下とした。 In order to reduce the calculation load, the simulation was performed using only a half (radial half) structure of an arbitrary cross section passing through the central axis. The simulation conditions were as follows.

坩堝半径:100mm
坩堝厚み:10mm
坩堝高さ:300mm
坩堝の本体部の輻射率:0.8(黒鉛相当)
坩堝熱伝導率:40W/mK
原料熱伝導率:5W/mK
坩堝内原料高さ:150mm
ヒータ位置:坩堝側面から50mm外側
2つのヒータ間の幅h:60mm
2つのヒータ間の中心位置:坩堝底面から80mm
コイル領域高さ:60mm
コイル領域の中心高さ位置:坩堝底面から80mm
坩堝およびヒータを覆う断熱材の厚み:30mm
上記断熱材の熱伝導率:1W/mK
坩堝上面と上記断熱材の距離:10mm
坩堝下面と上記断熱材の距離:10mm
Crucible radius: 100mm
Crucible thickness: 10mm
Crucible height: 300mm
Emissivity of the main body of the crucible: 0.8 (equivalent to graphite)
Crucible thermal conductivity: 40W/mK
Raw material thermal conductivity: 5W/mK
Height of raw material inside crucible: 150mm
Heater position: 50mm outside from the side of the crucible Width between two heaters h: 60mm
Center position between two heaters: 80mm from the bottom of the crucible
Coil area height: 60mm
Center height position of coil area: 80mm from the bottom of the crucible
Thickness of insulation material covering the crucible and heater: 30mm
Thermal conductivity of the above insulation material: 1W/mK
Distance between the top surface of the crucible and the above insulation material: 10mm
Distance between the bottom surface of the crucible and the above insulation material: 10mm

当該条件の基、原料内の温度分布を測定し、最高温度と最低温度との温度差は、90℃であった。 Under these conditions, the temperature distribution within the raw material was measured, and the temperature difference between the highest and lowest temperatures was 90°C.

(実施例2)
図4におけるヒータ間の領域を断熱材で埋めて、同様のシミュレーションを行った。断熱材は、黒鉛、炭素を主成分としたフェルト材を想定し、熱伝導率は1W/mKに設定した。実施例2の構成は、図3に示す結晶成長装置102に対応する。
(Example 2)
A similar simulation was performed by filling the area between the heaters in FIG. 4 with a heat insulating material. The heat insulating material was assumed to be a felt material whose main components were graphite and carbon, and the thermal conductivity was set to 1 W/mK. The configuration of Example 2 corresponds to the crystal growth apparatus 102 shown in FIG.

当該条件の基、原料内の温度分布を測定し、最高温度と最低温度との温度差は、86℃であった。 Under these conditions, the temperature distribution within the raw material was measured, and the temperature difference between the highest and lowest temperatures was 86°C.

(比較例1)
図4におけるヒータ間の領域をヒータと同様の材料で埋めて、同様のシミュレーションを行った。すなわち、ヒータを高さ方向に連続する一つの部材としている。比較例1の構成は、図2に示す結晶成長装置101に対応する。
(Comparative example 1)
A similar simulation was performed by filling the area between the heaters in FIG. 4 with the same material as the heaters. That is, the heater is made into one member continuous in the height direction. The configuration of Comparative Example 1 corresponds to the crystal growth apparatus 101 shown in FIG.

当該条件の基、原料内の温度分布を測定し、最高温度と最低温度との温度差は、98℃であった。 Under these conditions, the temperature distribution within the raw material was measured, and the temperature difference between the highest and lowest temperatures was 98°C.

(実施例3)
図4における2つのヒータ間の幅hを変更して、原料内の最高温度と最低温度との温度差ΔTを求めた。このとき、ヒータ間を空間とした場合(実施例1条件)と、ヒータ間を断熱材で埋めた場合(実施例2条件)の2つの条件でシミュレーションを行った。その結果を図5に示す。図5の縦軸のΔT低減効果は、ヒータを高さ方向に連続する一つの部材とした場合(比較例1)に対して、原料内の最高温度と最低温度との温度差ΔTが低減された量である。
(Example 3)
The width h between the two heaters in FIG. 4 was changed to determine the temperature difference ΔT between the maximum temperature and the minimum temperature within the raw material. At this time, the simulation was performed under two conditions: a case where a space was provided between the heaters (Example 1 condition) and a case where the space between the heaters was filled with a heat insulating material (Example 2 condition). The results are shown in FIG. The ΔT reduction effect on the vertical axis in Fig. 5 is that the temperature difference ΔT between the highest temperature and the lowest temperature in the raw material is reduced compared to when the heater is one continuous member in the height direction (Comparative Example 1). This is the amount.

原料の高さに対してヒータ間の幅hが大きくなると、それぞれのヒータに対応する加熱中心(図1における加熱中心p2)位置が十分離れ、温度分布の低減効果が高まっていると考えられる。一方で、図5に示すように、ヒータ間の幅hがコイル領域高さよりも顕著に大きな値になると温度分布の低減効果の上昇率が低下していくことが確認された。それぞれのヒータに対応する加熱中心位置が離れすぎ、それぞれのヒータに対応する加熱中心(図1における加熱中心p2)位置の間に低温となる部分が発生したためと考えられる。 It is considered that when the width h between the heaters increases relative to the height of the raw material, the heating centers (heating centers p2 in FIG. 1) corresponding to the respective heaters are sufficiently separated, and the effect of reducing temperature distribution is enhanced. On the other hand, as shown in FIG. 5, it was confirmed that when the width h between the heaters became significantly larger than the height of the coil region, the rate of increase in the temperature distribution reduction effect decreased. This is considered to be because the heating center positions corresponding to the respective heaters were too far apart, and a low temperature portion was generated between the heating center positions (heating center p2 in FIG. 1) corresponding to the respective heaters.

10 坩堝
11 蓋体
12 容器
13 結晶設置部
20、40 ヒータ
21 断熱領域
30 誘導コイル
31 コイル領域
50 断熱材
100、101、102 結晶成長装置
S 種結晶
C 単結晶
K 成長空間
10 Crucible 11 Lid 12 Container 13 Crystal installation parts 20, 40 Heater 21 Heat insulating area 30 Induction coil 31 Coil area 50 Insulating material 100, 101, 102 Crystal growth apparatus S Seed crystal C Single crystal K Growth space

Claims (6)

内部に原料と種結晶を収容できる坩堝と、
前記坩堝の側面を囲む誘導コイルと、
前記坩堝と前記誘導コイルとの間に位置し、前記坩堝を輻射熱によって加熱する複数の加熱部と、を備え、
それぞれの加熱部は、前記坩堝の高さ方向に間隔を置いて配置され、
前記複数の加熱部の前記間隔のうちのいずれかは、前記坩堝の高さ方向の中心よりも種結晶から遠くに位置し、
前記坩堝において、前記坩堝の高さ方向の中心よりも前記種結晶から遠い位置には、前記原料のみが収容される、結晶成長装置。
A crucible that can accommodate raw materials and seed crystals inside,
an induction coil surrounding the side of the crucible;
a plurality of heating parts located between the crucible and the induction coil and heating the crucible with radiant heat,
The respective heating parts are arranged at intervals in the height direction of the crucible,
Any one of the intervals between the plurality of heating parts is located farther from the seed crystal than the center of the crucible in the height direction ,
In the crystal growth apparatus, only the raw material is accommodated in the crucible at a position farther from the seed crystal than the center of the crucible in the height direction.
前記複数の加熱部の前記間隔のうちのいずれかは、前記高さ方向において、前記誘導コイルの上端と下端との間に位置する、請求項1に記載の結晶成長装置。 The crystal growth apparatus according to claim 1, wherein any one of the intervals between the plurality of heating parts is located between the upper end and the lower end of the induction coil in the height direction. 前記複数の加熱部の前記間隔のうちのいずれかは、前記誘導コイルの前記高さ方向の中心と、前記高さ方向において重なる位置にある、請求項1又は2に記載の結晶成長装置。 3. The crystal growth apparatus according to claim 1, wherein any one of the intervals between the plurality of heating parts is located at a position overlapping the center of the induction coil in the height direction. 前記複数の加熱部のうちのいずれかは、前記誘導コイルの上端と下端との間の領域と、前記高さ方向において、少なくとも一部で重なる、請求項1~3のいずれか一項に記載の結晶成長装置。 According to any one of claims 1 to 3, any one of the plurality of heating parts at least partially overlaps a region between an upper end and a lower end of the induction coil in the height direction. crystal growth equipment. 前記複数の加熱部の前記間隔は、断熱材を含む、請求項1~4のいずれか一項に記載の結晶成長装置。 The crystal growth apparatus according to any one of claims 1 to 4, wherein the interval between the plurality of heating parts includes a heat insulating material. 前記複数の加熱部は、2つの加熱部からなる、請求項1~5のいずれか一項に記載の結晶成長装置。 The crystal growth apparatus according to any one of claims 1 to 5, wherein the plurality of heating sections consists of two heating sections.
JP2019219257A 2019-12-04 2019-12-04 crystal growth equipment Active JP7347173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019219257A JP7347173B2 (en) 2019-12-04 2019-12-04 crystal growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019219257A JP7347173B2 (en) 2019-12-04 2019-12-04 crystal growth equipment

Publications (2)

Publication Number Publication Date
JP2021088476A JP2021088476A (en) 2021-06-10
JP7347173B2 true JP7347173B2 (en) 2023-09-20

Family

ID=76219291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019219257A Active JP7347173B2 (en) 2019-12-04 2019-12-04 crystal growth equipment

Country Status (1)

Country Link
JP (1) JP7347173B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115404447B (en) * 2022-09-29 2024-06-04 京东方科技集团股份有限公司 Crucible assembly and vapor deposition device with same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008290885A (en) 2007-05-22 2008-12-04 Denso Corp Apparatus and method for producing silicon carbide single crystal
JP2011213563A (en) 2010-04-02 2011-10-27 Denso Corp Method for producing silicon carbide single crystal
JP2011219294A (en) 2010-04-07 2011-11-04 Denso Corp Method for producing silicon carbide single crystal
JP2012030994A (en) 2010-07-29 2012-02-16 Denso Corp Apparatus and method for producing silicon carbide single crystal
JP2013075789A (en) 2011-09-30 2013-04-25 Fujikura Ltd Apparatus and method for producing compound semiconductor single crystal
JP2013245136A (en) 2012-05-25 2013-12-09 Showa Denko Kk Apparatus for producing silicon carbide single crystal
JP2018184324A (en) 2017-04-26 2018-11-22 トヨタ自動車株式会社 PRODUCTION METHOD AND PRODUCTION APPARATUS OF SiC SINGLE CRYSTAL

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008290885A (en) 2007-05-22 2008-12-04 Denso Corp Apparatus and method for producing silicon carbide single crystal
JP2011213563A (en) 2010-04-02 2011-10-27 Denso Corp Method for producing silicon carbide single crystal
JP2011219294A (en) 2010-04-07 2011-11-04 Denso Corp Method for producing silicon carbide single crystal
JP2012030994A (en) 2010-07-29 2012-02-16 Denso Corp Apparatus and method for producing silicon carbide single crystal
JP2013075789A (en) 2011-09-30 2013-04-25 Fujikura Ltd Apparatus and method for producing compound semiconductor single crystal
JP2013245136A (en) 2012-05-25 2013-12-09 Showa Denko Kk Apparatus for producing silicon carbide single crystal
JP2018184324A (en) 2017-04-26 2018-11-22 トヨタ自動車株式会社 PRODUCTION METHOD AND PRODUCTION APPARATUS OF SiC SINGLE CRYSTAL

Also Published As

Publication number Publication date
JP2021088476A (en) 2021-06-10

Similar Documents

Publication Publication Date Title
KR101349945B1 (en) Film forming apparatus and film forming method
US9598792B2 (en) Film-forming apparatus and film-forming method
US9194056B2 (en) Film-forming apparatus and method
JP2011171543A (en) Deposition apparatus and deposition method
JP7217627B2 (en) SiC single crystal manufacturing apparatus and structure for manufacturing SiC single crystal
JP7392440B2 (en) crystal growth equipment
JP7347173B2 (en) crystal growth equipment
TWI794853B (en) Crystal growth apparatus including growth crucible and method of using growth crucible
JP5719710B2 (en) Vapor growth apparatus and vapor growth method
JP5087983B2 (en) Silicon carbide semiconductor crystal film forming apparatus and silicon carbide semiconductor crystal film forming method
JP7400450B2 (en) SiC single crystal manufacturing apparatus and SiC single crystal manufacturing method
CN110777427B (en) Crystal growing device
JP7434802B2 (en) Crystal growth apparatus and crystal growth method
JP2013075789A (en) Apparatus and method for producing compound semiconductor single crystal
JP2020093974A (en) Crystal growth apparatus and crucible
JP7242989B2 (en) SiC single crystal manufacturing equipment
JP2021066638A (en) Crystal growth apparatus, and crystal growth method
CN110023537B (en) Base seat
JP2011106007A (en) Film deposition system and film deposition method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221020

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20230131

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20230201

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20230307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230821

R151 Written notification of patent or utility model registration

Ref document number: 7347173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350