JP7346998B2 - Surface-modified magnetic particles and method for producing the same - Google Patents

Surface-modified magnetic particles and method for producing the same Download PDF

Info

Publication number
JP7346998B2
JP7346998B2 JP2019151238A JP2019151238A JP7346998B2 JP 7346998 B2 JP7346998 B2 JP 7346998B2 JP 2019151238 A JP2019151238 A JP 2019151238A JP 2019151238 A JP2019151238 A JP 2019151238A JP 7346998 B2 JP7346998 B2 JP 7346998B2
Authority
JP
Japan
Prior art keywords
magnetic particles
magnetic
coat layer
polyamine
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019151238A
Other languages
Japanese (ja)
Other versions
JP2021032635A (en
Inventor
洋 井上
聡 近藤
透朗 常藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2019151238A priority Critical patent/JP7346998B2/en
Publication of JP2021032635A publication Critical patent/JP2021032635A/en
Application granted granted Critical
Publication of JP7346998B2 publication Critical patent/JP7346998B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Medicinal Preparation (AREA)

Description

本発明は、表面修飾磁性粒子及びその製造方法に関するものである。 The present invention relates to surface-modified magnetic particles and a method for producing the same.

近年、磁性粒子は、抗原と抗体との免疫反応ならびにDNA同士またはDNAとRNAとのハイブリダイゼーションにおいて優れた反応場を提供できることから、診断薬や医薬品研究用途への応用が活発になっている。この分野に用いられる磁性粒子には、高い生体関連物質結合能と非特異吸着抑制能、更に、pHの変動に対する安定性が要求される。 In recent years, magnetic particles have been increasingly applied to diagnostic reagents and pharmaceutical research applications because they can provide an excellent reaction field for immune reactions between antigens and antibodies as well as hybridization between DNAs or DNA and RNA. Magnetic particles used in this field are required to have high ability to bind biologically related substances, ability to suppress nonspecific adsorption, and stability against pH fluctuations.

上記の要求特性を満足させるため、粒子表面に糖類を導入し、抗体等の生理活性物質の非特異吸着を抑制することが提案されている(例えば、特許文献1,2参照)。しかしながら、これらの方法では、非特異吸着は抑制されるものの、抗体等の生理活性物質の粒子への結合も抑制されてしまい、感度が低下するといった問題や、pH低下時の磁性体の溶出を抑制できないといった問題点を有していた。 In order to satisfy the above required characteristics, it has been proposed to introduce saccharides onto the particle surface to suppress non-specific adsorption of physiologically active substances such as antibodies (see, for example, Patent Documents 1 and 2). However, although these methods suppress non-specific adsorption, they also suppress the binding of physiologically active substances such as antibodies to particles, resulting in problems such as decreased sensitivity and the elution of magnetic substances when the pH decreases. The problem was that it could not be suppressed.

一方、粒子表面にポリマーブラシを形成し、その末端に反応性官能基を導入することが提案されている(例えば、特許文献3参照)。この方法によると、ポリマーブラシとして親水性ポリマーを選定し、末端にカルボキシル基を導入することで、高い抗体導入量と非特異吸着の抑制が達成されているが、pH低下時の磁性体の溶出抑制が不十分であった。 On the other hand, it has been proposed to form a polymer brush on the particle surface and introduce a reactive functional group to the end thereof (see, for example, Patent Document 3). According to this method, by selecting a hydrophilic polymer as the polymer brush and introducing a carboxyl group at the end, a high amount of antibody introduction and suppression of nonspecific adsorption have been achieved, but the elution of the magnetic substance when the pH decreases. Suppression was insufficient.

特開2006-321932号公報Japanese Patent Application Publication No. 2006-321932 特開2007-145985号公報Japanese Patent Application Publication No. 2007-145985 特開2016-57106号公報Japanese Patent Application Publication No. 2016-57106

本発明は、従来技術では困難であった高い生体関連物質結合能と非特異吸着抑制能、更に、pHの変動に対する安定性が高い表面修飾磁性粒子を提供することにある。 An object of the present invention is to provide surface-modified magnetic particles that have high ability to bind biologically related substances and suppress non-specific adsorption, which were difficult to achieve with conventional techniques, and also have high stability against pH fluctuations.

本発明者らは、上記課題を解決するべく鋭意検討を行った結果、磁性粒子表面に酸性多糖類コート層、ポリアミン架橋層、ポリカルボン酸コート層からなる三層を形成することで、高い生体関連物質結合能と非特異吸着抑制能、更に、pHの変動に対する安定性が高い表面修飾磁性粒子が得られることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have found that by forming three layers on the surface of magnetic particles, consisting of an acidic polysaccharide coating layer, a polyamine crosslinked layer, and a polycarboxylic acid coating layer, the The present inventors have discovered that surface-modified magnetic particles can be obtained that have a high ability to bind related substances, a high ability to suppress non-specific adsorption, and are highly stable against pH fluctuations, leading to the completion of the present invention.

すなわち、本発明は、
1.磁性粒子表面に、酸性多糖類コート層、ポリアミン架橋層、ポリカルボン酸コート層の順に三層を有することを特徴とする、表面修飾磁性粒子。
2.少なくとも下記四工程を含むことを特徴とする、表面修飾磁性粒子の製造方法。
(第一工程)
磁性粒子表面にアミノ基を導入する工程。
(第二工程)
第一工程で得られた磁性粒子に酸性多糖類を吸着もしくは反応させ、磁性粒子表面に酸性多糖類からなるコート層を形成させる工程。
(第三工程)
第二工程で得られた酸性多糖類コート層を有する磁性粒子にポリアミンを吸着もしくは反応させた後架橋させ、磁性粒子表面にポリアミン架橋層を形成させる工程。
(第四工程)
第三工程で得られたポリアミン架橋層を有する磁性粒子にポリカルボン酸を吸着もしくは反応させ、磁性粒子表面にポリカルボン酸コート層を形成させる工程。
であり、以下、詳細に説明する。
That is, the present invention
1. A surface-modified magnetic particle characterized in that the surface of the magnetic particle has three layers in this order: an acidic polysaccharide coat layer, a polyamine crosslinked layer, and a polycarboxylic acid coat layer.
2. A method for producing surface-modified magnetic particles, the method comprising at least the following four steps.
(First step)
A process of introducing amino groups onto the surface of magnetic particles.
(Second process)
A step of adsorbing or reacting an acidic polysaccharide with the magnetic particles obtained in the first step to form a coat layer made of the acidic polysaccharide on the surface of the magnetic particles.
(Third step)
A step of adsorbing or reacting a polyamine to the magnetic particles having the acidic polysaccharide coat layer obtained in the second step and then crosslinking them to form a polyamine crosslinked layer on the surface of the magnetic particles.
(Fourth step)
A step of adsorbing or reacting polycarboxylic acid to the magnetic particles having the polyamine crosslinked layer obtained in the third step to form a polycarboxylic acid coat layer on the surface of the magnetic particles.
This will be explained in detail below.

本発明でコートされる基材となる磁性粒子としては、様々な粒子を用いることができる。例えば、特開2015-192995号公報に記載されているような、微粒子表面にあるイオン性官能基と、磁性体表面にあり微粒子表面にあるイオン性官能基とは反対の電荷を有するイオン性官能基とを反応させて得られた磁性粒子や、特開2016-184703号公報に記載されているような、酸化鉄等の金属酸化物で被覆された微粒子と、表面にイオン性官能基を有する磁性体とを湿式法にて反応させて得られた磁性粒子が好ましく用いられる。磁性粒子の直径についても特に制約はないが、1~10μm程度が好ましく、特に好ましくは1~5μmである。また、上記の磁性粒子表面にはアミノ基が導入されており、その導入量は50~500μmol/gの範囲が好ましい。 Various particles can be used as the magnetic particles serving as the base material coated in the present invention. For example, as described in JP-A No. 2015-192995, an ionic functional group on the surface of a fine particle and an ionic functional group on the surface of a magnetic material having an opposite charge to the ionic functional group on the surface of the fine particle. Magnetic particles obtained by reacting with a group, or fine particles coated with a metal oxide such as iron oxide, as described in JP 2016-184703 A, and having an ionic functional group on the surface. Preferably used are magnetic particles obtained by reacting a magnetic material with a wet method. There are no particular restrictions on the diameter of the magnetic particles, but it is preferably about 1 to 10 μm, particularly preferably 1 to 5 μm. Furthermore, an amino group is introduced onto the surface of the magnetic particles, and the amount of the amino group introduced is preferably in the range of 50 to 500 μmol/g.

本発明の表面修飾磁性粒子は、磁性粒子表面に、酸性多糖類コート層、ポリアミン架橋層、ポリカルボン酸コート層の順に三層を有する。 The surface-modified magnetic particles of the present invention have three layers on the surface of the magnetic particles: an acidic polysaccharide coating layer, a polyamine crosslinked layer, and a polycarboxylic acid coating layer, in this order.

本発明において酸性多糖類コート層とは、酸性官能基を有する多糖類で形成されたコート層であり、タンパク質等の非特異吸着を抑制する機能を担っている。多糖類は非常に親水性が高く疎水部を有していないため、疎水吸着によって引き起こされるタンパク質等の非特異吸着を防止できる。ここで言う酸性官能基とは、カルボキシル基、スルホン酸基、フェノール性水酸基等の酸性を示す官能基であり、多糖類に共有結合を介して導入されている。これらの酸性官能基は、基材である磁性粒子の表面に導入されているアミノ基と、共有結合ないしはイオン結合を介して結合し、酸性多糖類コート層を磁性粒子表面に固定化する役割と、酸性多糖類コート層上に形成されるポリアミン架橋層中のアミノ基と、共有結合ないしはイオン結合を介して結合し、ポリアミン架橋層を酸性多糖類コート層の表面に固定化する役割とを担っている。本発明で用いられる酸性多糖類の若干の例としては、カルボキシメチルセルロース、カルボキシメチルデキストラン、カラギナン、ペクチン、アラビアガム、キサンタンガム、ジェランガム、寒天、トラガントガム、アルギン酸、ヒアルロン酸、コンドロイチン硫酸等が挙げられる。酸性多糖類コート層の厚みは、特に制限はないが、5nm~50nmの範囲内で適宜選択できる。コート層厚みが5nm以上であれば、疎水吸着に起因するタンパク質等の非特異吸着を十分に抑制できる。一方、厚みが50nm以下であれば、集磁性に悪影響を及ぼさない。 In the present invention, the acidic polysaccharide coat layer is a coat layer formed of a polysaccharide having an acidic functional group, and has the function of suppressing nonspecific adsorption of proteins and the like. Since polysaccharides are extremely hydrophilic and do not have hydrophobic parts, they can prevent non-specific adsorption of proteins and the like caused by hydrophobic adsorption. The acidic functional group referred to here refers to a functional group exhibiting acidity such as a carboxyl group, a sulfonic acid group, and a phenolic hydroxyl group, and is introduced into the polysaccharide via a covalent bond. These acidic functional groups bond with the amino groups introduced on the surface of the magnetic particles as a base material through covalent bonds or ionic bonds, and play the role of immobilizing the acidic polysaccharide coat layer on the surface of the magnetic particles. , plays the role of immobilizing the polyamine cross-linked layer on the surface of the acidic polysaccharide coat layer by bonding with the amino groups in the polyamine cross-linked layer formed on the acidic polysaccharide coat layer through covalent bonds or ionic bonds. ing. Some examples of acidic polysaccharides used in the present invention include carboxymethyl cellulose, carboxymethyl dextran, carrageenan, pectin, gum arabic, xanthan gum, gellan gum, agar, gum tragacanth, alginic acid, hyaluronic acid, chondroitin sulfate, and the like. The thickness of the acidic polysaccharide coat layer is not particularly limited, but can be appropriately selected within the range of 5 nm to 50 nm. When the coating layer thickness is 5 nm or more, non-specific adsorption of proteins and the like caused by hydrophobic adsorption can be sufficiently suppressed. On the other hand, if the thickness is 50 nm or less, it does not adversely affect the magnetic collecting property.

本発明においてポリアミン架橋層とは、ポリアミンをイソシアネート等の架橋剤で架橋させたものであり、クエン酸等の酸成分の磁性粒子への透過を抑制し、磁性体からの鉄溶出を防止する。ポリアミンとはアミノ基が3つ以上結合した直鎖状または分岐状脂肪族ポリマーであり、その若干の例としては、ポリエチレンイミン、ポリアリルアミン、ポリジメチルジアリルアンモニウムクロリドおよびそれらの共重合体等が挙げられる。これらポリアミンが酸性多糖類コート層に吸着ないしはイオン結合ないしは共有結合を介して固定化され、架橋剤で架橋されることでポリアミン架橋層が形成される。ポリアミン架橋層中の架橋部分の構造には特に制限はなく、例えば、架橋剤にイソシアネートを用いた場合には、ウレタン結合を介してポリアミンが架橋される。ポリアミン架橋層の厚みにも特に制限はなく、5nm~20nmの範囲内で適宜選択できる。架橋層厚みが5nm以上であると、酸成分の透過抑制が十分となるため好ましい。一方、厚みが20nm以下であれば、疎水性の増大による疎水吸着の懸念も少なくなるため好ましい。 In the present invention, the polyamine crosslinked layer is a polyamine crosslinked with a crosslinking agent such as isocyanate, and suppresses permeation of acid components such as citric acid to the magnetic particles and prevents iron elution from the magnetic material. Polyamine is a linear or branched aliphatic polymer in which three or more amino groups are bonded, and some examples thereof include polyethyleneimine, polyallylamine, polydimethyldiallylammonium chloride, and copolymers thereof. It will be done. These polyamines are adsorbed to the acidic polysaccharide coat layer or fixed via ionic bonds or covalent bonds, and then crosslinked with a crosslinking agent to form a polyamine crosslinked layer. There is no particular restriction on the structure of the crosslinked portion in the polyamine crosslinked layer. For example, when isocyanate is used as a crosslinking agent, the polyamine is crosslinked via urethane bonds. The thickness of the polyamine crosslinked layer is also not particularly limited, and can be appropriately selected within the range of 5 nm to 20 nm. It is preferable that the crosslinked layer thickness is 5 nm or more because permeation of the acid component can be sufficiently suppressed. On the other hand, if the thickness is 20 nm or less, there is less concern about hydrophobic adsorption due to increased hydrophobicity, which is preferable.

本発明においてポリカルボン酸コート層とは、ポリカルボン酸を含むポリマーで形成されたコート層であり、抗体との結合箇所を提供する機能を担っている。抗体はアミノ基を有しているため、ポリカルボン酸中のカルボキシル基と反応し、アミド結合を介して磁性粒子表面に固定化される。一方、ポリカルボン酸コート層中のカルボキシル基は、ポリアミン架橋層中のアミノ基ともイオン結合もしくは共有結合を介して結合し、ポリカルボン酸コート層を磁性粒子表面に安定的に固定化している。本発明で用いられるポリカルボン酸の若干の例としては、ポリアクリル酸、ポリメタクリル酸、ポリイタコン酸、ポリ安息香酸ビニル、ポリフマル酸、ポリマレイン酸、スチレン-無水マレイン酸共重合体、イソブテン-無水マレイン酸共重合体、及びそれらの塩等が挙げられる。ポリカルボン酸コート層の厚みは、特に制限はないが、5nm~20nmの範囲内で適宜選択できる。コート層厚みが5nm以上であると、カルボキシル基導入量が十分であり抗体導入量も低下しないため好ましい。一方、厚みが20nm以下であると、疎水性の増大による疎水吸着の懸念が生じないため好ましい。また、ポリカルボン酸コート層が磁性粒子最外層に導入されるため、磁性粒子表面には5~200μmol/g程度のカルボキシル基が導入されている。 In the present invention, the polycarboxylic acid coat layer is a coat layer formed of a polymer containing polycarboxylic acid, and has the function of providing a bonding site with an antibody. Since the antibody has an amino group, it reacts with the carboxyl group in the polycarboxylic acid and is immobilized on the surface of the magnetic particle via an amide bond. On the other hand, the carboxyl groups in the polycarboxylic acid coat layer are also bonded to the amino groups in the polyamine crosslinked layer via ionic or covalent bonds, thereby stably immobilizing the polycarboxylic acid coat layer on the magnetic particle surface. Some examples of polycarboxylic acids used in the present invention include polyacrylic acid, polymethacrylic acid, polyitaconic acid, polyvinyl benzoate, polyfumaric acid, polymaleic acid, styrene-maleic anhydride copolymer, isobutene-maleic anhydride. Examples include acid copolymers and salts thereof. The thickness of the polycarboxylic acid coating layer is not particularly limited, but can be appropriately selected within the range of 5 nm to 20 nm. A coating layer thickness of 5 nm or more is preferable because the amount of carboxyl groups introduced is sufficient and the amount of antibody introduced does not decrease. On the other hand, it is preferable that the thickness is 20 nm or less because there is no concern about hydrophobic adsorption due to increased hydrophobicity. Furthermore, since the polycarboxylic acid coating layer is introduced into the outermost layer of the magnetic particles, about 5 to 200 μmol/g of carboxyl groups are introduced to the surface of the magnetic particles.

次に、本発明の表面修飾磁性粒子の製造方法について説明する。本発明の表面修飾磁性粒子の製造方法の特長は、少なくとも下記四工程を含むことにある。以下、各工程について説明する。
(第一工程)
磁性粒子表面に、アミノ基を導入する工程である。アミノ基の導入方法は、特に限定されないが、磁性粒子にアミノシランを反応させて導入する方法が簡便で好ましい。用いられるアミノシランとしては、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシランやこれらの混合物を用いることができる。反応溶媒としては、メタノールやエタノール等のアルコールに水を加えた含水アルコールが好ましく、反応を促進するため、アンモニア等を添加しても良い。反応条件は幅広く設定可能で、反応温度は室温~80℃、反応時間は1時間~24時間の範囲で任意に設定できる。磁性粒子に導入されたアミノ基量は、基材である磁性粒子の表面積によっても異なるが、50~500μmol/g程度を導入することができる。
(第二工程)
第一工程で得られた磁性粒子に酸性多糖類を吸着もしくは反応させ、磁性粒子表面に酸性多糖類からなるコート層を形成させる工程である。磁性粒子表面のアミノ基と酸性多糖類中のカルボキシル基を反応させ、アミド結合を介して酸性多糖類を磁性粒子表面に固定化する反応では、縮合剤を用いることが好ましい。用いられる縮合剤としては、N,N-ジシクロヘキシルカルボジイミド、N,N-ジイソプロピルカルボジイミド、1-[3-(ジメチルアミノ)プロピル]-3-エチルカルボジイミド(以下EDCと略す)、EDC塩酸塩(以下EDC・HCLと略す)等のカルボジイミド系縮合剤;N,N’-カルボニルジイミダゾール、1,1’-カルボニルジ(1,2,4-トリアゾール)等のイミダゾール系縮合剤;4(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(以下DMT-MMと略す)等のトリアジン系縮合剤;1H-ベンゾトリアゾール-1-イルオキシトリス(ジメチルアミノ)ホスホニウムヘキサフルオロリン酸塩、1H-ベンゾトリアゾール-1-イルオキシトリピロリジノホスホニウムヘキサフルオロリン酸塩等のホスホニウム系縮合剤;O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロリン酸塩、O-(7-アザベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロリン酸塩等のウロニウム系縮合剤等が挙げられる。縮合剤を用いる場合、縮合剤とカルボキシル基との反応で生成するアシルイソウレア等の活性中間体は不安定で加水分解等により副反応が進行しやすいため、N-ヒドロキシスクシンイミドを併用することが好ましい。N-ヒドロキシスクシンイミド(以下、NHSと略す)はアシルイソウレアと反応し、活性中間体をより安定なNHSエステルに変換できるため、収率向上に寄与する。用いられる溶媒は、酸性多糖類が溶解する水が好ましく、反応時のpH変化を抑制できる緩衝液が特に好ましい。反応条件に制約はないが、10~60℃で5~24時間反応させることが好ましい。
(第三工程)
第二工程で得られた酸性多糖類コート層を有する磁性粒子にポリアミンを吸着もしくは反応させた後架橋させ、磁性粒子表面にポリアミン架橋層を形成させる工程である。ポリアミン架橋層は、ポリアミンを酸性多糖類コート磁性粒子表面に水層中で吸着させ、架橋剤を油層側に溶解させ、(水/油)界面で架橋反応を行って、ポリアミン架橋薄膜を磁性粒子表面に形成させる。乳化剤に油溶性乳化剤を用い、w/oエマルションを生成させることで、架橋密度の高いポリアミン架橋薄膜が形成できる。本工程で用いられる架橋剤としては、ポリイソシアネートが好ましく用いられる。その理由は、ポリイソシアネートが高い反応性と水に対する安定性を兼備しているためである。本発明で用いられるポリイソシアネートの例としては、トルエンジイソシアネート、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、ペンタメチレンジイソシアネート、イソホロンジイソシアネート等が挙げられる。本工程で用いられる乳化剤は油溶性乳化剤であり、HLBが3~6を示す。若干の具体例としては、ソルビタンモノオレエート、ソルビタントリオレエート、ソルビタンモノステアレート、ソルビタントリステアレート、ソルビタンモノパルミテート等が挙げられる。反応は低温・短時間で進行し、反応温度としては0℃~室温、反応時間は5~30分程度で十分である。
(第四工程)
第三工程で得られたポリアミン架橋層を有する磁性粒子にポリカルボン酸を吸着もしくは反応させ、磁性粒子表面にポリカルボン酸コート層を形成させる工程である。ポリカルボン酸コート層を磁性粒子表面に安定的に保持するためには、ポリアミン架橋層中のアミノ基とポリカルボン酸中のカルボキシル基を反応させ、アミド結合により両者を結合・固定化することが好ましい。この反応は第二工程の反応と同様であり、縮合剤を用いることが好ましい。用いられる縮合剤は第二工程で用いられたものと同様であり、反応条件も同様である。
Next, a method for producing surface-modified magnetic particles of the present invention will be explained. The feature of the method for producing surface-modified magnetic particles of the present invention is that it includes at least the following four steps. Each step will be explained below.
(First step)
This is a step of introducing amino groups onto the surface of magnetic particles. The method of introducing amino groups is not particularly limited, but a method of reacting aminosilane to magnetic particles and introducing them is simple and preferred. The aminosilanes used include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, N-2-(aminoethyl)-3- Aminopropylmethyldimethoxysilane or mixtures thereof can be used. The reaction solvent is preferably a hydrous alcohol such as methanol or ethanol in which water is added, and ammonia or the like may be added to promote the reaction. The reaction conditions can be set over a wide range, and the reaction temperature can be set arbitrarily within the range of room temperature to 80°C, and the reaction time can be set arbitrarily within the range of 1 hour to 24 hours. The amount of amino groups introduced into the magnetic particles varies depending on the surface area of the magnetic particles as a base material, but can be about 50 to 500 μmol/g.
(Second process)
This is a step in which an acidic polysaccharide is adsorbed or reacted with the magnetic particles obtained in the first step to form a coat layer made of the acidic polysaccharide on the surface of the magnetic particles. It is preferable to use a condensing agent in the reaction in which the amino groups on the surface of the magnetic particles and the carboxyl groups in the acidic polysaccharide are reacted to immobilize the acidic polysaccharide on the surface of the magnetic particle via an amide bond. The condensing agents used include N,N-dicyclohexylcarbodiimide, N,N-diisopropylcarbodiimide, 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide (hereinafter abbreviated as EDC), and EDC hydrochloride (hereinafter EDC).・Carbodiimide condensing agents such as HCL; imidazole condensing agents such as N,N'-carbonyldiimidazole and 1,1'-carbonyldi(1,2,4-triazole); 4 (4,6- Triazine-based condensing agents such as dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (hereinafter abbreviated as DMT-MM); 1H-benzotriazol-1-yloxytris (dimethylamino ) Phosphonium-based condensing agents such as phosphonium hexafluorophosphate and 1H-benzotriazol-1-yloxytripyrrolidinophosphonium hexafluorophosphate; O-(benzotriazol-1-yl)-N,N,N' , N'-tetramethyluronium hexafluorophosphate, O-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate, etc. Examples include condensing agents. When using a condensing agent, active intermediates such as acylisourea produced by the reaction between the condensing agent and the carboxyl group are unstable and side reactions are likely to proceed due to hydrolysis, etc., so it is not recommended to use N-hydroxysuccinimide in combination. preferable. N-hydroxysuccinimide (hereinafter abbreviated as NHS) reacts with acylisourea and can convert the active intermediate into a more stable NHS ester, contributing to improved yield. The solvent used is preferably water in which the acidic polysaccharide is dissolved, and particularly preferably a buffer solution that can suppress pH changes during the reaction. Although there are no restrictions on the reaction conditions, it is preferable to carry out the reaction at 10 to 60°C for 5 to 24 hours.
(Third step)
This is a step in which the magnetic particles having the acidic polysaccharide coat layer obtained in the second step are adsorbed or reacted with a polyamine and then crosslinked to form a polyamine crosslinked layer on the surface of the magnetic particles. The polyamine cross-linked layer is created by adsorbing polyamine on the surface of acidic polysaccharide-coated magnetic particles in a water layer, dissolving the cross-linking agent in the oil layer side, and performing a cross-linking reaction at the (water/oil) interface to form a polyamine cross-linked thin film on the magnetic particles. Form on the surface. By using an oil-soluble emulsifier as an emulsifier and producing a w/o emulsion, a polyamine crosslinked thin film with a high crosslinking density can be formed. As the crosslinking agent used in this step, polyisocyanate is preferably used. The reason is that polyisocyanates have both high reactivity and stability against water. Examples of the polyisocyanate used in the present invention include toluene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, pentamethylene diisocyanate, isophorone diisocyanate, and the like. The emulsifier used in this step is an oil-soluble emulsifier and has an HLB of 3 to 6. Some specific examples include sorbitan monooleate, sorbitan trioleate, sorbitan monostearate, sorbitan tristearate, sorbitan monopalmitate, and the like. The reaction proceeds at a low temperature and in a short time, and a reaction temperature of 0° C. to room temperature and a reaction time of about 5 to 30 minutes are sufficient.
(Fourth step)
This is a step in which polycarboxylic acid is adsorbed or reacted with the magnetic particles having the polyamine crosslinked layer obtained in the third step to form a polycarboxylic acid coat layer on the surface of the magnetic particles. In order to stably hold the polycarboxylic acid coating layer on the surface of the magnetic particles, it is necessary to react the amino groups in the polyamine crosslinked layer and the carboxyl groups in the polycarboxylic acid to bond and immobilize them through an amide bond. preferable. This reaction is similar to the reaction in the second step, and it is preferable to use a condensing agent. The condensing agent used is the same as that used in the second step, and the reaction conditions are also the same.

本発明によれば、高い生体関連物質結合能と非特異吸着抑制能、更に、pHの変動に対する安定性が高い表面修飾磁性粒子を提供することができる。 According to the present invention, it is possible to provide surface-modified magnetic particles that have a high ability to bind biologically related substances, a high ability to suppress nonspecific adsorption, and a high stability against pH fluctuations.

本発明の表面修飾磁性粒子は、高い生体関連物質結合能と非特異吸着抑制能、更に、pHの変動に対する高い安定性を示すため、診断薬用担体や医薬品研究用途分野に応用でき、実用性に優れたものである。 The surface-modified magnetic particles of the present invention exhibit high ability to bind biologically related substances, ability to suppress nonspecific adsorption, and high stability against pH fluctuations, so they can be applied to the fields of diagnostic drug carriers and pharmaceutical research applications, and are of practical use. It is excellent.

以下に、本発明を更に詳細に実施例に基づき説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES The present invention will be explained in more detail below based on Examples, but the present invention is not limited to these Examples.

実施例1
(第一工程)磁性粒子表面へのアミノ基の導入
特開2015-192995号公報に記載されている方法で製造した磁性粒子(平均粒径2.5μm、鉄含有量22%)0.5gをエタノール10gに分散させ、3-アミノプロピルトリメトキシシラン0.3gを添加し、室温で5分間撹拌した。次いで28%アンモニア水85μL、純水31μLを添加し、密封下60℃で3時間反応した。反応終了後、集磁により磁性粒子を回収し、エタノールで洗浄した後、減圧乾燥して単離した。
Example 1
(First step) Introduction of amino groups to the surface of magnetic particles 0.5 g of magnetic particles (average particle size 2.5 μm, iron content 22%) manufactured by the method described in JP 2015-192995A The mixture was dispersed in 10 g of ethanol, 0.3 g of 3-aminopropyltrimethoxysilane was added, and the mixture was stirred at room temperature for 5 minutes. Next, 85 μL of 28% ammonia water and 31 μL of pure water were added, and the mixture was reacted at 60° C. for 3 hours under sealed conditions. After the reaction was completed, the magnetic particles were collected by magnetic collection, washed with ethanol, and isolated by drying under reduced pressure.

導入されたアミノ基の定量は、先行文献(今田清久 日本化学会誌 407(1990))の方法に従って定量した。アミノ基導入前の磁性粒子のアミノ基量は30μmol/gであったのに対し、導入後のアミノ基量は185μmol/gであった。 The introduced amino groups were quantified according to the method described in the previous literature (Kiyohisa Imada, Journal of the Chemical Society of Japan 407 (1990)). The amount of amino groups in the magnetic particles before introduction of amino groups was 30 μmol/g, whereas the amount of amino groups after introduction was 185 μmol/g.

(第二工程)酸性多糖類コート層の形成
酸性多糖類としてアルギン酸を用い、以下の方法でコート層を形成した。アルギン酸ナトリウム(I-3G、株式会社キミカ製)1.0gをMESバッファ100mlに溶解させ、次いでEDC・HCL0.96gとN-ヒドロキシスクシンイミド0.58gを添加し、溶解させた。更に、上記アミノ基導入磁性粒子0.2gを純水20mlに分散させたスラリーを徐々に添加し、室温にて一夜反応を行った。反応終了後、集磁により磁性粒子を回収し、純水で洗浄した。この粒子のゼータ電位を測定したところ、-40.7mVとマイナスの値を示しており、磁性粒子表面にアルギン酸コート層が形成されていることを確認した。一方、酸性多糖類コート層形成後のアミノ基量は60μmol/gに減少しており、磁性粒子表面のアミノ基とアルギン酸ナトリウムが反応し、酸性多糖類コート層が形成されていることが確認できた。
(Second Step) Formation of Acidic Polysaccharide Coat Layer Using alginic acid as the acidic polysaccharide, a coat layer was formed by the following method. 1.0 g of sodium alginate (I-3G, manufactured by Kimika Co., Ltd.) was dissolved in 100 ml of MES buffer, and then 0.96 g of EDC/HCL and 0.58 g of N-hydroxysuccinimide were added and dissolved. Furthermore, a slurry prepared by dispersing 0.2 g of the amino group-introduced magnetic particles in 20 ml of pure water was gradually added, and the reaction was carried out overnight at room temperature. After the reaction was completed, the magnetic particles were collected by magnetic collection and washed with pure water. When the zeta potential of this particle was measured, it showed a negative value of -40.7 mV, confirming that an alginic acid coat layer was formed on the surface of the magnetic particle. On the other hand, the amount of amino groups after the formation of the acidic polysaccharide coat layer decreased to 60 μmol/g, confirming that the amino groups on the surface of the magnetic particles and sodium alginate reacted to form the acidic polysaccharide coat layer. Ta.

(第三工程)ポリアミン架橋層の形成
上記アルギン酸コート磁性粒子をポリエチレンイミン(分子量70000、和光純薬製)4%水溶液120mlに分散させ室温にて30分間撹拌後、集磁して磁性粒子を回収した。Span85 5mlをn-ヘキサン100mlに溶解させ、上記の集磁・回収した磁性粒子を添加・分散させた後5℃に冷却し、トルエンジイソシアネート0.25gをn-ヘキサン50mlに溶解させた溶液を滴下し、更に30分間撹拌・反応させた。反応終了後、エタノール、純水で順次洗浄し、単離した。上記と同様の方法(今田清久 日本化学会誌 407(1990))で測定したアミノ基導入量は270μmol/gであり、ポリアミン架橋層が形成されていることが確認できた。
(Third step) Formation of polyamine crosslinked layer The above alginate-coated magnetic particles were dispersed in 120 ml of a 4% aqueous solution of polyethyleneimine (molecular weight 70,000, manufactured by Wako Pure Chemical Industries, Ltd.), stirred at room temperature for 30 minutes, and collected by collecting the magnetic particles. did. Dissolve 5ml of Span85 in 100ml of n-hexane, add and disperse the magnetic particles collected and collected above, cool to 5°C, and dropwise add a solution of 0.25g of toluene diisocyanate dissolved in 50ml of n-hexane. The mixture was further stirred and reacted for 30 minutes. After the reaction was completed, it was washed successively with ethanol and pure water and isolated. The amount of introduced amino groups measured by the same method as above (Kiyohisa Imada, Journal of the Chemical Society of Japan 407 (1990)) was 270 μmol/g, and it was confirmed that a polyamine crosslinked layer was formed.

(第四工程)ポリカルボン酸コート層の形成
ポリアクリル酸(平均分子量約5,000、和光純薬製)0.36gをMESバッファ100mlに溶解させ、更にDMT-MM2.77gを加えて室温で撹拌し、均一溶液とした。そこに、上記工程で得られたポリアミン架橋層導入磁性粒子0.1gを純水20mlに分散させたスラリーとして添加し、室温にて一夜反応させた。反応終了後、純水で洗浄し、単離した。導入されたカルボキシル基の定量は、先行文献(Bing Yan et al.,Anal.Chem.71,4564(1999))の方法に従って定量した。導入されたカルボキシル基量は17μmol/gであり、磁性粒子最表層にポリカルボン酸コート層が形成されていることを確認した。
(Fourth step) Formation of polycarboxylic acid coating layer Dissolve 0.36 g of polyacrylic acid (average molecular weight approximately 5,000, manufactured by Wako Pure Chemical Industries, Ltd.) in 100 ml of MES buffer, add 2.77 g of DMT-MM, and leave at room temperature. Stir to obtain a homogeneous solution. Thereto, 0.1 g of the polyamine crosslinked layer-introduced magnetic particles obtained in the above step was added as a slurry dispersed in 20 ml of pure water, and the mixture was reacted overnight at room temperature. After the reaction was completed, it was washed with pure water and isolated. The introduced carboxyl group was quantified according to the method described in the previous literature (Bing Yan et al., Anal. Chem. 71, 4564 (1999)). The amount of carboxyl groups introduced was 17 μmol/g, and it was confirmed that a polycarboxylic acid coating layer was formed on the outermost layer of the magnetic particles.

表面修飾磁性粒子の評価;磁気応答性
下記方法で表面修飾磁性粒子の磁気応答性を評価した。
Evaluation of surface-modified magnetic particles; magnetic responsiveness The magnetic responsiveness of the surface-modified magnetic particles was evaluated by the following method.

上記方法で得られた表面修飾磁性粒子5mgを純水10mlに分散させた後、2mlをセルに分取した。磁石を装着した吸光光度計にセルをセットし、波長550nmにて2秒毎に吸光度を測定し、吸光度が初期吸光度の1/10となるまでの時間(集磁時間)を測定した。集磁時間は79秒であり、良好な磁気応答性を示した。 After dispersing 5 mg of the surface-modified magnetic particles obtained by the above method in 10 ml of pure water, 2 ml was dispensed into a cell. The cell was set in an absorption photometer equipped with a magnet, and the absorbance was measured every 2 seconds at a wavelength of 550 nm, and the time required for the absorbance to become 1/10 of the initial absorbance (magnetic collection time) was measured. The magnetism collection time was 79 seconds, indicating good magnetic response.

表面修飾磁性粒子の評価;クエン酸溶出試験
pH変動に対する耐久性を評価するため、以下の方法でクエン酸溶出試験を行った。
Evaluation of surface-modified magnetic particles; citric acid elution test In order to evaluate durability against pH fluctuations, a citric acid elution test was conducted using the following method.

エッペンドルフマイクロチューブに上記方法で得られた表面修飾磁性粒子10mgを分取し、0.1Mクエン酸溶液1mlを加え、ミックスローターにて37℃で17時間撹拌した。撹拌終了後、磁性粒子を集磁・除去し、溶液部分をセルに移し、波長460nmにて吸光度を測定した。吸光度は0.023でクエン酸による磁性体の溶出はほとんど認められなかった。 10 mg of the surface-modified magnetic particles obtained by the above method was placed in an Eppendorf microtube, 1 ml of 0.1M citric acid solution was added thereto, and the mixture was stirred at 37° C. for 17 hours using a mix rotor. After the stirring was completed, the magnetic particles were collected and removed, the solution portion was transferred to a cell, and the absorbance was measured at a wavelength of 460 nm. The absorbance was 0.023, and almost no elution of the magnetic substance by citric acid was observed.

実施例2
第四工程において、平均分子量5,000のポリアクリル酸に代えて平均分子量25,000のポリアクリル酸(和光純薬製)を用いたことを除いて、実施例1と同様の操作を行い、表面修飾磁性粒子を得た。磁性粒子表面に導入されたカルボキシル基量は33μmol/gであった。集磁時間は54秒であり、良好な磁気応答性を示した。また、クエン酸溶出試験における吸光度は0.019であり、クエン酸による磁性体の溶出は認められなかった。
Example 2
In the fourth step, the same operation as in Example 1 was performed, except that polyacrylic acid with an average molecular weight of 25,000 (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of polyacrylic acid with an average molecular weight of 5,000. Surface-modified magnetic particles were obtained. The amount of carboxyl groups introduced onto the surface of the magnetic particles was 33 μmol/g. The magnetism collection time was 54 seconds, indicating good magnetic response. Further, the absorbance in the citric acid elution test was 0.019, and no elution of the magnetic material by citric acid was observed.

実施例3
第三工程において、架橋剤としてトルエンジイソシアネートに代えてヘキサメチレンジイソシアネートを用いたことと、平均分子量5,000のポリアクリル酸に代えて平均分子量25,000のポリアクリル酸(和光純薬製)を用いたことを除いて、実施例1と同様の操作を行い、表面修飾磁性粒子を得た。ポリアミン架橋層形成後のアミノ基量は450μmol/g、ポリカルボン酸コート層形成後の表面カルボキシル基量は86μmol/gであった。集磁時間は68秒であり、良好な磁気応答性を示した。また、クエン酸溶出試験における吸光度は0.012であり、クエン酸による磁性体の溶出は認められなかった。
Example 3
In the third step, hexamethylene diisocyanate was used instead of toluene diisocyanate as a crosslinking agent, and polyacrylic acid with an average molecular weight of 25,000 (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of polyacrylic acid with an average molecular weight of 5,000. Surface-modified magnetic particles were obtained by carrying out the same operation as in Example 1, except for using the following methods. The amount of amino groups after forming the polyamine crosslinked layer was 450 μmol/g, and the amount of surface carboxyl groups after forming the polycarboxylic acid coat layer was 86 μmol/g. The magnetism collection time was 68 seconds, indicating good magnetic response. Further, the absorbance in the citric acid elution test was 0.012, and no elution of the magnetic material by citric acid was observed.

比較例1
実施例で用いた出発原料である未コートの磁性粒子について、集磁性評価とクエン酸溶出試験を行った。集磁時間は97秒であり、良好な磁気応答性を示したが、クエン酸溶出試験における吸光度は0.050であり、クエン酸による磁性体の溶出が認められた。表面修飾を行わないと、クエン酸が磁性体と接触し、磁性体が溶出してしまうことがわかる。
Comparative example 1
Magnetic collection property evaluation and citric acid elution test were conducted on uncoated magnetic particles, which were the starting materials used in the examples. The magnetic collection time was 97 seconds, indicating good magnetic responsiveness, but the absorbance in the citric acid elution test was 0.050, indicating elution of the magnetic material by citric acid. It can be seen that if surface modification is not performed, citric acid will come into contact with the magnetic material and the magnetic material will be eluted.

比較例2
磁性粒子へのアミノ基導入反応と酸性多糖類コート層の形成までは実施例1と同様の方法で行ったが、ポリアミン架橋層とポリカルボン酸コート層は形成せずに集磁性評価とクエン酸溶出試験を行った。集磁時間は97秒であり、良好な磁気応答性を示したが、クエン酸溶出試験における吸光度は0.052であり、クエン酸による磁性体の溶出が認められた。酸性多糖類コート層のみではクエン酸の磁性粒子への透過・拡散が阻止できず、磁性体とクエン酸が接触し、磁性体が溶出してしまうことがわかる。
Comparative example 2
The reaction of introducing amino groups into the magnetic particles and the formation of the acidic polysaccharide coat layer were carried out in the same manner as in Example 1, but the polyamine crosslinked layer and the polycarboxylic acid coat layer were not formed, and magnetic collection property evaluation and citric acid A dissolution test was conducted. The magnetic collection time was 97 seconds, indicating good magnetic responsiveness, but the absorbance in the citric acid elution test was 0.052, indicating elution of the magnetic material by citric acid. It can be seen that the acidic polysaccharide coating layer alone cannot prevent citric acid from permeating and diffusing into the magnetic particles, and the magnetic material and citric acid come into contact and the magnetic material is eluted.

本発明の表面修飾磁性粒子は、高い生体関連物質結合能と非特異吸着抑制能、更に、pHの変動に対する高い安定性を示すため、診断薬用担体等の生化学用担体、特に自動診断システム用診断薬用担体に応用できる。 The surface-modified magnetic particles of the present invention exhibit high ability to bind biologically related substances, ability to suppress nonspecific adsorption, and high stability against pH fluctuations, so they can be used as biochemical carriers such as carriers for diagnostic reagents, especially in automatic diagnostic systems. It can be applied to carriers for diagnostic drugs.

Claims (2)

磁性粒子表面に、酸性多糖類コート層、ポリアミン架橋層、ポリカルボン酸コート層の順に三層を有することを特徴とする、表面修飾磁性粒子。 A surface-modified magnetic particle characterized in that the surface of the magnetic particle has three layers in this order: an acidic polysaccharide coat layer, a polyamine crosslinked layer, and a polycarboxylic acid coat layer. 少なくとも下記四工程を含むことを特徴とする、表面修飾磁性粒子の製造方法。
(第一工程)
磁性粒子表面にアミノ基を導入する工程。
(第二工程)
第一工程で得られた磁性粒子に酸性多糖類を吸着もしくは反応させ、磁性粒子表面に酸性多糖類コート層を形成させる工程。
(第三工程)
第二工程で得られた酸性多糖類コート層を有する磁性粒子にポリアミンを吸着もしくは反応させた後架橋させ、磁性粒子表面にポリアミン架橋層を形成させる工程。
(第四工程)
第三工程で得られたポリアミン架橋層を有する磁性粒子にポリカルボン酸を吸着もしくは反応させ、磁性粒子表面にポリカルボン酸コート層を形成させる工程。
A method for producing surface-modified magnetic particles, the method comprising at least the following four steps.
(First step)
A process of introducing amino groups onto the surface of magnetic particles.
(Second process)
A step of adsorbing or reacting an acidic polysaccharide to the magnetic particles obtained in the first step to form an acidic polysaccharide coat layer on the surface of the magnetic particles.
(Third step)
A step of adsorbing or reacting a polyamine to the magnetic particles having the acidic polysaccharide coat layer obtained in the second step and then crosslinking them to form a polyamine crosslinked layer on the surface of the magnetic particles.
(Fourth step)
A step of adsorbing or reacting polycarboxylic acid to the magnetic particles having the polyamine crosslinked layer obtained in the third step to form a polycarboxylic acid coat layer on the surface of the magnetic particles.
JP2019151238A 2019-08-21 2019-08-21 Surface-modified magnetic particles and method for producing the same Active JP7346998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019151238A JP7346998B2 (en) 2019-08-21 2019-08-21 Surface-modified magnetic particles and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019151238A JP7346998B2 (en) 2019-08-21 2019-08-21 Surface-modified magnetic particles and method for producing the same

Publications (2)

Publication Number Publication Date
JP2021032635A JP2021032635A (en) 2021-03-01
JP7346998B2 true JP7346998B2 (en) 2023-09-20

Family

ID=74678093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019151238A Active JP7346998B2 (en) 2019-08-21 2019-08-21 Surface-modified magnetic particles and method for producing the same

Country Status (1)

Country Link
JP (1) JP7346998B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4365592A1 (en) * 2021-07-15 2024-05-08 Sekisui Medical Co., Ltd. Composition containing tarc, diluted solution, method for preventing carry over of tarc, adsorption-preventing agent, and continuous analysis method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007112904A (en) 2005-10-20 2007-05-10 Chisso Corp Water-soluble cationic magnetic fine particle and their use for separating or detecting phospholipid vesicle
JP2010504187A (en) 2006-09-20 2010-02-12 バイオカルテイス・エス・エイ Coating for microcarrier
US20130052664A1 (en) 2010-03-05 2013-02-28 Samsung Electronics Co., Ltd. Method and kit for isolating target cell
JP2014156411A (en) 2013-02-14 2014-08-28 Toda Kogyo Corp Composite magnetic particulate powder, and dispersion

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007112904A (en) 2005-10-20 2007-05-10 Chisso Corp Water-soluble cationic magnetic fine particle and their use for separating or detecting phospholipid vesicle
JP2010504187A (en) 2006-09-20 2010-02-12 バイオカルテイス・エス・エイ Coating for microcarrier
US20130052664A1 (en) 2010-03-05 2013-02-28 Samsung Electronics Co., Ltd. Method and kit for isolating target cell
JP2014156411A (en) 2013-02-14 2014-08-28 Toda Kogyo Corp Composite magnetic particulate powder, and dispersion

Also Published As

Publication number Publication date
JP2021032635A (en) 2021-03-01

Similar Documents

Publication Publication Date Title
JP5367915B2 (en) Method for producing functional molecule-containing silica nanoparticles bonded with biomolecules
EP1649284B1 (en) Process for preparing coated magnetic particles
Ding et al. Recent developments in molecularly imprinted nanoparticles by surface imprinting techniques
JP5448369B2 (en) Method for producing silica particle having amino group on particle surface, silica particle having amino group on particle surface, and composite particle using the same
JP4665762B2 (en) Substrate surface with non-specific adsorption suppressed
WO2014106665A1 (en) Label-free method for the detection of analytes
JP5203132B2 (en) Method for producing silica particle having crosslinkable functional group on particle surface, silica particle having crosslinkable functional group on particle surface, colloid of silica particle, composite particle using silica particle, and method for producing composite particle
EP1682866A2 (en) Gel-shell beads with adsorbed or bound biomolecules
JP7346998B2 (en) Surface-modified magnetic particles and method for producing the same
US20190152807A1 (en) Immobilization of particles on a matrix
CN110240704A (en) The preparation method and application of targeting enzyme immobilization carrier based on magnetic molecularly imprinted technology
JP2008222502A (en) Composite particle with high dispersibility inhibiting nonspecific adsorption, composite particle colloid, analysis reagent using the same, particle surface modification method and method for manufacturing composite particle
KR20160092406A (en) Fluorescent silica nanoparticles coated with hydrophilic macromolecule and preparing method thereof
JP2004528414A (en) Phosphorus-containing polymers for optical signal converters
CN116099519A (en) Magnetic solid phase extraction material, preparation method and application thereof
Jamwal et al. Designing Silica‐Based Hybrid Polymers and their Application in the Loading and Release of Fluorescein as a Model Drug and Diagnostic Agent
JP5088822B2 (en) Method for preparing coated polymer particles containing superparamagnetic crystals
JP2009162537A (en) Composite particle having polysaccharide on surface, composite particle colloid, analytical reagent using the same, and composite particle manufacturing method
Jensen et al. Amine functionalization of silica sol–gel thin films via kinetic doping: a novel, green approach
Kolotilov et al. Nanosized magnetic composite for extraction of γ-immunoglobulins from biological media
CN114395135B (en) Magnetic microsphere with protein non-specific adsorption resistance and preparation method thereof
US9180206B2 (en) Pharmaceutical preparation and manufacturing method thereof
JP2629909B2 (en) Functional particles and method for producing the same
JPH0759567A (en) Carrier for immobilizing physiologically active substance
KR20220093995A (en) Magnetic agarose bead (MAB) grafted with metal ion-complex for affinity-based separation of macromolecules and its preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230821

R151 Written notification of patent or utility model registration

Ref document number: 7346998

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151