JP7342959B2 - Multi-core optical connector and optical fiber connection method - Google Patents

Multi-core optical connector and optical fiber connection method Download PDF

Info

Publication number
JP7342959B2
JP7342959B2 JP2021545583A JP2021545583A JP7342959B2 JP 7342959 B2 JP7342959 B2 JP 7342959B2 JP 2021545583 A JP2021545583 A JP 2021545583A JP 2021545583 A JP2021545583 A JP 2021545583A JP 7342959 B2 JP7342959 B2 JP 7342959B2
Authority
JP
Japan
Prior art keywords
optical fibers
optical
elongated hole
core
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021545583A
Other languages
Japanese (ja)
Other versions
JPWO2021049561A1 (en
Inventor
康就 田中
良 小山
雅昭 高谷
宜輝 阿部
千里 深井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Publication of JPWO2021049561A1 publication Critical patent/JPWO2021049561A1/ja
Application granted granted Critical
Publication of JP7342959B2 publication Critical patent/JP7342959B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3873Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
    • G02B6/3885Multicore or multichannel optical connectors, i.e. one single ferrule containing more than one fibre, e.g. ribbon type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3834Means for centering or aligning the light guide within the ferrule
    • G02B6/3838Means for centering or aligning the light guide within the ferrule using grooves for light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/3648Supporting carriers of a microbench type, i.e. with micromachined additional mechanical structures
    • G02B6/3652Supporting carriers of a microbench type, i.e. with micromachined additional mechanical structures the additional structures being prepositioning mounting areas, allowing only movement in one dimension, e.g. grooves, trenches or vias in the microbench surface, i.e. self aligning supporting carriers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3834Means for centering or aligning the light guide within the ferrule
    • G02B6/3838Means for centering or aligning the light guide within the ferrule using grooves for light guides
    • G02B6/3839Means for centering or aligning the light guide within the ferrule using grooves for light guides for a plurality of light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3855Details of mounting fibres in ferrules; Assembly methods; Manufacture characterised by the method of anchoring or fixing the fibre within the ferrule
    • G02B6/3861Adhesive bonding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3873Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
    • G02B6/3882Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls using rods, pins or balls to align a pair of ferrule ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/40Mechanical coupling means having fibre bundle mating means
    • G02B6/403Mechanical coupling means having fibre bundle mating means of the ferrule type, connecting a pair of ferrules

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Description

本開示は、複数の光ファイバを一括で接続する多心光コネクタ技術において、特に複数のファイバをひとつの長穴に横一列に並べて配置する技術に関する。 The present disclosure relates to a multi-core optical connector technology for collectively connecting a plurality of optical fibers, and particularly to a technology for arranging a plurality of fibers in a horizontal line in one elongated hole.

多心の光ファイバを一括で接続する多心光コネクタは、従来、フェルールと呼ばれる部材を用いて接続していた。フェルールには光ファイバ1本用の丸穴が複数1列または2列設けられており、ユーザは、その穴に光ファイバを収容し、その穴の列の両端に設けられているガイドピン穴にガイドピンを挿入する。これにより、コネクタ同士が嵌合され、光ファイバを接続することができる。ここで、光ファイバ用の穴の位置及び大きさは高精度に作られており、穴と穴のすき間は等間隔で設けられている。この構造は例えば特許文献1がある。 Conventionally, multi-core optical connectors that connect multiple optical fibers at once have been connected using a member called a ferrule. The ferrule is provided with one or two rows of multiple round holes for one optical fiber, and the user accommodates the optical fiber in the hole and inserts it into the guide pin holes provided at both ends of the row of holes. Insert the guide pin. Thereby, the connectors are fitted together and the optical fibers can be connected. Here, the positions and sizes of the holes for the optical fibers are made with high precision, and the gaps between the holes are provided at equal intervals. This structure is known in Patent Document 1, for example.

一方、伝送装置に接続される光ファイバは、非特許文献3のようなデバイスの小型化、省スペース化に合わせて、光ファイバのピッチを狭めて配置する必要がある。例えば狭ピッチなコネクタについては丸穴のピッチを狭めたコネクタや、特許文献2のようにV溝の上にファイバを整列させて成形されたコネクタがある。 On the other hand, optical fibers connected to a transmission device need to be arranged with narrow pitches in accordance with the miniaturization and space saving of devices as described in Non-Patent Document 3. For example, as for narrow pitch connectors, there are connectors in which the pitch of round holes is narrowed, and connectors in which fibers are aligned on V-grooves as in Patent Document 2.

特許文献1のような丸穴を設けた多心光コネクタでは、穴のピッチを狭めると、穴と穴の間に存在するフェルール部材が薄くなることでフェルール部材の強度が落ち、フェルールにひび割れなどの損壊が生じる恐れがある。このため、丸穴を設けた多心光コネクタは狭ピッチにできない問題がある。 In a multi-core optical connector with round holes as in Patent Document 1, when the pitch of the holes is narrowed, the ferrule member existing between the holes becomes thinner, which reduces the strength of the ferrule member and causes cracks in the ferrule. Damage may occur. For this reason, there is a problem that a multi-core optical connector provided with round holes cannot be made with a narrow pitch.

また、特許文献2では、V溝の形状に依存してファイバの位置が変化するため、V溝の精度によって接続損失に悪影響を及ぼす恐れがある。このため、V溝の上にファイバを整列させて成形されたコネクタは、適切な接続損失を保つために高精度な加工が必要となり、部品コストが高くなる問題がある。 Furthermore, in Patent Document 2, since the position of the fiber changes depending on the shape of the V-groove, there is a possibility that the accuracy of the V-groove may have an adverse effect on the connection loss. For this reason, a connector molded by aligning fibers on a V-groove requires highly accurate processing in order to maintain appropriate connection loss, resulting in a problem of increased parts cost.

特開2000-111759号公報Japanese Patent Application Publication No. 2000-111759 特開2007-41044号公報Japanese Patent Application Publication No. 2007-41044

IEC 61753-1IEC 61753-1 D. Marcuse, “Loss Analysis of Single-Mode Fiber Splices”, The Bell System Technical Journal, Vol. 56, No. 5, pp. 703-718, 1977.D. Marcuse, “Loss Analysis of Single-Mode Fiber Splices”, The Bell System Technical Journal, Vol. 56, No. 5, pp. 703-718, 1977. K. Kurata et al., “Prospect of chip scale silicon photonics transceiver for high density multi-mode wiring system”, Optics Communications, Vol. 362, pp. 36-42, 2016.K. Kurata et al. , “Prospect of chip scale silicon photonics transceiver for high density multi-mode wiring system”, Optics Communications, Vol. 362, pp. 36-42, 2016. IEC 62496-4-214IEC 62496-4-214

本開示は、V溝等の高精度な加工を行うことなく、小型化及び狭ピッチ化の可能な多心光コネクタを提供することが課題である。 An object of the present disclosure is to provide a multi-core optical connector that can be downsized and narrowed in pitch without performing high-precision processing such as V-grooves.

上記目的を達成するために、本開示は、複数の光ファイバを長穴の中に、該長穴の内側の底面に接するように1列に敷き詰め、かつ該長穴の内側の一方の側面に寄せて固定する。 In order to achieve the above object, the present disclosure lays out a plurality of optical fibers in a row in a long hole so as to be in contact with the inner bottom surface of the long hole, and one side of the inside of the long hole. Close and secure.

本開示に係る多心光コネクタは、
複数の光ファイバを並列に配置可能な平坦な底面を有する長穴が設けられている保持部材と、
前記底面に並列かつ1列に収容されている複数の光ファイバと、
一方の面が前記複数の光ファイバに接し、他方の面が前記長穴の上面に接し、前記複数の光ファイバを前記底面に押圧した状態で、前記複数の光ファイバ及び前記保持部材と固定されている板状体と、
前記複数の光ファイバの位置合わせを行う位置合わせ構造と、
を備える。
The multi-core optical connector according to the present disclosure includes:
a holding member provided with an elongated hole having a flat bottom surface in which a plurality of optical fibers can be arranged in parallel;
a plurality of optical fibers housed in parallel and in a row on the bottom surface;
One surface is in contact with the plurality of optical fibers, the other surface is in contact with the upper surface of the elongated hole, and is fixed to the plurality of optical fibers and the holding member with the plurality of optical fibers pressed against the bottom surface. A plate-like body that is
an alignment structure that aligns the plurality of optical fibers;
Equipped with

本開示に係る多心光コネクタは、
複数の光ファイバを並列に配置可能な平坦な底面を有する溝が設けられている保持部材と、
前記底面に並列かつ1列に収容されている複数の光ファイバと、
前記複数の光ファイバに接し、前記複数の光ファイバを前記底面に押圧した状態で、前記複数の光ファイバ及び前記保持部材と固定され、前記溝に長穴を形成しているふたと、
前記複数の光ファイバの位置合わせを行う位置合わせ構造と、
を備える。
The multi-core optical connector according to the present disclosure includes:
a holding member provided with a groove having a flat bottom surface in which a plurality of optical fibers can be arranged in parallel;
a plurality of optical fibers housed in parallel and in a row on the bottom surface;
a lid that is in contact with the plurality of optical fibers, is fixed to the plurality of optical fibers and the holding member in a state where the plurality of optical fibers are pressed against the bottom surface, and has a long hole formed in the groove;
an alignment structure that aligns the plurality of optical fibers;
Equipped with.

本開示に係る光ファイバ接続方法は、本開示に係る多心光コネクタを用いて、2つの多心光コネクタに備わる複数の光ファイバ同士を一括で接続する。 The optical fiber connection method according to the present disclosure uses the multi-core optical connector according to the present disclosure to connect a plurality of optical fibers provided in two multi-core optical connectors at once.

本開示によれば、V溝等の高精度な加工を行うことなく、小型化及び狭ピッチ化の可能な多心光コネクタを提供することができる。 According to the present disclosure, it is possible to provide a multi-core optical connector that can be downsized and narrowed in pitch without performing high-precision processing such as V-grooves.

第1の実施形態の多心光コネクタの接続端面の一例を示す図である。FIG. 3 is a diagram showing an example of a connection end surface of the multi-core optical connector of the first embodiment. 第2の実施形態の多心光コネクタの接続端面の一例を示す図である。FIG. 7 is a diagram showing an example of a connection end surface of a multi-core optical connector according to a second embodiment. 弾性体の板を用いた光ファイバの縦方向の軸合わせ方法の一例を示す。An example of a method for vertically aligning an optical fiber using an elastic plate is shown. 弾性体のふたを用いた光ファイバの縦方向の軸合わせ方法を示す。A method for vertically aligning an optical fiber using an elastic lid is shown. 端寄せによる光ファイバの横方向の軸合わせ方法を示す。A method for aligning the lateral axis of an optical fiber by aligning the ends is shown. 端寄せによる光ファイバの横方向の軸合わせ方法の第2例を示す。A second example of a method for aligning the axis of an optical fiber in the lateral direction by aligning the ends will be shown. 本開示の実施形態の多心光コネクタの概略構成を示す。1 shows a schematic configuration of a multi-core optical connector according to an embodiment of the present disclosure. 多心光コネクタの接続端面の一例を示す図である。FIG. 3 is a diagram showing an example of a connection end surface of a multi-core optical connector. 長穴12の底部の拡大図を示す。An enlarged view of the bottom of the elongated hole 12 is shown. 接続損失が1dB以下となる心数と隙間の関係の一例を示す。An example of the relationship between the number of fibers and the gap such that the connection loss is 1 dB or less is shown. 多心光コネクタの接続端面の一例を示す図である。FIG. 3 is a diagram showing an example of a connection end surface of a multi-core optical connector. 溝とふたを用いることで長穴を設ける構造の一例を示す図である。It is a figure which shows an example of the structure which provides a long hole by using a groove|channel and a cover. ガイドピンとガイドピン穴を用いた位置合わせ方法を示す。A positioning method using guide pins and guide pin holes is shown. 第6の実施形態におけるフェルールの接続面の構造の一例を示す。An example of the structure of the connection surface of the ferrule in the sixth embodiment is shown. ガイドピンとV溝を用いた位置合わせ方法を示す。An alignment method using guide pins and V-grooves is shown. 第7の実施形態におけるフェルールの接続面の構造の一例を示す。An example of the structure of the connection surface of the ferrule in the seventh embodiment is shown. コネクタ外形とほぼ同じ内形の穴が設けられたスリーブを用いた位置合わせ方法を示す。A positioning method using a sleeve provided with a hole having an inner diameter approximately the same as the outer diameter of the connector is shown. 光ファイバ91を接続後のコネクタの上面図を示す。A top view of the connector after connecting the optical fiber 91 is shown.

以下、本開示の実施形態について、図面を参照しながら詳細に説明する。なお、本開示は、以下に示す実施形態に限定されるものではない。これらの実施の例は例示に過ぎず、本開示は当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。 Embodiments of the present disclosure will be described in detail below with reference to the drawings. Note that the present disclosure is not limited to the embodiments shown below. These implementation examples are merely illustrative, and the present disclosure can be implemented with various changes and improvements based on the knowledge of those skilled in the art. Note that components with the same reference numerals in this specification and the drawings indicate the same components.

(第1の実施形態)
図1は、本実施形態の多心光コネクタの接続端面の一例を示す図である。本実施形態の多心光コネクタは、長方形の長穴12が形成された保持部材として機能するフェルール11を備える。
(First embodiment)
FIG. 1 is a diagram showing an example of a connection end surface of a multi-core optical connector according to this embodiment. The multi-core optical connector of this embodiment includes a ferrule 11 that functions as a holding member in which a rectangular long hole 12 is formed.

長穴12は、光ファイバ91の延伸方向に貫通する貫通孔である。長穴12の底面は平坦であり、長穴12の内部の底面12Bに複数(図では4本)の光ファイバ91が横一列に並列に配置される。さらに板13が長穴12の上部に位置することで、長穴12内での光ファイバ91の位置の縦方向が制限される。 The elongated hole 12 is a through hole that penetrates in the direction in which the optical fiber 91 extends. The bottom surface of the elongated hole 12 is flat, and a plurality of (four in the figure) optical fibers 91 are arranged horizontally in parallel on the bottom surface 12B inside the elongated hole 12. Further, since the plate 13 is located above the elongated hole 12, the position of the optical fiber 91 within the elongated hole 12 is limited in the vertical direction.

ここで、フェルール11内部の長穴12は、所望の数の光ファイバ91を配置できる形状であれば長方形でなくてもよい。例えば、図1では内壁面12L及び内壁面12Rが底面12Bに直角な平坦面である例を示す。しかし、底面12Bと内壁面12Lとの角度及び底面12Bと内壁面12Rとの角度は、同一であってもよいし、異なっていてもよいし、いずれか一方が90°未満又は90°超であってもよい。ここで、内壁面12Lと内壁面12Rは長穴において底面12Bに隣接する側面であり、互いに対向する位置に配置されている面である。また、内壁面12L及び内壁面12Rは平坦面でなく、湾曲面であってもよい。 Here, the elongated hole 12 inside the ferrule 11 does not need to be rectangular as long as it has a shape that allows a desired number of optical fibers 91 to be arranged. For example, FIG. 1 shows an example in which the inner wall surface 12L and the inner wall surface 12R are flat surfaces perpendicular to the bottom surface 12B. However, the angle between the bottom surface 12B and the inner wall surface 12L and the angle between the bottom surface 12B and the inner wall surface 12R may be the same or different, and either one is less than 90 degrees or more than 90 degrees. There may be. Here, the inner wall surface 12L and the inner wall surface 12R are side surfaces adjacent to the bottom surface 12B in the elongated hole, and are surfaces disposed at positions facing each other. Further, the inner wall surface 12L and the inner wall surface 12R may not be flat surfaces but may be curved surfaces.

フェルール11の製造方法は任意であるが、例えば、押出成形又は射出成形を用いることができる。これらの製造方法を用いた場合、フェルール11を構成する樹脂などの部材に収縮やゆがみが生じ、長穴12の内壁面に湾曲や凹凸が生じることがある。長穴12の底面12Bを含む内壁面は、この製造時の湾曲や凹凸があってもよい。 Although the method for manufacturing the ferrule 11 is arbitrary, for example, extrusion molding or injection molding can be used. When these manufacturing methods are used, shrinkage or distortion may occur in the resin or other member constituting the ferrule 11, and the inner wall surface of the elongated hole 12 may become curved or uneven. The inner wall surface including the bottom surface 12B of the elongated hole 12 may be curved or uneven during manufacturing.

また、フェルール11の端面において、長穴12の左右外側である両端付近に位置合わせ構造21を有していてもよい。位置合わせ構造21は、例えば、ガイドピン穴、V溝又はガイドピンである。 Further, the end face of the ferrule 11 may have positioning structures 21 near both ends, which are the left and right outer sides of the elongated hole 12. The alignment structure 21 is, for example, a guide pin hole, a V-groove, or a guide pin.

長穴12に光ファイバ91を複数本(図では4本)入れ、例えば、接着剤などを入れながら光ファイバ91の上部、すなわち長穴12の上部と光ファイバ91の隙間に板13を挿入して、光ファイバ91と板13を長穴12の底面12Bに押し付けた状態で、光ファイバ91を長穴12のフェルール11に固着させる。これにより、本実施形態の多心光コネクタは、長穴12の縦方向のすき間を減らし、複数の光ファイバ91の縦方向の制限をかけた状態で複数の光ファイバ91を固定することが可能となる。 Insert a plurality of optical fibers 91 (four in the figure) into the elongated hole 12, and insert the plate 13 into the upper part of the optical fiber 91, that is, into the gap between the upper part of the elongated hole 12 and the optical fiber 91, while applying adhesive or the like. Then, the optical fiber 91 is fixed to the ferrule 11 of the elongated hole 12 while the optical fiber 91 and the plate 13 are pressed against the bottom surface 12B of the elongated hole 12. As a result, the multi-core optical connector of this embodiment can reduce the vertical gap between the elongated holes 12 and fix the plurality of optical fibers 91 while limiting the longitudinal direction of the plurality of optical fibers 91. becomes.

本実施形態は、V溝等の高精度な加工を行うことなく、複数の光ファイバ91の縦方向の制限をかけた状態で光ファイバ91を固定することができる。このため、本実施形態は、V溝等の高精度な加工を行うことなく、小型化及び狭ピッチ化の可能な多心光コネクタを提供することができる。 In this embodiment, the optical fibers 91 can be fixed in a state where the plurality of optical fibers 91 are restricted in the longitudinal direction without performing high-precision machining such as a V-groove. Therefore, the present embodiment can provide a multi-core optical connector that can be downsized and narrowed in pitch without performing high-precision processing such as V-grooves.

なお、本実施形態では、板13が1つの部材である例を示すが、板13は複数の部材で構成されていてもよい。例えば、長穴12の長手方向が複数の部材で構成されていてもよいし、長穴12の短手方向が複数の部材で構成されていてもよい。また、板13は、他の多心光コネクタと接続される端面において複数の光ファイバ91の縦方向を整列させることができれば、複数の光ファイバ91の延伸方向の一部に配置されていてもよい。 In addition, although this embodiment shows an example in which the plate 13 is one member, the plate 13 may be composed of a plurality of members. For example, the longitudinal direction of the elongated hole 12 may be composed of a plurality of members, and the transverse direction of the elongated hole 12 may be composed of a plurality of members. Further, the plate 13 may be disposed in a part of the plurality of optical fibers 91 in the extending direction, as long as the plurality of optical fibers 91 can be aligned in the longitudinal direction at the end face connected to another multi-core optical connector. good.

(第2の実施形態)
図2は、本実施形態の多心光コネクタの接続端面の一例を示す図である。本実施形態の多心光コネクタは、長穴12に代え、保持部材として機能するフェルール11に溝14が形成されている。溝14の底面14Bは平坦である。溝14とふた15を用いることで長穴12を構成する。長穴12を形成後は、底面14Bが長穴12の底面12Bとして機能し、溝14の側面14Lが内壁面12Lとして機能し、溝14の側面14Rが内壁面12Rとして機能する。
(Second embodiment)
FIG. 2 is a diagram showing an example of a connection end surface of the multi-core optical connector of this embodiment. In the multi-core optical connector of this embodiment, instead of the elongated hole 12, a groove 14 is formed in the ferrule 11 that functions as a holding member. The bottom surface 14B of the groove 14 is flat. The elongated hole 12 is configured by using the groove 14 and the lid 15. After forming the elongated hole 12, the bottom surface 14B functions as the bottom surface 12B of the elongated hole 12, the side surface 14L of the groove 14 functions as the inner wall surface 12L, and the side surface 14R of the groove 14 functions as the inner wall surface 12R.

溝14に光ファイバ91を複数本(図では4本)入れ、上から例えば接着剤などを入れながら、ふた15を溝14に入れ、ふた15を光ファイバ91の上から押さえつけた状態で、接着剤を用いて光ファイバ91を溝14の底面14Bに固着させる。これにより、本実施形態は、長穴12の縦方向のすき間を減らし、複数の光ファイバ91の縦方向の制限をかけた状態でふた15と複数の光ファイバ91を固定することが可能となる。 Insert a plurality of optical fibers 91 (four in the figure) into the groove 14, put adhesive, etc. from above, and insert the lid 15 into the groove 14. While pressing the lid 15 from above the optical fiber 91, glue the optical fibers 91. The optical fiber 91 is fixed to the bottom surface 14B of the groove 14 using an adhesive. As a result, in this embodiment, it is possible to reduce the vertical gap between the long holes 12 and fix the lid 15 and the plurality of optical fibers 91 while restricting the plurality of optical fibers 91 in the vertical direction. .

ふた15の上面15Uはフェルール11の上面11Uと同一面に配置されていてもよいが、異なっていてもよい。例えば、ふた15の上面15Uは、フェルール11の上面11Uよりも低くてもよい。これにより、長穴12で余った接着剤の接着剤だまりとして用いることができる。 The upper surface 15U of the lid 15 may be arranged on the same surface as the upper surface 11U of the ferrule 11, but they may be different. For example, the top surface 15U of the lid 15 may be lower than the top surface 11U of the ferrule 11. Thereby, the elongated hole 12 can be used as an adhesive pool for excess adhesive.

本実施形態は、V溝等の高精度な加工を行うことなく、複数の光ファイバ91の縦方向の制限をかけた状態で光ファイバ91を固定することができる。このため、本実施形態は、V溝等の高精度な加工を行うことなく、小型化及び狭ピッチ化の可能な多心光コネクタを提供することができる。 In this embodiment, the optical fibers 91 can be fixed in a state where the plurality of optical fibers 91 are restricted in the longitudinal direction without performing high-precision machining such as a V-groove. Therefore, the present embodiment can provide a multi-core optical connector that can be downsized and narrowed in pitch without performing high-precision processing such as V-grooves.

(第3の実施形態)
本実施形態の多心光コネクタは、第1の実施形態の板13に弾性体を用いる。図3に、弾性体の板13を用いた光ファイバ91の縦方向の軸合わせ方法の一例を示す。長穴12の縦幅H12と光ファイバ91の外径φ91の差分よりも大きい縦幅の弾性体の板13を長穴12に挿入し、板13がすべての光ファイバ91に接した状態で、接着剤を用いて光ファイバ91を長穴12の底面12Bに固着させる。これにより、光ファイバ91が長穴12の底面12Bに押し付けられ、縦方向の光ファイバ91の軸合わせを行うことができる。
(Third embodiment)
The multi-core optical connector of this embodiment uses an elastic body for the plate 13 of the first embodiment. FIG. 3 shows an example of a method for vertically aligning the optical fiber 91 using the elastic plate 13. An elastic plate 13 having a vertical width larger than the difference between the vertical width H 12 of the elongated hole 12 and the outer diameter φ 91 of the optical fiber 91 is inserted into the elongated hole 12, and the plate 13 is in contact with all the optical fibers 91. Then, the optical fiber 91 is fixed to the bottom surface 12B of the elongated hole 12 using adhesive. Thereby, the optical fiber 91 is pressed against the bottom surface 12B of the elongated hole 12, and the axis of the optical fiber 91 in the vertical direction can be aligned.

なお、本実施形態では板13の全体を弾性体で構成する例を示したが、本開示はこれに限定されない。例えば、板13は、複数の光ファイバ91と接する面が弾性部材で構成されていればよい。この場合、板13の上面に剛性を有する部材を採用することで、板13の強度を維持することができると共に長穴12への挿抜が容易になるため、製造が容易になる。 Note that although the present embodiment shows an example in which the entire plate 13 is made of an elastic body, the present disclosure is not limited thereto. For example, the surface of the plate 13 in contact with the plurality of optical fibers 91 may be made of an elastic member. In this case, by employing a rigid member on the upper surface of the plate 13, the strength of the plate 13 can be maintained and insertion into and removal from the elongated hole 12 becomes easier, which facilitates manufacturing.

(第4の実施形態)
本実施形態の多心光コネクタは、第2の実施形態のふた15に弾性体を用いる。図4に、弾性体のふた15を用いた光ファイバ91の縦方向の軸合わせ方法を示す。光ファイバ91に接する形に変形する弾性材料のふた15を用いてすべての光ファイバ91を押さえつけた状態で、接着剤により固着させる。これにより、光ファイバ91が長穴12の底面12Bに押し付けられ、縦方向の光ファイバ91の軸合わせを行うことができる。
(Fourth embodiment)
The multi-core optical connector of this embodiment uses an elastic body for the lid 15 of the second embodiment. FIG. 4 shows a method for vertically aligning the optical fiber 91 using the elastic lid 15. As shown in FIG. All the optical fibers 91 are pressed down using a lid 15 made of an elastic material that deforms into a shape in contact with the optical fibers 91, and then fixed with an adhesive. Thereby, the optical fiber 91 is pressed against the bottom surface 12B of the elongated hole 12, and the axis of the optical fiber 91 in the vertical direction can be aligned.

なお、本実施形態ではふた15の全体を弾性体で構成する例を示したが、本開示はこれに限定されない。例えば、ふた15は、複数の光ファイバ91と接する面が弾性部材で構成されていればよい。この場合、ふた15の上面に剛性を有する部材を採用することで、フェルール11の強度を維持することができると共に溝14への挿抜が容易になるため、製造が容易になる。 In this embodiment, an example is shown in which the entire lid 15 is made of an elastic body, but the present disclosure is not limited thereto. For example, the surface of the lid 15 in contact with the plurality of optical fibers 91 may be made of an elastic member. In this case, by employing a rigid member on the upper surface of the lid 15, the strength of the ferrule 11 can be maintained and insertion into and removal from the groove 14 becomes easier, which facilitates manufacturing.

(第5の実施形態)
本実施形態の多心光コネクタは、第2の実施形態の長穴の端に弾性体を備える。図5に、端寄せによる光ファイバ91の横方向の軸合わせ方法を示す。長穴12に収容されている光ファイバ91において、長穴12の端12Rに弾性体16を入れることで、すべての光ファイバ91同士が接触し、長穴12の他端の光ファイバ91が長穴の内壁12Lと接触している状態にして、接着剤を入れて上からふた15で押さえつけて光ファイバ91を固定する。
(Fifth embodiment)
The multi-core optical connector of this embodiment includes an elastic body at the end of the elongated hole of the second embodiment. FIG. 5 shows a method for aligning the axis of the optical fiber 91 in the lateral direction by aligning the ends. In the optical fibers 91 housed in the elongated holes 12, by inserting the elastic body 16 into the end 12R of the elongated holes 12, all the optical fibers 91 come into contact with each other, and the optical fibers 91 at the other end of the elongated holes 12 become long. The optical fiber 91 is fixed in contact with the inner wall 12L of the hole by putting an adhesive therein and pressing it down with the lid 15 from above.

対向するフェルールも同様にして、すべての光ファイバ91同士が接触し、対向させたときに光ファイバ91の軸が合う方向の内壁に寄せた状態にして接着剤を入れてふたで押さえつけて光ファイバ91を固定する。これにより、光ファイバ91の横方向の軸合わせを行うことができる。 Do the same for the opposing ferrules, so that all the optical fibers 91 are in contact with each other, and when they are placed facing each other, the optical fibers 91 are brought close to the inner wall in the direction in which the axes of the optical fibers 91 match, and then the adhesive is poured in and the lid is pressed down to connect the optical fibers. Fix 91. This allows alignment of the optical fibers 91 in the lateral direction.

なお、本実施形態においても、ふた15は弾性体であってもよい。また、図6に示すように、溝14及びふた15に代えて、第1の実施形態の長穴12及び板13を用いてもよい。この場合も板13は弾性体であってもよい。 Note that in this embodiment as well, the lid 15 may be made of an elastic body. Furthermore, as shown in FIG. 6, instead of the groove 14 and the lid 15, the elongated hole 12 and plate 13 of the first embodiment may be used. In this case as well, the plate 13 may be an elastic body.

(第6の実施形態)
図7に、本実施形態の多心光コネクタの概略構成を示す。本実施形態は多チャンネルコアが配置されている平面導波路92と複数の光ファイバ91とを接続するために、コネクタの適切な強度と適切な接続損失で光ファイバ91のファイバピッチを狭めて配置される多心光コネクタ93を提供する。
(Sixth embodiment)
FIG. 7 shows a schematic configuration of the multi-core optical connector of this embodiment. In this embodiment, in order to connect a plurality of optical fibers 91 to a planar waveguide 92 in which a multi-channel core is arranged, the fiber pitch of the optical fibers 91 is narrowed and arranged with appropriate strength and connection loss of the connector. A multi-core optical connector 93 is provided.

より高密度かつ軸合わせの機構を兼ね備えた多心光コネクタ93として、底面がフラットなひとつの長穴12にすることで光ファイバ91のピッチを平面導波路92のピッチまで狭め、かつ光ファイバ91の位置を所定の範囲に収めることで平面導波路92の導波路と適切な接続損失を実現する。 As a multi-core optical connector 93 with higher density and an axis alignment mechanism, the pitch of the optical fibers 91 is narrowed to the pitch of the planar waveguide 92 by forming a single elongated hole 12 with a flat bottom, and the optical fibers 91 By keeping the position within a predetermined range, an appropriate connection loss with the waveguide of the planar waveguide 92 is realized.

図8は、本実施形態の多心光コネクタの接続端面の一例を示す図である。本実施形態の多心光コネクタは、溝14が多段構成を有し、溝14の最低部に光ファイバ91が配置されている。ふた15は、溝14の多段構成に整合する多段構成を備える。溝14及びふた15を用いて長穴12が形成されている。図に、ガイドピン23の中心を結んだ線の中点である接続原点O、位置合わせ構造21である2つのガイドピン穴の中心を結んだ線の中点であるコネクタ原点O’を示す。 FIG. 8 is a diagram showing an example of a connection end surface of the multi-core optical connector of this embodiment. In the multi-core optical connector of this embodiment, the groove 14 has a multi-stage configuration, and the optical fiber 91 is arranged at the lowest part of the groove 14. The lid 15 has a multi-stage configuration that matches the multi-stage configuration of the groove 14. A slot 12 is formed using a groove 14 and a lid 15. The figure shows a connection origin O, which is the midpoint of a line connecting the centers of the guide pins 23, and a connector origin O', which is the midpoint of a line connecting the centers of two guide pin holes, which are the alignment structures 21.

図9に、長穴12の底部の拡大図を示す。本実施形態では、平面導波路92と接続するための各光ファイバ91との隙間Δと、光ファイバ91と長穴12の底面12Bとの隙間Δと、光ファイバ91と左の内壁面12Lとの隙間Δの好ましい条件を示す。接続原点Oから見たコネクタAのi番目の光ファイバ91のコアの位置ベクトルdA,i

Figure 0007342959000001
と表される。FIG. 9 shows an enlarged view of the bottom of the elongated hole 12. In this embodiment, a gap Δ between each optical fiber 91 for connection to the planar waveguide 92, a gap Δ between the optical fiber 91 and the bottom surface 12B of the elongated hole 12, and a gap Δ between the optical fiber 91 and the left inner wall surface 12L are defined. The preferred conditions for the gap Δ are shown below. The position vector dA ,i of the core of the i-th optical fiber 91 of connector A as seen from the connection origin O is
Figure 0007342959000001
It is expressed as

ここで、pは接続原点Oから見たコネクタ原点O’の位置ベクトル、fA,iはコネクタ原点O’から見たi番目の光ファイバ91のコアの位置ベクトルであり、

Figure 0007342959000002
Figure 0007342959000003
となる。Here, p A is the position vector of the connector origin O' seen from the connection origin O, f A,i is the position vector of the core of the i-th optical fiber 91 seen from the connector origin O',
Figure 0007342959000002
Figure 0007342959000003
becomes.

ただし、xhl,yhlは接続座標系における左のガイドピン穴の中心のx座標及びy座標であり、xhr,yhrは接続座標系における右のガイドピン穴の中心のx座標及びy座標である。r=x,y=yである。ここで、xは内壁面12Lの位置、yは底面12Bの位置、Δwは内壁面12Lの凹凸幅、rは光ファイバ91の半径、ΔxはX方向の光ファイバ91と光ファイバ91または内壁面12L,12Rとの隙間、ΔyはY方向の光ファイバ91と底面12Bとの隙間を表す。図9中においては、Δx、ΔyをΔと表記している。However, x hl and y hl are the x and y coordinates of the center of the left guide pin hole in the connection coordinate system, and x hr and y hr are the x and y coordinates of the center of the right guide pin hole in the connection coordinate system. It is a coordinate. r 0 =x w , y 0 =y 1 . Here, x w is the position of the inner wall surface 12L, y w is the position of the bottom surface 12B, Δw is the unevenness width of the inner wall surface 12L, r i is the radius of the optical fiber 91, and Δx i is the distance between the optical fiber 91 and the optical fiber in the X direction. 91 or the inner wall surfaces 12L, 12R, and Δy i represents the gap between the optical fiber 91 and the bottom surface 12B in the Y direction. In FIG. 9, Δx i and Δy i are expressed as Δ.

一方、例えば非特許文献4では多心光コネクタに接続される平面導波路のコアの位置について、コネクタ原点O’に対する平面導波路92のコアのx軸方向の位置が、-0.4375、-0.3125、-0.1875、-0.0625、0.0625、0.1875、0.3125、0.4375のように配置され、コネクタ原点O’に対する平面導波路92のコアのy軸方向の位置がいずれもゼロであると規定しており、この場合、平面導波路92のi番目のコアの位置ベクトルfB,i

Figure 0007342959000004
と表せる。ここでσ、σは平面導波路92の製造誤差である。On the other hand, for example, in Non-Patent Document 4, regarding the position of the core of a planar waveguide connected to a multi-core optical connector, the position of the core of the planar waveguide 92 in the x-axis direction with respect to the connector origin O' is -0.4375, - 0.3125, -0.1875, -0.0625, 0.0625, 0.1875, 0.3125, 0.4375, and the y-axis direction of the core of the planar waveguide 92 with respect to the connector origin O' It is specified that the positions of are all zero, and in this case, the position vector f B,i of the i-th core of the planar waveguide 92 is
Figure 0007342959000004
It can be expressed as Here, σ x and σ y are manufacturing errors of the planar waveguide 92.

光ファイバ91と平面導波路92を接続したときのコアの相対位置ずれd

Figure 0007342959000005
で表される。光ファイバiの接続損失Lはファイバコアの相対位置ずれdによって決まり、
Figure 0007342959000006

と表される(例えば、非特許文献2第714頁(28)式を参照。)。The relative positional deviation d i of the core when the optical fiber 91 and the planar waveguide 92 are connected is
Figure 0007342959000005
It is expressed as The splice loss L i of the optical fiber i is determined by the relative positional deviation d i of the fiber core,
Figure 0007342959000006

(For example, see formula (28) on page 714 of Non-Patent Document 2.)

また、光コネクタは例えば非特許文献1では接続損失が1dB以下であることが規定されており、平面導波路との接続に対して接続損失が1dB以下であることが望ましい。そこで、式(6)を用いてモンテカルロ法などの数値解析を行った結果、心数Nに対する各隙間Δが次式のg(N)以下であれば平面導波路92との接続損失が1dB以下となることが分かった。

Figure 0007342959000007
Furthermore, for example, Non-Patent Document 1 specifies that the optical connector has a connection loss of 1 dB or less, and it is desirable that the connection loss for connection with a planar waveguide be 1 dB or less. Therefore, as a result of numerical analysis such as the Monte Carlo method using equation (6), it was found that if each gap Δ for the number of cores N is less than g(N) in the following equation, the connection loss with the planar waveguide 92 is less than 1 dB. It turns out that
Figure 0007342959000007

例えば、図10で示すように、Δx及びΔyを含む各隙間Δを、8心では0.41μm、12心では0.29μmとする。この関係を満たす構造にすることで、1dB以下の接続損失で平面導波路92と接続することが可能となる。(7)式の関係は、2心以上32心以下の任意の心数Nに対し、適用可能である。For example, as shown in FIG. 10, each gap Δ including Δx i and Δy i is set to 0.41 μm for 8 cores and 0.29 μm for 12 cores. By creating a structure that satisfies this relationship, it becomes possible to connect to the planar waveguide 92 with a connection loss of 1 dB or less. The relationship in equation (7) is applicable to any number of fibers N from 2 to 32 cores.

以上説明したように、光ファイバ91を所定の位置に配置することで平面導波路92と光ファイバ91との接続損失を1dB以内に抑えることができ、多心光コネクタとして実用可能である。 As explained above, by arranging the optical fiber 91 at a predetermined position, the connection loss between the planar waveguide 92 and the optical fiber 91 can be suppressed to within 1 dB, and it can be put to practical use as a multi-core optical connector.

(実施例)
以下、本実施形態に係る多心光コネクタについて図面を参照して説明する。
図11は本実施形態の多心光コネクタの接続端面の一例を示す図である。長方形の長穴12が形成されたフェルール11の内部に複数(図では8本)の光ファイバ91が左右どちらかの壁(図では左の内壁面12L)と底面12Bを基準にして寄せられ、その際に各光ファイバ91の中心位置がコネクタの中心位置O’に対して同じ高さで左右均等に配置されている。なお、フェルール11の内部の長穴12は光ファイバ91を所望の位置に配置できる形状であれば長方形でなくてもよい。また、フェルール11の端面において、長穴12の左右外側に位置合わせ構造を有する。長穴12に光ファイバ91を複数本(図では8本)入れ、長穴12の内壁に寄せた(図では左側の内壁面12L)状態にして、接着剤を入れて光ファイバ91を所望の位置のまま固定する。ここで、隙間を所望の値以下にするために、例えば縦の隙間では板13で光ファイバ91を押圧してファイバ径と所望の値以下の幅に長穴12の幅にする方法や、長穴12の中に板や弾性体を挿入して穴幅を狭める方法などがある。また、横の隙間を所望の値以下にするための方法として、例えば長穴12の一方の壁に板や弾性体を挿入して光ファイバ91をもう一方の壁に寄せる方法や、光ファイバ91の先端を長穴12から突き出させ、その先端に側圧をかけることで光ファイバ91を寄せ、接着固定後にコネクタ端面上で光ファイバ91を切断する方法がある。
(Example)
Hereinafter, a multi-core optical connector according to this embodiment will be described with reference to the drawings.
FIG. 11 is a diagram showing an example of the connection end face of the multi-core optical connector of this embodiment. Inside the ferrule 11 in which a rectangular long hole 12 is formed, a plurality of optical fibers 91 (eight in the figure) are brought together with respect to either the left or right wall (the left inner wall surface 12L in the figure) and the bottom surface 12B, At this time, the center position of each optical fiber 91 is arranged equally on the left and right sides at the same height with respect to the center position O' of the connector. Note that the elongated hole 12 inside the ferrule 11 does not have to be rectangular as long as it has a shape that allows the optical fiber 91 to be placed at a desired position. Further, the end face of the ferrule 11 has alignment structures on the left and right outer sides of the elongated hole 12. Insert a plurality of optical fibers 91 (eight in the figure) into the elongated hole 12, place them close to the inner wall of the elongated hole 12 (inner wall surface 12L on the left in the figure), and insert adhesive to align the optical fibers 91 to the desired position. Fixed in position. Here, in order to reduce the gap to a desired value or less, for example, in the case of a vertical gap, there is a method of pressing the optical fiber 91 with the plate 13 to make the width of the elongated hole 12 less than the fiber diameter and a desired value. There is a method of narrowing the hole width by inserting a plate or an elastic body into the hole 12. Further, as a method for reducing the horizontal gap to a desired value or less, for example, a method of inserting a plate or an elastic body into one wall of the elongated hole 12 and bringing the optical fiber 91 closer to the other wall, or a method of bringing the optical fiber 91 There is a method in which the tip of the connector is made to protrude from the elongated hole 12, the optical fiber 91 is brought together by applying lateral pressure to the tip, and the optical fiber 91 is cut on the end face of the connector after being adhesively fixed.

図12は溝14とふた15を用いることで長穴12を設ける構造を示す。溝14に光ファイバ91を複数本(図では8本)入れ、上から例えば接着剤などを入れながらふた15を溝14に入れ、上から押さえつけた状態で接着剤を固着させることで長穴12の縦方向のすき間を減らし、光ファイバ91の縦方向の制限をかけた状態でふた15と光ファイバ91を固定することが可能となる。ここで、隙間を所望の値以下にするために、例えば縦の隙間ではふた15で光ファイバ91を押圧してファイバ径と所望の値以下の幅に溝14もしくはふた15の幅にする方法や、ふた15に板や弾性体を装着して光ファイバ91と接触させて光ファイバ91を溝14に押し付ける方法などがある。また、横の隙間を所望の値以下にするための方法として、例えば長穴12の一方の壁に板や弾性体を挿入して光ファイバ91をもう一方の壁に寄せる方法や、光ファイバ91の先端を長穴12から突き出させ、その先端に側圧をかけることで光ファイバ91を寄せ、接着固定後にコネクタ端面上で光ファイバを切断する方法がある。 FIG. 12 shows a structure in which an elongated hole 12 is provided by using a groove 14 and a lid 15. Insert a plurality of optical fibers 91 (eight in the figure) into the groove 14, insert the lid 15 into the groove 14 while putting adhesive, etc. from above, and press the lid 15 from above to fix the adhesive, thereby forming the elongated hole 12. It becomes possible to fix the lid 15 and the optical fiber 91 while restricting the vertical direction of the optical fiber 91 by reducing the vertical gap. Here, in order to make the gap below a desired value, for example, in the case of a vertical gap, there is a method of pressing the optical fiber 91 with the cover 15 to make the width of the groove 14 or the cover 15 smaller than the fiber diameter and the desired value. Alternatively, there is a method of attaching a plate or an elastic body to the lid 15 and bringing it into contact with the optical fiber 91 to press the optical fiber 91 against the groove 14. Further, as a method for reducing the horizontal gap to a desired value or less, for example, a method of inserting a plate or an elastic body into one wall of the elongated hole 12 and bringing the optical fiber 91 closer to the other wall, or a method of bringing the optical fiber 91 There is a method in which the tip of the connector is made to protrude from the elongated hole 12, the optical fiber 91 is brought together by applying lateral pressure to the tip, and the optical fiber is cut on the end face of the connector after being adhesively fixed.

(第7の実施形態)
図12に、ガイドピン23とガイドピン穴22を位置合わせ構造21に用いた位置合わせ方法を示す。長穴の両端にガイドピン穴22が設けられたフェルール11A及び11Bを対向させ、フェルール11A及び11Bの位置合わせとしてガイドピン23を用いて、それをガイドピン穴22に通し、フェルール11A及び11Bを接続クリップ30で固定する。これにより、図13に示すように、フェルール11Aの長穴に固定されている光ファイバ91Aとフェルール11Bの長穴に固定されている光ファイバ91Bとを接続する。
(Seventh embodiment)
FIG. 12 shows an alignment method using guide pins 23 and guide pin holes 22 in alignment structure 21. Ferrules 11A and 11B with guide pin holes 22 provided at both ends of the elongated holes are placed facing each other, and a guide pin 23 is used to align the ferrules 11A and 11B. Fix with a connecting clip 30. As a result, as shown in FIG. 13, the optical fiber 91A fixed in the long hole of the ferrule 11A and the optical fiber 91B fixed in the long hole of the ferrule 11B are connected.

接続クリップ30は、フェルール11A及び11Bを固定可能な任意の構造を採用することができる。例えば、フェルール11A及び11Bの両端から押さえるばね32A及び32Bが基板31に設けられたものを用いることができる。 The connection clip 30 can adopt any structure capable of fixing the ferrules 11A and 11B. For example, it is possible to use a substrate 31 provided with springs 32A and 32B that press the ferrules 11A and 11B from both ends.

(第8の実施形態)
図14に、ガイドピンとV溝を位置合わせ構造21に用いた位置合わせ方法を示す。本実施形態では、ガイドピン23が設けられたフェルール11BとV溝24が設けられたフェルール11Aを用いる。ガイドピン23をV溝24の上にのせた状態で、ガイドピン23の上にブロック25を乗せ、ブロック25の上から押さえクリップ35で押さえる。
(Eighth embodiment)
FIG. 14 shows an alignment method using guide pins and V grooves as the alignment structure 21. In this embodiment, a ferrule 11B provided with a guide pin 23 and a ferrule 11A provided with a V groove 24 are used. With the guide pin 23 placed on the V-groove 24, a block 25 is placed on the guide pin 23, and the block 25 is held down with a holding clip 35 from above.

ブロック25は、V溝24を設けるためにフェルール11Aに形成された切り欠きと同一の形状を有する。押さえクリップ35がフェルール11Aの切り欠き沿いにブロック25を押さえつけ、ガイドピン23をV溝24に固定する。これにより、本実施形態は、光ファイバ91の位置合わせを行いつつ、光ファイバ91を接続することができる。 The block 25 has the same shape as the notch formed in the ferrule 11A to provide the V-groove 24. The holding clip 35 presses the block 25 along the notch of the ferrule 11A, and fixes the guide pin 23 in the V-groove 24. Thereby, in this embodiment, the optical fibers 91 can be connected while aligning the optical fibers 91.

図15に、フェルールの接続面の構造の一例を示す。押さえクリップ35は、ガイドピン23をV溝24に押圧可能な任意の構造を採用することができる。例えば、ブロック25の上を押さえる、L字形状の爪37が基板31に設けられたものを用いることができる。爪37の間隔W37は、フェルール11Aの横幅W11Aに等しい。また、爪37の先端38は、V溝24に達しており、ブロック25を覆う程度の長さを有していてもよい。なお、本実施形態は、接続クリップ30をさらに備えていてもよい。 FIG. 15 shows an example of the structure of the connection surface of the ferrule. The holding clip 35 may have any structure capable of pressing the guide pin 23 into the V-groove 24. For example, a substrate 31 may be provided with an L-shaped claw 37 that presses the top of the block 25. The interval W37 between the claws 37 is equal to the width W11A of the ferrule 11A. Further, the tip 38 of the claw 37 may reach the V-groove 24 and have a length enough to cover the block 25. Note that this embodiment may further include a connection clip 30.

(第9の実施形態)
図16に、フェルール11A及び11Bの外形とほぼ同じ内形の貫通孔41が設けられたスリーブ40を用いた位置合わせ方法を示す。図17に、光ファイバ91を接続後のコネクタの上面図を示す。本実施形態では、スリーブ40の両端からフェルール11A及び11Bを挿入し、接続クリップ30などで抜け出さないように固定することによりスリーブ40内で位置合わせを行う。これにより、本実施形態は、光ファイバ91の位置合わせを行いつつ、光ファイバ91を接続することができる。
(Ninth embodiment)
FIG. 16 shows a positioning method using a sleeve 40 provided with a through hole 41 having an inner shape substantially the same as the outer shape of the ferrules 11A and 11B. FIG. 17 shows a top view of the connector after connecting the optical fiber 91. In this embodiment, the ferrules 11A and 11B are inserted from both ends of the sleeve 40, and are fixed within the sleeve 40 by using the connection clip 30 or the like so that they do not come out. Thereby, in this embodiment, the optical fibers 91 can be connected while aligning the optical fibers 91.

なお、本実施形態においても、フェルール11A及び11Bは、位置合わせ構造を備えていてもよい。これにより、ファイバの位置の位置合わせの精度を高めることができる。 In addition, also in this embodiment, the ferrules 11A and 11B may be provided with an alignment structure. This makes it possible to improve the accuracy of fiber position alignment.

ここで、上述の実施形態で示した光ファイバ91の本数はいずれも4本又は8本で記載したが、光ファイバ91の本数は特に指定はない。図2以降で示したふた15を固定させる接着剤は押圧を維持できるものであれば特に指定はない。また、接着剤以外にも加圧クリップなどで押圧を維持する方法などでも可能である。図12~図17で示した接続クリップ30だが、例えばハウジング部材を用いて後方からばね力をかけて接続する方法など、特に指定はない。 Here, although the number of optical fibers 91 shown in the above-mentioned embodiments was described as four or eight, the number of optical fibers 91 is not particularly specified. The adhesive for fixing the lid 15 shown in FIGS. 2 and subsequent figures is not particularly specified as long as it can maintain pressure. In addition to adhesives, it is also possible to use a method of maintaining pressure using a pressure clip or the like. Regarding the connection clip 30 shown in FIGS. 12 to 17, there is no particular specification, such as a method of connecting by applying a spring force from the rear using a housing member, for example.

(本開示によって生じる効果)
・光ファイバのピッチを狭める際に、フェルール部材が光ファイバの間に存在しないので、部材が薄くなることによる損壊の問題が解決され、光ファイバのピッチをファイバ径まで狭めることが可能となる。
・小型化、狭ピッチ化が可能となり、より小型なモジュールとの接続が可能となる。
・弾性体の復元力により光ファイバを長穴の底面や左右どちらかの内壁に寄った位置決めとなり、光ファイバの軸合わせができ接続損失を抑えることができる。
・弾性体なので精密な形状が不要となり、V溝の高精度な加工を行うよりも安くできる。
(Effects caused by this disclosure)
- When narrowing the pitch of optical fibers, since the ferrule member is not present between the optical fibers, the problem of damage due to thinning of the member is solved, and the pitch of the optical fibers can be narrowed to the fiber diameter.
・It enables miniaturization and narrower pitch, making it possible to connect with smaller modules.
・The restoring force of the elastic body allows the optical fiber to be positioned close to the bottom of the elongated hole or the inner wall on either the left or right side, allowing the axis of the optical fiber to be aligned and reducing connection loss.
- Since it is an elastic body, there is no need for a precise shape, making it cheaper than high-precision machining of V-grooves.

本開示は情報通信産業に適用することができる。 The present disclosure can be applied to the information and communication industry.

11:フェルール
12:長穴
13:板
14、141:溝
15:蓋
16:弾性体
21:位置合わせ構造
22:ガイドピン孔
23:ガイドピン
24:V溝
25:ブロック
30:接続クリップ
31:基板
32A、32B:ばね
37:爪
35:押さえクリップ
40:スリーブ
41:貫通孔
91:光ファイバ
92:平面導波路
93:多心光コネクタ
11: Ferrule 12: Elongated hole 13: Plate 14, 141: Groove 15: Lid 16: Elastic body 21: Alignment structure 22: Guide pin hole 23: Guide pin 24: V groove 25: Block 30: Connection clip 31: Board 32A, 32B: Spring 37: Claw 35: Holder clip 40: Sleeve 41: Through hole 91: Optical fiber 92: Planar waveguide 93: Multi-core optical connector

Claims (7)

複数の光ファイバを並列に配置可能な平坦な底面を有する長穴が設けられている保持部材と、
前記底面に並列かつ1列に収容されている複数の光ファイバと、
前記複数の光ファイバの位置合わせを行う位置合わせ構造と、
を備え、
前記保持部材は、前記複数の光ファイバのみを前記長穴に収容し、
前記複数の光ファイバのうちの両端の光ファイバの一方のみが、前記長穴における側面と接触し、
前記複数の光ファイバのうちの両端の光ファイバの他方は、前記長穴における前記側面に対向する第2の側面との間隙に配置されている弾性体と接触し、
前記複数の光ファイバは、すべての光ファイバ同士が接触する、
多心光コネクタ。
a holding member provided with an elongated hole having a flat bottom surface in which a plurality of optical fibers can be arranged in parallel;
a plurality of optical fibers housed in parallel and in a row on the bottom surface;
an alignment structure that aligns the plurality of optical fibers;
Equipped with
The holding member accommodates only the plurality of optical fibers in the elongated hole,
Only one of the optical fibers at both ends of the plurality of optical fibers contacts the side surface of the elongated hole,
The other of the optical fibers at both ends of the plurality of optical fibers contacts an elastic body disposed in a gap between the long hole and a second side surface opposite to the side surface,
All of the plurality of optical fibers are in contact with each other,
Multi-core optical connector.
前記長穴における底面に水平な方向における、前記側面と前記位置合わせ構造で定められる前記多心光コネクタの中心位置との距離が、あらかじめ定められた値以下である、
請求項1に記載の多心光コネクタ。
A distance between the side surface and the center position of the multi-core optical connector defined by the alignment structure in a direction horizontal to the bottom surface of the elongated hole is less than or equal to a predetermined value;
The multi-core optical connector according to claim 1.
前記複数の光ファイバ同士の隙間、前記光ファイバと前記底面の隙間、及び前記複数の光ファイバのうちの端に配置されている光ファイバと側面との隙間が、所定の範囲である、
請求項1又は2に記載の多心光コネクタ。
A gap between the plurality of optical fibers, a gap between the optical fiber and the bottom surface, and a gap between the optical fiber disposed at an end of the plurality of optical fibers and the side surface are within a predetermined range,
The multi-core optical connector according to claim 1 or 2.
前記複数の光ファイバの心数は2心以上32心以下の心数Nであり、
前記所定の範囲が、0μm以上(1.73-0.72√N+0.095N-0.00058N)μm以下である、
請求項3に記載の多心光コネクタ。
The number of fibers of the plurality of optical fibers is N, which is 2 or more and 32 or less,
The predetermined range is 0 μm or more (1.73-0.72√N+0.095N-0.00058N 2 ) μm or less,
The multi-core optical connector according to claim 3.
前記長穴は、
前記保持部材に設けられている溝と、
前記複数の光ファイバを前記底面に押圧した状態で、前記複数の光ファイバ及び前記保持部材と固定され、前記溝に長穴を形成しているふたと、
を用いて構成され、
前記ふたは、前記複数の光ファイバと接する面が弾性部材で構成され、
前記弾性部材は、前記長穴に収容されている全ての光ファイバと接する形に変形している、
請求項1から4のいずれかに記載の多心光コネクタ。
The long hole is
a groove provided in the holding member;
a lid that is fixed to the plurality of optical fibers and the holding member with the plurality of optical fibers pressed against the bottom surface, and has a long hole formed in the groove;
configured using
The lid has a surface in contact with the plurality of optical fibers made of an elastic member,
The elastic member is deformed to be in contact with all the optical fibers accommodated in the elongated hole.
A multi-core optical connector according to any one of claims 1 to 4.
前記位置合わせ構造は、
前記長穴の長手方向の端部付近に設けられたガイドピン穴、
前記長穴の長手方向の端部付近に設けられたV溝、又は
前記複数の光ファイバを保持する保持部材の外形とほぼ同じ内形の貫通孔が設けられたスリーブ、
の少なくともいずれかを備える、
請求項1からのいずれかに記載の多心光コネクタ。
The alignment structure is
a guide pin hole provided near the longitudinal end of the elongated hole;
a sleeve provided with a V-groove provided near the longitudinal end of the elongated hole, or a through hole with an inner shape approximately the same as the outer shape of the holding member that holds the plurality of optical fibers;
comprising at least one of the following;
A multi-core optical connector according to any one of claims 1 to 5 .
請求項1からのいずれかに記載の多心光コネクタを用いて、
2つの多心光コネクタに備わる複数の光ファイバ同士を一括で接続する、又は、
1つの多心光コネクタに備わる複数の光ファイバを1つの平面導波路に備わる複数の光コアに接続する、
光ファイバ接続方法。
Using the multi-core optical connector according to any one of claims 1 to 6 ,
Connect multiple optical fibers in two multi-core optical connectors at once, or
Connecting multiple optical fibers provided in one multi-core optical connector to multiple optical cores provided in one planar waveguide,
Optical fiber connection method.
JP2021545583A 2019-09-10 2020-09-10 Multi-core optical connector and optical fiber connection method Active JP7342959B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPPCT/JP2019/035538 2019-09-10
PCT/JP2019/035538 WO2021048918A1 (en) 2019-09-10 2019-09-10 Multi-core optical connector and method for connecting optical fiber
PCT/JP2020/034239 WO2021049561A1 (en) 2019-09-10 2020-09-10 Multi-core optical connector and optical fiber connection method

Publications (2)

Publication Number Publication Date
JPWO2021049561A1 JPWO2021049561A1 (en) 2021-03-18
JP7342959B2 true JP7342959B2 (en) 2023-09-12

Family

ID=74865737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021545583A Active JP7342959B2 (en) 2019-09-10 2020-09-10 Multi-core optical connector and optical fiber connection method

Country Status (3)

Country Link
US (1) US20240045152A1 (en)
JP (1) JP7342959B2 (en)
WO (2) WO2021048918A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006163210A (en) 2004-12-09 2006-06-22 Sumitomo Electric Ind Ltd Optical fiber positioning method and optical splicing parts
CN103472541A (en) 2012-06-08 2013-12-25 富士康(昆山)电脑接插件有限公司 Waveguide connector and manufacturing method thereof
JP2014010403A (en) 2012-07-02 2014-01-20 Nippon Telegr & Teleph Corp <Ntt> Fiber connection component and method for manufacturing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0588050A (en) * 1991-09-30 1993-04-09 Toshiba Corp Optical coupling device
JPH0926527A (en) * 1995-07-12 1997-01-28 Fujikura Ltd Multi-fiber optical connector
JP3137066B2 (en) * 1998-02-26 2001-02-19 日本電気株式会社 Multi-core optical fiber array terminal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006163210A (en) 2004-12-09 2006-06-22 Sumitomo Electric Ind Ltd Optical fiber positioning method and optical splicing parts
CN103472541A (en) 2012-06-08 2013-12-25 富士康(昆山)电脑接插件有限公司 Waveguide connector and manufacturing method thereof
JP2014010403A (en) 2012-07-02 2014-01-20 Nippon Telegr & Teleph Corp <Ntt> Fiber connection component and method for manufacturing the same

Also Published As

Publication number Publication date
JPWO2021049561A1 (en) 2021-03-18
US20240045152A1 (en) 2024-02-08
WO2021049561A1 (en) 2021-03-18
WO2021048918A1 (en) 2021-03-18

Similar Documents

Publication Publication Date Title
US11592628B2 (en) Fiber optic cassette
US11467347B2 (en) Manufacture and testing of fiber optic cassette
US20180188463A1 (en) Fiber optic cable assembly and fabrication method using sequentially arranged boots for multi-fiber ferrule
US9279942B2 (en) Ferrule for optical fiber connector having a compliant structure for clamping alignment pins
US8480311B2 (en) Optical connector, method of attaching the optical connector to coated optical fiber, and optical connection member
CN111492282B (en) Connection device, optical connector manufacturing device, connection method, and optical connector manufacturing method
US9989710B2 (en) Multi-fiber ferrule and optical connector including the same
US20050036742A1 (en) Molded fiber optic ferrule with integrally formed geometry features
US20220082759A1 (en) Optical fiber photonic integrated chip connector interfaces, photonic integrated chip assemblies, and methods of fabricating the same
US20160154189A1 (en) Fiber optic connector with adhesive management
CN110178063B (en) Optical fiber holding member, optical connector, and optical coupling structure
US11543599B2 (en) Ferrules including keying features and fiber optic junctions including the same
JPH0990171A (en) Multi-conductor micro capillary, and connecting method for optical waveguide circuit using it and optical fiber
JPH09178962A (en) Optical fiber array and its production
WO2016170782A1 (en) Multi-core optical connector
JP7342959B2 (en) Multi-core optical connector and optical fiber connection method
US20230236367A1 (en) Optical fiber connection component and method for manufacturing optical fiber connection component
JP5065112B2 (en) Ferrule for optical connector
JP3349405B2 (en) Batch connection structure of multiple optical connectors
WO2022054258A1 (en) Multicore optical connector and method for manufacturing same
US20180348444A1 (en) Optical connector
WO2023074185A1 (en) Multi-fiber optical ferrule, multi-fiber optical connector, and production method for multi-fiber optical ferrule
JPWO2018168141A1 (en) Method for manufacturing optical connector ferrule, optical connector ferrule, and optical fiber with connector
US10989882B2 (en) Optical connector
JP2023090113A (en) Ferrule, optical connector, and method for manufacturing optical connector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230814

R150 Certificate of patent or registration of utility model

Ref document number: 7342959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150