JP7345151B1 - cancer treatment drug - Google Patents

cancer treatment drug Download PDF

Info

Publication number
JP7345151B1
JP7345151B1 JP2023522767A JP2023522767A JP7345151B1 JP 7345151 B1 JP7345151 B1 JP 7345151B1 JP 2023522767 A JP2023522767 A JP 2023522767A JP 2023522767 A JP2023522767 A JP 2023522767A JP 7345151 B1 JP7345151 B1 JP 7345151B1
Authority
JP
Japan
Prior art keywords
cancer
ags8
cells
therapeutic agent
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023522767A
Other languages
Japanese (ja)
Other versions
JPWO2023140355A1 (en
Inventor
元彦 佐藤
一夫 梅澤
彩 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Medical University
Original Assignee
Aichi Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Medical University filed Critical Aichi Medical University
Publication of JPWO2023140355A1 publication Critical patent/JPWO2023140355A1/ja
Application granted granted Critical
Publication of JP7345151B1 publication Critical patent/JP7345151B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • A61K31/427Thiazoles not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/08Drugs for disorders of the urinary system of the prostate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Landscapes

  • Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Urology & Nephrology (AREA)
  • Epidemiology (AREA)
  • Oncology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

【課題】癌細胞の増殖を抑える癌治療薬を提供すること。【解決手段】一般式(1)で表される化合物又はその医薬的に許容される塩を含有してなる癌治療薬。【選択図】なし[Problem] To provide a cancer therapeutic drug that suppresses the proliferation of cancer cells. SOLUTION: A cancer therapeutic drug comprising a compound represented by general formula (1) or a pharmaceutically acceptable salt thereof. [Selection diagram] None

Description

本発明は、特定の構造式を有する化合物又はその医薬的に許容される塩を含有してなる癌治療薬に関する。より具体的には前立腺癌治療薬に関する。 The present invention relates to a cancer therapeutic agent containing a compound having a specific structural formula or a pharmaceutically acceptable salt thereof. More specifically, it relates to a therapeutic agent for prostate cancer.

癌が日本人の死因の第一位になってから久しく、現在では年間30万人以上の国民が、癌で死亡している。また、生涯のうちに癌にかかる可能性は、男性の2人に1人、女性の3人に1人と推測されている。世界レベルで見ても癌による死亡者数は増加しており、世界保健機構(WHO)の外部研究組織である国際がん研究機関(IARC)によれば、癌による年間死者数は2030年までに、08年からほぼ倍増の1330万人に達すると予測している。 It has been a long time since cancer became the number one cause of death in Japan, and now more than 300,000 people die from cancer each year. Furthermore, it is estimated that one in two men and one in three women will develop cancer during their lifetime. The number of deaths from cancer is increasing worldwide, and according to the International Agency for Research on Cancer (IARC), an external research organization of the World Health Organization (WHO), the annual number of deaths from cancer will increase by 2030. It is predicted that the number will almost double from 2008 to 13.3 million.

癌の中でも前立腺癌は、高齢男性にみられる癌である。世界的にみると、前立腺癌は特に欧米で発症頻度の高い癌であり、アメリカにおいては男性の癌の中での罹患数及び死亡者数は上位を占める。日本において前立腺癌は、もともとあまり多く見られる癌ではなかったが、人口の高齢化と共にその罹患率は急激に増加し、最近の統計(国立研究開発法人国立がん研究センター 2018年全国登録罹患データ)では、邦人男性癌の罹患数1位となっており、今後も増加していくと予想される。 Among cancers, prostate cancer is a cancer found in older men. Worldwide, prostate cancer is a cancer that occurs frequently, especially in Europe and the United States, and in the United States, it accounts for the highest number of morbidities and deaths among male cancers. Prostate cancer was originally not a very common cancer in Japan, but as the population ages, the incidence rate has increased rapidly, and recent statistics (National Cancer Center 2018 National Registered Incidence Data) ) is the most common cancer among Japanese men, and it is expected that the number will continue to increase.

前立腺癌の治療法としては、「手術療法」「放射線療法」「ホルモン療法」などが挙げられる。その中で「ホルモン療法」はどのステージにおいても使われる治療法である。これは、前立腺癌の多くが、精巣及び副腎から分泌される男性ホルモン(アンドロゲン)の影響を受けて増殖しているため、アンドロゲンの分泌や働きを抑えることによって、前立腺癌細胞の増殖を抑制しようとする治療法である。 Treatment methods for prostate cancer include "surgical therapy," "radiation therapy," and "hormone therapy." Among these, ``hormone therapy'' is a treatment method that can be used at any stage. This is because most prostate cancers grow under the influence of male hormones (androgens) secreted from the testes and adrenal glands, so by suppressing the secretion and function of androgens, it is possible to suppress the growth of prostate cancer cells. This is a treatment method that

このホルモン療法は、癌細胞の増殖がアンドロゲン依存性であるうちは有効であるが、数年もすると、前立腺癌はホルモン療法抵抗性を持つ。治療の開始時期や、前立腺癌の進行ステージによっても異なるが、初回のホルモン治療の平均的な効果持続期間は3年と言われている。そしてホルモン非感受性となった癌細胞は浸潤、転移が進みやすい。前立腺癌は特にリンパ節と骨(特に脊柱と骨盤骨)に転移しやすく(これを、「転移性前立腺癌」ともいう)、転移した部位にもよるが制御が困難となりやすく、5年非再発生存率は20%(5年再発率80%)、5年生存率は50%(死亡率50%)とも言われている(The Lancet Oncology (2013), 14, 149-158参照)。そのため、転移性前立腺癌の治療に有効な治療法が必要とされていた。
ところで、前立腺癌にActivator of G-protein signaling 8(以下、「AGS8」ということもある)の発現が認められ、その発現レベルは進行癌や転移性前立腺癌でより高く、また、発現の有無が生命予後と相関することが報告された(非特許文献1参照)。
This hormone therapy is effective while cancer cell growth is androgen-dependent, but after several years, prostate cancer becomes resistant to hormone therapy. Although it varies depending on when treatment is started and the stage of progression of prostate cancer, the average effect of initial hormone therapy is said to last three years. Cancer cells that have become hormone insensitive are more likely to invade and metastasize. Prostate cancer is particularly likely to metastasize to lymph nodes and bones (especially the spinal column and pelvic bones) (this is also called "metastatic prostate cancer"), and depending on the site of metastasis, it can be difficult to control, and it may take up to 5 years without recurrence. The survival rate is said to be 20% (5-year recurrence rate 80%) and 50% (mortality rate 50%) (see The Lancet Oncology (2013), 14, 149-158). Therefore, there has been a need for effective therapeutic methods for treating metastatic prostate cancer.
By the way, the expression of Activator of G-protein signaling 8 (hereinafter also referred to as "AGS8") has been observed in prostate cancer, and its expression level is higher in advanced cancer and metastatic prostate cancer, and the presence or absence of expression is also observed. It has been reported that it is correlated with life prognosis (see Non-Patent Document 1).

一方で発明者らは、これまで、心筋細胞の低酸素誘導アポトーシスにおいてAGS8とG蛋白βγサブユニット(以下、「AGS8-Gβγ」ということもある)の相互作用が極めて重要な役割を果たすことを明らかにし、その相互作用を阻害することは、虚血性損傷から心筋を保護するための新しいアプローチとなり得ることを報告してきた(非特許文献2参照)。あるいは、AGS8-Gβγ相互作用を阻害するように設計されたペプチドは、血管内皮増殖因子(VEGF)誘導性の血管形成を阻害することを報告してきた(非特許文献3参照)。 On the other hand, the inventors have previously shown that the interaction between AGS8 and G protein βγ subunit (hereinafter also referred to as "AGS8-Gβγ") plays an extremely important role in hypoxia-induced apoptosis of cardiomyocytes. We have reported that elucidating this and inhibiting this interaction could be a new approach to protecting myocardium from ischemic damage (see Non-Patent Document 2). Alternatively, it has been reported that peptides designed to inhibit the AGS8-Gβγ interaction inhibit vascular endothelial growth factor (VEGF)-induced angiogenesis (see Non-Patent Document 3).

Dibash K.Das et al., “miR-1207-3p regulates the androgen receptor in prostate cancer via FNDC1/fibronectin”, Experimental Cell Research, 2016, 348(2):190-200Dibash K.Das et al., “miR-1207-3p regulates the androgen receptor in prostate cancer via FNDC1/fibronectin”, Experimental Cell Research, 2016, 348(2):190-200 Motohiko Sato et al., “Protection of Cardiomyocytes from the Hypoxia-Mediated Injury by a Peptide Targeting the Activator of G-Protein Signaling 8”, PLos One, 2014、 9(3) :e91980Motohiko Sato et al., “Protection of Cardiomyocytes from the Hypoxia-Mediated Injury by a Peptide Targeting the Activator of G-Protein Signaling 8”, PLos One, 2014, 9(3): e91980 Hisaki Hayashi et al., “Activator of G-protein signaling 8 is involved in VEGF-mediated signal processing during angiogenesis”, Journal of Cell Science, 2016, 129 (6): 1210-1222Hisaki Hayashi et al., “Activator of G-protein signaling 8 is involved in VEGF-mediated signal processing during angiogenesis”, Journal of Cell Science, 2016, 129 (6): 1210-1222

非特許文献1では、前立腺癌、特に転移性前立腺癌においてAGS8が高い割合で発現していることが示され、非特許文献3ではAGS8の機能発現のためにはAGS8とGβγの相互作用が極めて重要な役割を果たすことが示唆されたが、具体的に前立腺癌に対する治療方法はこれまで示されていない。さらに、非特許文献3に記載されたような、AGS8-Gβγ相互作用を阻害するようなペプチドでは、生体内での安定性が低いため、治療薬には適さないという課題があった。
そこで本発明においては、AGS8-Gβγ相互作用を阻害することにより癌細胞の増殖を抑える癌治療薬を提供することを課題とする。
Non-patent document 1 shows that AGS8 is expressed at a high rate in prostate cancer, especially metastatic prostate cancer, and non-patent document 3 states that the interaction between AGS8 and Gβγ is extremely important for the functional expression of AGS8. Although it has been suggested that it plays an important role, no specific treatment method for prostate cancer has been shown so far. Furthermore, a peptide that inhibits the AGS8-Gβγ interaction, as described in Non-Patent Document 3, has a problem that it is not suitable as a therapeutic agent because of its low stability in vivo.
Therefore, an object of the present invention is to provide a cancer therapeutic agent that inhibits the proliferation of cancer cells by inhibiting the AGS8-Gβγ interaction.

上記課題を解決すべく、本発明者らはAGS8が癌治療における新たな標的となると考え、AGS8-Gβγの会合を阻害する化合物のスクリーニングを行い、その有効性を詳細に検討した。その結果、特定の化合物に、癌細胞の増殖を阻害する効果を有することを見出し、本発明を完成するに至った。
すなわち本発明は、上述の課題を解決するためになされたものであり、本発明の実施形態は、以下に挙げる構成を含み得る。
In order to solve the above problems, the present inventors considered that AGS8 would be a new target in cancer therapy, screened for compounds that inhibit the association of AGS8-Gβγ, and examined their effectiveness in detail. As a result, the inventors discovered that a specific compound has the effect of inhibiting the proliferation of cancer cells, leading to the completion of the present invention.
That is, the present invention has been made to solve the above-mentioned problems, and embodiments of the present invention may include the configurations listed below.

(1)一般式(1)で表される化合物又はその医薬的に許容される塩を含有してなる、癌治療薬。
(2)さらに、医薬的に許容される賦形剤を含有してなる、(1)に記載の癌治療薬。
(3)前記癌が前立腺癌である、(1)又は(2)に記載の癌治療薬。
(4)前記癌が転移性前立腺癌である、(1)~(3)のいずれか1項に記載の癌治療薬。
(5)前記癌が、ヒト正常前立腺上皮細胞に比べてAGS8の発現レベルの上昇を伴う癌である、(1)~(4)のいずれか1項に記載の癌治療薬。
(1) A cancer therapeutic comprising a compound represented by general formula (1) or a pharmaceutically acceptable salt thereof.
(2) The cancer therapeutic agent according to (1), further comprising a pharmaceutically acceptable excipient.
(3) The cancer therapeutic agent according to (1) or (2), wherein the cancer is prostate cancer.
(4) The cancer therapeutic agent according to any one of (1) to (3), wherein the cancer is metastatic prostate cancer.
(5) The cancer therapeutic agent according to any one of (1) to (4), wherein the cancer is a cancer accompanied by an increased expression level of AGS8 compared to human normal prostate epithelial cells.

本発明の癌治療薬によれば、癌細胞の分化増殖及び移動を阻害することができ、癌細胞の増殖を特異的に抑制することができる。癌の中でも、前立腺癌、特にホルモン療法が効きにくいアンドロゲン非依存的前立腺癌の治療に有効である。そして、このようなアンドロゲン非依存的な癌は転移性があるため、言い換えると転移性前立腺癌の治療に有効である。さらに、本発明の癌治療薬が、AGS8-Gβγの会合を阻害するという作用機序を有することから、アンドロゲン非依存的な転移性前立腺癌の中でも、AGS8が発現している癌細胞に対して特に有効である。また本発明の癌治療薬は毒性が低く、患者への負担も少ない。また、胃や腸で分解されずに血中へと運ばれるため、様々な投与方法を選択することができ、患者にとって手軽な経口投与方法も採用できるというメリットもある。さらに低分子化合物であるため、バイオ医薬品と異なり製造コストを低く抑えることができる。 According to the cancer therapeutic agent of the present invention, differentiation, proliferation and migration of cancer cells can be inhibited, and the proliferation of cancer cells can be specifically suppressed. Among cancers, it is effective in treating prostate cancer, especially androgen-independent prostate cancer, which is difficult to respond to hormone therapy. Since such androgen-independent cancers are metastatic, in other words, they are effective in treating metastatic prostate cancer. Furthermore, since the cancer therapeutic drug of the present invention has a mechanism of action of inhibiting the AGS8-Gβγ association, it is effective against cancer cells expressing AGS8, even in androgen-independent metastatic prostate cancer. Particularly effective. Furthermore, the cancer therapeutic agent of the present invention has low toxicity and causes less burden on patients. Furthermore, since it is transported into the blood without being broken down in the stomach or intestines, it has the advantage of being able to choose from a variety of administration methods, including oral administration, which is convenient for patients. Furthermore, since it is a low-molecular compound, manufacturing costs can be kept low, unlike biopharmaceuticals.

正常前立腺上皮細胞に対する、PC-3、DU145細胞におけるAGS8のmRNA発現レベルを示す図。A diagram showing the mRNA expression level of AGS8 in PC-3 and DU145 cells relative to normal prostate epithelial cells. 本発明の癌治療薬の、AGS8-Gβγサブユニット会合阻害確認結果を示す図。FIG. 3 is a diagram showing the results of confirmation of inhibition of AGS8-Gβγ subunit association by the cancer therapeutic drug of the present invention. PC-3、DU-145細胞における本発明の癌治療薬による細胞毒性を示す図。FIG. 3 is a diagram showing the cytotoxicity of the cancer therapeutic agent of the present invention in PC-3 and DU-145 cells. DU-145細胞における本発明の癌治療薬による細胞生存率を示す図。FIG. 2 is a diagram showing the cell survival rate of DU-145 cells treated with the cancer therapeutic agent of the present invention. DU-145細胞における本発明の癌治療薬による細胞遊走阻害を示す図。FIG. 3 is a diagram showing inhibition of cell migration by the cancer therapeutic agent of the present invention in DU-145 cells. 本発明の癌治療薬のin vivoでの腫瘍形成抑制効果を示す図。FIG. 2 is a diagram showing the in vivo tumor formation suppressing effect of the cancer therapeutic agent of the present invention.

以下、本発明の実施例を詳細に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。
<Activator of G-protein signaling 8と癌>
Examples of the present invention will be described in detail below, but the scope of the present invention is not limited to these examples.
<Activator of G-protein signaling 8 and cancer>

三量体Gタンパク質は、3つのサブユニットα、β及びγからなるヘテロ三量体を形成し、生体内の分子スイッチとして機能し、生理調節に重要な役割を果たす。サブユニットのうち、GβサブユニットとGγサブユニットは安定的に結びつき、Gβγ複合体が1つのサブユニットとして機能する。三量体Gタンパク質は、細胞表面のGタンパク質共役型受容体(GPCR)によって活性化され、GPCRが認識した様々な外部刺激を細胞内シグナルへと変換する。 Trimeric G protein forms a heterotrimer consisting of three subunits α, β, and γ, functions as a molecular switch in living organisms, and plays an important role in physiological regulation. Among the subunits, the Gβ subunit and the Gγ subunit are stably linked, and the Gβγ complex functions as one subunit. Trimeric G proteins are activated by G protein-coupled receptors (GPCRs) on the cell surface and convert various external stimuli recognized by the GPCRs into intracellular signals.

従来Gタンパク質は、ホルモンや薬剤、物理刺激などを認識した受容体によって活性化される分子スイッチとされてきたが、近年、受容体以外のタンパク質がGタンパク質を活性化し、これが病態生理調節機構として機能していることが明らかとなってきた。そのタンパク質の1つがActivator of G-protein signaling 8(AGS8)である。 Traditionally, G proteins have been considered to be molecular switches activated by receptors that recognize hormones, drugs, physical stimuli, etc., but in recent years, proteins other than receptors have activated G proteins, and this has been shown to be a pathophysiological regulatory mechanism. It has become clear that it is working. One of these proteins is Activator of G-protein signaling 8 (AGS8).

本発明者らの研究によれば、低分子干渉RNA(siRNA)によるAGS8のノックダウンは、血管内皮増殖因子(VEGF)によって誘発される管腔形成及びVEGFによって刺激される細胞の増殖と遊走を阻害した。さらに、AGS8-Gβγ相互作用を阻害するペプチドは、血管内皮増殖因子(VEGF)誘導性の血管形成を阻害した(非特許文献3参照)。このことから、本発明者らはAGS8の機能にはGβγとの会合が重要であることを明らかにした。また、AGS8は、癌細胞の中でも特に前立腺癌細胞に発現しており、特に進行した前立腺癌である転移性前立腺癌細胞に高いレベルで発現しているという報告がある(非特許文献1参照)。そして、進行した前立腺癌はアンドロゲン非依存的となることが多いことが知られている。そこで本発明者らは、AGS8と癌との関係に着目し、スクリーニングによりAGS8を治療標的とする癌治療薬を見出し、本発明を完成させた。具体的には、AGS8が機能を発揮するのに必要なAGS8-Gβγサブユニットの会合を阻害する化合物をスクリーニングし、その有効性を確認した。
<癌治療薬>
Our studies show that knockdown of AGS8 by small interfering RNA (siRNA) inhibits vascular endothelial growth factor (VEGF)-induced tube formation and VEGF-stimulated cell proliferation and migration. inhibited. Furthermore, a peptide that inhibits AGS8-Gβγ interaction inhibited vascular endothelial growth factor (VEGF)-induced angiogenesis (see Non-Patent Document 3). From this, the present inventors revealed that association with Gβγ is important for the function of AGS8. Furthermore, it has been reported that AGS8 is particularly expressed in prostate cancer cells among cancer cells, and is particularly expressed at high levels in metastatic prostate cancer cells, which are advanced prostate cancer (see Non-Patent Document 1). . It is known that advanced prostate cancer often becomes androgen independent. Therefore, the present inventors focused on the relationship between AGS8 and cancer, discovered a cancer therapeutic drug that targets AGS8 through screening, and completed the present invention. Specifically, they screened for compounds that inhibit the association of AGS8-Gβγ subunits, which is necessary for AGS8 to exert its functions, and confirmed their effectiveness.
<Cancer treatment drugs>

本発明の癌治療薬は、下記一般式で表される化合物又はその医薬的に許容される塩を含有している。下記一般式で表される化合物又はその塩を有効量含むことが好ましい。(なお、以降、下記一般式で表される化合物を「AGS8阻害薬」ということもある。)
上記基本骨格が維持されているのであれば、置換基を有していても良い。置換基の数は1又はそれ以上でも良い。置換基を2つ以上有する場合は、当該置換はそれぞれ同一又は異なっていても良い。
The cancer therapeutic agent of the present invention contains a compound represented by the following general formula or a pharmaceutically acceptable salt thereof. It is preferable to contain an effective amount of a compound represented by the following general formula or a salt thereof. (Hereinafter, the compound represented by the general formula below may also be referred to as an "AGS8 inhibitor.")
It may have a substituent as long as the above basic skeleton is maintained. The number of substituents may be one or more. When it has two or more substituents, the substituents may be the same or different.

医薬的に許容される塩とは、過度な毒性、刺激及びアレルギー反応などを起こすことなく、少なくともヒトへの使用に適したものをいう。本発明の効果を損なわないものであればよく、アルカリ金属塩やアルカリ土類金属塩などの塩基性塩、塩酸塩・硫酸塩・硝酸塩・酢酸塩・クエン酸塩・酒石酸塩・メタンスルホン酸塩・トルエンスルホン酸塩等の有機酸塩、アミノ酸との塩であってもよい。 Pharmaceutically acceptable salts refer to salts that do not cause undue toxicity, irritation, allergic reactions, etc. and are at least suitable for use in humans. Any basic salt such as alkali metal salt or alkaline earth metal salt, hydrochloride, sulfate, nitrate, acetate, citrate, tartrate, methanesulfonate may be used as long as it does not impair the effects of the present invention. - It may be an organic acid salt such as toluenesulfonate or a salt with an amino acid.

上記化合物及びその塩は、既知の方法により製造でき、また、市販のものを入手して用いることができる。日本薬局方に準拠したものを用いることができれば好ましい。有機合成により合成できるため、バイオ医薬品と異なり製造コストを低く抑えることができる。 The above-mentioned compounds and salts thereof can be produced by known methods, or commercially available products can be obtained and used. It is preferable to use one that complies with the Japanese Pharmacopoeia. Because they can be synthesized through organic synthesis, manufacturing costs can be kept low, unlike biopharmaceuticals.

本発明の癌治療薬は、低分子化合物であるため、生体内でも安定である。非特許文献3に記載されている、AGS8とGβγの間の相互作用を阻害するように設計されたペプチドでは、接種すると体内の酵素により分解されやすく、薬として期待できるほどの効果が出ない。また、一般的に細胞膜は細胞の内外を隔てるバリアとしての役割を持っており、巨大分子はもちろん、タンパク質や核酸などの生体高分子は、親水性が高いために、細胞膜を透過することができない。そのため、医療目的で、任意の物質を細胞内に導入することは一般的には容易ではない。実験室レベルでは、細胞内にタンパク質を送達する方法としてトランスフェクション法が利用されている。導入する細胞や、導入する目的の生体分子の種類など、多様な条件に対応するために、様々なトランスフェクション試薬が販売されているが、導入効率や細胞傷害や毒性を考慮すると、更なる改良が望まれているのが現状である。 Since the cancer therapeutic agent of the present invention is a low molecular weight compound, it is stable in vivo. The peptide designed to inhibit the interaction between AGS8 and Gβγ, which is described in Non-Patent Document 3, is easily degraded by enzymes in the body when inoculated, and does not have the expected effect as a drug. Additionally, cell membranes generally act as a barrier between the inside and outside of cells, and biopolymers such as macromolecules and proteins and nucleic acids are highly hydrophilic and cannot pass through cell membranes. . Therefore, it is generally not easy to introduce any substance into cells for medical purposes. At the laboratory level, transfection methods are used to deliver proteins into cells. Various transfection reagents are commercially available to accommodate various conditions such as the type of cells to be transfected and the type of biomolecules to be transfected, but further improvements are required when considering transfection efficiency, cytotoxicity, and toxicity. The current situation is that this is desired.

例えば、非特許文献3では、ペプチドを細胞へ送達するためにPLUSin(Polyplus)というトランスフェクション試薬が用いられているが、ペプチドに用いるトランスフェクション試薬は脂質親和性小胞に基づいている。この試薬は細胞膜傷害性があり、細胞に強い毒性を示すことがある。また、トランスフェクション試薬による細胞への試料の導入は、試薬と導入対象細胞の数などの諸条件を最適化することが必要で、最適化条件が揃うことで適当な導入が得られる。生体内投与では、均一な導入条件を得ることが難しく、試料導入に不均一性が生じる。 For example, in Non-Patent Document 3, a transfection reagent called PLUSin (Polyplus) is used to deliver peptides to cells, but the transfection reagent used for peptides is based on lipophilic vesicles. This reagent is toxic to cell membranes and can be highly toxic to cells. In addition, when introducing a sample into cells using a transfection reagent, it is necessary to optimize various conditions such as the reagent and the number of cells to be introduced, and appropriate introduction can be achieved by meeting the optimization conditions. In in vivo administration, it is difficult to obtain uniform introduction conditions, resulting in non-uniformity in sample introduction.

一方本発明の癌治療薬は、低分子化合物であるため、細胞膜を通過して細胞内に取り込まれやすい。トランスフェクション試薬も不要なため、試薬による細胞傷害や毒性の心配もない。 On the other hand, since the cancer therapeutic agent of the present invention is a low-molecular compound, it easily passes through the cell membrane and is taken into cells. Since transfection reagents are not required, there is no need to worry about cell damage or toxicity caused by reagents.

本発明の癌治療薬の投与対象は、癌の治療が望まれる、又は必要とされるヒト及び非ヒト哺乳動物である。非ヒト哺乳動物とは例えばサル、ブタ、ウシ、ウマ、ヤギ、ヒツジ、イヌ、ネコ、マウス、ラット、モルモット、ハムスターなどであり、ペット動物、家畜、実験動物を含む。好ましい投与対象としてはヒトが挙げられる。 Subjects to whom the cancer therapeutic agent of the present invention is administered are humans and non-human mammals in which cancer treatment is desired or required. Non-human mammals include, for example, monkeys, pigs, cows, horses, goats, sheep, dogs, cats, mice, rats, guinea pigs, hamsters, and include pet animals, livestock, and laboratory animals. Preferred subjects include humans.

本発明の癌治療薬は、上記AGS8阻害薬を有効成分として含有し、必要に応じ、非毒性で不活性の医薬的に許容される賦形剤、例えば固体状、半固体状もしくは液状の希釈剤、分散剤、充填剤及び担体と混合することにより、製剤化される。さらに本発明の効果を損なわない範囲において、安定剤、保存剤、pH調整剤、結合剤、崩壊剤、界面活性剤、滑沢剤、流動性促進剤、矯味剤、着色剤、香料防腐剤、媒質、生理食塩水、別な薬効を有する薬剤が添加剤として含んでいてもよい。
<剤形及び投与量>
The cancer therapeutic drug of the present invention contains the above-mentioned AGS8 inhibitor as an active ingredient, and optionally contains a non-toxic, inert, pharmaceutically acceptable excipient, such as a solid, semi-solid or liquid diluent. It is formulated by mixing with agents, dispersants, fillers and carriers. In addition, stabilizers, preservatives, pH adjusters, binders, disintegrants, surfactants, lubricants, fluidity promoters, flavoring agents, coloring agents, flavoring preservatives, within a range that does not impair the effects of the present invention, Vehicles, saline, and other medicinal agents may be included as additives.
<Dosage form and dosage>

本発明の癌治療薬の剤形は特に限定されず、経口投与用製剤(錠剤、被覆錠剤、散剤、顆粒剤、カプセル剤、液剤など)、経気道投与用製剤、腹腔内投与用製剤、経静脈投与用製剤、注射剤、坐剤、貼付剤、軟膏剤等が例示できるが、経口投与用製剤、経気道投与用製剤又は経静脈投与用製剤が好ましい。経静脈投与用製剤としては、静脈注射製剤や点滴静脈注射製剤が挙げられる。ヒトにおいては経口投与用製剤又は経静脈投与用製剤が好ましい。 The dosage form of the cancer therapeutic agent of the present invention is not particularly limited, and includes oral administration preparations (tablets, coated tablets, powders, granules, capsules, liquid preparations, etc.), transrespiratory administration preparations, intraperitoneal administration preparations, and intraperitoneal administration preparations. Examples include preparations for intravenous administration, injections, suppositories, patches, ointments, etc., but preparations for oral administration, preparations for administration through the respiratory tract, and preparations for intravenous administration are preferred. Preparations for intravenous administration include intravenous injection preparations and drip intravenous injection preparations. For humans, formulations for oral administration or intravenous administration are preferred.

本発明の癌治療薬の投与量は、使用目的、投与対象、投与対象の性別、年齢、体重、癌の進行ステージ等を考慮して適宜調製することができるが、ヒトに対して投与する場合は、患者の体重に対してAGS8阻害薬を1回当たり1~10mg/kg、好ましくは3~10 mg/kg含んでいることが好ましい。前記範囲であれば、本発明の効果を奏しやすく、毒性も小さいため副作用が少ない。投与レジメとしては、上記範囲内の量を、1日1回毎日投与してもよく、1日~2日おきに間欠的に投与することが挙げられる。なお、この投与量は、種々の条件で変動するので、上記範囲より少ない投与量や投与回数で充分な場合もあるし、また上記範囲を超えた投与量や投与回数が必要な場合もある。 The dosage of the cancer therapeutic drug of the present invention can be adjusted appropriately taking into consideration the purpose of use, the subject to be administered, the sex, age, weight, and stage of cancer progression of the subject, but when administered to humans, It is preferable that the AGS8 inhibitor is contained in a dose of 1 to 10 mg/kg, preferably 3 to 10 mg/kg based on the patient's body weight. Within the above range, the effects of the present invention can be easily achieved, and toxicity is also low, resulting in fewer side effects. As for the administration regimen, the amount within the above range may be administered once a day, or intermittently every 1 to 2 days. Note that this dosage varies depending on various conditions, so a dosage or frequency of administration smaller than the above range may be sufficient, or a dosage or frequency of administration exceeding the above range may be necessary.

本発明の癌治療薬を投与する際は、他の癌治療薬と併用投与してもよい。例えば、経口癌治療薬であるイクスタンジ(登録商標)、ザイティガ(登録商標)、注射薬であるタキソテール(登録商標)、ジェブタナ(登録商標)、骨転移治療薬であるゾーフィゴ(登録商標)と併用投与してもよい。
併用投与とは、本発明の癌治療薬の投与と同時、又は本発明の癌治療薬投与の前後に投与することである。あるいは、本発明の癌治療薬と、上記他の癌治療薬を混合して一つの製剤とすることもできる。
<適用対象>
When administering the cancer therapeutic agent of the present invention, it may be administered in combination with other cancer therapeutic agents. For example, co-administration with the oral cancer treatments Xtandi (registered trademark) and Zytiga (registered trademark), the injectable drugs Taxotere (registered trademark) and Jevtana (registered trademark), and the bone metastasis treatment drug Xofigo (registered trademark). You may.
Concomitant administration means administration simultaneously with the administration of the cancer therapeutic agent of the present invention, or before and after administration of the cancer therapeutic agent of the present invention. Alternatively, the cancer therapeutic agent of the present invention and the other cancer therapeutic agents mentioned above can be mixed to form a single preparation.
<Applicable target>

本発明の癌治療薬は、例えば、前立腺癌、悪性黒色腫(メラノーマ)、扁平上皮癌、基底細胞癌、肺癌(小細胞肺癌、非小細胞肺癌、肺の腺癌及び肺の扁平上皮癌が挙げられる)、腹膜の癌、肝細胞癌、胃癌(gastric or stomach cancer)(胃腸癌を含む)、膵臓癌、神経膠芽腫、子宮頚癌、卵巣癌、肝臓癌、膀胱癌、肝癌、乳癌、結腸癌、結腸直腸癌、子宮内膜癌、子宮癌、唾液腺癌、腎臓癌(kidney or renal cancer)、外陰部癌、甲状腺癌、眼瞼腫瘍(脂腺癌や基底細胞癌を含む)、結膜腫瘍、眼窩腫瘍(涙腺腫瘍を含む)、眼内腫瘍(網膜芽細胞腫や脈絡膜悪性黒色腫を含む)、悪性リンパ腫、眼部転移性腫瘍が或いは種々のタイプの頭頚部癌(口腔癌、咽頭癌、上咽頭癌、中咽頭癌、下咽頭癌、喉頭癌、鼻・副鼻腔癌、唾液腺癌、甲状腺癌などを含む)への適用が挙げられる。中でも前立腺癌への適用が好ましく、ホルモン療法が効きにくいアンドロゲン非依存的前立腺癌への適用がより好ましく、さらにアンドロゲン非依存的転移性前立腺癌への適用が好ましい。 The cancer therapeutic agent of the present invention can be used to treat, for example, prostate cancer, malignant melanoma, squamous cell carcinoma, basal cell carcinoma, lung cancer (small cell lung cancer, non-small cell lung cancer, adenocarcinoma of the lung, and squamous cell carcinoma of the lung). cancer of the peritoneum, hepatocellular carcinoma, gastric or stomach cancer (including gastrointestinal cancer), pancreatic cancer, glioblastoma, cervical cancer, ovarian cancer, liver cancer, bladder cancer, liver cancer, breast cancer , colon cancer, colorectal cancer, endometrial cancer, uterine cancer, salivary gland cancer, kidney or renal cancer, vulvar cancer, thyroid cancer, eyelid tumor (including sebaceous gland cancer and basal cell carcinoma), conjunctiva tumors, orbital tumors (including lacrimal gland tumors), intraocular tumors (including retinoblastoma and choroidal melanoma), malignant lymphomas, ocular metastatic tumors, or various types of head and neck cancers (oral cancer, pharyngeal cancer). Applications include cancer, nasopharyngeal cancer, oropharyngeal cancer, hypopharyngeal cancer, laryngeal cancer, nasal/sinus cancer, salivary gland cancer, thyroid cancer, etc.). Among these, application to prostate cancer is preferred, application to androgen-independent prostate cancer for which hormonal therapy is not effective is more preferred, and application to androgen-independent metastatic prostate cancer is even more preferred.

アンドロゲン非依存的前立腺癌とは、アンドロゲン依存性を示す癌が、一定期間のホルモン療法(アンドロゲン除去療法)が行われた後に、抵抗性(耐性)を獲得した癌を示す。アンドロゲン非依存的前立腺癌か否かについては、本明細書においては、前立腺癌診療ガイドライン2016年版(日本泌尿器科学会編、メディカルレビュー社)に示される基準に照らし、4週以上空けて測定した癌特異抗原の値(例えば、PSA値)が最低値から25%以上、かつ上昇幅が特定値(例えば、2.0ng/mL)以上である場合に、抵抗性を示す癌と判断する。本明細書において特に言及しない場合には、PSA値が最低値から25%以上、かつ上昇幅が、2.0ng/mL以上である場合に、アンドロゲン非依存的前立腺癌と判断する。 Androgen-independent prostate cancer refers to cancer that exhibits androgen dependence and has acquired resistance after a certain period of hormone therapy (androgen ablation therapy). In this specification, whether or not prostate cancer is androgen-independent is determined based on the criteria shown in the 2016 Prostate Cancer Treatment Guidelines (edited by the Japanese Urological Association, Medical Review Co., Ltd.). Cancer is determined to be resistant if the specific antigen value (e.g. PSA value) is 25% or more from the lowest value and the increase is at least a specific value (e.g. 2.0 ng/mL). Unless otherwise specified herein, if the PSA value is 25% or more from the lowest value and the increase is 2.0 ng/mL or more, it is determined to be androgen-independent prostate cancer.

そして、癌がアンドロゲン非依存的になると、病勢の進行により転移が多く認められる。癌の進行度は病期と言われ、一般的にTMN分類(T(tumor):前立腺の癌の状態、N(nodes):リンパ節転移の有無、M(metastasis):遠隔転移)という分類法が使用される。これらは各種画像診断により行われる。本明細書においても、前立腺癌が転移しているか否かは、MRI、CT、そして骨転移が疑われる場合は骨シンチグラフィーの各種画像診断により診断される。 When cancer becomes androgen independent, metastasis is often observed as the disease progresses. The degree of progression of cancer is called the stage, and is generally classified using the TMN classification (T (tumor): state of prostate cancer, N (nodes): presence or absence of lymph node metastasis, M (metastasis): distant metastasis). is used. These are performed using various image diagnoses. In this specification as well, whether prostate cancer has metastasized or not is diagnosed by various image diagnoses such as MRI, CT, and if bone metastasis is suspected, bone scintigraphy.

本発明の癌治療薬はAGS8-Gβγの会合を阻害するという作用機序を有することから、アンドロゲン非依存的前立腺癌の中でも、ヒト正常前立腺上皮細胞に対して、AGS8の発現レベルが上昇している癌に対して有効である。なお、アンドロゲン非依存的になると転移が多く認められるが、本明細書においてはヒト正常前立腺上皮細胞に対してAGS8の発現レベルが上昇していれば、転移性前立腺癌か否かは問わない。 Since the cancer therapeutic drug of the present invention has a mechanism of action that inhibits the AGS8-Gβγ association, the expression level of AGS8 is increased in human normal prostate epithelial cells even in androgen-independent prostate cancer. It is effective against certain types of cancer. Incidentally, metastasis is often observed when the cell becomes androgen independent, but in this specification, as long as the expression level of AGS8 is increased in human normal prostate epithelial cells, it does not matter whether it is metastatic prostate cancer or not.

AGS8の発現レベルは、生検により採取された、又は手術により切除された検体において、AGS8の発現量が定量できればその方法は特に限定されないが、例えば定量的real-time (qRT) PCRやマイクロアレイ等を用いることができる。qRT-PCRは、例えば市販の試薬と装置を用いて行うことができる。具体的には細胞からmRNAを抽出し、cDNAを合成する。合成したcDNAを鋳型として、リアルタイムPCR装置を用いてqRT-PCRを行うことができる。プライマーの配列は5’-TTCCGTAACCCTCTCCCG-3’ (センス) 、 5’-AACCCACGATCAAGGTCCAC-3’ (アンチセンス)を用いることができる。 The expression level of AGS8 can be determined by any method as long as the expression level of AGS8 can be quantified in a specimen taken by biopsy or surgically resected, but methods such as quantitative real-time (qRT) PCR, microarray, etc. can be used. can be used. qRT-PCR can be performed using, for example, commercially available reagents and equipment. Specifically, mRNA is extracted from cells and cDNA is synthesized. Using the synthesized cDNA as a template, qRT-PCR can be performed using a real-time PCR device. The following primer sequences can be used: 5'-TTCCGTAACCCTCTCCCG-3' (sense) and 5'-AACCCACGATCAAGGTCCAC-3' (antisense).

癌細胞及びヒト正常前立腺上皮細胞に対してAGS8発現量を測定し、癌細胞のヒト正常前立腺上皮細胞に対するmRNAの発現比率が2fold以上であれば、本発明におけるAGS8の発現レベルが上昇している癌であると言える。好ましくは5fold以上である。さらに好ましくは100fold以上であればよい。 The expression level of AGS8 is measured in cancer cells and human normal prostate epithelial cells, and if the expression ratio of mRNA in cancer cells to human normal prostate epithelial cells is 2 fold or more, the expression level of AGS8 in the present invention is increased. It can be said that it is cancer. Preferably it is 5 fold or more. More preferably, it is 100 fold or more.

以下に示す実施例によって本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
(AGS8阻害薬)
The present invention will be specifically explained with reference to Examples shown below, but the present invention is not limited thereto.
(AGS8 inhibitor)

理化学研究所化合物バンクNPDepoからパイロットライブラリーを入手し、AGS8とGβγサブユニットの会合阻害活性を有する化合物のスクリーニングに供し、本発明のAGS8阻害薬を特定した。特定したAGS8阻害薬はナミキ商事株式会社を介して、海外のサプライヤー(Asinex(ロシア)、Sundia MediTech Company(中国、上海))から購入し、試験に用いた。
(細胞)
A pilot library was obtained from the RIKEN compound bank NPDepo, and was used to screen for compounds that have the activity of inhibiting the association of AGS8 and Gβγ subunit, thereby identifying the AGS8 inhibitor of the present invention. The identified AGS8 inhibitor was purchased from overseas suppliers (Asinex (Russia), Sundia MediTech Company (Shanghai, China)) through Namiki Shoji Co., Ltd., and used in the test.
(cell)

アンドロゲン非依存性転移性癌細胞PC-3(骨転移前立腺癌細胞由来)及びDU-145(脳転移前立腺癌細胞由来)は、医用細胞資源センター(東北大学加齢医学研究所)から入手した。5%CO2、95%O2、37℃の加湿インキュベーター内で、10%胎児ウシ血清(FBS; GIBCO)、100U/mLペニシリン、100μg/mLストレプトマイシン(いずれもGIBCO)を添加したRPMI-1640培地(Life Technologies、 Inc.)を用いて単層培養した。Androgen-independent metastatic cancer cells PC-3 (derived from bone metastatic prostate cancer cells) and DU-145 (derived from brain metastatic prostate cancer cells) were obtained from the Medical Cell Resource Center (Tohoku University Research Institute for Aging and Aging). RPMI-1640 medium supplemented with 10% fetal bovine serum (FBS; GIBCO), 100 U/mL penicillin, and 100 μg/mL streptomycin (both GIBCO) in a humidified incubator at 5% CO 2 , 95% O 2 , 37°C. (Life Technologies, Inc.) for monolayer culture.

ヒトの正常な前立腺上皮細胞(PrEC)は、 ロンザから購入し、10%FBS及び100U/mLペニシリンと100μg/mLストレプトマイシン(いずれもGIBCO)を添加したPrEGM Bullet Kit Medium(ロンザ)で37℃条件下にて培養した。ヒト臍帯静脈内皮細胞(HUVEC)はロンザより入手した。本実施例において、全ての実験において用いた細胞は60%~70%のコンフルエンスまで増殖させた。
(AGS8発現量の確認試験)
Human normal prostate epithelial cells (PrEC) were purchased from Lonza and incubated at 37°C in PrEGM Bullet Kit Medium (Lonza) supplemented with 10% FBS and 100 U/mL penicillin and 100 μg/mL streptomycin (both GIBCO). It was cultured in Human umbilical vein endothelial cells (HUVEC) were obtained from Lonza. In this example, cells used in all experiments were grown to 60%-70% confluence.
(Confirmation test for AGS8 expression level)

PC-3、DU-145 及びPrECにおけるAGS8発現量は、定量的real-time (qRT) PCRを用いて測定した。具体的には、PureLink RNA Mini Kit(Ambion)を使用して培養細胞の懸濁液からTotal RNAを抽出し、High-Capacity cDNA逆転写キット(Thermo Fisher Scientific)を使用して逆転写を行い、qRT-PCR分析を行った。qRT-PCRは、Step One PlusリアルタイムPCRシステム(Applied Biosystem)を用い、TB Green Premix Ex Taq II(タカラバイオ)のプロトコルに従って行った。特定のPCRプライマーは次のように設計された。
ヒトAGS8リアルタイムPCRのプライマー配列は、以下を用いた。
5'-TTCCGTAACCCTCTCCCG-3 '(センス)及び
5'-AACCCACGATCAAGGTCCAC-3'(アンチセンス)
ヒト正常前立腺上皮細胞(PrEC)に対するPC-3及びDU-145のAGS8相対的発現量は、比較Ct値法によって決定された。
AGS8 expression levels in PC-3, DU-145, and PrEC were measured using quantitative real-time (qRT) PCR. Specifically, total RNA was extracted from a suspension of cultured cells using the PureLink RNA Mini Kit (Ambion), and reverse transcription was performed using the High-Capacity cDNA Reverse Transcription Kit (Thermo Fisher Scientific). qRT-PCR analysis was performed. qRT-PCR was performed using the Step One Plus real-time PCR system (Applied Biosystem) according to the protocol of TB Green Premix Ex Taq II (Takara Bio). Specific PCR primers were designed as follows.
The following primer sequences were used for human AGS8 real-time PCR.
5'-TTCCGTAACCCTCTCCCG-3' (sense) and
5'-AACCCACGATCAAGGTCCAC-3' (antisense)
The relative expression levels of AGS8 of PC-3 and DU-145 on human normal prostate epithelial cells (PrEC) were determined by the comparative Ct value method.

その結果を図1に示す。ヒト正常前立腺上皮細胞に比べ、アンドロゲン非依存性転移性癌細胞PC-3は、AGS8が5.7 fold、DU-145が240 fold発現しており、何れの細胞もヒト正常前立腺上皮細胞に対してAGS8の発現レベルが上昇していることが分かる。
(AGS8-Gβγサブユニット会合阻害確認試験)
The results are shown in Figure 1. Compared to human normal prostate epithelial cells, androgen-independent metastatic cancer cells PC-3 express 5.7 folds of AGS8 and 240 folds of DU-145, and both cells express AGS8 more than human normal prostate epithelial cells. It can be seen that the expression level of .
(AGS8-Gβγ subunit association inhibition confirmation test)

本発明の癌治療薬が、AGS8-Gβγサブユニットの会合を阻害するかをプルダウンアッセイにより確認した。AGS8(AGS8のC端372アミン酸)をコードする遺伝子をpGEX-4T vector (Amersham Biosciences)に組み込み、GSTタグ融合蛋白として大腸菌(Esche-richia coli BL21、 Amersham Biosciences)に発現させた。菌体破壊後、溶出したGST-AGS8をGlutathione-Sepharose 4Bを用いてアフィニティ精製した。G蛋白β1γ2サブユニットは昆虫細胞に合成させたものを用いた。100nMのGST-AGS8、10nMのGβ1γ2、本発明の癌治療薬(最終濃度16μg/ml)およびAGS8-Gβγサブユニットの会合を阻害しない化合物(最終濃度16μg/ml)を添加し、4℃、300μlの反応液中(20mM Tris-HCl、pH7.4、0.6mM EDTA、1mM dithiothreitol、70mM NaCl、0.01% Lubrol、 10μm GDP、and 10mM MgCl2)で18時間反応させた。反応後、Glutathione-Sepharose 4Bを反応チューブ内に加え、1時間GST-AGS8Cを吸着させた。Glutathione-Sepharose 4Bは3回反応液で洗浄し、非特異的吸着を除去し、吸着していた蛋白質をLaemmli サンプルバッファーに溶出した。サンプルは全量をウェルにロードし、10%ドデシル硫酸ナトリウム-ポリアクリルアミドゲル電気泳動で分離した。分離したタンパク質はImmobilon-P PVDFメンブレンに転写し、一次抗体として抗Gβサブユニット抗体(1:1,000; AC-74; Sigma-Aldrich)、二次抗体としてHRP(西洋ワサビペルオキシダーゼ)で標識化し、ImmunoStar LD(Fujifilm Wako Pure Chemical Corp.)を使用して検出、Amersham Imager 600システム(GE Healthcare Life Sciences)を使用して画像を分析した。 It was confirmed by a pull-down assay whether the cancer therapeutic agent of the present invention inhibits the association of AGS8-Gβγ subunit. The gene encoding AGS8 (372 amino acids at the C-terminus of AGS8) was inserted into pGEX-4T vector (Amersham Biosciences) and expressed as a GST-tagged fusion protein in Escherichia coli (Esche-richia coli BL21, Amersham Biosciences). After disrupting the bacterial cells, the eluted GST-AGS8 was affinity purified using Glutathione-Sepharose 4B. The G protein β1γ2 subunit was synthesized in insect cells. Add 100 nM GST-AGS8, 10 nM Gβ1γ2, the cancer therapeutic agent of the present invention (final concentration 16 μg/ml), and a compound that does not inhibit the association of AGS8-Gβγ subunit (final concentration 16 μg/ml), and add 300 μl at 4°C. (20mM Tris-HCl, pH 7.4, 0.6mM EDTA, 1mM dithiothreitol, 70mM NaCl, 0.01% Lubrol, 10μm GDP, and 10mM MgCl2) for 18 hours. After the reaction, Glutathione-Sepharose 4B was added to the reaction tube to adsorb GST-AGS8C for 1 hour. Glutathione-Sepharose 4B was washed three times with the reaction solution to remove nonspecific adsorption, and the adsorbed proteins were eluted into Laemmli sample buffer. The entire sample was loaded into a well and separated by 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The separated proteins were transferred to Immobilon-P PVDF membrane, labeled with anti-Gβ subunit antibody (1:1,000; AC-74; Sigma-Aldrich) as the primary antibody and HRP (horseradish peroxidase) as the secondary antibody, and then labeled with ImmunoStar. Detection was performed using an LD (Fujifilm Wako Pure Chemical Corp.), and images were analyzed using an Amersham Imager 600 system (GE Healthcare Life Sciences).

その結果を図2に示す。InputはGST-AGS8とGβ1γ2を含む1/50量の混合反応液である。GST-AGS8はGβγサブユニットを共沈降させたが、本発明の癌治療薬(図2ではAGS8阻害薬と記載)16μg/mlの存在下では、レジンに沈降してくるGβサブユニットの量が減少している。一方、同濃度のAGS8-Gβγサブユニットの会合を阻害しない化合物(図2では対照群と記載)は、GST-AGS8によるGβサブユニットの共沈降に影響を与えなかった。したがって、本発明の癌治療薬はAGS8-Gβγサブユニットの会合を阻害することが明らかとなった。
(細胞毒性試験)
The results are shown in Figure 2. Input is a 1/50 volume mixed reaction solution containing GST-AGS8 and Gβ1γ2. GST-AGS8 coprecipitated Gβγ subunits, but in the presence of 16 μg/ml of the cancer therapeutic drug of the present invention (described as AGS8 inhibitor in Figure 2), the amount of Gβ subunits precipitated on the resin decreased. is decreasing. On the other hand, a compound that does not inhibit the association of AGS8-Gβγ subunits at the same concentration (denoted as a control group in Figure 2) did not affect the coprecipitation of Gβ subunits by GST-AGS8. Therefore, it was revealed that the cancer therapeutic agent of the present invention inhibits the association of AGS8-Gβγ subunit.
(Cytotoxicity test)

細胞が薬剤の毒性により破壊されると、酵素であるLDHが培養液中に溶出される。そこで、ほとんどすべての細胞が傷害を受けるであろう条件で溶出されるLDHの濃度を100%として、本発明の癌治療薬の細胞毒性を評価した。 When cells are destroyed by the toxicity of the drug, the enzyme LDH is eluted into the culture medium. Therefore, the cytotoxicity of the cancer therapeutic agent of the present invention was evaluated by setting the concentration of LDH eluted under conditions where almost all cells would be damaged as 100%.

HUVEC又はDU-145細胞を96ウェル培養プレートに6,000細胞/ウェルの密度で播種した。一晩培養した後、細胞を、本発明癌治療薬(1、3、10、13、100μg/mL)を含む培地中で48時間インキュベートした。細胞毒性は、LDHアッセイキット(同仁化学研究所)を使用して培地に放出されたLDH量を評価した。得られた結果は、SpectraMax M3(Molecular Devices)を使用して450nmの吸光度で比色定量した。 HUVEC or DU-145 cells were seeded in 96-well culture plates at a density of 6,000 cells/well. After culturing overnight, the cells were incubated for 48 hours in a medium containing the cancer therapeutic agent of the present invention (1, 3, 10, 13, 100 μg/mL). Cytotoxicity was evaluated by the amount of LDH released into the medium using an LDH assay kit (Dojindo Laboratories). The results obtained were quantified colorimetrically at absorbance at 450 nm using SpectraMax M3 (Molecular Devices).

その結果を図3に示す。本発明の癌治療薬を投与しても、正常細胞及びDU-145細胞いずれにおいても、LDHの濃度依存的な上昇が見られず、1~100μg/mLの範囲において、有意な細胞毒性は認められなかった。
(DU-145細胞の生存率確認試験)
The results are shown in Figure 3. Even when the cancer therapeutic agent of the present invention was administered, no concentration-dependent increase in LDH was observed in either normal cells or DU-145 cells, and no significant cytotoxicity was observed in the range of 1 to 100 μg/mL. I couldn't.
(DU-145 cell viability confirmation test)

DU-145細胞の生存率に対する本発明の癌治療薬の効果を確認した。DU-145細胞を96ウェルプレートを用いて10%ウシ胎児血清含DMEM培地で培養し、異なる用量の本発明の癌治療薬で処理した。48時間後に処理し、Cell Counting Kit-8アッセイを使用して細胞生存率を評価した。6回の実験の平均±SEMで示した。 The effect of the cancer therapeutic agent of the present invention on the survival rate of DU-145 cells was confirmed. DU-145 cells were cultured in DMEM medium containing 10% fetal bovine serum in a 96-well plate and treated with different doses of the cancer therapeutic agent of the present invention. After 48 hours of treatment, cell viability was assessed using Cell Counting Kit-8 assay. Shown as mean ± SEM of 6 experiments.

その結果を図4に示す。本発明の癌治療薬を投与すると、用量依存的にDU-145細胞の細胞生存率が有意(p<0.01)に下がったことから、細胞増殖を抑制したことが分かる(一元配置分散分析 (ANOVA)にて解析)。
(DU-145細胞の遊走阻害試験)
The results are shown in Figure 4. When the cancer therapeutic drug of the present invention was administered, the cell viability of DU-145 cells significantly decreased (p<0.01) in a dose-dependent manner, indicating that cell proliferation was suppressed (one-way analysis of variance (ANOVA)). ).
(DU-145 cell migration inhibition test)

5×104細胞/200μlで懸濁されたDU-145を、3%BSAで前処理された8μmポア(BD Biosciences)のフィブロネクチンコーティングされたトランスウェルインサートに播種した。 細胞遊走は、24ウェルプレートの下部チャンバーに150 ng/mlのPDGF-BBを添加することにより誘導した。18時間後、脱脂綿スワブを使用して、フィルターの上面に残存する細胞を除去した。トランスウェルインサートは4%PFAで固定し、1%クリスタルバイオレットで染色した。コントロールとして、リン酸緩衝生理食塩水を添加したものを用いた。ランダムに各トランスウェルインサートの下側をデジタル顕微鏡画像として撮影し、染色された細胞をカウントした。データは、独立して7回行い、平均±SEMとして表した。(一元配置分散分析 (ANOVA) にて解析)DU-145 suspended at 5×10 4 cells/200 μl was seeded into fibronectin-coated transwell inserts with 8 μm pores (BD Biosciences) pretreated with 3% BSA. Cell migration was induced by adding 150 ng/ml PDGF-BB to the lower chamber of a 24-well plate. After 18 hours, remaining cells on the top of the filter were removed using a cotton swab. Transwell inserts were fixed with 4% PFA and stained with 1% crystal violet. As a control, phosphate buffered saline was used. A digital microscope image was randomly taken of the underside of each transwell insert, and stained cells were counted. Data were performed 7 times independently and expressed as mean ± SEM. (Analyzed using one-way analysis of variance (ANOVA))

その結果を図5に示す。本発明の癌治療薬であるAGS8阻害薬を添加すると、遊走細胞数を有意(p<0.01)に抑えた。一般的に癌細胞は、発生した組織から離脱し、基底膜を壊して周辺の組織に浸潤していく。その後癌細胞は血管内を遊走し、血液によって体内の別の場所へ運ばれ、運ばれた先で増殖することにより転移する。本発明の癌治療薬は癌細胞の遊走を阻害するため、癌細胞転移抑制剤として有用である。
(in vivoでの腫瘍形成抑制試験)
The results are shown in Figure 5. When the AGS8 inhibitor, which is a cancer therapeutic drug of the present invention, was added, the number of migrating cells was significantly suppressed (p<0.01). Generally, cancer cells separate from the tissue in which they occur, break down the basement membrane, and invade surrounding tissues. The cancer cells then migrate within the blood vessels and are carried by the blood to other parts of the body, where they proliferate and metastasize. Since the cancer therapeutic agent of the present invention inhibits cancer cell migration, it is useful as a cancer cell metastasis inhibitor.
(In vivo tumor formation inhibition test)

雄のBALB /cヌードマウス(5週齢)(日本SLC株式会社)を入手した。DU-145細胞(4×106細胞/200μL)を無血清RPMI-1640培地に懸濁し、マトリゲル(1:1比)と混合し、マウスの脇腹領域に皮下移植した。本発明の癌治療薬を0.9%生理食塩水に懸濁し、毎日腫瘍に10μg、30μgずつ皮下注射した。
1週間おきにDU-145細胞移植部分を切開して腫瘍を取り出し、腫瘍体積及び重量を測定した。腫瘍体積(mm3)は、長径、短径をノギスで測定し、長径×(短径)2/2で算出した(各n=6)
Male BALB/c nude mice (5 weeks old) (Japan SLC Co., Ltd.) were obtained. DU-145 cells (4×10 6 cells/200 μL) were suspended in serum-free RPMI-1640 medium, mixed with Matrigel (1:1 ratio), and implanted subcutaneously into the flank region of mice. The cancer therapeutic agent of the present invention was suspended in 0.9% physiological saline, and 10 μg and 30 μg of the suspension was subcutaneously injected into the tumor every day.
Every week, the DU-145 cell transplanted area was incised, the tumor was removed, and the tumor volume and weight were measured. Tumor volume (mm 3 ) was calculated by measuring the major axis and minor axis with calipers and calculating the major axis x (minor axis) 2 /2 (n = 6 for each).

図6(A)に、コントロールとして0.1%生理食塩水を投与したもの及び10 μg、30μgの本発明の癌治療薬を1~4週間投与した後の代表的な腫瘍を示す。図6(B)にはコントロール及び本発明の癌治療薬を1~4週間投与した後の腫瘍体積、(C)には腫瘍重量を示す。各時点における処置群間の統計的な差は、二元配置分散分析(ANOVA)とTukey’s correction検定によって検出した。
コントロールでは、1週目~4週目にかけて腫瘍増殖が見られた。一方、本発明の癌治療薬を投与したところ、腫瘍体積及び重量を有意に(**p <0.01)抑制した。(図6(A)~(C))。なお試験中、いずれのマウスも外観異常は認められず、本発明の安全性が示された。
FIG. 6(A) shows typical tumors after administration of 0.1% physiological saline as a control and administration of 10 μg and 30 μg of the cancer therapeutic agent of the present invention for 1 to 4 weeks. FIG. 6 (B) shows the tumor volume after administering the control and the cancer therapeutic agent of the present invention for 1 to 4 weeks, and FIG. 6 (C) shows the tumor weight. Statistical differences between treatment groups at each time point were detected by two-way analysis of variance (ANOVA) and Tukey's correction test.
In controls, tumor growth was observed from week 1 to week 4. On the other hand, when the cancer therapeutic agent of the present invention was administered, the tumor volume and weight were significantly suppressed (**p <0.01). (Figure 6(A)-(C)). During the test, no abnormal appearance was observed in any of the mice, demonstrating the safety of the present invention.

一般式(1)で表される化合物又はその医薬的に許容される塩は癌の治療に適用できる。 The compound represented by general formula (1) or a pharmaceutically acceptable salt thereof can be applied to the treatment of cancer.

Claims (5)

一般式(1)で表される化合物又はその医薬的に許容される塩を含有してなる、癌治療薬。
A cancer therapeutic agent comprising a compound represented by general formula (1) or a pharmaceutically acceptable salt thereof.
さらに、医薬的に許容される賦形剤を含有してなる、請求項1に記載の癌治療薬。 The cancer therapeutic agent according to claim 1, further comprising a pharmaceutically acceptable excipient. 前記癌が前立腺癌である、請求項1又は2に記載の癌治療薬。 The cancer therapeutic agent according to claim 1 or 2, wherein the cancer is prostate cancer. 前記癌が転移性前立腺癌である、請求項1又は2に記載の癌治療薬。 The cancer therapeutic agent according to claim 1 or 2 , wherein the cancer is metastatic prostate cancer. 前記癌が、ヒト正常前立腺上皮細胞に比べてAGS8の発現レベルの上昇を伴う癌である、請求項1又は2に記載の癌治療薬。
3. The cancer therapeutic agent according to claim 1 , wherein the cancer is a cancer accompanied by an increased expression level of AGS8 compared to human normal prostate epithelial cells.
JP2023522767A 2022-01-23 2023-01-20 cancer treatment drug Active JP7345151B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2022008336 2022-01-23
JP2022008336 2022-01-23
PCT/JP2023/001710 WO2023140355A1 (en) 2022-01-23 2023-01-20 Cancer treatment drug

Publications (2)

Publication Number Publication Date
JPWO2023140355A1 JPWO2023140355A1 (en) 2023-07-27
JP7345151B1 true JP7345151B1 (en) 2023-09-15

Family

ID=87348348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023522767A Active JP7345151B1 (en) 2022-01-23 2023-01-20 cancer treatment drug

Country Status (2)

Country Link
JP (1) JP7345151B1 (en)
WO (1) WO2023140355A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014150252A1 (en) * 2013-03-15 2014-09-25 Ligand Pharmaceuticals Incorporated Methods of treatment associated with the granulocyte colony-stimulating factor receptor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014150252A1 (en) * 2013-03-15 2014-09-25 Ligand Pharmaceuticals Incorporated Methods of treatment associated with the granulocyte colony-stimulating factor receptor

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DAS, Dibash K. et al,miR-1207-3p regulates the androgen receptor in prostate cancer via FNDC1/fibronectin,Experimental Cell Research,2016年,Vol.348,pp.190-200
DAS, DIBASH K. ET AL: "miR-1207-3p regulates the androgen receptor in prostate cancer via FNDC1/fibronectin", EXPERIMENTAL CELL RESEARCH, vol. 348, JPN6023010350, 2016, pages 190 - 200, XP029772450, ISSN: 0005136832, DOI: 10.1016/j.yexcr.2016.09.021 *
DATABASE REGISTRY [ONLINE] US: AMERICAN CHEMICAL SOCIETY [RETRIEVED ON 2023.03.09], vol. Retrieved from STN, JPN7023001017, pages 331244 - 90, ISSN: 0005136834 *
DATABASE REGISTRY [Online] US: American Chemical Society [retrieved on 2023.03.09],Retrieved from STN,Registry No. 331244-90-7,(Entered STN 2001.04.13)
SATO, Motohiko et al.,Protection of Cardiomyocytes from the Hypoxia-Mediated Injury by a Peptide Targeting the Activator o,PLOS ONE,2014年,Vol.9, No.3,e91980
SATO, MOTOHIKO ET AL.: "Protection of Cardiomyocytes from the Hypoxia-Mediated Injury by a Peptide Targeting the Activator o", PLOS ONE, vol. 9, no. 3, JPN6023010349, 2014, pages 91980, ISSN: 0005136833 *

Also Published As

Publication number Publication date
JPWO2023140355A1 (en) 2023-07-27
WO2023140355A1 (en) 2023-07-27

Similar Documents

Publication Publication Date Title
Leblond et al. Systemic and cardiac depletion of M2 macrophage through CSF-1R signaling inhibition alters cardiac function post myocardial infarction
Muñoz et al. The substance P/neurokinin-1 receptor system in lung cancer: focus on the antitumor action of neurokinin-1 receptor antagonists
Tan et al. Inhibition of BRD4 suppresses tumor growth in prostate cancer via the enhancement of FOXO1 expression
JP6707549B2 (en) Anti-aging compounds and their use
US20130288980A1 (en) Targeting senescent and cancer cells for selective killing by interference with foxo4
Qi et al. Glipizide, an antidiabetic drug, suppresses tumor growth and metastasis by inhibiting angiogenesis
US20130288981A1 (en) Targeting senescent cells and cancer cells by interference with jnk and/or foxo4
CN107614062A (en) With the method for ROR gamma inhibitors treating cancers
Tsai et al. Targeting epidermal growth factor receptor/human epidermal growth factor receptor 2 signalling pathway by a dual receptor tyrosine kinase inhibitor afatinib for radiosensitisation in murine bladder carcinoma
US10166203B2 (en) Pharmaceutical composition for treating cancer including 2-methoxy-4-(3-(4-methoxyphenyl)prop-1-en-1-yl)phenol as active ingredient
JP6865174B2 (en) Azophenol as an ERG oncogene inhibitor
JP2018158919A (en) Ckap4-molecular-targeted antitumor agent
US20150133376A1 (en) Evaluation of cancer diagnosis following cancer radiotherapy and potentiation of cancer radiotherapy
Tada et al. The novel IκB kinase β inhibitor IMD-0560 prevents bone invasion by oral squamous cell carcinoma
JP6914269B2 (en) Anti-cancer drug screening method that inhibits the binding between AIMP2-DX2 and HSP70
JP7345151B1 (en) cancer treatment drug
Dmello et al. Translocon-associated protein subunit SSR3 determines and predicts susceptibility to paclitaxel in breast cancer and glioblastoma
JP2017512768A (en) Novel inhibitor for ERG oncogene positive cancer
KR102110454B1 (en) Composition for Preventing or Treating Cancer Diseases Comprising microRNA-550a-3-5p and Antitumor Agent
CN108619488B (en) Combined medication method for treating tumors
US20200101070A1 (en) Methods of treating cancer having an active wnt/beta-catenin pathway
Zhu et al. Connexin 43 Prevents Radiation-Induced Intestinal Damage via the Ca2+-Dependent PI3K/Akt Signaling Pathway
US20130150432A1 (en) Efficacy of cancer therapy
US12011447B2 (en) Pharmaceutical composition for treating thyroid cancer comprising tyrosine kinase activity inhibitor as active ingredient
WO2011144725A2 (en) Novel methods for preventing or treating diabetes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230413

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230415

AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20230511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230828

R150 Certificate of patent or registration of utility model

Ref document number: 7345151

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150