JP7343862B2 - How to determine vascular disorders - Google Patents

How to determine vascular disorders Download PDF

Info

Publication number
JP7343862B2
JP7343862B2 JP2020531365A JP2020531365A JP7343862B2 JP 7343862 B2 JP7343862 B2 JP 7343862B2 JP 2020531365 A JP2020531365 A JP 2020531365A JP 2020531365 A JP2020531365 A JP 2020531365A JP 7343862 B2 JP7343862 B2 JP 7343862B2
Authority
JP
Japan
Prior art keywords
blood
succinyl
cysteine
measuring
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020531365A
Other languages
Japanese (ja)
Other versions
JPWO2020017589A1 (en
Inventor
竜児 永井
剛 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumamoto University NUC
Tokai University Educational Systems
Original Assignee
Kumamoto University NUC
Tokai University Educational Systems
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumamoto University NUC, Tokai University Educational Systems filed Critical Kumamoto University NUC
Publication of JPWO2020017589A1 publication Critical patent/JPWO2020017589A1/en
Application granted granted Critical
Publication of JP7343862B2 publication Critical patent/JP7343862B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/15Medicinal preparations ; Physical properties thereof, e.g. dissolubility
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

本発明は、特定の血中マーカーを測定することによる血管障害の判定方法に関する。 The present invention relates to a method for determining vascular disorders by measuring specific blood markers.

糖尿病の診断においては、血糖コントロールのマーカーとしてヘモグロビンA1c(HbA1c)が世界的に測定されている。しかし、動脈硬化などの血管障害の進展あるいは進展リスクを評価するマーカーについては、臨床において用いられているものは存在しない。動脈及び静脈の硬化(血管障害)は様々な加齢関連疾患の原因となるため、世界的に血管硬化のマーカーとなる物質が探索されている。翻訳後修飾で生成される構造として永井らはS‐(2‐スクシニル)システイン(以下、2SCとも称する:S-(2-succinyl)cysteine)を見いだし、2SCが脂肪細胞内に顕著に蓄積することを見いだした(非特許文献1)。 In the diagnosis of diabetes, hemoglobin A1c (HbA1c) is measured worldwide as a marker for blood sugar control. However, there are no clinically used markers for evaluating the progression or risk of progression of vascular disorders such as arteriosclerosis. Since hardening of arteries and veins (vascular disorders) is a cause of various age-related diseases, substances that can be markers of vascular hardening are being searched for worldwide. Nagai et al. discovered S-(2-succinyl) cysteine (hereinafter also referred to as 2SC) as a structure generated by post-translational modification, and found that 2SC accumulates significantly in adipocytes. (Non-patent Document 1).

Nagai R.,他、Succination of protein thiols during adipocyte maturation - a biomarker of mitochondrial stress. J Biol Chem. 282, 34219-34228 (2007)Nagai R., et al., Succination of protein thiols during adipocyte maturation - a biomarker of mitochondrial stress. J Biol Chem. 282, 34219-34228 (2007)

生活習慣病の進展に伴って動脈硬化をはじめとする血管障害を発症するが、臨床的に実用レベルの血管障害マーカーは存在しない。動脈硬化が進展した場合には、エコー検査などにより動脈硬化の進展を確認できるが、動脈硬化等の血管障害は、一度進行してしまうと完治が困難であるため、血管障害の初期にリスクを評価することが最重要となる。また、これまでの動脈硬化治療の薬剤としてHMGCoA還元酵素阻害剤で血中コレステロール値を低下させるものがあるが、ひとたび進行した動脈硬化は、これら薬剤でさらに悪化することは抑制できても、治療することは極めて困難である。そのため、世界的に動脈硬化治療の薬剤開発が行われているが、良い創薬のマーカーがないため、治療効果の高い薬剤は開発されていない。 As lifestyle-related diseases progress, vascular disorders such as arteriosclerosis develop, but there are no clinically useful markers for vascular disorders. If arteriosclerosis has progressed, it is possible to check the progress of arteriosclerosis through ultrasound examinations, etc. However, once arteriosclerosis and other vascular disorders have progressed, it is difficult to completely cure them, so it is important to monitor the risk in the early stages of vascular disorders. Evaluation is of utmost importance. In addition, there are drugs used to treat arteriosclerosis that lower blood cholesterol levels using HMGCoA reductase inhibitors, but once arteriosclerosis has progressed, even if these drugs can prevent further deterioration, treatment It is extremely difficult to do so. Therefore, drug development for the treatment of arteriosclerosis is being carried out worldwide, but since there are no good drug discovery markers, no drug with high therapeutic effects has been developed.

本発明は、臨床的に実用レベルの血管障害マーカーを同定することにより血管障害の判定方法を提供することを解決すべき課題とした。さらに本発明は、同定された血管障害マーカーを利用した血管障害の予防又は治療のための候補物質のスクリーニング方法を提供することを解決すべき課題とした。 An object of the present invention is to provide a method for determining vascular damage by identifying a clinically practical level of vascular damage marker. A further object of the present invention is to provide a method for screening candidate substances for the prevention or treatment of vascular disorders using the identified vascular disorder markers.

本発明者は上記課題を解決するために鋭意検討した結果、血管障害患者で有意に血中2SCが上昇することを確認した(図1)。細小血管障害である網膜症、腎症でも上昇した(図2)。これに対して動脈硬化のマーカー候補と考えられていたCMLでは変化が認められなかった(図3)。確認のため、動脈硬化のモデルであるapoE欠損マウスで測定した結果、やはり2SCが上昇することも確認された(図4)。上記の結果から、2SCは血管障害の初期、あるいは発症の予測マーカーとして機能することが実証された。2SCは血管障害のリスクを評価するマーカーのみならず、血管障害治療の、創薬のターゲットとしても有用である。本発明は上記の知見に基づいて完成したものである。 As a result of intensive studies to solve the above problems, the present inventors confirmed that blood 2SC significantly increases in patients with vascular disorders (FIG. 1). It also increased in retinopathy and nephropathy, which are small vessel disorders (Figure 2). In contrast, no change was observed in CML, which was considered a candidate marker for arteriosclerosis (Figure 3). For confirmation, measurements were performed using apoE-deficient mice, which are a model of arteriosclerosis, and it was also confirmed that 2SC was also increased (Figure 4). The above results demonstrated that 2SC functions as a predictive marker for the early stage or onset of vascular disorders. 2SC is useful not only as a marker for evaluating the risk of vascular disorders, but also as a target for drug discovery for the treatment of vascular disorders. The present invention was completed based on the above findings.

即ち、本発明によれば、以下の発明が提供される。
(1) 血中のS‐(2‐スクシニル)システイン量を測定することを含む、血管障害の判定方法。
(2) 血中のS‐(2‐スクシニル)システイン量を測定することにより得られた測定値が基準値より高い場合に血管障害を有するものと判定する、(1)に記載の判定方法。
(3) 血中のS‐(2‐スクシニル)システイン量を測定することにより得られた測定値が基準値より高い場合に血管障害リスクが高いと判定する、(1)に記載の判定方法。
(4) 血中のS‐(2‐スクシニル)システイン量を、質量分析または免疫分析により測定する、(1)から(3)の何れか一に記載の方法。
(5) 候補物質を投与した対象の血中のS‐(2‐スクシニル)システイン量を測定することを含む、血管障害の予防又は治療のための候補物質のスクリーニング方法。
(6) 血中のS‐(2‐スクシニル)システイン量を、質量分析または免疫分析により測定する、(5)に記載のスクリーニング方法。
(7) 候補物質が、食品由来成分である、(5)又は(6)に記載のスクリーニング方法。
That is, according to the present invention, the following inventions are provided.
(1) A method for determining vascular disorder, which includes measuring the amount of S-(2-succinyl)cysteine in the blood.
(2) The determination method according to (1), wherein it is determined that a person has a vascular disorder when the measured value obtained by measuring the amount of S-(2-succinyl)cysteine in the blood is higher than a reference value.
(3) The determination method according to (1), wherein the risk of vascular disorder is determined to be high when the measured value obtained by measuring the amount of S-(2-succinyl)cysteine in the blood is higher than a reference value.
(4) The method according to any one of (1) to (3), wherein the amount of S-(2-succinyl)cysteine in blood is measured by mass spectrometry or immunoassay.
(5) A method for screening a candidate substance for the prevention or treatment of vascular disorders, the method comprising measuring the amount of S-(2-succinyl)cysteine in the blood of a subject to whom the candidate substance has been administered.
(6) The screening method according to (5), wherein the amount of S-(2-succinyl)cysteine in blood is measured by mass spectrometry or immunoassay.
(7) The screening method according to (5) or (6), wherein the candidate substance is a food-derived component.

本発明によれば、動脈硬化の診断を行うことができる。本発明によればさらに、生活習慣病の初期で、まだ動脈硬化などの合併症が現れていない者の血管障害リスク評価が可能となる。 According to the present invention, arteriosclerosis can be diagnosed. According to the present invention, it is further possible to evaluate the risk of vascular disorders in patients who are in the early stages of lifestyle-related diseases and have not yet developed complications such as arteriosclerosis.

図1は、各種疾患の既往歴と血中2SCとの比較を示す。FIG. 1 shows a comparison between medical history of various diseases and blood 2SC. 図2は、血中に遊離する2SCの値と網膜症および腎症における病態の進行の比較を示す。FIG. 2 shows a comparison between the value of 2SC released in the blood and the progression of pathological conditions in retinopathy and nephropathy. 図3は、各種疾患の患者の血清におけるCMLの測定の結果を示す。FIG. 3 shows the results of measuring CML in the serum of patients with various diseases. 図4は、動脈硬化モデルマウスにおける血中2SCの測定の結果を示す。FIG. 4 shows the results of measurement of blood 2SC in arteriosclerosis model mice.

以下、本発明について更に詳細に説明する。
<血管障害の判定方法>
本発明による血管障害の判定方は、血中のS‐(2‐スクシニル)システイン量を測定することを含む方法である。
本発明においては、代謝によって生成する様々な翻訳後修飾構造を合成し、さらに13C標識された内部標準物質を合成し、質量分析装置による定量系を確立した。そして、血管障害で変動する翻訳後修飾物を探索した結果、2SCがヒト細小血管および大血管障害で血中レベルが上昇することが確認された。2SCの標準品は販売されておらず、LC-MS/MSで血中2SCを測定することは報告されていない。
本発明は、内部標準の合成およびLC-MS/MSにより血中2SCの正確な定量が可能となり、ヒト動脈硬化において血中2SCが上昇するデータが得られたことに基づく発明である。
The present invention will be explained in more detail below.
<Method for determining vascular disorders>
The method for determining vascular disorder according to the present invention is a method that includes measuring the amount of S-(2-succinyl) cysteine in the blood.
In the present invention, various post-translationally modified structures generated through metabolism were synthesized, a 13C-labeled internal standard substance was synthesized, and a quantitative system using a mass spectrometer was established. As a result of searching for post-translational modifications that vary with vascular disorders, it was confirmed that blood levels of 2SC increase in human small and large blood vessel disorders. A standard product of 2SC is not commercially available, and measurement of blood 2SC by LC-MS/MS has not been reported.
The present invention is based on the fact that synthesis of an internal standard and LC-MS/MS enable accurate quantification of 2SC in blood, and data have been obtained that 2SC in blood increases in human arteriosclerosis.

血管障害としては、大血管障害または細小血管障害のいずれでもよい。大血管障害としては、例えば、下肢閉塞性動脈硬化、冠動脈疾患または脳血管疾患における大血管障害を判定することができる。細小血管障害としては、例えば、網膜症、神経障害または腎症における細小血管障害を判定することができる。 The vascular disorder may be either macrovascular disorder or microvascular disorder. As the macrovascular disorder, for example, macrovascular disorder in lower extremity obstructive arteriosclerosis, coronary artery disease, or cerebrovascular disease can be determined. As the microangiopathy, for example, microangiopathy in retinopathy, neuropathy, or nephropathy can be determined.

本発明の第一の例においては、血中のS‐(2‐スクシニル)システイン量を測定することにより得られた測定値が基準値より高い場合あるいは低い場合に血管障害を有するものと判定することができる。本発明の第二の例においては、血中のS‐(2‐スクシニル)システイン量を測定することにより得られた測定値が基準値より高い場合あるいは低い場合に血管障害リスクが高いと判定することができる。 In the first example of the present invention, if the value obtained by measuring the amount of S-(2-succinyl)cysteine in the blood is higher or lower than a reference value, it is determined that the patient has a vascular disorder. be able to. In the second example of the present invention, if the measured value obtained by measuring the amount of S-(2-succinyl) cysteine in the blood is higher or lower than a reference value, it is determined that the risk of vascular disorder is high. be able to.

血中のS‐(2‐スクシニル)システイン量としては、血中に遊離して存在するS‐(2‐スクシニル)システインの量を測定してもよいし、タンパク中に存在するS‐(2‐スクシニル)システインも含むTotalのS‐(2‐スクシニル)システインの量を測定してもよい。 The amount of S-(2-succinyl)cysteine in the blood may be determined by measuring the amount of S-(2-succinyl)cysteine that exists freely in the blood, or by measuring the amount of S-(2-succinyl)cysteine that exists in protein. The total amount of S-(2-succinyl)cysteine, which also includes -succinyl)cysteine, may be measured.

本発明の一例においては、タンパク中に存在するS‐(2‐スクシニル)システインも含むTotalのS‐(2‐スクシニル)システインの量を測定することにより得られた測定値が基準値より高い場合に、大血管障害(例えば下肢閉塞性動脈硬化、冠動脈疾患または脳血管疾患における大血管障害)を有するものと判定することができ、また大血管障害リスク(例えば下肢閉塞性動脈硬化、冠動脈疾患または脳血管疾患における大血管障害)が高いと判定することができる。 In one example of the present invention, if the measured value obtained by measuring the amount of total S-(2-succinyl)cysteine, which also includes S-(2-succinyl)cysteine present in the protein, is higher than the reference value. can be determined to have macrovascular disease (e.g., arteriosclerosis obliterans in the lower extremities, coronary artery disease, or macrovascular disease in cerebrovascular disease), and to have a risk of macrovascular disease (e.g., arteriosclerosis obliterans in the lower extremities, coronary artery disease, or cerebrovascular disease). Macrovascular disease in cerebrovascular disease) can be determined to be high.

本発明の別の例においては、血中に遊離して存在するS‐(2‐スクシニル)システインの量を測定することにより得られた測定値が基準値より高い場合に、細小血管障害(例えば、網膜症、神経障害または腎症における細小血管障害)を有するものと判定することができ、また細小血管障害リスク(例えば、網膜症、神経障害または腎症における細小血管障害)が高いと判定することができる。
また、血中に遊離して存在するS‐(2‐スクシニル)システインの量を測定することにより得られた測定値が基準値より高い場合に、下肢閉塞性動脈硬化または冠動脈疾患における大血管障害を有するものと判定することができ、また下肢閉塞性動脈硬化または冠動脈疾患における大血管障害リスクが高いと判定することができる。
In another example of the invention, microangiopathy (e.g. , retinopathy, neuropathy, or microangiopathy in nephropathy), and are at high risk for microangiopathy (e.g., microangiopathy in retinopathy, neuropathy, or nephropathy). be able to.
In addition, if the measured value obtained by measuring the amount of S-(2-succinyl)cysteine that is free in the blood is higher than the standard value, it may be associated with arteriosclerosis obliterans in the lower extremities or macrovascular disorder associated with coronary artery disease. It can be determined that the patient has a high risk of macrovascular disorder due to lower limb obstructive arteriosclerosis or coronary artery disease.

<質量分析>
本発明の一例においては、血中のS‐(2‐スクシニル)システイン量を、質量分析により測定することができる。質量分析は、例えば、特開2014-119370号公報に記載の方法に準じて行うことができるが、特に限定されない。
<Mass spectrometry>
In one example of the present invention, the amount of S-(2-succinyl)cysteine in blood can be measured by mass spectrometry. Mass spectrometry can be performed, for example, according to the method described in JP-A-2014-119370, but is not particularly limited.

本発明においては、まず、血液を酸で処理することが好ましい。血液としては、全血、血清、又は血漿などを使用でき、血清がより好ましい。 In the present invention, it is preferable to first treat blood with an acid. As the blood, whole blood, serum, plasma, etc. can be used, and serum is more preferable.

酸処理に使用される酸は、有機酸でも無機酸でもよいが、無鉄塩酸またはギ酸が好ましい。使用する酸のpHは、好ましくはpH0.5~1.5、より好ましくはpH0.8~1.2である。酸処理においては、例えば、血液に酸の溶液を添加し、必要に応じて振盪又は攪拌した後、静置し、試料を加水分解させればよい。さらに、加水分解中に反応液を加温すると好ましい。酸処理に使用される酸の量、反応時間および温度の条件は、血液を十分に溶解できる条件且つ反応液が液相となる条件であればよい。 The acid used in the acid treatment may be an organic acid or an inorganic acid, but iron-free hydrochloric acid or formic acid is preferable. The pH of the acid used is preferably pH 0.5 to 1.5, more preferably pH 0.8 to 1.2. In the acid treatment, for example, an acid solution may be added to blood, shaken or stirred if necessary, and then left to stand to hydrolyze the sample. Furthermore, it is preferable to heat the reaction solution during hydrolysis. The amount of acid, reaction time, and temperature used in the acid treatment may be any condition as long as the blood can be sufficiently dissolved and the reaction liquid is in a liquid phase.

本発明においては、血中2SCは、血中に遊離して存在する2SCを測定する手法(Free)を採用してもよいし、タンパク中に存在する2SCも含むTotalの2SCを測定する手法(Total)を採用してもよい。 In the present invention, blood 2SC may be measured by a method (Free) that measures 2SC free in the blood, or a method (Free) that measures total 2SC including 2SC present in proteins. Total) may be adopted.

血中に遊離して存在する2SCを測定する手法(Free)においては、血清に同位体を用いて合成した内部標準([13]2SC)を添加し、さらに水を添加することにより試料を調製することができる。
タンパク中に存在する2SCも含むTotalの2SCを測定する手法(Total)においては、血液に内部標準([13]2SC)および塩酸を加え、100℃などの高温下で加水分解し、溶液を乾固させた後に水を添加することにより試料を調製することができる。
In the method (Free) for measuring 2SC present freely in blood, an internal standard ([ 13 C 3 , 5 N 1 ] 2SC) synthesized using an isotope is added to serum, and water is further added. Samples can be prepared by:
In the method (Total) for measuring total 2SC, which includes 2SC present in proteins, an internal standard ([ 13 C 3 , 5 N 1 ] 2SC) and hydrochloric acid are added to blood, and then hydrated at a high temperature such as 100 ° C. Samples can be prepared by adding water after decomposition and drying the solution.

上記のようにして調製した試料は、ギ酸を含むメタノールを充填したCaptiva ND Lipids(Agilent Technologies)内に添加し、よく混合させた後に通過させることができる。これにより脱脂および除タンパクを行うことができる。 The sample prepared as described above can be added to Captiva ND Lipids (Agilent Technologies) filled with methanol containing formic acid, mixed well, and then passed through. This allows defatting and protein removal.

さらに回収した試料を乾固し、ギ酸を含む水に再懸濁した後、C18カラムであるSep-pak(Waters Corp)を通過させることができる。Sep-pakはあらかじめ1%のギ酸を含む水で平衡化し、サンプルを通過させた後、さらに1%ギ酸を含む20%メタノールを2ml通過させ通過した画分を回収することができる。回収した溶液を乾固し、0.1%のギ酸を含む20%アセトニトリル1mlに再懸濁した後、分子量3000カットフィルターであるVIVASPIN 500(Sartorius Stedim)によって濾過することにより、質量分析用試料を得ることができる。なお、質量分析用試料の調製方法は、分析の方法や使用する機器に応じて適宜調製され得るため、上記の調製方法に限定されない。 Further, the collected sample can be dried and resuspended in water containing formic acid, and then passed through a C18 column, Sep-pak (Waters Corp). Sep-pak is equilibrated in advance with water containing 1% formic acid, and after passing the sample through it, 2 ml of 20% methanol containing 1% formic acid is passed through it, and the passed fraction can be collected. The collected solution was dried, resuspended in 1 ml of 20% acetonitrile containing 0.1% formic acid, and then filtered through VIVASPIN 500 (Sartorius Stedim), a molecular weight 3000 cut filter, to obtain a sample for mass spectrometry. Obtainable. Note that the method for preparing the sample for mass spectrometry is not limited to the above-mentioned preparation method, as it can be appropriately prepared depending on the analysis method and the equipment used.

質量分析の方法としては、測定可能な方法であれば特に限定されないが、液体クロマトグラフィーと質量分析とを組み合わせた分析方法が好ましく、例えば、液体クロマトグラフィー-質量分析(例えば、LC-MS法、LC-MS/MS、LC-MS/MS/MS等)法が挙げられる。検出感度をより向上させるためには、LC-MS/MS法や、LC-MS/MS/MS法などの液体クロマトグラフィー-タンデム型質量分析法がより好ましい。 The mass spectrometry method is not particularly limited as long as it is a measurable method, but an analysis method that combines liquid chromatography and mass spectrometry is preferred, such as liquid chromatography-mass spectrometry (for example, LC-MS method, Examples include LC-MS/MS, LC-MS/MS/MS, etc.) methods. In order to further improve detection sensitivity, liquid chromatography-tandem mass spectrometry methods such as LC-MS/MS method and LC-MS/MS/MS method are more preferable.

液体クロマトグラフィー-質量分析のための乾固試料溶解用の適切な溶媒としては、液体クロマトグラフィーの移動相の最終条件と同じ溶媒を用いることが好ましい。例えば、メタノールの水溶液やアセトニトリルの水溶液、アセトニトリルとトリフルオロ酢酸の混合水溶液、アセトニトリルとギ酸の混合水溶液などが挙げられるが、特に限定されない。 As a suitable solvent for dissolving the dry sample for liquid chromatography-mass spectrometry, it is preferred to use a solvent that is the same as the final conditions of the mobile phase for liquid chromatography. Examples include an aqueous methanol solution, an acetonitrile aqueous solution, a mixed aqueous solution of acetonitrile and trifluoroacetic acid, a mixed aqueous solution of acetonitrile and formic acid, but are not particularly limited.

液体クロマトグラフィー-質量分析計により2SCを測定する際の測定条件は、機器の型、試料の状態等に応じて、当業者が通常の知識に基づいて適宜設定すればよい。液体クロマトグラフィーの条件は供される試料によって異なるが、例えば、移動相にギ酸水溶液とギ酸アセトニトリル溶液でグラジエントを形成させると好ましい。質量分析計としては、二重収束磁場型質量分析計、イオントラップ型質量分析計、四重極型質量分析計などが挙げられるが、これらに限定されない。 Measurement conditions for measuring 2SC using a liquid chromatography-mass spectrometer may be appropriately set by a person skilled in the art based on common knowledge, depending on the type of equipment, the condition of the sample, etc. Although the conditions for liquid chromatography vary depending on the sample to be used, it is preferable, for example, to form a gradient in the mobile phase with an aqueous formic acid solution and a formic acid acetonitrile solution. Examples of the mass spectrometer include, but are not limited to, a double focusing magnetic field mass spectrometer, an ion trap mass spectrometer, a quadrupole mass spectrometer, and the like.

上記手順で測定された測定値を、同様の手順で測定された標準溶液からの測定値と比較することによって、生体試料由来の2SCを定量することができる。具体的には、所定濃度の2SCを含有する標準溶液からの測定結果に基づいて、検量線を作成する。検量線作成の際には、内部標準を用いて各測定値を校正しておくと、より精度の高い検量線が得られるため好ましい。 By comparing the measured value measured by the above procedure with the measured value from a standard solution measured by the same procedure, 2SC derived from the biological sample can be quantified. Specifically, a calibration curve is created based on the measurement results from a standard solution containing 2SC at a predetermined concentration. When creating a calibration curve, it is preferable to calibrate each measured value using an internal standard because a more accurate calibration curve can be obtained.

<免疫分析>
本発明の別の例においては、血中のS‐(2‐スクシニル)システイン量を、免疫分析により測定することができる。免疫分析は、2SCを検出できるポリクローナル抗体、あるいはモノクローナル抗体を用いて行うことができる。血中2SCを定量できるモノクローナル抗体を用いることにより、より簡便に多検体の測定が可能である。
<Immunological analysis>
In another example of the invention, the amount of S-(2-succinyl)cysteine in the blood can be measured by immunoassay. Immunological analysis can be performed using polyclonal or monoclonal antibodies capable of detecting 2SC. By using a monoclonal antibody that can quantify 2SC in blood, it is possible to measure multiple samples more easily.

2SCを検出できる抗体の製造方法について説明する。
2SCを検出できる抗体は、2SCを免疫原として用いることにより作製することができる。2SCをタンパク質に結合して充分な免疫原性を有する免疫原としてもよい。2SCを結合させるタンパク質としては、キャリアタンパク質として公知の各種のものを使用することができ、例えば血清アルブミン等のアルブミンや、ヘモシアニン、ミオグロビン等が挙げられる。また、キャリアタンパク質としては、ウシ、ウサギ、ヒト等の哺乳動物、スカシ貝等の貝類、鶏等の鳥類等に由来するもの等を用いることができる。これらの中でも、スカシ貝ヘモシアニン(KLH)及びウシ血清アルブミン(BSA)が好ましい。これらのタンパク質は、一種を単独で又は二種以上を組み合わせて用いることもできる。
A method for producing an antibody capable of detecting 2SC will be described.
Antibodies that can detect 2SC can be produced by using 2SC as an immunogen. 2SC may be used as an immunogen with sufficient immunogenicity by binding to a protein. As the protein that binds 2SC, various known carrier proteins can be used, such as albumin such as serum albumin, hemocyanin, myoglobin, and the like. Further, as the carrier protein, those derived from mammals such as cows, rabbits, and humans, shellfish such as keyhole keyhole, birds such as chicken, etc. can be used. Among these, keyhole limpet hemocyanin (KLH) and bovine serum albumin (BSA) are preferred. These proteins can be used alone or in combination of two or more.

2SCのキャリアタンパク質への結合には、クロスリンカーを用いることが好ましい。クロスリンカーとしては、各種公知のものを用いることができ、例えば、グルタルアルデヒド、EDC(1-ethy-3-(3-dimethylaminopropyl) carbodiimide hydrochloride)、SPDP、DST、DSGなどを用いることができる。これらの中でも、グルタルアルデヒド、又はEDCを用いることが好ましい。クロスリンカーは、一種を単独で又は二種以上を組み合わせて用いることもできる。 It is preferable to use a cross-linker to bind 2SC to a carrier protein. Various known crosslinkers can be used, such as glutaraldehyde, EDC (1-ethy-3-(3-dimethylaminopropyl) carbodiimide hydrochloride), SPDP, DST, DSG, and the like. Among these, it is preferable to use glutaraldehyde or EDC. One type of cross-linker can be used alone or two or more types can be used in combination.

2SC、又は2SCとキャリアタンパク質との結合体を抗原としてヒト以外の動物を免疫し、その動物体内に抗体産生細胞を産生させる。免疫動物から得られた血清からプロテインGカラムを用いて2SCに対するポリクローナル抗体を単離できる。また、モノクローナル抗体の製法の常法に従って行うことができる。
動物の種類は、特に限定されないが、哺乳動物が好ましい。哺乳動物としては、例えばマウス、ラット、ウサギ等のげっ歯類が挙げられる。マウスは、BALB/C系統のマウスを用いることが、ハイブリドーマの作製に用いる骨髄腫由来の細胞株が確立している点から好ましい。免疫は、各種公知の方法により行うことができ、例えば、哺乳動物の皮下、皮内、静脈、または腹腔内に注射する。免疫は、初回の免疫後に何度か繰り返し行うことが好ましく、免疫のスケジュールは、免疫する動物の種類や系統に応じて適宜に決定することができる。また、免疫応答を増強させるために、抗原は、投与前又は投与時にアジュバントと混合して投与することが好ましい。アジュバントとしては、各種公知のものを用いることができる。また、例えば、初回免疫時には完全フロイントアジュバント(CFA:Complete Freund's adjuvant)を用い、2回目以降は不完全フロイントアジュバント(IFA:Incomplete Freund's adjuvant)を用いる等、2種以上のアジュバントを用いることもできる。
A non-human animal is immunized using 2SC or a conjugate of 2SC and a carrier protein as an antigen, and antibody-producing cells are produced within the animal body. Polyclonal antibodies against 2SC can be isolated from serum obtained from immunized animals using a protein G column. Alternatively, it can be carried out according to a conventional method for producing monoclonal antibodies.
The type of animal is not particularly limited, but mammals are preferred. Examples of mammals include rodents such as mice, rats, and rabbits. As for the mouse, it is preferable to use a mouse of the BALB/C strain since myeloma-derived cell lines used for hybridoma production have been established. Immunization can be carried out by various known methods, for example, by subcutaneously, intradermally, intravenously, or intraperitoneally injecting the mammal. Immunization is preferably repeated several times after the first immunization, and the immunization schedule can be determined as appropriate depending on the type and strain of the animal to be immunized. Furthermore, in order to enhance the immune response, the antigen is preferably administered in combination with an adjuvant before or at the time of administration. Various known adjuvants can be used. Furthermore, two or more types of adjuvants can be used, for example, using Complete Freund's adjuvant (CFA) for the first immunization and using Incomplete Freund's adjuvant (IFA) for the second and subsequent immunizations.

上記にようにして免疫した動物の抗体産生細胞を用いて、2SCに対するモノクローナル抗体の産生能を有するハイブリドーマを作製することができる。 Using the antibody-producing cells of the animal immunized as described above, a hybridoma capable of producing a monoclonal antibody against 2SC can be produced.

上記の免疫後の動物は、適宜の間隔で採血し、2SCに対する抗体が産生されていることを確認する。抗体産生の確認には、酵素免疫測定法(ELISA)、放射免疫アッセイ法(RIA)、蛍光免疫測定法等の公知の分析方法を用いることができる。抗体産生の確認後、ブースト(免疫原の追加注射)を行うことも好ましい。最終免疫後、免疫した動物から脾臓細胞を摘出し、骨髄腫由来の細胞と細胞融合させる。細胞融合の方法は、例えば、ポリエチレングリコール法、センダイウイルスを用いる方法、電気刺激を与える方法等の公知の方法を用いることができる。融合細胞は、ヒポキサンチン、アミノプテリン、チミジンを含むHAT培地等で選択可能である。また、得られた融合細胞から、酵素免疫測定法(ELISA)、放射免疫アッセイ法(RIA)、蛍光免疫測定法等の公知の分析方法により、2SCに対する抗体の産生能が高い融合細胞を選択する。そして、選択した細胞を用いて、限界希釈法、軟寒天法等の公知の方法によりクローニングを行う。このようにして、2SCに対する特異性又は2SCに対する結合能が高いモノクローナル抗体を産生するハイブリドーマが得られる。 After the above-mentioned immunization, blood is collected from the animals at appropriate intervals to confirm that antibodies against 2SC are produced. Known analytical methods such as enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), and fluorescence immunoassay can be used to confirm antibody production. It is also preferable to perform a boost (additional injection of immunogen) after confirmation of antibody production. After the final immunization, spleen cells are removed from the immunized animal and fused with myeloma-derived cells. As a method for cell fusion, known methods such as a polyethylene glycol method, a method using Sendai virus, a method of applying electrical stimulation, etc. can be used, for example. Fused cells can be selected using HAT medium containing hypoxanthine, aminopterin, thymidine, and the like. Furthermore, from the obtained fused cells, fused cells with a high ability to produce antibodies against 2SC are selected by known analysis methods such as enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), and fluorescence immunoassay. . Then, using the selected cells, cloning is performed by a known method such as limiting dilution method or soft agar method. In this way, a hybridoma that produces a monoclonal antibody with high specificity for 2SC or high binding ability to 2SC can be obtained.

上記のようにして得られたハイブリドーマは、培養して増殖させ、その培養液等から2SCに対するモノクローナル抗体を分離精製することにより、モノクローナル抗体が大量に得られる。ハイブリドーマの培養方法としては、哺乳動物の腹腔内に注射し腹水内で増殖させる方法や動物の体外で適切な培地を用いて培養する方法等の各種公知の方法を採用可能である。また、腹水や培養液または培養上清から得た抗体の精製には、例えば、イオン交換クロマトグラフィー、アフィニティークロマトグラフィー等の公知の方法を特に制限なく使用可能である。 The hybridoma obtained as described above is cultured and propagated, and the monoclonal antibody against 2SC is separated and purified from the culture solution, etc., thereby obtaining a large amount of monoclonal antibody. As a method for culturing hybridomas, various known methods can be employed, such as a method in which the hybridoma is injected into the peritoneal cavity of a mammal and grown in ascites fluid, and a method in which the hybridoma is cultured outside the animal's body using an appropriate medium. In addition, for purification of antibodies obtained from ascites, culture fluid, or culture supernatant, known methods such as ion exchange chromatography and affinity chromatography can be used without particular limitations.

なお、2SCに対するモノクローナル抗体としては、上記のようにして得られた抗体のほか、2SCの識別部位を含む抗体の断片も含まれる。また、2SCに対するモノクローナル抗体としては、2SCの識別部位を含むように遺伝子組換え技術を用いて製造したキメラ抗体やヒト化抗体でもよい。 In addition to the antibodies obtained as described above, monoclonal antibodies against 2SC include antibody fragments containing an identification site for 2SC. Furthermore, the monoclonal antibody against 2SC may be a chimeric antibody or a humanized antibody produced using gene recombination technology so as to contain a 2SC identification site.

2SCに対する抗体としては、2SCに対する特異性及び/又は2SCに対する結合能に優れていることが好ましい。このような抗体を用いて免疫分析を行うことにより、血中の2SCを高感度あるいは高精度に検出及び/又は定量することが可能である。2SCに対する抗体を用いて2SCを検出及び/又は定量する方法としては、特に限定されないが、例えば、酵素免疫測定法(ELISA)、放射免疫アッセイ法(RIA)、発光免疫測定法、沈降法、凝集法、ウエスタンブロット分析、フローサイトメトリー等が挙げられる。酵素免疫測定法としては、競合阻害アッセイや競合結合アッセイを行うこともできる。 The antibody for 2SC preferably has excellent specificity for 2SC and/or excellent binding ability for 2SC. By performing immunoassay using such antibodies, it is possible to detect and/or quantify 2SC in blood with high sensitivity or precision. Methods for detecting and/or quantifying 2SC using antibodies against 2SC include, but are not particularly limited to, enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), luminescent immunoassay, precipitation method, and agglutination method. methods, Western blot analysis, flow cytometry, etc. As an enzyme immunoassay, a competitive inhibition assay or a competitive binding assay can also be performed.

<スクリーニング>
本発明はさらに、候補物質を投与した対象の血中のS-(2‐スクシニル)システイン量を測定することを含む、血管障害の予防又は治療のための候補物質のスクリーニング方法に関する。血中のS‐(2‐スクシニル)システイン量は、本明細書中において上記した質量分析または免疫分析により測定することが好ましい。
<Screening>
The present invention further relates to a method for screening a candidate substance for the prevention or treatment of vascular disorders, which comprises measuring the amount of S-(2-succinyl)cysteine in the blood of a subject to whom the candidate substance has been administered. The amount of S-(2-succinyl)cysteine in blood is preferably measured by mass spectrometry or immunoassay as described above in this specification.

候補物質を投与する対象としては、特に限定されないが、非ヒト哺乳動物が好ましく、例えば、マウス、ハムスター、モルモット、ラット、ウサギ等のげっ歯類の他、イヌ、ネコ、ヤギ、ヒツジ、ウシ、ブタ、サル等を使用することができる.上記の中でも、マウス、ハムスター、モルモット、ラット、ウサギ等のげっ歯類が好ましく、そのなかでもマウスが最も好ましい。 Subjects to which the candidate substance is administered are not particularly limited, but are preferably non-human mammals, such as rodents such as mice, hamsters, guinea pigs, rats, and rabbits, as well as dogs, cats, goats, sheep, cows, Pigs, monkeys, etc. can be used. Among the above, rodents such as mice, hamsters, guinea pigs, rats, and rabbits are preferred, and among these, mice are most preferred.

候補物質としては任意の物質を使用することができ、特には限定されない。候補物質としては、個々の低分子化合物でもよいし、天然物抽出物中に存在する化合物でもよく、合成ペプチドでもよい。候補物質は、化合物ライブラリー、ファージディスプレーライブラリーもしくはコンビナトリアルライブラリーでもよい。化合物ライブラリーの構築は当業者に公知であり、また市販の化合物ライブラリーを使用することもできる。候補物質の一例としては、食品由来成分である。 Any substance can be used as the candidate substance and is not particularly limited. The candidate substance may be an individual low-molecular compound, a compound present in a natural product extract, or a synthetic peptide. The candidate substance may be a compound library, phage display library or combinatorial library. Construction of compound libraries is known to those skilled in the art, and commercially available compound libraries can also be used. An example of a candidate substance is a food-derived component.

本発明のスクリーニング方法においては、血中の2SC量を低減させる物質を、血管障害の予防又は治療のための候補物質として選別することができる。候補物質を投与した対象と、コントロール物質を投与した対象とを用いて、両者の血中の2SC量を比較することによって、血中の2SC量を低減させる物質を同定することができる。 In the screening method of the present invention, substances that reduce the amount of 2SC in blood can be selected as candidate substances for the prevention or treatment of vascular disorders. By comparing the amount of 2SC in the blood of a subject administered with a candidate substance and a subject administered with a control substance, it is possible to identify a substance that reduces the amount of 2SC in the blood.

以下の実施例により本発明をさらに具体的に説明するが、本発明は実施例によって限定されるものではない。 The present invention will be explained in more detail with reference to the following examples, but the present invention is not limited by the examples.

<2SCの前処理方法と検出方法>
血清中2SCは、血中に遊離して存在する2SCを測定する手法(Free)と、タンパク中に存在する2SCを含めて測定する手法(Total)の2つの手法を確立した。
<2SC preprocessing method and detection method>
Two methods have been established for measuring 2SC in serum: a method that measures 2SC that exists freely in the blood (Free), and a method that measures 2SC that is present in proteins, including 2SC (Total).

Freeでは、血清30μlに同位体を用いて合成した内部標準([1315] 2SC)を添加し、水で700μlまでupしたものを0.1%のギ酸を含むメタノール(2.1ml)を充填したCaptiva ND Lipids(Agilent Technologies)内に添加し、よく混合させた後に通過させ、脱脂および徐タンパクを行った。回収した試料を乾固し、1%のギ酸を含む水1mlに再懸濁した後、C18カラムであるSep-pak(Waters Corp)を通過させた。Sep-pakはあらかじめ1%のギ酸を含む水で平衡化し、サンプルを通過させた後、さらに1%ギ酸を含む20%メタノールを2ml通過させ通過した画分を回収した。回収した溶液を乾固し、0.1%のギ酸を含む20%アセトニトリル1mlに再懸濁した後、分子量3000カットフィルターであるVIVASPIN500(Sartorius Stedim)によって濾過したサンプルを測定に用いた。In Free, an internal standard ([ 13 C 3 , 15 N 1 ] 2SC) synthesized using an isotope was added to 30 μl of serum, the volume was brought up to 700 μl with water, and the mixture was diluted with methanol (2 SC) containing 0.1% formic acid. .1 ml) was added to Captiva ND Lipids (Agilent Technologies), mixed well, and passed through to perform defatting and deproteinization. The collected sample was dried, resuspended in 1 ml of water containing 1% formic acid, and then passed through a C18 column, Sep-pak (Waters Corp). Sep-pak was equilibrated in advance with water containing 1% formic acid, and after the sample was passed through it, 2 ml of 20% methanol containing 1% formic acid was passed through it, and the passed fraction was collected. The collected solution was dried and resuspended in 1 ml of 20% acetonitrile containing 0.1% formic acid, and then filtered through a VIVASPIN500 (Sartorius Stedim), a molecular weight 3000 cut filter, and the sample was used for measurement.

一方、Totalでは、最初に血清1μlに内部標準および1mlの6N HClを加え、100℃で18時間加水分解し、溶液を乾固させた後に水で700μlまでupし、Captiva ND Lipids を用いた処理以降はFreeと同様に処理した。 On the other hand, in Total, the internal standard and 1 ml of 6N HCl were first added to 1 μl of serum, hydrolyzed at 100°C for 18 hours, and the solution was dried and then made up to 700 μl with water, and treated with Captiva ND Lipids. After that, processing was performed in the same manner as for Free.

液体クロマトグラフィータンデム質量分析装置(LC-MS/MS)を用いて測定を行う際には0.1%のギ酸を含むアセトニトリルと0.1%のギ酸を含む水のグラジュエントの条件においてZIC(登録商標)-HILIC column(150x2.1mm, 5μm)(Merck Millipore)を用いて液体クロマトグラフィーによる分離を行い、ESIポジティブでイオン化し、MS/MSによる検出を行った。2SCおよび内部標準として用いた[1315]2SCはイオン化によって、それぞれのペアレントイオンが238(m/z)と242(m/z)となり、それらから得られるプロダクトイオン149(m/z)を検出することで2SCの測定を行った。When performing measurements using a liquid chromatography tandem mass spectrometer (LC-MS/MS), ZIC (registered Separation was performed by liquid chromatography using a HILIC column (150x2.1 mm, 5 μm) (Merck Millipore), ionization was performed using ESI positive, and detection was performed by MS/MS. 2SC and [ 13 C 3 , 15 N 1 ] 2SC used as an internal standard are ionized to have respective parent ions of 238 (m/z) and 242 (m/z), and the product ion obtained from them is 149 (m/z). 2SC was measured by detecting /z).

<結果>
(1)各種疾患の既往歴と血中2SCとの比較
各種疾患の既往歴と血中2SCとの比較を行った。測定した患者は、平均年齢67歳の計32人(男17人、女15人)である。各病態の既往歴を有する人数は以下の通りである。下肢閉塞性動脈硬化:3人、冠動脈疾患:9人、脳血管疾患:2人、網膜症:11人、神経障害:11人、腎症:15人。
<Results>
(1) Comparison of past history of various diseases and blood 2SC A comparison was made between past history of various diseases and blood 2SC. A total of 32 patients (17 males, 15 females) were measured, with an average age of 67 years. The number of people with a past history of each condition is as follows. Lower limb obstructive arteriosclerosis: 3 patients, coronary artery disease: 9 patients, cerebrovascular disease: 2 patients, retinopathy: 11 patients, neuropathy: 11 patients, nephropathy: 15 patients.

結果を図1に示す。血中に遊離する2SC(Free)は主に細小血管障害において有意に増加し、血中のトータル2SC(Total)は大血管障害において増加することが明らかとなった。 The results are shown in Figure 1. It was revealed that 2SC (Free) released in the blood significantly increased mainly in small vessel disorders, and total 2SC (Total) in the blood increased in macrovascular disorders.

(2)血中に遊離する2SCの値と網膜症および腎症における病態の進行の比較
細小血管障害において有意な増加が認められた血中に遊離する2SCの値を網膜症および腎症における病態の進行と比較を行った。測定した患者は、平均年齢66歳の計68人(男30人、女38人)である。各群の人数は以下の通りである。網膜症無し:52人、単純糖尿病網膜症:10人、前増殖糖尿病網膜症:2人、増殖糖尿病網膜症:4人。腎症無し・1期:46人、腎症2期:18人、腎症3期:3人、腎症4期:1人。
(2) Comparison of the value of 2SC released in the blood and the progression of pathological conditions in retinopathy and nephropathy. The progress and comparison were made. A total of 68 patients (30 men, 38 women) with an average age of 66 years were measured. The number of people in each group is as follows. No retinopathy: 52 patients, simple diabetic retinopathy: 10 patients, preproliferative diabetic retinopathy: 2 patients, proliferative diabetic retinopathy: 4 patients. No nephropathy/stage 1: 46 patients, stage 2 nephropathy: 18 patients, stage 3 nephropathy: 3 patients, stage 4 nephropathy: 1 patient.

結果を図2に示す。各群のサンプル数が少ないため、有意な差は認められないが、増加する傾向が示された。 The results are shown in Figure 2. Although no significant difference was observed due to the small number of samples in each group, an increasing trend was observed.

(3)各種疾患の患者の血清におけるCMLの測定
図1で測定を行った患者の血清において代表的なAGEs構造であるCMLを測定し、既往歴との比較を行った。
結果を図3に示す。CMLでは2SCとは異なり、各疾患における増加は認められなかった。CMLは血管障害のマーカーとして期待されているが、血管障害の進展では変化しないことが明らかとなった。
(3) Measurement of CML in the serum of patients with various diseases CML, which is a typical AGEs structure, was measured in the serum of the patients measured in Figure 1 and compared with past medical history.
The results are shown in Figure 3. Unlike 2SC, no increase in each disease was observed in CML. Although CML is expected to be a marker of vascular damage, it has become clear that it does not change with the progression of vascular damage.

(4)動脈硬化モデルマウスにおける血中2SCの測定
動脈硬化モデルマウスであるapoE欠損マウス(20週齢)の血中2SCを測定し、健常個体と比較した(各群3個体ずつ)。
結果を図4に示す。FreeおよびTotalどちらの2SC値もapoE欠損マウスで高値を示し、ヒト同様モデルマウスにおいても血管障害の発症と血中2SC値との関連性が明らかとなった。
(4) Measurement of blood 2SC in arteriosclerosis model mice Blood 2SC of apoE-deficient mice (20 weeks old), which are arteriosclerosis model mice, was measured and compared with healthy individuals (3 animals in each group).
The results are shown in Figure 4. Both Free and Total 2SC values showed high values in apoE-deficient mice, and a relationship between the onset of vascular disorders and blood 2SC values was clarified in model mice as well as in humans.

Claims (7)

血中のTotalのS‐(2‐スクシニル)システイン量を測定することを含む、大血管障害の指標を提供する方法。 A method for providing an index of macrovascular disorder , the method comprising measuring the total amount of S-(2-succinyl)cysteine in blood. 血中のTotalのS‐(2‐スクシニル)システイン量を測定することにより得られた測定値が基準値より高い場合に上記測定値を大血管障害の指標とする、請求項1に記載の方法。 The method according to claim 1, wherein when the measured value obtained by measuring the total amount of S-(2-succinyl) cysteine in the blood is higher than a reference value, the measured value is taken as an index of macrovascular disorder. . 血中のTotalのS‐(2‐スクシニル)システイン量を測定することにより得られた測定値が基準値より高い場合に上記測定値を大血管障害リスクが高いことの指標とする、請求項1に記載の方法。 Claim 1: When the measured value obtained by measuring the total amount of S-(2-succinyl) cysteine in the blood is higher than a reference value , the measured value is used as an indicator of a high risk of macrovascular disorder. The method described in. 血中のTotalのS‐(2‐スクシニル)システイン量を、質量分析または免疫分析により測定する、請求項1から3の何れか一項に記載の方法。 4. The method according to claim 1, wherein the total amount of S-(2-succinyl)cysteine in blood is measured by mass spectrometry or immunoassay. 候補物質を投与した対象の血中のTotalのS‐(2‐スクシニル)システイン量を測定することを含む、大血管障害の予防又は治療のための候補物質のスクリーニング方法。 A method for screening a candidate substance for the prevention or treatment of macrovascular disorders , the method comprising measuring the total amount of S-(2-succinyl)cysteine in the blood of a subject to whom the candidate substance has been administered. 血中のTotalのS‐(2‐スクシニル)システイン量を、質量分析または免疫分析により測定する、請求項5に記載のスクリーニング方法。 6. The screening method according to claim 5, wherein the total amount of S-(2-succinyl)cysteine in blood is measured by mass spectrometry or immunoassay. 候補物質が、食品由来成分である、請求項5又は6に記載のスクリーニング方法。 The screening method according to claim 5 or 6, wherein the candidate substance is a food-derived component.
JP2020531365A 2018-07-18 2019-07-18 How to determine vascular disorders Active JP7343862B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018134747 2018-07-18
JP2018134747 2018-07-18
PCT/JP2019/028260 WO2020017589A1 (en) 2018-07-18 2019-07-18 Method for determining vascular disorder

Publications (2)

Publication Number Publication Date
JPWO2020017589A1 JPWO2020017589A1 (en) 2021-08-02
JP7343862B2 true JP7343862B2 (en) 2023-09-13

Family

ID=69164885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020531365A Active JP7343862B2 (en) 2018-07-18 2019-07-18 How to determine vascular disorders

Country Status (2)

Country Link
JP (1) JP7343862B2 (en)
WO (1) WO2020017589A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014119370A (en) 2012-12-18 2014-06-30 Tokai Univ Sample pretreatment method
JP2017049024A (en) 2015-08-31 2017-03-09 学校法人東海大学 Preparation method of sample for advanced glycation end product analysis, and analytical method of advanced glycation end product

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014119370A (en) 2012-12-18 2014-06-30 Tokai Univ Sample pretreatment method
JP2017049024A (en) 2015-08-31 2017-03-09 学校法人東海大学 Preparation method of sample for advanced glycation end product analysis, and analytical method of advanced glycation end product

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
BENNETT, J.A. et al.,Leiomyoma with bizarre nuclei: a morphological, immunohistochemical and molecular analysis of 31 cases,Modern Pathology,2017年06月30日,Vol.30,p.1476-1488,特にDiscussion
BLATNIK, M. et al.,Inactivation of Glyceraldehyde-3-Phosphate Dehydrogenase by Fumarate in Diabetes,DIABETES,2007年10月12日,Vol.57, Issue 1,p.41-49,特に第41ページ左欄第1~32行、第43ページ左欄第16~28行
ICHIMARU, K et al.,Detection of S-(2-succinyl)cystein (2SC) by LC-MS/MS as a marker for mitochondrial dysfunctions,第16回日本NO学会学術集会プログラム抄録集,2016年,p. 66,特にResults
NAGAI, R. et al.,Succination of Protein Thiols during Adipocyte Maturation,The journal of Biological Chemistry,2007年11月23日,Vol.282, No.47,p.34219-34228,特に第34219ページ右欄第9行~第34220ページ左欄第34行
THOMAS, S.A. et al.,Tissue Distribution of S-(2-Succino)cysteine (2SC), a Biomarker of Mitochondrial Stress in Obesity and Diabetes,Obesity,2012年09月06日,Vol.20, Issue 2,p.263-269,特に第263ページ第1~16行、第268ページ右欄第2~16行
品川雅敏 ほか,免疫学的および分析化学的手法を用いた2SCの測定,第67回日本酸化ストレス学会学術集会プログラム・抄録集,日本,2014年08月29日,p. 92,全文
白河潤一 ほか,LC-MS/MSを用いたミトコンドリア代謝異常由来生成物2SCの血中における測定,第27回日本メイラード学会学術集会プログラム・抄録集,2017年,p. 10,全文

Also Published As

Publication number Publication date
JPWO2020017589A1 (en) 2021-08-02
WO2020017589A1 (en) 2020-01-23

Similar Documents

Publication Publication Date Title
JP5717178B2 (en) Method for detecting idiopathic interstitial pneumonia
JP2024054181A (en) Drug and method for determining alzheimer disease
Wang et al. Early active immunization with Aβ3–10-KLH vaccine reduces tau phosphorylation in the hippocampus and protects cognition of mice
JP6293583B2 (en) Immunoassays for detecting neurotoxic amino acids associated with neuropathy
KR101883515B1 (en) Diagnostic drug and diagnostic method for alzheimer&#39;s disease
US9115190B2 (en) Sequences, antibodies, methods and kits for detection and in vitro assay of periostin, in order to provide a diagnosis, follow-up or prognosis of diseases and biological phenomena involving periostin
US20220169720A1 (en) Threonine166 and serine189 of rubicon run domain as lrrk2 kinase inhibition target sites
WO2011090166A1 (en) Esophageal cancer marker
KR101486548B1 (en) Marker for diagnosis of age-related macular degeneration and diagnositic method using the same
JP7343862B2 (en) How to determine vascular disorders
WO2021157634A1 (en) Determination agent and determination method for tauopathy and dementia-related diseases
EP1712564B1 (en) Anti-nc1 monoclonal antibody
JP6630116B2 (en) Monoclonal anti-AGEs antibody and method for producing the same
JP2008241704A (en) New stress biomarker and its application
Yan et al. Two desired epitopes of cTnI benefit for preparation of standardized monoclonal antibodies
WO2024090571A1 (en) Diagnosis of immune-mediated inflammatory diseases using mmp12 as indicator, and medicine for treating immune-mediated inflammatory diseases via mmp12 inhibition
KR101515211B1 (en) Biomarkers HtrA2 for diagnosing hepatic fibrosis
JP7169594B2 (en) markers for diabetic complications
CN110865184B (en) Application of SRSP protein and SRSP epitope peptide and product for diagnosing and treating tumors
US8034551B2 (en) Method, reagent and kit for malaria testing
US11061034B2 (en) Blood biomarker for use in evaluation of effect of drug therapy on kidney cancer
US20180259516A1 (en) Means and methods for diagnosing and treating inflammatory disorders
WO2013141092A1 (en) Cancer metastasis marker and method for diagnosing cancer metastasis using same
CN114026429A (en) Prognostic prediction method for idiopathic pulmonary fibrosis
JP5261708B2 (en) Anti-8-thioalkoxyguanosine-3 &#39;, 5&#39;-cyclic monophosphate antibody

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230823

R150 Certificate of patent or registration of utility model

Ref document number: 7343862

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150