JP7344990B2 - TSNおよび5GS QoSマッピング-ユーザプレーンベースの方法 - Google Patents

TSNおよび5GS QoSマッピング-ユーザプレーンベースの方法 Download PDF

Info

Publication number
JP7344990B2
JP7344990B2 JP2021571531A JP2021571531A JP7344990B2 JP 7344990 B2 JP7344990 B2 JP 7344990B2 JP 2021571531 A JP2021571531 A JP 2021571531A JP 2021571531 A JP2021571531 A JP 2021571531A JP 7344990 B2 JP7344990 B2 JP 7344990B2
Authority
JP
Japan
Prior art keywords
tsn
qos
bridge
smf
cellular communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021571531A
Other languages
English (en)
Other versions
JP2022535385A (ja
Inventor
コーフォン チャン,
クン ワン,
アンドラデ ジャーディム, マリレト デ
Original Assignee
テレフオンアクチーボラゲット エルエム エリクソン(パブル)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テレフオンアクチーボラゲット エルエム エリクソン(パブル) filed Critical テレフオンアクチーボラゲット エルエム エリクソン(パブル)
Publication of JP2022535385A publication Critical patent/JP2022535385A/ja
Application granted granted Critical
Publication of JP7344990B2 publication Critical patent/JP7344990B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • H04W28/0263Traffic management, e.g. flow control or congestion control per individual bearer or channel involving mapping traffic to individual bearers or channels, e.g. traffic flow template [TFT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4604LAN interconnection over a backbone network, e.g. Internet, Frame Relay
    • H04L12/462LAN interconnection over a bridge based backbone

Description

関連出願
本出願は、その開示全体が参照により本明細書に組み込まれる、2019年6月3日に出願されたPCT特許出願第PCT/CN2019/089766号の利益を主張する。
本開示は、セルラ通信システムに関し、詳細には、タイムセンシティブネットワーク(TSN:Time Sensitive Network)におけるブリッジとして動作するセルラ通信システムに関する。
製造業は、スマート製造に向かう「第4次産業革命」(インダストリー4.0)に向かってデジタル変革を遂げている。フレキシブルコネクティビティインフラストラクチャは、フレキシブルな、セキュアな、および一貫した様式でマシン、製品、およびすべての種類の他のデバイスを相互接続するための製造を可能にするための重要な要素である。
有線コネクティビティソリューションの代替形態または有線コネクティビティソリューションを補完するものとしての、第3世代パートナーシッププロジェクト(3GPP)第5世代(5G)システムが、これらの垂直ドメインから来る新しい要件および課題をサポートするべきである。3GPPは、垂直ドメインからの多くの使用事例が分析される、垂直ドメインにおける自動化のための通信に関する研究(技術報告(TR)22.804)を有する。動き制御など、産業自動化適用例は、たとえば、1~10ミリ秒(ms)エンドツーエンドレイテンシおよび1~100マイクロ秒(μs)パケット遅延変動など、高い利用可能性、超高信頼、低レイテンシ、低ジッタ、および決定性に関する極めて厳しいサービス要件を有する。
タイムセンシティブネットワーキング(TSN)システムのためのブリッジとして動作するセルラ通信システムにおけるサービス品質(QoS)マッピングに関係するシステムおよび方法が本明細書で開示される。一実施形態では、TSNシステムのためのブリッジとして動作するセルラ通信システムにおけるセッション管理機能(SMF)の動作の方法が、セルラ通信システム内でTSNトラフィッククラスをQoSフローにマッピングするQoSマッピングテーブルを取得することと、QoSマッピングテーブルの少なくとも一部をユーザプレーン機能(UPF)またはUPF側におけるTSNトランスレータ(TT)に配信することとを含む。このようにして、TSNシステムのTSNトラフィッククラスとセルラ通信システムのQoSフローとの間のQoSマッピングが提供される。
一実施形態では、QoSマッピングテーブルの少なくとも一部が、ブリッジ識別子(ID)およびポートIDに関連する利用可能なTSNトラフィッククラスを備える。
一実施形態では、異なるQoSマッピングテーブルが異なるUPFのために使用される。
一実施形態では、QoSマッピングテーブルが事前設定される。一実施形態では、QoSマッピングテーブルは、セルラ通信システムがTSNシステムのためのブリッジとしての動作に関係するその能力を報告する能力報告フェーズ中に事前設定される。
一実施形態では、QoSフローは、1つまたは複数の事前確立されたQoSフローを備える。一実施形態では、QoSフローは、セルラ通信システムがTSNシステムのためのブリッジとしての動作に関係するその能力を報告する能力報告フェーズ中に事前確立された1つまたは複数のQoSフローを備える。一実施形態では、QoSフローは、1つまたは複数の事前設定されたQoSプロファイルに基づいてTSNシステムに対する1つまたは複数のプロトコルデータユニット(PDU)セッションの確立の時点において事前確立された1つまたは複数のQoSフローを備える。
SMFの対応する実施形態も開示される。一実施形態では、TSNシステムのためのブリッジとして動作するセルラ通信システムのためのSMFが、セルラ通信システム内でTSNトラフィッククラスをQoSフローにマッピングするQoSマッピングテーブルを取得することと、QoSマッピングテーブルの少なくとも一部をUPFまたはUPF側におけるTTに配信することとを行うように適応される。
SMFを実装するネットワークノードの対応する実施形態も開示される。一実施形態では、TSNシステムのためのブリッジとして動作するセルラ通信システムのためのSMFを実装するネットワークノードが、ネットワークインターフェースと、ネットワークインターフェースに関連する処理回路とを備え、処理回路は、ネットワークノードに、セルラ通信システム内でTSNトラフィッククラスをQoSフローにマッピングするQoSマッピングテーブルを取得することと、QoSマッピングテーブルの少なくとも一部をUPFまたはUPF側におけるTTに配信することとを行わせるように設定される。
アプリケーション機能(AF)の動作の方法の実施形態も開示される。一実施形態では、TSNシステムのためのブリッジとして動作するセルラ通信システムにおけるAFの動作の方法が、ブリッジの設定フェーズ中に、TSNシステムに関連するコントローラから、1つまたは複数のTSN QoS要件および1つまたは複数のTSNスケジューリングパラメータを受信することと、セルラ通信システムにおける1つまたは複数のネットワークノードに、複数の事前設定されたQoSフローの中からのどのQoSフローがTSNシステムによって使用中であるかを通知することとを含む。
一実施形態では、本方法は、ブリッジの設定フェーズ中に、1つまたは複数のTSNパラメータをセルラ通信システムにおける関連のあるネットワークノードに配信することをさらに含む。一実施形態では、1つまたは複数のTSNパラメータは、Qbvスケジュールおよびタイムセンシティブ通信支援情報を備える。
一実施形態では、本方法は、TSNシステムに関連するコントローラに対する応答を提供することをさらに含む。
AFの対応する実施形態も開示される。一実施形態では、TSNシステムのためのブリッジとして動作するセルラ通信システムのためのAFが、ブリッジの設定フェーズ中に、TSNシステムに関連するコントローラから、1つまたは複数のTSN QoS要件および1つまたは複数のTSNスケジューリングパラメータを受信することと、セルラ通信システムにおける1つまたは複数のネットワークノードに、複数の事前設定されたQoSフローの中からのどのQoSフローがTSNシステムによって使用中であるかを通知することとを行うように適応される。
AFを実装するネットワークノードの対応する実施形態も開示される。一実施形態では、TSNシステムのためのブリッジとして動作するセルラ通信システムのためのAFを実装するネットワークノードが、ネットワークインターフェースと、ネットワークインターフェースに関連する処理回路とを備え、処理回路は、ネットワークノードに、ブリッジの設定フェーズ中に、TSNシステムに関連するコントローラから、1つまたは複数のTSN QoS要件および1つまたは複数のTSNスケジューリングパラメータを受信することと、セルラ通信システムにおける1つまたは複数のネットワークノードに、複数の事前設定されたQoSフローの中からのどのQoSフローがTSNシステムによって使用中であるかを通知することとを行わせるように設定される。
本明細書に組み込まれ、本明細書の一部をなす添付の図面は、本開示のいくつかの態様を示し、説明とともに本開示の原理について解説するように働く。
本開示のいくつかの実施形態による、セルラ通信システムの一例を示す図である。 例示的な第5世代(5G)システム(5GS)アーキテクチャを示す図である。 例示的な第5世代(5G)システム(5GS)アーキテクチャを示す図である。 5GSがタイムセンシティブネットワーク(TSN)におけるブリッジとして動作し、本開示の実施形態が実装され得る、システムの一例を示す図である。 本開示のいくつかの実施形態による、集中ネットワーク設定(CNC)を用いたユーザ機器(UE)オンボーディング(onboarding)および仮想ブリッジ能力報告のためのプロシージャを示す図である。 本開示のいくつかの実施形態による、CNCを用いた仮想ブリッジ設定およびトラフィック送信のためのプロシージャを示す図である。 本開示のいくつかの実施形態による、ネットワークノードの概略ブロック図である。 本開示のいくつかの実施形態による、図7のネットワークノードの仮想化された実施形態を示す概略ブロック図である。 本開示のいくつかの他の実施形態による、図7のネットワークノードの概略ブロック図である。 本開示のいくつかの実施形態による、UEの概略ブロック図である。 本開示のいくつかの他の実施形態による、図10のUEの概略ブロック図である。 本開示のいくつかの実施形態による、テーブルの一部をセッション管理機能(SMF)からユーザプレーン機能(UPF)またはUPF側におけるTSNトランスレータ(TT)に配信するためのプロシージャを示す図である。
以下に記載される実施形態は、当業者が本実施形態を実践することができるようにするための情報を表し、本実施形態を実践する最良の形態を示す。添付の図面に照らして以下の説明を読むと、当業者は、本開示の概念を理解し、本明細書では特に扱われないこれらの概念の適用例を認識されよう。これらの概念および適用例は、本開示の範囲内に入ることを理解されたい。
無線ノード:本明細書で使用される「無線ノード」は、無線アクセスノードまたは無線デバイスのいずれかである。
無線アクセスノード:本明細書で使用される「無線アクセスノード」または「無線ネットワークノード」は、信号を無線で送信および/または受信するように動作する、セルラ通信ネットワークの無線アクセスネットワーク(RAN)における任意のノードである。無線アクセスノードのいくつかの例は、限定はしないが、基地局(たとえば、第3世代パートナーシッププロジェクト(3GPP)第5世代(5G)NRネットワークにおける新無線(New Radio:NR)基地局(gNB)、あるいは3GPP Long Term Evolution(LTE)ネットワークにおける拡張またはエボルブドノードB(eNB))と、高電力またはマクロ基地局と、低電力基地局(たとえば、マイクロ基地局、ピコ基地局、ホームeNBなど)と、リレーノードとを含む。
コアネットワークノード:本明細書で使用される「コアネットワークノード」は、コアネットワークにおける任意のタイプのノード、またはコアネットワーク機能を実装する任意のノードである。コアネットワークノードのいくつかの例は、たとえば、モビリティ管理エンティティ(MME)、パケットデータネットワークゲートウェイ(P-GW)、サービス能力公開機能(SCEF)、ホーム加入者サーバ(HSS)などを含む。コアネットワークノードのいくつかの他の例は、アクセスおよびモビリティ管理機能(AMF)、ユーザプレーン機能(UPF)、セッション管理機能(SMF)、認証サーバ機能(AUSF)、ネットワークスライス選択機能(NSSF)、ネットワーク公開機能(NEF)、ネットワーク機能(NF)リポジトリ機能(NRF)、ポリシ制御機能(PCF)、統合データ管理(UDM)などを実装するノードを含む。
無線デバイス:本明細書で使用される「無線デバイス」は、(1つまたは複数の)無線アクセスノードに対して信号を無線で送信および/または受信することによって、セルラ通信ネットワークへのアクセスを有する(すなわち、セルラ通信ネットワークによってサーブされる)任意のタイプのデバイスである。無線デバイスのいくつかの例は、限定はしないが、3GPPネットワークにおけるユーザ機器デバイス(UE)と、マシン型通信(MTC)デバイスとを含む。
ネットワークノード:本明細書で使用される「ネットワークノード」は、セルラ通信ネットワーク/システムのRANまたはコアネットワークのいずれかの一部である任意のノードである。
本明細書で与えられる説明は3GPPセルラ通信システムに焦点を当て、したがって、3GPP専門用語または3GPP専門用語に類似した専門用語がしばしば使用されることに留意されたい。しかしながら、本明細書で開示される概念は、3GPPシステムに限定されない。
本明細書の説明では、「セル」という用語に対して、参照が行われ得ることに留意されたい。しかしながら、特に5G NR概念に関して、ビームがセルの代わりに使用されることがあり、したがって、本明細書で説明される概念は、セルとビームの両方に等しく適用可能であることに留意することが重要である。
タイムセンシティブネットワーク(TSN)-5G統合について、3GPP技術報告(TR)23.734は、5Gシステムが仮想ブリッジ(または、いくつかのブリッジ)としてモデル化されるモデルに関して同意した。3GPP TR23.734ソリューション#18は、3GPPとTSNネットワークとの間のサービス品質(QoS)ネゴシエーションについて説明する。制御プレーンベースQoSネゴシエーションは、2つのステージを含む。
1. ステージ1:ブリッジ能力報告フェーズ。5Gシステム(5GS)TSNブリッジのための(ブリッジオンボーディングフェーズとも呼ばれる)TSN能力報告([1]セクション6.18.1.2.1)。
2. ステージ2:ブリッジ設定フェーズ。ソリューション#30[1]が、ソリューション#18「TSNアウェアQoSプロファイル生成」の代替となり得る「5G仮想ブリッジのためのTSN関係QoS設定」のプロシージャを提案した([1]セクション6.18.1.2.2)。
本明細書では「‘727出願」と呼ばれる、5G SYSTEM SUPPORT FOR VIRTUAL TSN BRIDGE MANAGEMENT, QoS MAPPING AND TSN Qbv SCHEDULINGと題する米国仮特許出願第62/805,727号は、制御プレーンベースQoSネゴシエーションの2つのステージに対処するいくつかのオプションを導入した。特に、‘727出願は、以下を導入した。
・ 1つのオプションでは、(1つまたは複数の)QoSフローが5Gブリッジ能力報告フェーズ中に事前設定される。そのような場合、QoSフローを通るTSNトラフィックがない場合でも、いくつかの5G QoSインジケータ(5QI)をもつQoSフローが確立される。
・ 別のオプションでは、5Gブリッジ能力報告フェーズ中にQoSフローが事前設定されない。むしろ、QoSフローの可視性のみが報告される。次いで、ステージ2のブリッジ設定フェーズ中に、QoSフロー確立が行われる。
・ ‘727出願は、TSN QoSパラメータを5G QoSプロファイルにマッピングする3つのオプションを導入した。それらのオプションは、「制御プレーンベースQoSネゴシエーション」方法に基づく。
‘727出願の提案されるソリューションに関する数個の問題がある。特に、これらの問題は、以下の通りである。
1. 制御プレーンベースQoSマッピング方法は、IEEE802.1Qcc集中モデル、たとえば、集中ネットワーク設定(CNC)または/および中央ユーザ設定(CUC)に依拠する。したがって、制御プレーンベースQoSマッピング方法は、CNC/CUCを有しないTSNネットワークに適用され得ない。
2. ‘727出願は、ブリッジ設定フェーズ中にTSN QoSパラメータを5G QoSプロファイルにマッピングするいくつかの方法を提案した。QoSマッピング方法は、TSNトラフィックのための対応するQoSプロファイルをもつQoSフローがブリッジ能力報告フェーズ中に事前確立されない、すなわち、5GSが、ただ、ブリッジ能力報告フェーズ中に、利用可能なQoSプロファイルをTSNネットワークに報告すると仮定した。
a.ブリッジ設定フェーズにおいてQoSフロー確立のシグナリングプロシージャによって引き起こされるレイテンシが問題であり得る。5GSでは、特定のTSNトラフィッククラスのための新しいQoSフローを確立するためのシグナリングプロシージャが複雑であり、これは、ページング、サービス要求、ポリシ制御、プロトコルデータユニット(PDU)セッション修正などを含み得る。シグナリングプロシージャによって引き起こされる遅延が、TSNアプリケーションの性能要件を超え得る。
b.通信サービス利用可能性が、決定性トラフィックをもつアプリケーションのための重要なサービス性能要件と見なされる。TSNアプリケーションについて、メッセージ転送時間が最大転送レイテンシよりも大きいとき、システムがTSNアプリケーションにとって利用不可能であると見なされるので、レイテンシ、存続、およびシステム信頼性も、利用可能性の重要なファクタである。QoSプロファイルが、ブリッジ能力報告フェーズ中に利用可能であるが、ブリッジ設定フェーズ中に利用可能でない場合があり得る。したがって、ブリッジ設定フェーズ中に、‘727出願の提案されるQoSマッピング方法においてQoSフロー検証のステップが必要とされる。
ブリッジとしての5GS(5GS-as-a-bridge)([1]において現在採用されるモデル)のUE側TSNトランスレータ(UE/TT)(すなわち、UEに組み込まれるかまたはUEに通信可能に結合された独立したユニットであるかのいずれかであるTTトランスレータ)とUPF側TSNトランスレータ(UPF/TT)(すなわち、UPFに組み込まれるかまたはUEに通信可能に結合された独立したユニットであるかのいずれかであるTTトランスレータ)との間の静的TSN接続の確立のための新しいプロシージャを提供することによっていくつかの問題点を解決するソリューションの実施形態が本明細書で提案される。
TSNにおけるブリッジとして動作するセルラ通信システム(たとえば、第5世代(5G)システム(5GS))のユーザ機器(UE)側TSNトランスレータ(UE/TT)とユーザプレーン機能(UPF)側TSNトランスレータ(UPF/TT)との間の静的タイムセンシティブネットワーク(TSN)接続の確立のためのシステムおよび方法が本明細書で開示される。
セッション管理機能(SMF)の動作の方法の実施形態およびSMFの対応する実施形態が開示される。いくつかの実施形態では、TSNのためのブリッジとして動作するためのセルラ通信システム(たとえば、5GS)におけるSMFの動作の方法は、TSNへの常時オンプロトコルデータユニット(PDU)セッションが確立されるPDUセッション確立プロシージャのための1つまたは複数の他のネットワークエンティティと通信することと、常時オンPDUセッションにおいて1つまたは複数のサービス品質(QoS)フローを事前確立することと、TSNのトラフィッククラスがセルラ通信システムにおけるQoSフローにバインドされるように、PDUセッションに関連する1つまたは複数のパケット検出ルール(PDR)をUPFに配信することおよび/またはPDUセッションに関連する1つまたは複数のQoSルールをUEに配信することとを含む。
本明細書で開示されるソリューションの場合、5GSは、ポート間接続が、固定であり、事前確立されるので、ブリッジとして実際に挙動する。CNCが既存のPDUセッションにおけるQoSフローの確立をトリガする必要がない。TSNトラフィッククラスとQoSフローとの間のマッピングテーブルを設定する必要もない。静的コネクティビティがユーザプレーンレベルにおいて事前確立されるので、5GS制御プレーンにおける複雑なシグナリングプロシージャとシグナリングオーバーヘッドによる遅延とが回避される。
本明細書で開示されるソリューションは、以下の態様において5G仮想TSNブリッジの性能および能力を改善することができる。
1. 本明細書で開示されるソリューションの実施形態は、TSN-5G QoSマッピングのためのユーザプレーンベースQoSマッピング機構を提供し得、QoSマッピングテーブルが、ユーザプレーンノードにおいて事前設定される。しかしながら、その機構は、制御プレーンノードとユーザプレーンノードとの間のQoSマッピングテーブルの交換が適用され得る場合を限定しない。
2. 本明細書で開示されるソリューションの実施形態は、CNCを用いるまたは用いないTSNネットワークに適用され得る。それらの実施形態は、制御プレーンベースQoSマッピング(すなわち、5GSとTSNとの間のネゴシエーション)とユーザプレーンベースQoSマッピングの両方のために使用され得る。
3. 本明細書で開示されるソリューションの実施形態は、ブリッジ能力報告(ブリッジオンボーディング)フェーズ中に、事前確立されたQoSフローを使用するオプションを提供する。いくつかの潜在的利益は、以下の通りである。
a.5G QoSフローが、ブリッジ能力報告フェーズにおいてすでに確立されているので、ブリッジ設定フェーズにおけるQoSフロー確立のシグナリングプロシージャによって引き起こされるレイテンシを減少させること、
b.QoSフロー確立および常時オンPDUセッションによってサービス利用可能性を保証すること、ならびに
c.事前確立されたQoSフローとTSNトラフィッククラスへの事前設定されたマッピングテーブルとを介して、5G仮想ブリッジにおける新しいTSNトラフィック始動のプロシージャを潜在的に簡略化すること(たとえば、5Gブリッジ設定フェーズ中のQoSフロー検証ステップが省略され得る)。
本開示の実施形態についてより詳細に説明するより前に、5GSの簡単な説明が有益である。この点について、図1は、本開示の実施形態が実装され得る、セルラ通信システム100の一例を示す。本明細書で説明される実施形態では、セルラ通信システム100は、(次世代(NG)RANとも呼ばれる)NR RANを含む5GSである。この例では、RANは、対応する(マクロ)セル104-1および104-2を制御する、5GSにおいてgNBと呼ばれる、基地局102-1および102-2を含む。基地局102-1および102-2は、概して、本明細書では、まとめて基地局102と呼ばれ、個別に基地局102と呼ばれる。同様に、(マクロ)セル104-1および104-2は、概して、本明細書では、まとめて(マクロ)セル104と呼ばれ、個別にマクロセル104と呼ばれる。RANは、対応するスモールセル108-1~108-4を制御する、いくつかの低電力ノード106-1~106-4をも含み得る。低電力ノード106-1~106-4は、(ピコ基地局またはフェムト基地局などの)小さい基地局、またはリモート無線ヘッド(RRH)などであり得る。特に、示されていないが、スモールセル108-1~108-4のうちの1つまたは複数は、基地局102によって代替的に提供され得る。低電力ノード106-1~106-4は、概して、本明細書では、まとめて低電力ノード106と呼ばれ、個別に低電力ノード106と呼ばれる。同様に、スモールセル108-1~108-4は、概して、本明細書では、まとめてスモールセル108と呼ばれ、個別にスモールセル108と呼ばれる。セルラ通信システム100は、5GSにおいて5Gコア(5GC)と呼ばれる、コアネットワーク110をも含む。基地局102(および、随意に低電力ノード106)は、コアネットワーク110に接続される。
基地局102および低電力ノード106は、対応するセル104および108中の無線デバイス112-1~112-5にサービスを提供する。無線デバイス112-1~112-5は、概して、本明細書では、まとめて無線デバイス112と呼ばれ、個別に無線デバイス112と呼ばれる。無線デバイス112は、本明細書では、UEと呼ばれることもある。
図2は、任意の2つのNF間の対話がポイントツーポイント参照ポイント/インターフェースによって表される、コアNFから組み立てられた5Gネットワークアーキテクチャとして表される無線通信システムを示す。図2は、図1のシステム100の特定の一実装形態と見なされ得る。
アクセス側から見ると、図2に示されている5Gネットワークアーキテクチャは、無線アクセスネットワーク(RAN)またはアクセスネットワーク(AN)のいずれか、ならびにAMF200に接続される複数のUE112を備える。一般に、R(AN)は、たとえばeNBまたはgNBあるいは同様のものなど、基地局102を備える。コアネットワーク側から見ると、図2に示されている5GコアNFは、ネットワークスライス選択機能(NSSF)202と、AUSF204と、UDM206と、AMF200と、SMF208と、PCF210と、アプリケーション機能(AF)212と、ユーザプレーン機能(UPF)214とを含む。
標準的な規格化における詳細なコールフローを展開するために5Gネットワークアーキテクチャの参照ポイント表現が使用される。UE112とAMF200との間のシグナリングを搬送するために、N1参照ポイントが規定される。ANとAMF200との間を、およびANとUPF214との間を接続するための参照ポイントが、それぞれ、N2およびN3として規定される。AMF200とSMF208との間に参照ポイントN11がある。N4は、SMF208およびUPF214によって使用され、したがって、UPF214は、SMF208によって生成された制御信号を使用してセットされ得、UPF214は、その状態をSMF208に報告することができる。それぞれ、N9が、異なるUPF214間の接続のための参照ポイントであり、N14が、異なるAMF200間を接続する参照ポイントである。PCF210が、それぞれ、AMF200およびSMF208にポリシを適用するので、N15およびN7が規定される。N12は、AMF200がUE112の認証を実施するために必要とされる。UEのサブスクリプションデータがAMF200およびSMF208に必要とされるので、N8およびN10が規定される。
5Gコアネットワークは、ユーザプレーンと制御プレーンとを分離することを目的とする。ユーザプレーンはユーザトラフィックを搬送し、制御プレーンはネットワーク中のシグナリングを搬送する。図2では、UPF214はユーザプレーン中にあり、すべての他のNF、すなわち、AMF200、SMF208、PCF210、AF212、NSSF202、AUSF204、およびUDM206は制御プレーン中にある。ユーザプレーンと制御プレーンとを分離することは、各プレーンリソースが独立してスケーリングされることを保証する。ユーザプレーンと制御プレーンとを分離することはまた、UPF214が、分散して制御プレーン機能とは別個に展開されることを可能にする。このアーキテクチャでは、UPF214は、低レイテンシを必要とするいくつかの適用例についてUE112とデータネットワークとの間のラウンドトリップタイム(RTT)を短縮するために、UE112の極めて近くに展開され得る。
コア5Gネットワークアーキテクチャは、モジュール化された機能から組み立てられる。たとえば、AMF200とSMF208とは、制御プレーン中の独立した機能である。分離されたAMF200とSMF208とは、独立した発展およびスケーリングを可能にする。PCF210およびAUSF204のような他の制御プレーン機能が、図2に示されているように分離され得る。モジュール化された機能設計は、5Gコアネットワークが様々なサービスをフレキシブルにサポートすることを可能にする。
各NFは、別のNFと直接対話する。あるNFから別のNFにメッセージをルーティングするために中間機能を使用することが可能である。制御プレーンでは、2つのNF間の対話のセットがサービスとして規定され、したがって、その再使用が可能である。このサービスは、モジュラリティのサポートを可能にする。ユーザプレーンは、異なるUPF214間のフォワーディング動作など、対話をサポートする。
図3は、図2の5Gネットワークアーキテクチャにおいて使用されるポイントツーポイント参照ポイント/インターフェースの代わりに、制御プレーン中でNF間でサービスベースインターフェースを使用する5Gネットワークアーキテクチャを示す。しかしながら、図2を参照しながら上記で説明されたNFは、図3に示されているNFに対応する。NFが他の許可されたNFに提供する(1つまたは複数の)サービスなどは、サービスベースインターフェースを通して、許可されたNFに公開され得る。図3では、サービスベースインターフェースは、文字「N」およびその後に続くNFの名前、たとえば、AMF200のサービスベースインターフェースの場合はNamfおよびSMF208のサービスベースインターフェースの場合はNsmfなどによって指示される。図3中のネットワーク公開機能(NEF)300およびNRF302は、上記で説明された図2に示されていない。しかしながら、図2中で明示的に指示されていないが、図2に図示されているすべてのNFが、必要に応じて図3のNEFおよびNRFと対話することができることが、明瞭にされるべきである。
図2および図3に示されているNFのいくつかの特性が、以下の様式で説明され得る。AMF200は、UEベース認証、許可、モビリティ管理などを提供する。AMF200はアクセス技術から独立しているので、多元接続技術を使用するUE112でさえ、基本的に単一のAMF200に接続される。SMF208は、セッション管理を担当し、IPアドレスをUE112に割り当てる。SMF208はまた、データ転送のためにUPF214を選択し、制御する。UE112が複数のセッションを有する場合、複数のセッションを個々に管理し、場合によってはセッションごとに異なる機能を提供するために、異なるSMF208が各セッションに割り当てられ得る。AF212は、QoSをサポートするために、ポリシ制御を担当するPCF210に、パケットフローに関する情報を提供する。その情報に基づいて、PCF210は、AMF200およびSMF208を適切に動作させるために、モビリティおよびセッション管理に関するポリシを決定する。AUSF204は、UE112または同様のものについての認証機能をサポートし、したがって、UE112または同様のものの認証のためのデータを記憶し、UDM206は、UE112のサブスクリプションデータを記憶する。5Gコアネットワークの一部でないデータネットワーク(DN)は、インターネットアクセスまたはオペレータサービスおよび同様のものを提供する。
NFは、専用ハードウェア上のネットワークエレメントとして、専用ハードウェア上で稼働するソフトウェアインスタンスとして、または適切なプラットフォーム、たとえば、クラウドインフラストラクチャ上でインスタンス化される仮想化された機能としてのいずれかで実装され得る。
本開示の実施形態は、より詳細には、TSNとの統合のためのTSNブリッジとして現れる5GSに関する。この点について、3GPP技術仕様(TS)23.501についての変更要求(CR)S2-1906754の図4.4.8.2-1の複製である、図4は、5GSがTSNブリッジとして現れるアーキテクチャの一例を示す。参照番号が図4に追加されている。示されているように、5GSは、仮想または論理TSNブリッジ400として現れる。図4に示されているように、および上記で説明されたように、5GSは、UE112と、(基地局102に対応する、この例では、参照番号102として示される)1つまたは複数のRANノードを含む(R)ANと、(本明細書ではコアネットワーク機能とも呼ばれる)いくつかのコアネットワークノードとを含む。示されているように、コアネットワークノードは、AMF200と、UDMと、SMFと、PCFと、NEFと、UPFとを含む。さらに、この例では、TSN AF402、(本明細書ではUE側TTまたはUE/TTとも呼ばれる)DS-TT404として図4中で示されているUE側におけるTSNトランスレータ(TT)、および(本明細書ではUPF側TTまたはUPF/TTとも呼ばれる)NW-TT406として図4中で示されているUPF側におけるTSN TTもある。この例では、DS-TT404は、UE112の外部に示されており、NW-TT406は、UPFの内部に示されている。しかしながら、他の実施形態では、DS-TT404は、代替的にUE112内に実装され、および/またはNW-TT406は、代替的にUPF214の外部に実装される。
本開示の実施形態によれば、5GSは、そのポート間接続が、固定であり、事前確立される、TSNブリッジ400として挙動するように設定される。以下の態様は、5GSにおける静的TSN接続を維持すると見なされる。
I. 常時オンPDUセッション
II. QoSフロー事前設定
III. ユーザプレーンにおいて事前設定されるTSN-5G QoSマッピングテーブル
IV. TSNトラフィック送信
V. 例示的な実装形態
I. 常時オンPDUセッション
既存のPDUセッションのユーザプレーン(UP)接続の非アクティブ化は、対応するデータ無線ベアラおよびN3トンネルが非アクティブ化されることを引き起こす。TSNとの静的接続を維持し、UP接続アクティブ化のシグナリングプロシージャによって引き起こされるレイテンシを回避するために、UP接続の非アクティブ化が回避されるべきである。
TSNに接続されるPDUセッションは、常時オンPDUセッションとして確立され得る。この場合、SMF208は、非アクティビティによりこのPDUセッションのUP接続を非アクティブ化するべきでない。
II. QoSフロー事前設定(事前確立)
QoSフローは、ブリッジオンボーディングフェーズとも呼ばれる、5Gブリッジ能力報告フェーズ中に事前設定(または事前確立)される。そのような場合、QoSフローを通るTSNトラフィックがない場合でも、いくつかの5QIをもつQoSフローが確立される。
QoS情報は、SMF208またはUE112において事前設定され得る。
・ SMF208における事前設定:UE112が、指定されたTSNへのPDUセッションを確立するとき、SMF208は、事前設定されたQoSプロファイルに基づいてUE112のための必要とされるQoSフローを確立する。さらなる詳細については[3]の節4.3.2参照。
・ UE112における事前設定:成功したPDUセッション確立の後に、TSNのためのQoS要件がUE112において事前設定された場合、UE112は、QoSハンドリングの要求のためのTSN関係QoSルールを含む、PDUセッション修正のプロシージャを始動する。次いで、TSNトラフィックのための対応するQoSフローが確立され得る。
III. ユーザプレーンにおけるTSN-5G QoSマッピングテーブル事前設定
SMF208ベース事前設定:
・ QoSフローがSMF208において事前設定された場合、SMF208は、TSNトラフィッククラスのマッピングテーブルを維持し、トラフィッククラスをQoSフローにバインドする。SMF208は、新しいQoSフローのためのQoSフロー識別情報(QFI)を割り振り、そのQoSプロファイル、(1つまたは複数の)アップリンクおよびダウンリンクパケット検出ルール((1つまたは複数の)PDR)、および(1つまたは複数の)QoSルールを導出する。さらなる詳細については[2]の節5.7参照。
・ (1つまたは複数の)アップリンクおよびダウンリンクPDRはSMF208によってUPF214に提供される。UPF214は、PDRに基づいてUPトラフィック(たとえば、異なるトラフィッククラス)をQoSフローにマッピングする。
・ QoSルールは、SMF208によってN1参照ポイント上でAMF200を介してUE112に提供される。UE112は、QoSルールに基づいて、QoSフローへのアップリンクトラフィックの関連付けを実施する。
・ QoSプロファイルが、SMF208によってN2参照ポイント上でAMF200を介してAN102に提供されるか、またはAN102において事前設定される。
・ IEEE802.1Qcc CNCを使用する場合、テーブルの一部(たとえば、ブリッジ識別子(ID)およびポートIDに関連する利用可能なTSNトラフィッククラス)が、能力報告フェーズ中にAF402に報告される。そのような場合、CNCは、利用可能なTSNトラフィッククラスに気づいている。
・ CNCが利用可能でない場合(たとえば、IEEE802.1Qcc完全分散モデル)、5GSは、TSNネットワークのために利用可能であるべき必要とされるパラメータの情報を収集することになる(CNCの場合におけるブリッジ能力報告フェーズと同様の概念)。テーブルの一部(たとえば、ブリッジIDおよびポートIDに関連する利用可能なTSNトラフィッククラス)が、SMF208からUPF214またはUPF側におけるTT(TSNトランスレータ)(すなわち、NW-TT406)に配信される。これは、図12に示されている。特に、図12に示されているように、SMF208は、QoSマッピングテーブルを取得する(ステップ1200)。SMF208は、本明細書で説明される任意の様式でQoSマッピングテーブルを取得することができる。SMF208は、次いで、QoSマッピングテーブルの少なくとも一部をUPF214またはNW-TT406に配信する(ステップ1202)。本明細書で説明されるように、いくつかの実施形態では、QoSマッピングテーブルは事前設定される。また本明細書で説明されるように、いくつかの実施形態では、QoSフローは、事前確立されるQoSフローを含む。
・ 変形形態1:SMF208は、異なるUPFのための異なる「事前設定された」マッピングテーブルを有し得る。他の態様に基づいて、たとえば、5Gブリッジがどのようにモデル化されるのかに応じて。
・ 変形形態2:マッピングテーブルは、UPF214において直接、事前設定(記憶)され得る。
UEベース事前設定:
・ QoSルールがUE112において事前設定された場合、UE112は、TSNトラフィッククラスとQoS要求との間のマッピングテーブルを維持する。UE112は、選択されたトラフィッククラスについて特定のQoSハンドリングを要求する。PDUセッション修正要求は、トラフィッククラスについて説明するパケットフィルタを含む。特定のQoSについての要求が、N1参照ポイント上でAMF200を介してSMF208に送られる。
・ SMF208は、UE QoS要求に基づいて、新しいQoSフローのためにQFIを割り振り、そのQoSプロファイル、(1つまたは複数の)アップリンクおよびダウンリンクPDR、および(1つまたは複数の)QoSルールを導出する。QoSルールは、AMF200に対する応答を介してUE112に配信される。SMF208は、新しいQoSフローのためのアップリンクPDRを用いてUPF214を更新する。
IV. TSNトラフィックハンドリング
a.事例1 CNCあり(たとえば、完全集中モデルおよび集中ネットワーク/分散ユーザモデルについて適用される)
TSNにおけるエンドステーションからのストリーム要件に基づいて、CNCは、送信スケジュールおよびネットワーク経路を算出する。CNCは、TSN AF402を介して、(現在ノードについて特定の)TSN QoS要件およびTSNスケジューリングパラメータを5G仮想ブリッジに配信する。
静的TSN接続をもつ5G仮想ブリッジ400について、関係するQoSフローがすでに確立され、TSN AF402は、QoSフローの確立のためのPDUセッション修正プロシージャをトリガする必要がないことがある。
QoS要件を満たすためにタイムアウェアスケジューリングを使用するシステム(IEEE802.1Qbv[5])では、および5G仮想ブリッジ400上の管理されるオブジェクトがトラフィックスケジューリングのために修正されるとき(たとえば、ゲート制御リストの変更)、情報がDS-TT404およびNW-TT406に配信される。
CNCがエンドステーションのQoS要件をサポートすることができることをCNCが指示した場合、CUCは、ストリーム送信のためにトーカーおよびリスナーを設定し(このプロシージャは3GPPの範囲外である)、通信が開始する。
図5は、本開示のいくつかの実施形態による、CNCを用いたUEオンボーディングおよび仮想ブリッジ能力報告のためのプロシージャを示す。図5に示されているプロシージャのステップが以下で説明される。
・ ステップ500a:ネットワークを介したUE要求またはトリガに基づいて、TSNへのPDUセッションが確立される。TSNに接続されるPDUセッションは、常時オンPDUセッションとして確立され得る。本明細書で使用される「常時オン」PDUセッションは、3GPP TS23.502 V16.0.2、セクション5.6.13において規定されており、これは、「常時オンPDUセッションは、ユーザプレーンリソースが、CMアイドルモードからCM-CONNECTED状態へのあらゆる遷移中にアクティブ化されなければならないPDUセッションである。」と述べる。上記で説明されたように、5GS QoSプロファイル(すなわち、TSNに関係する5GS QoSプロファイル)および対応するTSNトラフィッククラスが、SMF208において事前設定された(マッピングテーブル)場合、SMF208は、PDUセッションにおける必要とされるQoSフローを確立し、UPF214におけるPDRおよびUE112におけるQoSルールを配信することを介して、トラフィッククラスをQoSフローとバインドする。PDRをUPF214に、およびQoSルールをUE112に配信することは、PDUセッション確立プロシージャの一部であることに留意されたい。
○ 変形形態1:QoSフローの事前確立は、SMF208またはPCF210における事前設定されたマッピングテーブルに基づく。
○ 変形形態2:QoSフローの事前確立は、利用可能な5Gリソースに基づく。SMF208またはPCF210は、すべてのQoSフローのマッピングテーブルを保持する。次いで、確立されたQoSフローに基づいて、SMF208またはPCF210は、マッピングテーブルの一部を選択することになり、AF402に報告する(CNCの場合)。CNCなしの場合、SMF208またはUPF214は、TSNネットワークが使用すべきマッピングテーブルの一部を選択し得る。
・ ステップ500b(随意):上記で説明されたように、5GS QoSプロファイルおよび対応するTSNトラフィッククラスがUE112において事前設定された場合、成功したPDUセッション確立の後に、UE112は、TSNトラフィッククラスのハンドリングのためのTSN関係QoSルールを含む、PDUセッション修正のプロシージャを始動する。言い換えれば、PDUセッション修正プロシージャを使用して、UE112は、QoSプロファイルおよび対応するトラフィッククラスに関する情報をネットワークに(たとえば、SMF208に)提供する。この情報は、TSNについてのQoS要件を含み得る。次いで、UE112から取得された情報に基づいて、SMF208は、UPF214におけるPDRおよびUE112におけるQoSルールを配信することを介して、すべての必要とされるQoSフローを確立し、トラフィッククラスをQoSフロー(マッピングテーブル)とバインドする。PDRをUPF214に、およびQoSルールをUE112に配信することは、PDUセッション修正プロシージャの一部であることに留意されたい。
・ ステップ502:SMF208からの要求に基づいて、UE側およびUPF側におけるTT(すなわち、DS-TT404およびNW-TT406)は、ネットワークトポロジー、伝搬遅延、およびTSN関係情報を収集し、この情報をSMF208に提供する。
・ ステップ504:TSNのためのTSNブリッジ管理情報(ブリッジID、ポートID)およびサポートされるQoSパラメータが、(直接、またはNEF300を介して)SMFイベント通知に基づいてTSN AF402に報告される。
・ ステップ506(随意):TSN AF402は、たとえば、ブリッジ能力変更/更新イベントが起こるとき、能力報告を読み取るためにCNCに通知し得る。
・ ステップ508:CNCは、(1つまたは複数の)5GS仮想ブリッジから能力報告を読み取る。
ステップ502~508は、‘727出願において実施される対応するステップと同じであることに留意されたい。
図6は、本開示のいくつかの実施形態による、CNCを用いた仮想ブリッジ設定およびトラフィック送信のためのプロシージャを示す。図6のプロシージャのステップが以下で説明される。
・ ステップ600:TSNのエンドステーションからのストリーム要件に基づいて、CNCは、送信スケジュールおよびネットワーク経路を算出する。CNCは、TSN AFを介して、(現在ノードについて特定の)TSN QoS要件およびTSNスケジューリングパラメータを5G仮想ブリッジに配信する。
・ ステップ602:QoSフローは、すでに事前確立され、TSN使用のためにCNCに報告されたので、ブリッジ設定は、5G QoSフローをセットアップする必要がないが、随意の機能があり得る。
○ ステップ602a(随意):TSN AFは、ブリッジがCNCからの要求を依然として満たすことができるかどうか、および関係するリソースが利用可能であるかどうかを確認するために、ブリッジの能力を検証し得る。
○ ステップ602b(随意):また、QoSフローが事前確立された場合。TSNネットワーク(たとえば、CNC)は、QoSフローのうちのいくつかのみを選択し得る。したがって、AFは、どのQoSフローが実際に使用中であるかを5GSに通知することができ、次いで、5GSは、さらなるリソース最適化を行う、たとえば、冗長性のために他のQoSフローを使用することができる。
○ ステップ602c(随意):AFは、たとえば、他のTSNパラメータ(Qbvスケジュール、タイムセンシティブ通信支援情報)を、関連のある5Gノードに配信するために、QoSマッピング以外のアクションをとり得る。
・ ステップ604(随意):TSN AFは、CNCに応答する。
・ ステップ606:CNCがエンドステーションのQoS要件をサポートすることができることをCNCが指示した場合、CUCは、ストリーム送信のためにトーカーおよびリスナーを設定し(このプロシージャは3GPPの範囲外である)、新しいTSNストリームトラフィックが5G仮想ブリッジにおいて送信され得る。
b.事例2 - CNCなし(たとえば、完全分散モデルについて適用される)
CNCが利用可能でない場合(たとえば、IEEE802.1Qcc完全分散モデル)、5GSは、TSNネットワークのために利用可能であるべき必要とされるパラメータの情報を収集することになる(CNCの場合におけるブリッジ能力報告フェーズと同様の概念)。テーブルの一部(たとえば、ブリッジIDおよびポートIDに関連する利用可能なTSNトラフィッククラス)が、SMFからUPFまたはUPF側におけるTT(TSNトランスレータ)に配信され得る。
対応するトラフィックフィルタ(PDR)およびQoSルールは、それぞれ、QoSフロー、ならびにUPF(ダウンリンクトラフィック)およびUE(アップリンクトラフィック)における着信トラフィックのトラフィッククラス/優先度をバインドするために事前設定される。
V. 例示的な実装形態
次に、本開示の少なくともいくつかの態様の1つの例示的な実装形態が説明される。23.501、節5.29.1において、以下の動作が指定された。
Figure 0007344990000001
CNCに報告されたブリッジ情報は、5GSを通した経路のために使用されるべき5GSポートのための802.1Qccブリッジ遅延属性を含む。これらのポートはUEおよびUPFに対応するので、UEは、1つまたは複数のUPFが選択されるPDUセッションを登録および確立しなければならない。UEおよびUPFが知られると、5GSは、ブリッジ情報をTSNネットワークに報告することができ、CNCは、(23.501、5.29.2において規定されているように)802.1Qbvを使用してポート設定を計算することができる。
5GS QoSをサポートするための2つのオプションがある。
1. 事前設定された/静的QoS:TSCストリームのための5GS QoSは、CNCから経路設定情報を受信するより前に、事前設定されるかまたはPDUセッション確立においてセットアップされる。この場合、TCSAIおよび他のストリーム特定の特性が知られておらず、5GSにおいて適用されるTSCストリーム特定のQoSがなく、TSC 5QIのためのデフォルトQoSパラメータが使用されなければならない。802.1Qbvゲートパラメータテーブルの受信によるAFトリガされたPDUセッション修正は必要とされない。
2. 動的QoS:CNCがe2e経路を決定し、出口ポートのための802.1Qbvゲートパラメータテーブルを提供し、随意に、TSCストリームQoS要件を指示する他の情報(たとえば、CUCからAFに直接送られた情報)がAFに提供された後に、TSCストリームのためのQoSが、PDUセッション修正を介して確立される。TSNネットワークから設定情報を受信した後にPDUセッションを修正するために、PDUセッションと802.1Qbvによって提供されるブリッジ設定情報との間でバインディングが確立されなければならない。そのようにすると、設定情報がCNCから受信されたとき、修正されるべきPDUセッションが知られる。
802.1Qbvは、5GSブリッジ出口ポートのためのゲートパラメータテーブルを提供する。ポート上の各トラフィッククラスについて、ゲート制御リストが、TSNストリーム入口ポートとは無関係に、時間に応じて「開」または「閉」のトランスミッションゲート状態を指定する。さらに、CNC計算が、出口ポート上のすべてのUE/PDUセッションのためのすべてのTSNストリームに適応する間、ブリッジは、ポートごとの、トラフィッククラスごとの情報のみを受信する。802.1Qbvは、ストリームレベルおよび入口ポート情報をブリッジに提供しない。したがって、PDUセッションを識別するために使用され得るCNCからの可能な識別子は、出口ポートブリッジIDおよびポートIDである。いくつかの寄与文書において示唆されたように、トラフィッククラスがQoSフローにマッピングされると仮定する。
考慮すべき2つの事例がある。
・ UE出口ポートにおけるダウンリンクストリーム:PDUセッション確立において、PDUセッションは、UEに割り振られたポートIDに一意にバインドされ得る。CNCがそのUEポートのための802.1Qbv設定情報を提供するとき、PDUセッション修正が、バインディングに基づいてトリガされ得る。
○ (1つまたは複数の)TSNストリームを搬送するトラフィッククラスのためのゲート状態が、時間に応じて(1つまたは複数の)そのストリームの開/閉の必要を反映することになることに留意されたい。TSNトラフィックを搬送するトラフィッククラスにマッピングされる5GS QoSフローが、それに応じて修正され得る。
・ UPF出口ポートにおけるアップリンクストリーム:いくつかのブリッジ設定オプションがS2-190172および後続の改訂において考慮されている。
○ 5GSブリッジが「PDUセッションごとベース(per PDU Session based)5Gブリッジ」(各UE/PDUセッションが論理ブリッジである、オプション4)として設定された場合、PDUセッション確立において、PDUセッションは、ブリッジIDに一意にバインドされ得る。CNCが、そのブリッジIDのための802.1Qbv設定情報を提供するとき、PDUセッション修正が、バインディングに基づいてトリガされ得る。
○ 5GSブリッジが「UEごとベース(per UE based)5Gブリッジ」(各UE/PDUセッションが論理ブリッジである、オプション3)として設定された場合、PDUセッション確立において、PDUセッションは、ブリッジIDおよびUPFポートIDに一意にバインドされ得る。CNCが、そのUPFポートIDおよびブリッジIDのための802.1Qbv設定情報を提供するとき、PDUセッション修正が、バインディングに基づいてトリガされ得る。
○ ダウンリンクストリームの場合のように、(1つまたは複数の)TSNストリームを搬送するトラフィッククラスのためのゲート状態が、時間に応じて(1つまたは複数の)そのストリームの開/閉の必要を反映することになる。TSNトラフィックを搬送するトラフィッククラスにマッピングされる5GS QoSフローが、それに応じて修正され得る。
モノリシック5GSブリッジ、またはUPFごとベース論理ブリッジ(UPFごとに1つの5GSブリッジ)など、他の5GSブリッジ設定について、以下のいずれかである。
1. PDUセッション確立において、PDUセッションは、一意のUPFポートIDにバインドされなければならず、そのUPFポートIDは、次いで、経路計算のためにCNCに供給される。物理UPFポートが変化しない間、CNCに供給されるUPFポートIDは、PDUセッションにとって一意でなければならない。このオプションの適合性は、CNC能力に依存し得る、または
2. 上記で説明されたオプション1は、PDUセッションが802.1Qbvポート設定情報から決定され得ないとき、適用されることになる。
アップリンクおよびダウンリンクTSNストリームのための上記で説明された様々なシナリオに適応するために、PDUセッションセットアップにおいて、PDUセッションが、一意のUEポートID、UPFポートIDおよびブリッジIDにバインドされることが提案される。SMFは、5GSブリッジ設定およびオペレータによって望まれるQoSのタイプ(事前設定された/静的または動的)に従って、ID(たとえば、PDUセッションのための一意のUPFポートIDまたはUPF物理ポートのための共通UPFポートID)を割り振る。この手法は、ストリームごとの可視性(たとえば、802.1Qci)を提供する将来のブリッジ設定方法をサポートするためのフレキシビリティを提供する。
上記のことを考慮すると、本開示の実施形態のいくつかの態様の1つの例示的な実装形態が、以下のように、23.501 V16.0.2に対する変更要求(CR)として表され得る。
Figure 0007344990000002
VI. 追加の態様
図7は、本開示のいくつかの実施形態による、ネットワークノード700の概略ブロック図である。ネットワークノード700は、たとえば、基地局102または106(たとえば、gNB)、あるいは、たとえば、UPF、UPFとは別個であるUPF側TT、TSN AF、SMF、PCF、またはいくつかの他のコアネットワークエンティティなど、コアネットワークエンティティを実装するネットワークノードであり得る。示されているように、ネットワークノード700は、1つまたは複数のプロセッサ704(たとえば、中央処理ユニット(CPU)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)など)と、メモリ706と、ネットワークインターフェース708とを含む制御システム702を含む。1つまたは複数のプロセッサ704は、本明細書では処理回路とも呼ばれる。さらに、ネットワークノード700が無線アクセスノードである場合、ネットワークノード700は、1つまたは複数のアンテナ716に結合された1つまたは複数の送信機712と1つまたは複数の受信機714とを各々含む、1つまたは複数の無線ユニット710を含む。無線ユニット710は、無線インターフェース回路と呼ばれるか、または無線インターフェース回路の一部であり得る。いくつかの実施形態では、(1つまたは複数の)無線ユニット710は、制御システム702の外部にあり、たとえば、有線接続(たとえば、光ケーブル)を介して制御システム702に接続される。しかしながら、いくつかの他の実施形態では、(1つまたは複数の)無線ユニット710および潜在的に(1つまたは複数の)アンテナ716は、制御システム702とともに一体化される。1つまたは複数のプロセッサ704は、本明細書で説明されるネットワークノード700の1つまたは複数の機能(たとえば、たとえば、図5および図6に関して本明細書で説明された、gNB、UPF、UPF側TT、TSN AF、AMF、SMF、PCF、NEFなどの1つまたは複数の機能)を提供するように動作する。いくつかの実施形態では、(1つまたは複数の)機能は、たとえば、メモリ706に記憶され、1つまたは複数のプロセッサ704によって実行される、ソフトウェアで実装される。
図8は、本開示のいくつかの実施形態による、ネットワークノード700の仮想化された実施形態を示す概略ブロック図である。本明細書で使用される「仮想化された」ネットワークノードは、ネットワークノード700の機能の少なくとも一部分が、(たとえば、(1つまたは複数の)ネットワークにおける(1つまたは複数の)物理処理ノード上で実行する(1つまたは複数の)仮想マシンを介して)(1つまたは複数の)仮想構成要素として実装されるネットワークノード700の一実装形態である。示されているように、この例では、ネットワークノード700は、ネットワークインターフェース708を介して、(1つまたは複数の)ネットワーク802に結合されるか、または(1つまたは複数の)ネットワーク802の一部として含まれる、1つまたは複数の処理ノード800を含む。各処理ノード800は、1つまたは複数のプロセッサ804(たとえば、CPU、ASIC、FPGAなど)と、メモリ806と、ネットワークインターフェース808とを含む。ネットワークノード700が無線アクセスノードである場合、ネットワークノード702は、(1つまたは複数の)無線ユニット710と、随意に、制御システム702および/または1つまたは複数の無線ユニット710とをも含む。無線アクセスノードが(1つまたは複数の)無線ユニット710を含むが制御システム702を含まない場合、(1つまたは複数の)無線ユニット710は、(1つまたは複数の)無線ユニット710をネットワーク802に通信可能に結合するネットワークインターフェースを含むことに留意されたい。
この例では、本明細書で説明されるネットワークノード700の機能810(たとえば、たとえば、図5および図6に関して本明細書で説明されたgNB、UPF、UPF側TT、TSN AF、AMF、SMF、PCF、NEFなどの1つまたは複数の機能)は、1つまたは複数の処理ノード800において実装されるか、または制御システム702および1つまたは複数の処理ノード800にわたって任意の所望の様式で分散される。いくつかの特定の実施形態では、本明細書で説明される無線アクセスノード700の機能810(たとえば、たとえば、図5および図6に関して本明細書で説明されたgNB、UPF、UPF側TT、TSN AF、AMF、SMF、PCF、NEFなどの1つまたは複数の機能)の一部または全部は、(1つまたは複数の)処理ノード800によってホストされる(1つまたは複数の)仮想環境において実装される1つまたは複数の仮想マシンによって実行される仮想構成要素として実装される。
いくつかの実施形態では、少なくとも1つのプロセッサによって実行されたとき、本明細書で説明される実施形態のうちのいずれかに従って、少なくとも1つのプロセッサに、仮想環境におけるネットワークノード700の機能810のうちの1つまたは複数を実装するネットワークノード700またはノード(たとえば、処理ノード800)の機能を行わせる命令を含むコンピュータプログラムが提供される。いくつかの実施形態では、上述のコンピュータプログラム製品を備えるキャリアが提供される。キャリアは、電子信号、光信号、無線信号、またはコンピュータ可読記憶媒体(たとえば、メモリなど、非一時的コンピュータ可読媒体)のうちの1つである。
図9は、本開示のいくつかの他の実施形態による、ネットワークノード700の概略ブロック図である。ネットワークノード700は、1つまたは複数のモジュール900を含み、その各々はソフトウェアで実装される。(1つまたは複数の)モジュール900は、本明細書で説明されるネットワークノード700の機能を提供する。この説明は、モジュール900が処理ノード800のうちの1つにおいて実装されるか、あるいは複数の処理ノード800にわたって分散され、ならびに/または(1つまたは複数の)処理ノード800および制御システム702にわたって分散され得る、図8の処理ノード800に等しく適用可能である。
図10は、本開示のいくつかの実施形態による、UE1000の概略ブロック図である。示されているように、UE1000は、1つまたは複数のプロセッサ1002(たとえば、CPU、ASIC、FPGAなど)と、メモリ1004と、各々が、1つまたは複数のアンテナ1012に結合された1つまたは複数の送信機1008および1つまたは複数の受信機1010を含む、1つまたは複数のトランシーバ1006とを含む。(1つまたは複数の)トランシーバ1006は、当業者によって諒解されるように、(1つまたは複数の)アンテナ1012と(1つまたは複数の)プロセッサ1002との間で通信される信号を調節するように設定された、(1つまたは複数の)アンテナ1012に接続された無線フロントエンド回路を含む。プロセッサ1002は、本明細書では処理回路とも呼ばれる。トランシーバ1006は、本明細書では無線回路とも呼ばれる。いくつかの実施形態では、上記で説明されたUE1000(および/またはUE側TT)の機能は、たとえば、メモリ1004に記憶され、(1つまたは複数の)プロセッサ1002によって実行される、ソフトウェアで完全にまたは部分的に実装され得る。UE1000は、たとえば、1つまたは複数のユーザインターフェース構成要素(たとえば、ディスプレイ、ボタン、タッチスクリーン、マイクロフォン、(1つまたは複数の)スピーカーなどを含む入出力インターフェース、ならびに/あるいは、UE1000への情報の入力を可能にする、および/またはUE1000からの情報の出力を可能にするための任意の他の構成要素)、電力供給源(たとえば、バッテリーおよび関連する電力回路)など、図10に示されていない追加の構成要素を含み得ることに留意されたい。
いくつかの実施形態では、少なくとも1つのプロセッサによって実行されたとき、本明細書で説明される実施形態のうちのいずれかに従って、少なくとも1つのプロセッサにUE1000の機能を行わせる命令を含むコンピュータプログラムが提供される。いくつかの実施形態では、上述のコンピュータプログラム製品を備えるキャリアが提供される。キャリアは、電子信号、光信号、無線信号、またはコンピュータ可読記憶媒体(たとえば、メモリなど、非一時的コンピュータ可読媒体)のうちの1つである。
図11は、本開示のいくつかの他の実施形態による、UE1000の概略ブロック図である。UE1000は、1つまたは複数のモジュール1100を含み、その各々はソフトウェアで実装される。(1つまたは複数の)モジュール1100は、本明細書で説明されるUE1000の機能を提供する。
本明細書で開示される任意の適切なステップ、方法、特徴、機能、または利益は、1つまたは複数の仮想装置の1つまたは複数の機能ユニットまたはモジュールを通して実施され得る。各仮想装置は、いくつかのこれらの機能ユニットを備え得る。これらの機能ユニットは、1つまたは複数のマイクロプロセッサまたはマイクロコントローラを含み得る、処理回路、ならびに、デジタル信号プロセッサ(DSP)、専用デジタル論理などを含み得る、他のデジタルハードウェアを介して実装され得る。処理回路は、読取り専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、キャッシュメモリ、フラッシュメモリデバイス、光記憶デバイスなど、1つまたはいくつかのタイプのメモリを含み得る、メモリに記憶されたプログラムコードを実行するように設定され得る。メモリに記憶されたプログラムコードは、1つまたは複数の通信および/またはデータ通信プロトコルを実行するためのプログラム命令ならびに本明細書で説明される技法のうちの1つまたは複数を行うための命令を含む。いくつかの実装形態では、処理回路は、それぞれの機能ユニットに、本開示の1つまたは複数の実施形態による、対応する機能を実施させるために使用され得る。
図におけるプロセスが本開示のいくつかの実施形態によって実施される動作の特定の順序を示し得るが、そのような順序は例示的である(たとえば、代替実施形態が、異なる順序で動作を実施する、いくつかの動作を組み合わせる、いくつかの動作を重ね合わせる、などを行い得る)ことを理解されたい。
本開示のいくつかの例示的な実施形態は以下の通りである。
実施形態1:タイムセンシティブネットワーク(TSN)のためのブリッジとして動作するためのセルラ通信システム(たとえば、第5世代(5G)システム(5GS))におけるセッション管理機能(SMF)の動作の方法であって、方法が、以下のアクション、
・ TSNへの常時オンPDUセッションが確立されるプロトコルデータユニット(PDU)セッション確立プロシージャのための1つまたは複数の他のネットワークエンティティと通信すること(500a)と、
・ 常時オンPDUセッションにおける1つまたは複数のサービス品質(QoS)フローを事前確立すること(500aまたは500b)と、
・ TSNのトラフィッククラスがセルラ通信システムにおけるQoSフローにバインドされるように、1つまたは複数のパケット検出ルール(PDR)を常時オンPDUセッションに関連するユーザプレーン機能(UPF)に配信すること(500aまたは500b)および/または1つまたは複数のQoSルールを常時オンPDUセッションに関連するユーザ機器(UE)に配信すること(500aまたは500b)と
のうちの1つまたは複数を含む、方法。
実施形態2:常時オンPDUセッションのユーザプレーン(UP)接続が、非アクティビティにより非アクティブ化されない、実施形態1に記載の方法。
実施形態3:1つまたは複数のQoSフローを確立することが、事前設定された情報に基づいて1つまたは複数のQoSフローを確立することを含む、実施形態1または2に記載の方法。
実施形態4:UPFに配信される1つまたは複数のPDRが、事前設定された情報に基づき、および/またはUEに配信される1つまたは複数のQoSルールが、事前設定された情報に基づく、実施形態1から3のいずれか1つに記載の方法。
実施形態5:事前設定された情報が、SMFにおいて事前設定される、実施形態3または4に記載の方法。
実施形態6:事前設定された情報が、UEにおいて事前設定され、方法が、PDUセッション確立プロシージャの後に、PDUセッション修正プロシージャ中に、事前設定された情報を受信すること(500b)をさらに含む、実施形態3または4に記載の方法。
実施形態7:事前設定された情報が、1つまたは複数の事前設定されたQoSプロファイルおよび対応するトラフィッククラス(すなわち、マッピングテーブル)を含む、実施形態3から6のいずれか1つに記載の方法。
実施形態8:ブリッジ能力報告をTSNのコントローラに送ること(504)をさらに含む、実施形態1から7のいずれか1つに記載の方法。
実施形態9:実施形態1から8のいずれか1つに記載の方法を実施するように適応されたセッション管理機能(SMF)。
以下の略語のうちの少なくともいくつかが本開示で使用され得る。略語間の不整合がある場合、その略語が上記でどのように使用されるかが選好されるべきである。以下で複数回リストされる場合、最初のリスティングが(1つまたは複数の)後続のリスティングよりも選好されるべきである。
・ μs マイクロ秒
・ 3GPP 第3世代パートナーシッププロジェクト
・ 5G 第5世代
・ 5GC 第5世代コア
・ 5GS 第5世代システム
・ 5QI 第5世代サービス品質インジケータ
・ AF アプリケーション機能
・ AMF アクセスおよびモビリティ管理機能
・ AN アクセスネットワーク
・ ASIC 特定用途向け集積回路
・ AUSF 認証サーバ機能
・ CNC 集中ネットワーク設定
・ CPU 中央処理ユニット
・ CR 変更要求
・ CUC 中央ユーザ設定
・ DN データネットワーク
・ DSP デジタル信号プロセッサ
・ eNB 拡張またはエボルブドノードB
・ FPGA フィールドプログラマブルゲートアレイ
・ gNB 新無線基地局
・ HSS ホーム加入者サーバ
・ ID 識別子
・ IP インターネットプロトコル
・ LTE Long Term Evolution
・ MME モビリティ管理エンティティ
・ ms ミリ秒
・ MTC マシン型通信
・ NEF ネットワーク公開機能
・ NF ネットワーク機能
・ NG 次世代
・ NR 新無線
・ NRF ネットワーク機能リポジトリ機能
・ NSSF ネットワークスライス選択機能
・ PCF ポリシ制御機能
・ PDR パケット検出ルール
・ PDU プロトコルデータユニット
・ P-GW パケットデータネットワークゲートウェイ
・ QFI サービス品質フロー識別情報
・ QoS サービス品質
・ RAM ランダムアクセスメモリ
・ RAN 無線アクセスネットワーク
・ ROM 読取り専用メモリ
・ RRH リモート無線ヘッド
・ RTT ラウンドトリップタイム
・ SCEF サービス能力公開機能
・ SMF セッション管理機能
・ TR 技術報告
・ TS 技術仕様
・ TSN タイムセンシティブネットワーク
・ TT タイムセンシティブネットワークトランスレータ
・ UDM 統合データ管理
・ UE ユーザ機器
・ UP ユーザプレーン
・ UPF ユーザプレーン機能
当業者は、本開示の実施形態に対する改善および修正を認識されよう。すべてのそのような改善および修正は、本明細書で開示される概念の範囲内で考慮される。
参照リスト
1. 3GPP TR23.734:「Study on enhancement of 5G System (5GS) for vertical and Local Area Network (LAN) services」
2. 3GPP TS23.501:「System Architecture for the 5G System;Stage 2」.
3. 3GPP TS23.502:「Procedures of the 5G System;Stage 2」.
4. 3GPP TR23.734:「Study on enhancement of 5G System (5GS) for vertical and Local Area Network (LAN) services」
5. IEEE P802.1Qcc/D1.6:「Draft Standard for Local and metropolitan area networks - Bridges and Bridged Networks - Amendment:Stream Reservation Protocol (SRP) Enhancements and Performance Improvements」.
6. IEEE P802.1Qbv/D3.1:「Draft Standard for Local and Metropolitan Area Networks - Bridges and Bridged Networks - Amendment:Enhancements for Scheduled Traffic」.

Claims (11)

  1. タイムセンシティブネットワーキング(TSN)システムのためのブリッジ(400)として動作するセルラ通信システムにおけるセッション管理機能(SMF)(208)の動作の方法であって、前記方法が、
    前記セルラ通信システム内で、TSNストリームを搬送するトラフィッククラスであるTSNトラフィッククラスをサービス品質(QoS)フローにマッピングするQoSマッピングテーブルを取得すること(1200)と、
    前記QoSマッピングテーブルの少なくとも一部をユーザプレーン機能(UPF)(214)または、前記セルラ通信システムの端部にあるネットワーク機能である、前記UPF側におけるTSNトランスレータ(TT)(406)に配信すること(1202)と
    を含む、方法。
  2. 前記QoSマッピングテーブルの前記少なくとも一部が、ブリッジ識別子(ID)およびポートIDに関連する利用可能なTSNトラフィッククラスを備える、請求項1に記載の方法。
  3. 異なるQoSマッピングテーブルが異なるUPFのために使用される、請求項1または2に記載の方法。
  4. 前記QoSマッピングテーブルが事前設定される、請求項1から3のいずれか一項に記載の方法。
  5. 前記QoSマッピングテーブルは、前記セルラ通信システムが前記TSNシステムのためのブリッジとしての動作に関係する、前記セルラ通信システムの能力を報告する能力報告フェーズ中に事前設定される、請求項1から3のいずれか一項に記載の方法。
  6. 前記QoSフローが、1つまたは複数の事前確立されたQoSフローを備える、請求項1から5のいずれか一項に記載の方法。
  7. 前記QoSフローは、前記セルラ通信システムが前記TSNシステムのためのブリッジとしての動作に関係する、前記セルラ通信システムの能力を報告する能力報告フェーズ中に事前確立された1つまたは複数のQoSフローを備える、請求項1から5のいずれか一項に記載の方法。
  8. 前記QoSフローが、1つまたは複数の事前設定されたQoSプロファイルに基づいて前記TSNシステムに対する1つまたは複数のプロトコルデータユニット(PDU)セッションの確立の時点において事前確立された1つまたは複数のQoSフローを備える、請求項1から5のいずれか一項に記載の方法。
  9. タイムセンシティブネットワーキング(TSN)システムのためのブリッジ(400)として動作するセルラ通信システムのためのセッション管理機能(SMF)(208)であって、前記SMF(208)が、
    前記セルラ通信システム内でTSNトラフィッククラスをサービス品質(QoS)フローにマッピングするQoSマッピングテーブルを取得すること(1200)と、
    前記QoSマッピングテーブルの少なくとも一部をユーザプレーン機能(UPF)(214)または前記UPF側におけるTSNトランスレータ(TT)(406)に配信すること(1202)と
    を行うように適応された、セッション管理機能(SMF)(208)。
  10. 前記SMF(208)が、請求項2から8のいずれか一項に記載の方法を実施するようにさらに適応された、請求項9に記載のSMF(208)。
  11. タイムセンシティブネットワーキング(TSN)システムのためのブリッジ(400)として動作するセルラ通信システムのためのセッション管理機能(SMF)(208)を実装するネットワークノード(700)であって、前記ネットワークノード(700)が、
    ネットワークインターフェース(708、808)と、
    前記ネットワークインターフェース(708、808)に関連する処理回路(704、804)と
    を備え、前記処理回路(704、804)が、前記ネットワークノード(700)に、
    前記セルラ通信システム内で、TSNストリームを搬送するトラフィッククラスであるTSNトラフィッククラスをサービス品質(QoS)フローにマッピングするQoSマッピングテーブルを取得すること(1200)と、
    前記QoSマッピングテーブルの少なくとも一部をユーザプレーン機能(UPF)(214)または、前記セルラ通信システムの端部にあるネットワーク機能である、前記UPF側におけるTSNトランスレータ(TT)(406)に配信すること(1202)と
    を行わせるように設定された、ネットワークノード(700)。
JP2021571531A 2019-06-03 2020-05-12 TSNおよび5GS QoSマッピング-ユーザプレーンベースの方法 Active JP7344990B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CNPCT/CN2019/089766 2019-06-03
CN2019089766 2019-06-03
PCT/IB2020/054483 WO2020245679A1 (en) 2019-06-03 2020-05-12 TSN AND 5GS QoS MAPPING - A USER PLANE BASED METHOD

Publications (2)

Publication Number Publication Date
JP2022535385A JP2022535385A (ja) 2022-08-08
JP7344990B2 true JP7344990B2 (ja) 2023-09-14

Family

ID=70740721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021571531A Active JP7344990B2 (ja) 2019-06-03 2020-05-12 TSNおよび5GS QoSマッピング-ユーザプレーンベースの方法

Country Status (5)

Country Link
US (1) US20220256393A1 (ja)
EP (1) EP3977708A1 (ja)
JP (1) JP7344990B2 (ja)
CN (1) CN113950852A (ja)
WO (1) WO2020245679A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220321485A1 (en) * 2019-06-14 2022-10-06 Nokia Technologies Oy Apparatus, method and computer program
CN111818671B (zh) * 2019-07-05 2022-02-01 维沃移动通信有限公司 支持端口控制的方法及设备
KR20210020705A (ko) * 2019-08-16 2021-02-24 삼성전자주식회사 무선 통신 시스템에서 pdu 세션을 핸들링하기 위한 장치 및 방법
CN113556763B (zh) * 2019-09-27 2023-05-16 腾讯科技(深圳)有限公司 实现时间敏感网络的数据传输的方法、相关设备及介质
US11368375B2 (en) 2019-10-03 2022-06-21 Nokia Technologies Oy Application function influenced framework for time sensitive communications
EP4272517A1 (en) * 2020-12-30 2023-11-08 Telefonaktiebolaget LM Ericsson (publ) Wireline communication technique
WO2023009043A1 (en) * 2021-07-27 2023-02-02 Telefonaktiebolaget Lm Ericsson (Publ) Network node and method therein for optimized use of 5g system bridge ports
CN113747564B (zh) * 2021-09-07 2023-03-24 中国电信股份有限公司 时延控制方法、系统、装置、存储介质及电子设备
CN116193626A (zh) * 2021-11-26 2023-05-30 中兴通讯股份有限公司 数据传输控制方法、设备及存储介质
CN117354201A (zh) * 2022-06-29 2024-01-05 中兴通讯股份有限公司 Tsn网络时延监控方法及装置、系统、电子设备、存储介质
CN115460041B (zh) * 2022-09-15 2023-08-29 重庆大学 一种5G与TSN融合网络QoS映射方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180184428A1 (en) 2016-12-28 2018-06-28 Laurent Cariou Associating and securitizing distributed multi-band link aggregation devices

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115580905A (zh) * 2018-08-14 2023-01-06 华为技术有限公司 基于时间感知服务质量的通信方法及设备
CN113924762A (zh) * 2019-05-30 2022-01-11 诺基亚通信公司 基于3GPP的以太网桥中PDU会话和QoS流的激活
EP4055786A1 (en) * 2019-11-08 2022-09-14 Telefonaktiebolaget LM Ericsson (publ) Qos mapping

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180184428A1 (en) 2016-12-28 2018-06-28 Laurent Cariou Associating and securitizing distributed multi-band link aggregation devices

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Huawei, HiSilicon,QoS Negotiation between 3GPP and TSN networks KI#3.1[online],3GPP TSG SA WG2 #129 S2-1811211,Internet<URL:https://www.3gpp.org/ftp/tsg_sa/WG2_Arch/TSGS2_129_Dongguan/Docs/S2-1811211.zip>,2018年10月18日,pp.1-9
LG Electronics,Discussion on QoS in MA-PDU[online],3GPP TSG SA WG2 #129 S2-1810280,Internet<URL:https://www.3gpp.org/ftp/tsg_sa/WG2_Arch/TSGS2_129_Dongguan/Docs/S2-1810280.zip>,2018年10月08日,pp.1-9
Nokia, Nokia Shanghai Bell,TSN - QoS Framework[online],3GPP TSG SA WG2 #129 S2-1811209,Internet<URL:https://www.3gpp.org/ftp/tsg_sa/WG2_Arch/TSGS2_129_Dongguan/Docs/S2-1811209.zip>,2018年10月17日,pp.1-12

Also Published As

Publication number Publication date
US20220256393A1 (en) 2022-08-11
WO2020245679A1 (en) 2020-12-10
JP2022535385A (ja) 2022-08-08
CN113950852A (zh) 2022-01-18
EP3977708A1 (en) 2022-04-06

Similar Documents

Publication Publication Date Title
JP7344990B2 (ja) TSNおよび5GS QoSマッピング-ユーザプレーンベースの方法
US11950127B2 (en) 5G system support for virtual TSN bridge management, QoS mapping and TSN Qbv scheduling
US20220078662A1 (en) TSN-CELLULAR COMMUNICATION SYSTEM QoS MAPPING AND RAN OPTIMIZATION BASED ON TSN TRAFFIC PATTERN RELATED INFORMATION
US11956157B2 (en) Activation of PDU session and QOS flows in 3GPP-based ethernet bridges
CN114503776A (zh) 使用共享下行链路数据支持群组通信
EP3925182A1 (en) Methods and apparatuses for alternative data over non-access stratum, donas, data delivery in a roaming scenario
US20220021624A1 (en) Output pacing in a cellular communications system serving as a time-sensitive networking (tsn) node
CN114008987A (zh) 时间敏感联网系统中通信网络的集成
US20230019215A1 (en) TSC-5G QoS MAPPING WITH CONSIDERATION OF ASSISTANCE TRAFFIC INFORMATION AND PCC RULES FOR TSC TRAFFIC MAPPING AND 5G QoS FLOWS BINDING
JP7406657B2 (ja) リロケーション時にエッジアプリケーションサーバへのシームレスなサービス継続性を調整するためのメカニズム
EP3949346B1 (en) Cellular communications system support for virtual ethernet bridge management
EP3939215B1 (en) Filtering ethernet device source addresses for loop avoidance
EP4144059A1 (en) Mechanism for stream reservation control in communication network for time sensitive networking system
WO2023042044A1 (en) Control signaling between 3gpp network entities and transport network

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230904

R150 Certificate of patent or registration of utility model

Ref document number: 7344990

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150