JP7340831B2 - Anode catalyst for hydrogen starvation tolerant fuel cells - Google Patents

Anode catalyst for hydrogen starvation tolerant fuel cells Download PDF

Info

Publication number
JP7340831B2
JP7340831B2 JP2018218916A JP2018218916A JP7340831B2 JP 7340831 B2 JP7340831 B2 JP 7340831B2 JP 2018218916 A JP2018218916 A JP 2018218916A JP 2018218916 A JP2018218916 A JP 2018218916A JP 7340831 B2 JP7340831 B2 JP 7340831B2
Authority
JP
Japan
Prior art keywords
catalyst
anode
hydrogen
noble metal
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018218916A
Other languages
Japanese (ja)
Other versions
JP2020087644A (en
Inventor
勉 五百蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2018218916A priority Critical patent/JP7340831B2/en
Publication of JP2020087644A publication Critical patent/JP2020087644A/en
Application granted granted Critical
Publication of JP7340831B2 publication Critical patent/JP7340831B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、水素欠乏耐性燃料電池用アノード触媒に関する。 The present invention relates to an anode catalyst for hydrogen starvation tolerant fuel cells.

燃料電池は、通常、燃料電池セルを複数枚直列につないでスタック化している。各セルにはマニホールドやセパレータの流路によって個々のセルのアノードに水素ガスを供給する構造となっており、アノード(燃料極)では下記反応(1):
H2 → 2H+ + 2e- (1)
により水素の酸化反応が進行する。
Fuel cells are usually stacked by connecting a plurality of fuel cells in series. Each cell has a structure in which hydrogen gas is supplied to the anode of each cell through the flow path of the manifold and separator, and the following reaction (1) occurs at the anode (fuel electrode):
H 2 → 2H + + 2e - (1)
The oxidation reaction of hydrogen progresses.

例えば、特定の1枚のセルにつながるマニホールドや流路の一部で、フラッディング時の水詰まりや氷点下時の生成水氷結等により水素供給流路が閉塞すると、そのセルには水素が供給されないため「燃料欠乏」状態に陥り、そのセルは発電の継続が不可能になる。しかし、スタックのうち、燃料欠乏になった当該セル以外のセルには水素が供給されており、発電が継続されうる。上記のようにすべてのセルは直列につながっているため、すべてのセルを流れる電流値は同一である必要があり、発電不能になった「燃料欠乏」セルにも外部のセルから強制的に電流が流し込まれる。その結果、発電時と同方向に電流が流れ続けるため「燃料欠乏」セルのアノードでは反応(1)に代わって水素イオンを供給可能な下記電気化学反応のいずれか:
2H2O → O2 + 4H+ + 4e- (2)
C + 2H2O → CO2 + 4H+ + 4e- (3)
が進行することになる。
For example, if the hydrogen supply channel is blocked in a part of the manifold or channel leading to a specific cell due to water clogging during flooding or freezing of generated water at subzero temperatures, hydrogen will not be supplied to that cell. The cell enters a "fuel starved" state and is unable to continue generating electricity. However, hydrogen is being supplied to cells in the stack other than the fuel-starved cell, and power generation can be continued. As mentioned above, all cells are connected in series, so the current value flowing through all cells must be the same, and even a "fuel starved" cell that is unable to generate electricity must be forced to receive current from an external cell. is poured in. As a result, the current continues to flow in the same direction as when generating electricity, so at the anode of the "fuel starved" cell, one of the following electrochemical reactions that can supply hydrogen ions instead of reaction (1):
2H 2 O → O 2 + 4H + + 4e - (2)
C + 2H 2 O → CO 2 + 4H + + 4e - (3)
will proceed.

ここで、反応(2)は水の電気分解反応のアノード反応、反応(3)はカーボンの電気化学的腐食反応のアノード反応である。これらの反応を一般的なアノード触媒材料である白金担持カーボン(Pt/C)触媒上で進行させようとすると、アノード電位がカソード(空気極)の電位を大幅に超えてしまうため、アノード電位とカソード電位が逆転するセル電位反転(転極)が生じる。すなわち、「燃料欠乏」セルでは、スタック内の正常なセルで発電した電力を消費しながら強制的に通電される状態になる。 Here, reaction (2) is an anodic reaction of the electrolysis reaction of water, and reaction (3) is an anodic reaction of the electrochemical corrosion reaction of carbon. If these reactions were to proceed on a platinum-supported carbon (Pt/C) catalyst, which is a common anode catalyst material, the anode potential would greatly exceed the cathode (air electrode) potential, so the anode potential and A cell potential reversal (polarity reversal) occurs in which the cathode potential is reversed. That is, a "fuel starved" cell is forcibly energized while consuming power generated by a normal cell in the stack.

特に反応(3)は、アノード触媒の構成材料であるカーボンを消費しながら進行する反応であることから深刻であり、劣化が急速に進行して燃料電池を瞬時に使用不可能としてしまう危険性が高い。また、主として反応(2)が進行する場合でも、アノード電位は1.5 V vs RHE以上と想定されるため、反応(3)の進行を完全に抑制することはできず、アノードの劣化は避けられない。 Reaction (3) is particularly serious because it proceeds while consuming carbon, which is a constituent material of the anode catalyst, and there is a risk that the deterioration will progress rapidly and make the fuel cell instantly unusable. expensive. Furthermore, even if reaction (2) mainly proceeds, the anode potential is assumed to be 1.5 V vs. RHE or higher, so it is not possible to completely suppress the progress of reaction (3), and deterioration of the anode is unavoidable. .

このような水素欠乏時のアノードの劣化に対応するため、アノード電位が上がらないようにスタックを構成する各燃料電池セルについて、個々のセル電圧モニターが行われている。つまり、水素欠乏の兆候が見られた場合には、出力の抑制や水素流量の増加等の動作を行うことにより流路の閉塞状況を改善し、転極が生じないようにコントロールされる。この手法では電圧をモニターすることが必須であるが、モニターシステムが高価であることから、燃料電池システムのコストアップ要因となっている。このため、セル電圧をモニターせずとも水素欠乏状態におけるアノードの劣化を抑制できる方法が求められている。 In order to cope with such deterioration of the anode during hydrogen starvation, individual cell voltages are monitored for each fuel cell forming the stack so that the anode potential does not rise. In other words, when signs of hydrogen deficiency are observed, actions such as suppressing the output and increasing the hydrogen flow rate are performed to improve the blockage situation in the flow path and to prevent polarity reversal from occurring. Although it is essential to monitor the voltage in this method, the monitoring system is expensive, which increases the cost of the fuel cell system. Therefore, there is a need for a method that can suppress deterioration of the anode in a hydrogen-deficient state without monitoring the cell voltage.

そこで、例えば特許文献1~3では、水素欠乏時のアノード電位の上昇を抑制するため、酸素発生(水の電気分解)を促進する手法が採用されている。具体的には、酸素発生活性の高いイリジウムやルテニウム等をアノード触媒である白金担持カーボンと混合することが知られている(例えば、特許文献1~3参照)。 Therefore, in Patent Documents 1 to 3, for example, a method of promoting oxygen generation (water electrolysis) is adopted in order to suppress the increase in anode potential during hydrogen deficiency. Specifically, it is known to mix iridium, ruthenium, etc. with high oxygen generating activity with platinum-supported carbon as an anode catalyst (see, for example, Patent Documents 1 to 3).

特表2003-508877号公報Special Publication No. 2003-508877 特開2011-040177号公報Japanese Patent Application Publication No. 2011-040177 特開2009-152143号公報Japanese Patent Application Publication No. 2009-152143

特許文献1~3の手法によれば、酸素発生触媒を用いることで、アノード電位の上昇抑制に一定の効果がある。水素欠乏時に反応(3)ではなく反応(2)を優先的に行わせることによって劣化を抑制する点において一定の効果はあるものの、水素欠乏時における転極が長時間又は多数回に及ぶとアノード触媒層中の炭素材料の劣化を本質的に避けることはできず、燃料電池の性能劣化は避けられない。実際、特許文献2においても、触媒の工夫以外にもセルの電圧を監視し、異常の検知と対策を行う装置をあわせて装備することが望ましいとされており、やはりセル電圧のモニターは避けられない。 According to the methods disclosed in Patent Documents 1 to 3, the use of an oxygen generating catalyst has a certain effect on suppressing the increase in anode potential. Although there is a certain effect in suppressing deterioration by preferentially performing reaction (2) instead of reaction (3) during hydrogen starvation, if the polarity change during hydrogen starvation occurs for a long time or many times, the anode Deterioration of the carbon material in the catalyst layer cannot essentially be avoided, and performance deterioration of the fuel cell is unavoidable. In fact, Patent Document 2 also states that in addition to devising catalysts, it is desirable to be equipped with a device that monitors the cell voltage and detects abnormalities and takes countermeasures, so monitoring the cell voltage cannot be avoided. do not have.

以上から、本発明は、セル電圧をモニターせずとも、水素欠乏時における燃料電池性能の劣化を抑制することができる触媒を提供することを目的とする。 In light of the above, an object of the present invention is to provide a catalyst that can suppress deterioration of fuel cell performance during hydrogen starvation without monitoring cell voltage.

本発明者らは、上記課題に鑑み、鋭意研究を重ねてきた。その結果、酸素発生触媒及び導電性チタン酸化物を含有することで、上記課題を解決した触媒が得られることを見出した。本発明は、このような知見に基づきさらに研究を重ね完成されたものである。すなわち、本発明は、以下の構成を包含する。
項1.水素欠乏耐性燃料電池用アノード触媒であって、酸素発生触媒、導電性チタン酸化物及び前記酸素発生触媒以外の貴金属材料を含有する、触媒。
項2.前記酸素発生触媒が、イリジウム及びルテニウムの少なくとも1種を含む金属、合金並びにその酸化物よりなる群から選ばれる少なくとも1種である、項1に記載の触媒。
項3.前記導電性チタン酸化物上に前記酸素発生触媒以外の貴金属材料が担持された貴金属材料担持導電性チタン酸化物と、前記酸素発生触媒を含むナノ粒子とを含有する、項1又は2に記載の触媒。
項4.前記酸素発生触媒以外の貴金属材料が、白金を含むナノ粒子を含有する、項1~3のいずれか1項に記載の触媒。
項5.水素欠乏耐性燃料電池用アノード触媒であって、イリジウム及びルテニウムの少なくとも1種を含む金属及び合金よりなる群から選ばれる少なくとも1種と、導電性チタン酸化物とを含有する、触媒。
項6.前記導電性チタン酸化物上に酸素発生触媒以外の貴金属材料が担持された貴金属材料担持導電性チタン酸化物と、前記イリジウム及びルテニウムの少なくとも1種を含む金属並びに合金よりなる群から選ばれる少なくとも1種を含むナノ粒子とを含有する、項5に記載の触媒。
項7.前記酸素発生触媒以外の貴金属材料が、白金を含むナノ粒子を含有する、項6に記載の触媒。
項8.前記導電性チタン酸化物の上に、前記イリジウム及びルテニウムの少なくとも1種を含む金属並びに合金よりなる群から選ばれる少なくとも1種を含むナノ粒子が担持されている、項5に記載の触媒。
項9.前記導電性チタン酸化物が、TinO2n-1(nは4~10の整数を示す)で表される化合物である、項1~8のいずれか1項に記載の触媒。
項10.項1~9のいずれか1項に記載の触媒を用いた燃料電池用アノード。
項11.項10に記載のアノードを負極として用いた、燃料電池。
The present inventors have conducted extensive research in view of the above problems. As a result, it was found that a catalyst that solved the above problems could be obtained by containing an oxygen generating catalyst and a conductive titanium oxide. The present invention has been completed through further research based on such knowledge. That is, the present invention includes the following configurations.
Item 1. An anode catalyst for a hydrogen starvation resistant fuel cell, the catalyst comprising an oxygen generating catalyst, a conductive titanium oxide, and a noble metal material other than the oxygen generating catalyst.
Item 2. Item 2. The catalyst according to Item 1, wherein the oxygen generating catalyst is at least one selected from the group consisting of metals, alloys, and oxides thereof containing at least one of iridium and ruthenium.
Item 3. Item 1 or 2, comprising a noble metal material-supported conductive titanium oxide in which a noble metal material other than the oxygen generating catalyst is supported on the conductive titanium oxide, and nanoparticles containing the oxygen generating catalyst. catalyst.
Item 4. 4. The catalyst according to any one of Items 1 to 3, wherein the noble metal material other than the oxygen generating catalyst contains nanoparticles containing platinum.
Item 5. 1. An anode catalyst for a hydrogen starvation resistant fuel cell, which contains at least one member selected from the group consisting of metals and alloys containing at least one member of iridium and ruthenium, and a conductive titanium oxide.
Item 6. At least one selected from the group consisting of a conductive titanium oxide supported on a noble metal material, in which a noble metal material other than an oxygen generating catalyst is supported on the conductive titanium oxide, and a metal and an alloy containing at least one of the iridium and ruthenium. Item 6. The catalyst according to Item 5, comprising nanoparticles containing seeds.
Section 7. Item 7. The catalyst according to item 6, wherein the noble metal material other than the oxygen generating catalyst contains nanoparticles containing platinum.
Section 8. Item 6. The catalyst according to Item 5, wherein nanoparticles containing at least one selected from the group consisting of metals and alloys containing at least one of iridium and ruthenium are supported on the conductive titanium oxide.
Item 9. 9. The catalyst according to any one of Items 1 to 8, wherein the conductive titanium oxide is a compound represented by Ti n O 2n-1 (n is an integer from 4 to 10).
Item 10. An anode for a fuel cell using the catalyst according to any one of items 1 to 9.
Item 11. A fuel cell using the anode according to item 10 as a negative electrode.

本発明の触媒によれば、セル電圧をモニターせずとも、水素欠乏時における燃料電池性能の劣化を抑制することができる。 According to the catalyst of the present invention, deterioration in fuel cell performance during hydrogen starvation can be suppressed without monitoring cell voltage.

実施例1及び比較例1の触媒を使用した電気化学セルの水素欠乏試験におけるセル電圧の変化を示す。2 shows changes in cell voltage in a hydrogen depletion test of electrochemical cells using the catalysts of Example 1 and Comparative Example 1. 実施例1の触媒を使用した電気化学セルの水素欠乏試験前後の発電及び抵抗特性を示す。1 shows the power generation and resistance characteristics of an electrochemical cell using the catalyst of Example 1 before and after a hydrogen starvation test. 比較例1の触媒を使用した電気化学セルの水素欠乏試験前後の発電及び抵抗特性を示す。2 shows the power generation and resistance characteristics of an electrochemical cell using the catalyst of Comparative Example 1 before and after a hydrogen starvation test. 実施例1の触媒を使用した電気化学セルの水素欠乏試験前後のサイクリックボルタモグラム(CV)の変化を示す。2 shows changes in the cyclic voltammogram (CV) of an electrochemical cell using the catalyst of Example 1 before and after a hydrogen starvation test. 比較例1の触媒を使用した電気化学セルの水素欠乏試験前後のサイクリックボルタモグラム(CV)の変化を示す。2 shows changes in the cyclic voltammogram (CV) of an electrochemical cell using the catalyst of Comparative Example 1 before and after a hydrogen depletion test. 実施例1~7及び比較例2~3の触媒を使用した電気化学セルの水素欠乏試験におけるセル電位の変化を示す。2 shows changes in cell potential in a hydrogen depletion test of electrochemical cells using the catalysts of Examples 1 to 7 and Comparative Examples 2 to 3. 実施例3の触媒を使用した電気化学セルの水素欠乏試験前後の発電及び抵抗特性を示す。2 shows the power generation and resistance characteristics of an electrochemical cell using the catalyst of Example 3 before and after a hydrogen starvation test. 実施例6の触媒を使用した電気化学セルの水素欠乏試験前後の発電及び抵抗特性を示す。2 shows the power generation and resistance characteristics of an electrochemical cell using the catalyst of Example 6 before and after a hydrogen starvation test.

本明細書において、「含有」は、「含む(comprise)」、「実質的にのみからなる(consist essentially of)」、及び「のみからなる(consist of)」のいずれも包含する概念である。また、本明細書において、数値範囲をA~Bで表記する場合、A以上B以下を示す。 In this specification, "contain" is a concept that includes all of "comprise," "consist essentially of," and "consist of." Furthermore, in this specification, when a numerical range is expressed as A to B, it indicates a range of A or more and B or less.

また、本明細書において、「イリジウム及びルテニウムの少なくとも1種を含む金属並びにその酸化物」には、イリジウム、ルテニウム、酸化イリジウム及び酸化ルテニウムの他、ルテニウム及びイリジウムを含む合金や、ルテニウム及びイリジウムを含む複合酸化物等も包含する概念である。 In addition, in this specification, "a metal containing at least one of iridium and ruthenium and its oxide" includes iridium, ruthenium, iridium oxide, and ruthenium oxide, as well as alloys containing ruthenium and iridium, and ruthenium and iridium. This concept also includes complex oxides and the like.

1.水素欠乏耐性燃料電池用アノード触媒(その1)
本発明の第1の態様における水素欠乏耐性燃料電池用アノード触媒は、燃料電池アノードにおいて電気化学的に水素を酸化するために用いられる触媒であり、酸素発生触媒、導電性チタン酸化物及び酸素発生触媒以外の貴金属材料を含有する。
1. Anode catalyst for hydrogen starvation tolerant fuel cells (Part 1)
The hydrogen starvation tolerant fuel cell anode catalyst in the first aspect of the present invention is a catalyst used to electrochemically oxidize hydrogen in a fuel cell anode, and includes an oxygen generation catalyst, a conductive titanium oxide, and an oxygen generation catalyst. Contains precious metal materials other than catalysts.

(1-1)酸素発生触媒
本発明の水素欠乏耐性燃料電池用アノード触媒は、酸素発生触媒を含有することで、水素欠乏時に反応(3)ではなく反応(2)を優先的に行わせつつ、極めて少量の酸素発生触媒量で酸化劣化を抑制することができ、水素欠乏による燃料電池の特性劣化を防ぐことが可能である。一方、酸素発生触媒を使用しない、例えば、導電性チタン酸化物と白金触媒のみを使用する(導電性チタン酸化物及び酸素発生触媒以外の貴金属材料のみを使用する場合に該当)場合、燃料電池アノードの水素欠乏時には水の電気分解(反応(2))による水素イオン生成反応を優先的に行わせることが困難となり、アノード電位が急激に上昇して反応(3)によるカーボン酸化を伴う水素イオン生成反応も同時に進行するため、燃料電池アノード及び燃料電池の性能劣化を抑制することができない。
(1-1) Oxygen-generating catalyst The hydrogen-deficiency tolerant fuel cell anode catalyst of the present invention contains an oxygen-generating catalyst, thereby allowing reaction (2) to occur preferentially instead of reaction (3) when hydrogen is depleted. , oxidative deterioration can be suppressed with an extremely small amount of oxygen generating catalyst, and deterioration of fuel cell characteristics due to hydrogen deficiency can be prevented. On the other hand, if an oxygen-generating catalyst is not used, for example, only a conductive titanium oxide and a platinum catalyst are used (this applies when only noble metal materials other than the conductive titanium oxide and oxygen-generating catalyst are used), the fuel cell anode When hydrogen is depleted, it becomes difficult to preferentially perform the hydrogen ion production reaction by electrolysis of water (reaction (2)), and the anode potential rises rapidly, causing hydrogen ion production accompanied by carbon oxidation in reaction (3). Since the reactions proceed simultaneously, it is not possible to suppress performance deterioration of the fuel cell anode and the fuel cell.

酸素発生触媒としては、例えばイリジウム及びルテニウムの少なくとも1種を含む金属、合金並びにその酸化物が挙げられる。これらの中には、イリジウム、ルテニウム、酸化イリジウム及び酸化ルテニウムの他、ルテニウム及びイリジウムを含む合金や、ルテニウム及びイリジウムを含む複合酸化物等も含まれる。特に、高電位においても安定であるイリジウムを含む触媒(つまり、イリジウム、酸化イリジウム、イリジウム及びルテニウムを含む合金、イリジウム及びルテニウムを含む複合酸化物)が好ましい。なお、水素欠乏時においては必ずしも必要ではないが、平常時のアノード触媒として水素酸化能に特に優れる観点からは、イリジウム及びルテニウムや、ルテニウム及びイリジウムを含む合金等が好ましい。 Examples of the oxygen generating catalyst include metals, alloys, and oxides thereof containing at least one of iridium and ruthenium. These include iridium, ruthenium, iridium oxide, and ruthenium oxide, as well as alloys containing ruthenium and iridium, and composite oxides containing ruthenium and iridium. Particularly preferred are catalysts containing iridium that are stable even at high potentials (i.e., iridium, iridium oxide, alloys containing iridium and ruthenium, and composite oxides containing iridium and ruthenium). Although not necessarily required in times of hydrogen deficiency, iridium and ruthenium, alloys containing ruthenium and iridium, and the like are preferable from the viewpoint of particularly excellent hydrogen oxidation ability as an anode catalyst in normal conditions.

上記の酸素発生触媒の平均粒子径は、水素欠乏時におけるセル電位を長時間維持し燃料電池の性能劣化を抑制しやすい観点から、1~50nmが好ましく、2~25nmがより好ましい。酸素発生触媒の平均粒子径は、電子顕微鏡観察(SEM又はTEM)により測定する。 The average particle size of the oxygen generating catalyst is preferably 1 to 50 nm, more preferably 2 to 25 nm, from the viewpoint of maintaining cell potential for a long time during hydrogen starvation and easily suppressing performance deterioration of the fuel cell. The average particle size of the oxygen generating catalyst is measured by electron microscopy (SEM or TEM).

上記の酸素発生触媒の比表面積は、水素欠乏時におけるセル電位を長時間維持し燃料電池の性能劣化を抑制しやすい観点から、5~260m2/gが好ましく、10~130m2/gがより好ましい。酸素発生触媒の比表面積は、ガス吸着法(BET法)により測定する。 The specific surface area of the above oxygen generating catalyst is preferably 5 to 260 m 2 /g, more preferably 10 to 130 m 2 /g, from the viewpoint of maintaining the cell potential for a long time during hydrogen starvation and easily suppressing performance deterioration of the fuel cell. preferable. The specific surface area of the oxygen generating catalyst is measured by a gas adsorption method (BET method).

上記の酸素発生触媒の含有量は、水素欠乏時におけるセル電位を長時間維持し燃料電池の性能劣化を抑制しやすい観点から、本発明の水素欠乏耐性燃料電池用アノード触媒の総量を100質量%として、0.1~40質量%が好ましく、1~30質量%がより好ましい。また、本発明の水素欠乏耐性燃料電池用アノード触媒の貴金属総量(酸素発生触媒中に含まれる貴金属と後述の貴金属材料中に含まれる貴金属の総量)を100質量%として、水素欠乏時におけるセル電位を長時間維持し燃料電池の性能劣化を抑制しやすい観点から、酸素発生触媒中に含まれる貴金属の量が、5~70質量%が好ましく、8~50質量%がより好ましい。 The content of the above-mentioned oxygen generating catalyst is 100% by mass of the total amount of the anode catalyst for a hydrogen starvation tolerant fuel cell of the present invention, from the viewpoint of maintaining the cell potential for a long time during hydrogen starvation and easily suppressing performance deterioration of the fuel cell. The amount is preferably 0.1 to 40% by mass, more preferably 1 to 30% by mass. Furthermore, assuming that the total amount of precious metals (the total amount of precious metals contained in the oxygen generating catalyst and the precious metals contained in the noble metal material described below) of the anode catalyst for a hydrogen depletion tolerant fuel cell of the present invention is 100% by mass, the cell potential at the time of hydrogen depletion is From the viewpoint of easily maintaining fuel cell performance for a long time and suppressing performance deterioration of the fuel cell, the amount of noble metal contained in the oxygen generating catalyst is preferably 5 to 70% by mass, more preferably 8 to 50% by mass.

上記のように、本発明の水素欠乏耐性燃料電池用アノード触媒においては、酸素発生触媒と、導電性チタン酸化物と、酸素発生触媒以外の貴金属材料を含有することにより、セル電位をモニターせずとも、炭素材料の使用量を低減しても水素欠乏時における燃料電池性能の劣化を抑制することができる。 As mentioned above, in the anode catalyst for hydrogen starvation resistant fuel cells of the present invention, the cell potential is not monitored because it contains an oxygen generation catalyst, a conductive titanium oxide, and a noble metal material other than the oxygen generation catalyst. In both cases, deterioration of fuel cell performance during hydrogen starvation can be suppressed even if the amount of carbon material used is reduced.

(1-2)導電性チタン酸化物
導電性チタン酸化物は酸性かつ高電位条件のような環境でも安定な耐食性の酸化物であり、燃料電池アノードの水素欠乏時の高い電位環境下でもほとんど劣化しないため、燃料電池の性能劣化を抑制することができる。本発明において、導電性チタン酸化物は、担体として使用される。つまり、従来の水素欠乏耐性燃料電池用アノード触媒において、担体且つ導電助剤として使用されていた炭素材料の代替品として使用する。
(1-2) Conductive titanium oxide Conductive titanium oxide is a corrosion-resistant oxide that is stable even in acidic and high-potential environments, and hardly deteriorates even in high-potential environments during hydrogen starvation in fuel cell anodes. Therefore, performance deterioration of the fuel cell can be suppressed. In the present invention, conductive titanium oxide is used as a carrier. That is, it is used as a substitute for the carbon material used as a carrier and a conductive aid in conventional anode catalysts for hydrogen starvation resistant fuel cells.

このような導電性チタン酸化物としては、アノード触媒層の抵抗をできるだけ低く抑える観点から、TinO2n-1(nは4~10、特に4~6の整数を示す)で表される化合物、つまり、マグネリ相チタン酸化物が好ましい。このようなチタン酸化物としては、マグネリ相チタン酸化物として、Ti4O7、Ti5O9、Ti6O11等が好ましい。これらの導電性チタン酸化物は単独で用いることもでき、2種以上を組合せて用いることもできる。このような導電性チタン酸化物は、公知又は市販品を使用することができる。 As such conductive titanium oxide, from the viewpoint of keeping the resistance of the anode catalyst layer as low as possible, a compound represented by Ti n O 2n-1 (n is an integer from 4 to 10, especially 4 to 6) is used. , that is, Magneli phase titanium oxide is preferred. As such a titanium oxide, Ti 4 O 7 , Ti 5 O 9 , Ti 6 O 11 , etc. are preferable as Magneli phase titanium oxide. These conductive titanium oxides can be used alone or in combination of two or more. As such a conductive titanium oxide, a known or commercially available product can be used.

導電性チタン酸化物の平均粒子径は、アノード触媒層のガス・水蒸気の拡散を阻害しにくく、触媒を微細に担持しやすくするとともに、アノード触媒層の電気抵抗を低減しやすいことから、10nm~1μmが好ましく、20~500nmがより好ましい。導電性チタン酸化物の平均粒子径は、電子顕微鏡観察(SEM又はTEM)により測定する。 The average particle diameter of the conductive titanium oxide is 10 nm or more because it does not easily inhibit the diffusion of gas and water vapor in the anode catalyst layer, makes it easier to support the catalyst finely, and reduces the electrical resistance of the anode catalyst layer. 1 μm is preferable, and 20 to 500 nm is more preferable. The average particle size of the conductive titanium oxide is measured by electron microscopy (SEM or TEM).

導電性チタン酸化物の比表面積は、アノード触媒層のガス・水蒸気の拡散を阻害しにくく、触媒を微細に担持しやすくするとともに、アノード触媒層の電気抵抗を低減しやすいことから、1.5~140m2/gが好ましく、3~70m2/gがより好ましい。導電性チタン酸化物の比表面積は、BET法により測定する。 The specific surface area of conductive titanium oxide is 1.5 to 140 m because it hardly inhibits the diffusion of gas and water vapor in the anode catalyst layer, makes it easier to support the catalyst finely, and reduces the electrical resistance of the anode catalyst layer. 2 /g is preferred, and 3 to 70 m 2 /g is more preferred. The specific surface area of the conductive titanium oxide is measured by the BET method.

本発明の水素欠乏耐性燃料電池用アノード触媒において、導電性チタン酸化物の含有量は、本発明の水素欠乏耐性燃料電池用アノード触媒の総量を100質量%として、アノード触媒層のガス・水蒸気の拡散を阻害しにくく、触媒を微細に担持しやすくするとともに、アノード触媒層の電気抵抗を低減しやすいことから、60~95質量%が好ましく、70~90質量%がより好ましい。 In the anode catalyst for a hydrogen starvation tolerant fuel cell of the present invention, the content of conductive titanium oxide is determined based on the total amount of the anode catalyst for a hydrogen starvation tolerant fuel cell of the present invention being 100% by mass, and It is preferably from 60 to 95% by mass, more preferably from 70 to 90% by mass, because it is less likely to inhibit diffusion, facilitate finely supported catalyst, and easily reduce the electrical resistance of the anode catalyst layer.

(1-3)酸素発生触媒以外の貴金属材料
本発明の水素欠乏耐性燃料電池用アノード触媒は、酸素発生触媒以外の貴金属材料を含むことにより、水素が供給されている正常な動作状況時に効率よく水素を酸化することができ、よって燃料電池アノードの機能を効率的に発揮することができる。特に、酸素発生触媒として、酸化イリジウム、酸化ルテニウムや、ルテニウム及びイリジウムを含む複合酸化物等の酸化物を使用する場合は、平常時のアノード触媒として水素酸化能を向上させることも可能である。
(1-3) Precious metal material other than oxygen generation catalyst The hydrogen deficiency resistant fuel cell anode catalyst of the present invention contains a noble metal material other than the oxygen generation catalyst, so that it can be efficiently used under normal operating conditions when hydrogen is supplied. Hydrogen can be oxidized, and therefore the function of the fuel cell anode can be efficiently performed. In particular, when an oxide such as iridium oxide, ruthenium oxide, or a composite oxide containing ruthenium and iridium is used as the oxygen generating catalyst, it is also possible to improve the hydrogen oxidation ability as an anode catalyst under normal conditions.

酸素発生触媒以外の貴金属材料としては、酸性雰囲気で安定であり水素酸化触媒能に優れていれば特に制限されないが、白金、パラジウム、ロジウム、オスミウム等の触媒金属等が挙げられ、白金、パラジウム、ロジウム等が好ましく、白金がより好ましい。つまり、白金を含むナノ粒子を使用することが好ましい。 The noble metal material other than the oxygen generating catalyst is not particularly limited as long as it is stable in an acidic atmosphere and has excellent hydrogen oxidation catalytic ability, but examples include catalyst metals such as platinum, palladium, rhodium, and osmium. Rhodium and the like are preferred, and platinum is more preferred. In other words, it is preferable to use nanoparticles containing platinum.

酸素発生触媒以外の貴金属材料として白金を含むナノ粒子を使用する場合、従来から燃料電池用空気極に用いられる触媒を使用することができる。例えば、白金ナノ粒子、白金合金ナノ粒子、白金を含むコアシェル型ナノ粒子等が挙げられる。 When nanoparticles containing platinum are used as a noble metal material other than the oxygen generating catalyst, catalysts conventionally used in air electrodes for fuel cells can be used. Examples include platinum nanoparticles, platinum alloy nanoparticles, core-shell type nanoparticles containing platinum, and the like.

白金合金ナノ粒子を使用する場合、例えば、ニッケル、マンガン、コバルト、クロム、チタン、ルテニウム、ロジウム、パラジウム、イリジウム、金等の少なくとも1種と白金との合金が好ましい。この場合、白金合金中の白金の含有量は過電圧をより低減する観点から50~95質量%が好ましい。 When using platinum alloy nanoparticles, for example, an alloy of platinum and at least one of nickel, manganese, cobalt, chromium, titanium, ruthenium, rhodium, palladium, iridium, gold, etc. is preferable. In this case, the content of platinum in the platinum alloy is preferably 50 to 95% by mass from the viewpoint of further reducing overvoltage.

白金を含むコアシェル型ナノ粒子を使用する場合、過電圧をより低減する観点及び白金使用量を低減する観点から、コア部は白金以外の金属を含む合金からなり、シェル部が白金からなることが好ましい。コア部の白金合金としては、上記した白金合金を採用することができる。 When using core-shell type nanoparticles containing platinum, from the viewpoint of further reducing overvoltage and reducing the amount of platinum used, it is preferable that the core part is made of an alloy containing a metal other than platinum, and the shell part is made of platinum. . As the platinum alloy of the core part, the above-mentioned platinum alloy can be adopted.

以上のような酸素発生触媒以外の貴金属材料の平均粒子径は特に制限されない。貴金属材料の平均粒子径は、2nm~40nmが好ましく、2.4nm~30nmがより好ましい。なお、白金を含むコアシェル型ナノ粒子を使用する場合は、シェル部の平均厚みは1~3原子層が好ましい。貴金属材料の平均粒子径は、電子顕微鏡観察(SEM又はTEM)により測定する。 The average particle diameter of the noble metal material other than the oxygen generating catalyst described above is not particularly limited. The average particle diameter of the noble metal material is preferably 2 nm to 40 nm, more preferably 2.4 nm to 30 nm. Note that when core-shell type nanoparticles containing platinum are used, the average thickness of the shell portion is preferably 1 to 3 atomic layers. The average particle diameter of the noble metal material is measured by electron microscopy (SEM or TEM).

上記説明したような酸素発生触媒以外の貴金属材料の含有量は、本発明の水素欠乏耐性燃料電池用アノード触媒の総量を100質量%として、水素欠乏時における燃料電池の性能劣化を抑制しやすく平常時における燃料電池の性能を向上させやすい観点から、5~40質量%が好ましく、10~30質量%がより好ましい。 The content of the noble metal materials other than the oxygen generating catalyst as explained above is determined by setting the total amount of the anode catalyst for a hydrogen starvation resistant fuel cell of the present invention to 100% by mass, so that the content of the noble metal materials other than the oxygen generating catalyst of the present invention is set to a normal level that is easy to suppress performance deterioration of the fuel cell during hydrogen starvation. From the viewpoint of easily improving the performance of the fuel cell at the time, the content is preferably 5 to 40% by mass, more preferably 10 to 30% by mass.

(1-4)水素欠乏耐性燃料電池用アノード触媒
本発明の第1の態様における電気化学的水素発生用触媒は、上記のとおり、酸素発生触媒、導電性チタン酸化物及び酸素発生触媒以外の貴金属材料を含有している。
(1-4) Anode catalyst for hydrogen deficiency resistant fuel cells The electrochemical hydrogen generation catalyst in the first aspect of the present invention includes an oxygen generation catalyst, a conductive titanium oxide, and a noble metal other than the oxygen generation catalyst. Contains materials.

この本発明の水素欠乏耐性燃料電池用アノード触媒の実施形態としては特に制限されるわけではないが、例えば、導電性チタン酸化物上に酸素発生触媒以外の貴金属材料が担持された貴金属材料担持導電性チタン酸化物と、酸素発生触媒とを含有する触媒とすることができる。 Embodiments of the hydrogen starvation resistant fuel cell anode catalyst of the present invention are not particularly limited, but examples include a noble metal material-supported conductive catalyst in which a noble metal material other than an oxygen generating catalyst is supported on a conductive titanium oxide. The catalyst may contain a titanium oxide and an oxygen generating catalyst.

この場合、酸素発生触媒以外の貴金属材料を導電性チタン酸化物に担持する際の担持量は特に制限はない。燃料電池用のアノード触媒層として形成した際の触媒担持量は、アノードにおける水素酸化反応活性の維持及び材料コストの観点から、0.01~0.3mg/cm2が好ましく、0.03~0.2mg/cm2がより好ましい。 In this case, there is no particular restriction on the amount of noble metal material other than the oxygen generating catalyst supported on the conductive titanium oxide. The amount of catalyst supported when formed as an anode catalyst layer for a fuel cell is preferably 0.01 to 0.3 mg/cm 2 , and 0.03 to 0.2 mg/cm 2 from the viewpoint of maintaining hydrogen oxidation reaction activity in the anode and material cost. More preferred.

また、酸素発生触媒についても、導電性チタン酸化物上に担持させてもよい。酸素発生触媒の担持量は、水素欠乏時のアノード電位上昇による燃料電池性能劣化の防止及びコストの観点から、0.005~0.2mg/cm2が好ましく、0.01~0.1mg/cm2がより好ましい。 Further, the oxygen generating catalyst may also be supported on the conductive titanium oxide. The supported amount of the oxygen generating catalyst is preferably 0.005 to 0.2 mg/cm 2 , more preferably 0.01 to 0.1 mg/cm 2 from the viewpoint of cost and prevention of fuel cell performance deterioration due to an increase in anode potential during hydrogen deficiency.

この場合、貴金属材料担持導電性チタン酸化物の製造方法は特に制限はないが、例えば、紫外レーザー還元法により作製した導電性チタン酸化物に貴金属材料を含浸還元法により担持させることができる。この後、貴金属材料担持導電性チタン酸化物と酸素発生触媒とを常法で混合することにより、本発明の電気化学的水素発生用触媒を得ることができる。 In this case, the method for producing the conductive titanium oxide supporting the noble metal material is not particularly limited, but, for example, the conductive titanium oxide produced by the ultraviolet laser reduction method can be supported with the noble metal material by an impregnation reduction method. Thereafter, the electrochemical hydrogen generation catalyst of the present invention can be obtained by mixing the noble metal material-supported conductive titanium oxide and the oxygen generation catalyst in a conventional manner.

このような本発明の水素欠乏耐性燃料電池用アノード触媒は、セル電圧をモニターせずとも、水素欠乏時において燃料電池性能の劣化を抑制することができる。本発明の水素欠乏耐性燃料電池用アノード触媒は、固体高分子形燃料電池のアノード触媒として好適に使用され得る。 Such an anode catalyst for a hydrogen starvation tolerant fuel cell of the present invention can suppress deterioration of fuel cell performance during hydrogen starvation without monitoring the cell voltage. The hydrogen starvation resistant fuel cell anode catalyst of the present invention can be suitably used as an anode catalyst for polymer electrolyte fuel cells.

2.水素欠乏耐性燃料電池用アノード触媒(その2)
本発明の第2の態様における水素欠乏耐性燃料電池用アノード触媒は、燃料電池アノードにおいて電気化学的に水素を酸化するために用いられる触媒であり、イリジウム、ルテニウム、並びにルテニウム及びイリジウムを含む合金よりなる群から選ばれる少なくとも1種と、導電性チタン酸化物とを含有する。
2. Anode catalyst for hydrogen starvation tolerant fuel cells (Part 2)
The hydrogen starvation tolerant fuel cell anode catalyst according to the second aspect of the present invention is a catalyst used to electrochemically oxidize hydrogen in a fuel cell anode, and is made of iridium, ruthenium, and alloys containing ruthenium and iridium. The conductive titanium oxide contains at least one selected from the group consisting of: and a conductive titanium oxide.

(2-1)イリジウム及びルテニウムの少なくとも1種を含む金属及び合金
本発明の水素欠乏耐性燃料電池用アノード触媒は、酸素発生触媒を含有することで、水素欠乏時に反応(3)ではなく反応(2)を優先的に行わせつつ、極めて少量の酸素発生触媒量で酸化劣化を抑制することができ、水素欠乏による燃料電池の特性劣化を防ぐことが可能である。一方、酸素発生触媒を使用しない(例えば、白金触媒と導電性チタン酸化物のみを使用する)場合、燃料電池アノードの水素欠乏時には水の電気分解(反応(2))による水素イオン生成反応を優先的に行わせることが困難となり、アノード電位が急激に上昇して反応(3)によるカーボン酸化を伴う水素イオン生成反応も同時に進行するため、燃料電池アノード及び燃料電池の性能劣化を抑制することができない。
(2-1) Metals and alloys containing at least one of iridium and ruthenium The hydrogen-deficiency tolerant fuel cell anode catalyst of the present invention contains an oxygen-generating catalyst, so that the reaction (3) does not occur when hydrogen is depleted. While 2) is carried out preferentially, oxidative deterioration can be suppressed with an extremely small amount of oxygen generating catalyst, and it is possible to prevent deterioration of fuel cell characteristics due to hydrogen deficiency. On the other hand, when an oxygen generating catalyst is not used (for example, only a platinum catalyst and conductive titanium oxide are used), when the fuel cell anode is deficient in hydrogen, priority is given to the hydrogen ion generating reaction by electrolysis of water (reaction (2)). This makes it difficult to carry out the deterioration of the fuel cell anode and the fuel cell, as the anode potential rises rapidly and the hydrogen ion production reaction accompanied by carbon oxidation in reaction (3) also proceeds at the same time. Can not.

酸素発生触媒としては、例えばイリジウム及びルテニウムの少なくとも1種を含む金属及び合金が挙げられる。これらの中には、イリジウム及びルテニウムの他、ルテニウム及びイリジウムを含む合金等も含まれる。特に、高電位においても安定であるイリジウムを含む触媒(つまり、イリジウム、イリジウム及びルテニウムを含む合金)が好ましい。これらは、水素欠乏時のみならず、平常時のアノード触媒として水素酸化能に特に優れるため、後述の酸素発生触媒以外の貴金属材料を含まない構成とすることもできる。当然ながら、後述の酸素発生触媒以外の貴金属材料を含む構成とすることもできる。 Examples of the oxygen generation catalyst include metals and alloys containing at least one of iridium and ruthenium. These include not only iridium and ruthenium but also alloys containing ruthenium and iridium. In particular, catalysts containing iridium (ie, iridium, alloys containing iridium and ruthenium) that are stable even at high potentials are preferred. Since these are particularly excellent in hydrogen oxidation ability as an anode catalyst not only in times of hydrogen deficiency but also in normal times, they can also be configured not to contain noble metal materials other than the oxygen generating catalyst described below. Naturally, it is also possible to have a configuration that includes a noble metal material other than the oxygen generating catalyst described below.

上記のイリジウム及びルテニウムの少なくとも1種を含む金属及び合金の平均粒子径は、水素欠乏時におけるセル電位を長時間維持し燃料電池の性能劣化を抑制しやすいとともに、平常時における燃料電池の性能も向上させやすい観点から、1~50nmが好ましく、2~25nmがより好ましい。イリジウム及びルテニウムの少なくとも1種を含む金属及び合金の平均粒子径は、電子顕微鏡観察(SEM又はTEM)により測定する。 The average particle diameter of the metals and alloys containing at least one of iridium and ruthenium mentioned above makes it easy to maintain the cell potential for a long time during hydrogen starvation and suppress deterioration of fuel cell performance, while also improving the performance of the fuel cell under normal conditions. From the viewpoint of easy improvement, 1 to 50 nm is preferable, and 2 to 25 nm is more preferable. The average particle size of metals and alloys containing at least one of iridium and ruthenium is measured by electron microscopy (SEM or TEM).

上記のイリジウム及びルテニウムの少なくとも1種を含む金属及び合金の比表面積は、水素欠乏時におけるセル電位を長時間維持し燃料電池の性能劣化を抑制しやすいとともに、平常時における燃料電池の性能も向上させやすい観点から、5~260m2/gが好ましく、10~130m2/gがより好ましい。イリジウム及びルテニウムの少なくとも1種を含む金属及び合金の比表面積は、ガス吸着法(BET法)により測定する。 The specific surface area of metals and alloys containing at least one of iridium and ruthenium mentioned above makes it easy to maintain the cell potential for a long time during hydrogen starvation and suppress performance deterioration of the fuel cell, while also improving the performance of the fuel cell under normal conditions. From the viewpoint of ease of use, the range is preferably 5 to 260 m 2 /g, more preferably 10 to 130 m 2 /g. The specific surface area of metals and alloys containing at least one of iridium and ruthenium is measured by a gas adsorption method (BET method).

上記のイリジウム及びルテニウムの少なくとも1種を含む金属及び合金の含有量は、水素欠乏時におけるセル電位を長時間維持し燃料電池の性能劣化を抑制しやすいとともに、平常時における燃料電池の性能も向上させやすい観点から、本発明の水素欠乏耐性燃料電池用アノード触媒の総量を100質量%として、0.1~40質量%が好ましく、1~30質量%がより好ましい。また、後述の酸素発生触媒以外の貴金属材料を含む構成とする場合は、本発明の水素欠乏耐性燃料電池用アノード触媒の貴金属総量(酸素発生触媒中に含まれる貴金属と後述の貴金属材料中に含まれる貴金属の総量)を100質量%として、水素欠乏時におけるセル電位を長時間維持し燃料電池の性能劣化を抑制しやすいとともに、平常時における燃料電池の性能も向上させやすい観点から、酸素発生触媒中に含まれる貴金属の量が、5~70質量%が好ましく、8~50質量%がより好ましい。 The content of metals and alloys containing at least one of the above-mentioned iridium and ruthenium maintains the cell potential for a long time during hydrogen starvation, making it easier to suppress performance deterioration of the fuel cell, and also improving the performance of the fuel cell under normal conditions. From the viewpoint of ease of production, the total amount of the anode catalyst for hydrogen starvation tolerant fuel cells of the present invention is 100% by mass, preferably 0.1 to 40% by mass, more preferably 1 to 30% by mass. In addition, when the configuration includes a noble metal material other than the oxygen generating catalyst described below, the total amount of precious metals (the precious metal contained in the oxygen generating catalyst and the precious metal material contained in the below-mentioned noble metal material By setting the total amount of noble metals (the total amount of precious metals produced) to 100% by mass, the oxygen generation catalyst is designed to maintain the cell potential for a long time during hydrogen starvation, making it easier to suppress performance deterioration of the fuel cell, as well as improving the performance of the fuel cell under normal conditions. The amount of noble metal contained therein is preferably 5 to 70% by mass, more preferably 8 to 50% by mass.

上記のように、本発明の水素欠乏耐性燃料電池用アノード触媒においては、イリジウム及びルテニウムの少なくとも1種を含む金属及び合金よりなる群から選ばれる少なくとも1種と、導電性チタン酸化物とを含有することにより、セル電位をモニターせずとも、炭素材料の使用量を低減しても水素欠乏時における燃料電池性能の劣化を抑制することができる。 As described above, the hydrogen starvation resistant fuel cell anode catalyst of the present invention contains at least one metal selected from the group consisting of metals and alloys containing at least one of iridium and ruthenium, and a conductive titanium oxide. By doing so, it is possible to suppress deterioration of fuel cell performance during hydrogen starvation even if the amount of carbon material used is reduced without monitoring the cell potential.

(2-2)導電性チタン酸化物
導電性チタン酸化物としては、上記(1-2)で説明したものを採用することができる。好ましい種類、含有量等も同様である。
(2-2) Conductive titanium oxide As the conductive titanium oxide, those explained in (1-2) above can be employed. Preferred types, contents, etc. are also the same.

(2-3)酸素発生触媒以外の貴金属材料
本発明の水素欠乏耐性燃料電池用アノード触媒は、上記した、イリジウム、ルテニウム、並びにルテニウム及びイリジウムを含む合金よりなる群から選ばれる少なくとも1種と、導電性チタン酸化物とを含んでいるが、さらに、他の成分として、酸素発生触媒以外の貴金属材料が含まれていてもよい。これにより、水素が供給されている正常な動作状況時にさらに効率よく水素を酸化することができ、よって燃料電池アノードの機能をさらに効率的に発揮することができる。
(2-3) Precious Metal Materials Other than Oxygen Generating Catalyst The hydrogen deficiency resistant fuel cell anode catalyst of the present invention includes at least one member selected from the group consisting of iridium, ruthenium, and an alloy containing ruthenium and iridium, as described above; Although it contains a conductive titanium oxide, it may further contain a noble metal material other than the oxygen generating catalyst as another component. Thereby, hydrogen can be oxidized more efficiently during normal operating conditions where hydrogen is being supplied, and the function of the fuel cell anode can therefore be more efficiently performed.

酸素発生触媒以外の貴金属材料としては、上記(1-3)で説明したものを採用することができる。好ましい種類、含有量等も同様である。 As the noble metal material other than the oxygen generating catalyst, those explained in (1-3) above can be employed. Preferred types, contents, etc. are also the same.

(2-4)水素欠乏耐性燃料電池用アノード触媒
本発明の第2の態様における電気化学的水素発生用触媒は、上記のとおり、イリジウム、ルテニウム、並びにルテニウム及びイリジウムを含む合金よりなる群から選ばれる少なくとも1種と、導電性チタン酸化物とを含有しており、必要に応じて他の成分(酸素発生触媒以外の貴金属材料等)を含むこともできる。
(2-4) Anode catalyst for hydrogen starvation resistant fuel cells The catalyst for electrochemical hydrogen generation in the second aspect of the present invention is selected from the group consisting of iridium, ruthenium, and alloys containing ruthenium and iridium, as described above. and a conductive titanium oxide, and can also contain other components (such as noble metal materials other than the oxygen generating catalyst) as necessary.

この本発明の水素欠乏耐性燃料電池用アノード触媒の実施形態としては特に制限されるわけではないが、酸素発生触媒以外の貴金属材料を含む場合には、例えば、導電性チタン酸化物上に酸素発生触媒以外の貴金属材料が担持された貴金属材料担持導電性チタン酸化物と、イリジウム及びルテニウムの少なくとも1種を含む金属及び合金とを含有する触媒とすることができる。 Although the embodiment of the hydrogen starvation resistant fuel cell anode catalyst of the present invention is not particularly limited, when it contains a noble metal material other than an oxygen generating catalyst, for example, an oxygen generating catalyst may be formed on a conductive titanium oxide. The catalyst may include a noble metal material-supported conductive titanium oxide on which a noble metal material other than the catalyst is supported, and a metal and an alloy containing at least one of iridium and ruthenium.

この場合、酸素発生触媒以外の貴金属材料を導電性チタン酸化物に担持する際の担持量は特に制限はない。燃料電池用のアノード触媒層として形成した際の触媒担持量は、アノードにおける水素酸化反応活性の維持及び材料コストの観点から、0.01~0.3mg/cm2が好ましく、0.03~0.2mg/cm2がより好ましい。 In this case, there is no particular restriction on the amount of noble metal material other than the oxygen generating catalyst supported on the conductive titanium oxide. The amount of catalyst supported when formed as an anode catalyst layer for a fuel cell is preferably 0.01 to 0.3 mg/cm 2 , and 0.03 to 0.2 mg/cm 2 from the viewpoint of maintaining hydrogen oxidation reaction activity in the anode and material cost. More preferred.

また、イリジウム及びルテニウムの少なくとも1種を含む金属及び合金についても、導電性チタン酸化物上に担持させてもよい。イリジウム及びルテニウムの少なくとも1種を含む金属及び合金の担持量は、水素欠乏時のアノード電位上昇による燃料電池性能劣化の防止及びコストの観点から、0.005~0.2mg/cm2が好ましく、0.01~0.1mg/cm2がより好ましい。 Furthermore, metals and alloys containing at least one of iridium and ruthenium may also be supported on the conductive titanium oxide. The supported amount of metals and alloys containing at least one of iridium and ruthenium is preferably 0.005 to 0.2 mg/cm 2 , and 0.01 to 0.1 mg/cm 2 from the viewpoint of cost and prevention of fuel cell performance deterioration due to increase in anode potential during hydrogen deficiency. mg/cm 2 is more preferred.

この場合、貴金属材料担持導電性チタン酸化物の製造方法は特に制限はないが、例えば、紫外レーザー還元法により作製した導電性チタン酸化物に貴金属材料を含浸還元法により担持させることができる。この後、貴金属材料担持導電性チタン酸化物とイリジウム及びルテニウムの少なくとも1種を含む金属及び合金とを常法で混合することにより、本発明の電気化学的水素発生用触媒を得ることができる。 In this case, the method for producing the conductive titanium oxide supporting the noble metal material is not particularly limited, but, for example, the conductive titanium oxide produced by the ultraviolet laser reduction method can be supported with the noble metal material by an impregnation reduction method. Thereafter, the electrochemical hydrogen generation catalyst of the present invention can be obtained by mixing the conductive titanium oxide supported on a noble metal material with a metal and an alloy containing at least one of iridium and ruthenium in a conventional manner.

次に、酸素発生触媒以外の貴金属材料を含まない場合は、例えば、イリジウム及びルテニウムの少なくとも1種を含む金属及び合金を導電性チタン酸化物に担持させて本発明の電気化学的水素発生用触媒とすることができる。 Next, when the noble metal material other than the oxygen generation catalyst is not included, for example, a metal or alloy containing at least one of iridium and ruthenium is supported on the conductive titanium oxide to form the electrochemical hydrogen generation catalyst of the present invention. It can be done.

この場合、イリジウム及びルテニウムの少なくとも1種を含む金属及び合金の担持量は、水素欠乏時における長時間セル電位を維持し燃料電池の性能劣化を抑制しやすいとともに、平常時における燃料電池の性能も向上させやすい観点から、0.02~0.3mg/cm2が好ましく、0.05~0.2mg/cm2がより好ましい。 In this case, the supported amount of metals and alloys containing at least one of iridium and ruthenium can maintain the cell potential for a long time during hydrogen starvation and easily suppress performance deterioration of the fuel cell, while also improving the performance of the fuel cell under normal conditions. From the viewpoint of easy improvement, 0.02 to 0.3 mg/cm 2 is preferable, and 0.05 to 0.2 mg/cm 2 is more preferable.

この場合、本発明の水素欠乏耐性燃料電池用アノード触媒の製造方法は特に制限はないが、例えば、紫外レーザー還元法により作製した導電性チタン酸化物にイリジウム及びルテニウムの少なくとも1種を含む金属及び合金を含浸還元法により担持させることができる。 In this case, the method for producing the anode catalyst for hydrogen starvation resistant fuel cells of the present invention is not particularly limited, but for example, a metal containing at least one of iridium and ruthenium and The alloy can be supported by an impregnation reduction method.

このような本発明の水素欠乏耐性燃料電池用アノード触媒は、セル電圧をモニターせずとも、水素欠乏時において燃料電池性能の劣化を抑制することができる。本発明の水素欠乏耐性燃料電池用アノード触媒は、固体高分子形燃料電池のアノード触媒として好適に使用され得る。 Such an anode catalyst for a hydrogen starvation tolerant fuel cell of the present invention can suppress deterioration of fuel cell performance during hydrogen starvation without monitoring the cell voltage. The hydrogen starvation resistant fuel cell anode catalyst of the present invention can be suitably used as an anode catalyst for polymer electrolyte fuel cells.

3.アノード及び燃料電池
本発明のアノード(燃料極)は、上記した本発明の水素欠乏耐性燃料電池用アノード触媒を用いた燃料電池用アノードである。
3. Anode and Fuel Cell The anode (fuel electrode) of the present invention is a fuel cell anode using the above-described hydrogen starvation resistant fuel cell anode catalyst of the present invention.

このようなアノードは、触媒として本発明の水素欠乏耐性燃料電池用アノード触媒を用いること以外は従来のアノードと同様とすることができるが、例えば、本発明のアノードは、アノード触媒層を有し得る。 Such an anode can be similar to a conventional anode except that the anode catalyst for hydrogen starvation tolerant fuel cells of the present invention is used as a catalyst. For example, the anode of the present invention may have an anode catalyst layer. obtain.

アノード触媒層の厚さについては特に限定的ではないが、通常、0.5~5μm程度とすることができる。 The thickness of the anode catalyst layer is not particularly limited, but it can usually be about 0.5 to 5 μm.

このようなアノード触媒層の形成方法としては、特に制限されないが、ガス拡散層、集電体等に、本発明の水素欠乏耐性燃料電池用アノード触媒と樹脂溶液とを混合して作製した触媒インクを塗布及び乾燥する方法等によってアノード触媒層を作製し得る。 The method for forming such an anode catalyst layer is not particularly limited, but a catalyst ink prepared by mixing the anode catalyst for a hydrogen starvation resistant fuel cell of the present invention and a resin solution in a gas diffusion layer, a current collector, etc. The anode catalyst layer can be prepared by a method such as coating and drying.

その他のアノードの構成については公知のアノードと同様にし得る。例えば、アノードの触媒層側にカーボンペーパー、カーボンクロス、金属メッシュ、金属焼結体、発泡金属板、金属多孔体等の集電材を配置し、撥水性膜、拡散膜、空気分配層等を配置した構造ともし得る。 The other configurations of the anode can be the same as those of known anodes. For example, a current collecting material such as carbon paper, carbon cloth, metal mesh, metal sintered body, foamed metal plate, metal porous body, etc. is placed on the catalyst layer side of the anode, and a water repellent membrane, diffusion membrane, air distribution layer, etc. are placed. It is also possible to have a similar structure.

電解質としては、例えば、本発明の電気化学的水素発生用触媒と高分子電解質膜とを公知の方法により一体化させて使用することができる。本発明の水素欠乏耐性燃料電池用アノード触媒と電解質材料等を水や溶剤等で分散させたものを、電解質膜に塗布したり、基材に塗布した触媒層を電解質膜に転写させたり等により電解質膜に触媒層を形成したりすることもできる。 As the electrolyte, for example, the catalyst for electrochemical hydrogen generation of the present invention and a polymer electrolyte membrane can be integrated by a known method and used. By applying a dispersion of the anode catalyst for hydrogen starvation resistant fuel cells of the present invention and an electrolyte material etc. in water, a solvent, etc. to an electrolyte membrane, or by transferring a catalyst layer applied to a base material to an electrolyte membrane, etc. A catalyst layer can also be formed on the electrolyte membrane.

高分子電解質膜としては、パーフルオロカーボン系、スチレン-ジビニルベンゼン共重合体系、ポリベンズイミダゾール系をはじめとする各種イオン交換樹脂膜、無機高分子イオン交換膜、有機-無機複合体高分子イオン交換膜等を使用することができる。 Polymer electrolyte membranes include various ion exchange resin membranes including perfluorocarbon, styrene-divinylbenzene copolymer, and polybenzimidazole, inorganic polymer ion exchange membranes, organic-inorganic composite polymer ion exchange membranes, etc. can be used.

カソード(空気極)の構造についても特に限定はなく、公知の燃料電池(特に固体高分子形燃料電池)の構造と同様とすることができる。カソード用の触媒としても、従来から知られている種々の金属、金属合金、金属錯体等を使用することができる。使用できる金属種としては、従来の固体高分子形燃料電池(PEFC)で使用される白金、パラジウム、イリジウム、ロジウム等の貴金属等が挙げられる。これらの金属のなかから選ばれた単一の金属触媒、二種以上の金属の任意の組合せからなる合金を使用し得る。また、上記から選ばれる金属触媒と別の金属酸化物との複合触媒、触媒微粒子をカーボン、金属酸化物等の担体上に分散させた担持触媒として使用することもできる。 The structure of the cathode (air electrode) is also not particularly limited, and can be similar to the structure of known fuel cells (particularly polymer electrolyte fuel cells). As the cathode catalyst, various conventionally known metals, metal alloys, metal complexes, etc. can be used. Examples of metal species that can be used include noble metals such as platinum, palladium, iridium, and rhodium used in conventional polymer electrolyte fuel cells (PEFC). A single metal catalyst selected from these metals or an alloy consisting of any combination of two or more metals may be used. Further, it can also be used as a composite catalyst of a metal catalyst selected from the above and another metal oxide, or as a supported catalyst in which catalyst fine particles are dispersed on a carrier such as carbon or metal oxide.

得られた膜-電極接合体の両面をカーボンペーパー、カーボンクロス等の集電体で挟んでセルに組み込むことによって、固体高分子形燃料電池セルを作製することも可能である。 It is also possible to produce a polymer electrolyte fuel cell by sandwiching both sides of the obtained membrane-electrode assembly between current collectors such as carbon paper or carbon cloth and incorporating it into a cell.

上記した構造の燃料電池(特に固体高分子形燃料電池)では、カソード側には酸素又は空気を供給又は自然拡散させ得る。また、アノード側に燃料となる物質を供給し得る。燃料物質としては、水素ガスを使用し得る。 In the fuel cell having the above structure (particularly the polymer electrolyte fuel cell), oxygen or air can be supplied or naturally diffused to the cathode side. Further, a substance serving as a fuel can be supplied to the anode side. Hydrogen gas may be used as fuel material.

本発明の燃料電池(特に固体高分子形燃料電池)の作動温度は、使用する電解質膜によって異なるが、通常0~100℃程度であり、好ましくは10~80℃程度である。 The operating temperature of the fuel cell (especially polymer electrolyte fuel cell) of the present invention varies depending on the electrolyte membrane used, but is usually about 0 to 100°C, preferably about 10 to 80°C.

以下に実施例及び比較例を挙げて、本発明をより詳細に説明する。なお、本発明は、以下の実施例に限定されるものではない。 The present invention will be explained in more detail by giving Examples and Comparative Examples below. Note that the present invention is not limited to the following examples.

実施例1:Pt/Ti 4 O 7 触媒 + Ir触媒(Pt: 0.106mg/cm 2 、Ir: 0.043mg/cm 2
紫外レーザー還元法により作製したマグネリ相Ti4O7に白金を含侵還元法により担持することでPt/Ti4O7を得た。
Example 1: Pt/Ti 4 O 7 catalyst + Ir catalyst (Pt: 0.106mg/cm 2 , Ir: 0.043mg/cm 2 )
Pt/Ti 4 O 7 was obtained by supporting platinum on Magnelli phase Ti 4 O 7 prepared by ultraviolet laser reduction method by impregnation reduction method.

導電性チタン酸化物としてマグネリ相Ti4O7粉末2.0gを、0.05Mジニトロジアンミン白金エタノール溶液50mLに加え(酸素発生触媒以外の貴金属材料としてのPtの担持量が20質量%となるように調整し)、超音波分散機によりよく分散させた。分散液はホットスターラーを用いて攪拌しながら、エタノールを蒸発させ白金錯体がマグネリ相Ti4O7上に担持された触媒前駆体を作製した。触媒前駆体を管状電気炉にセットし、水素気流中900℃で1時間還元熱処理を行った。還元処理した触媒を0.5M硫酸水溶液に超音波分散し、80℃で2時間攪拌後、純水でよく洗浄して乾燥することによりPt/Ti4O7触媒を得た。 Add 2.0 g of Magnelli phase Ti 4 O 7 powder as a conductive titanium oxide to 50 mL of a 0.05 M dinitrodiammine platinum ethanol solution (adjust so that the supported amount of Pt as a noble metal material other than the oxygen generation catalyst is 20% by mass). ) and well dispersed using an ultrasonic disperser. While stirring the dispersion using a hot stirrer, ethanol was evaporated to produce a catalyst precursor in which the platinum complex was supported on the Magneli phase Ti 4 O 7 . The catalyst precursor was placed in a tubular electric furnace and subjected to reduction heat treatment at 900°C for 1 hour in a hydrogen stream. The reduced catalyst was ultrasonically dispersed in a 0.5M sulfuric acid aqueous solution, stirred at 80°C for 2 hours, thoroughly washed with pure water, and dried to obtain a Pt/Ti 4 O 7 catalyst.

得られたPt/Ti4O7触媒0.2gと、酸素発生触媒であるIr触媒(Alpha Aesar社製、Iridium black、99.95%)16mg、5質量% Nafion(登録商標、以下同様)溶液(Aldrich社製Nafion Perfluorinated resin solution、EW= 1100)0.2 g、2-プロパノール0.08 gを室温・窒素雰囲気中で混合後、室温及び大気中で超音波分散機により分散処理を行い、さらにスターラーで約2時間攪拌することで、触媒スラリー溶液を調製した。PTFE製シートを塗工機定盤に固定し、所望のギャップに調整したアプリケーターにより触媒層を塗工した。触媒担持量は、白金が約0.106mg/cm2、イリジウムが約0.043mg/cm2となるようにギャップ幅を調整することによって調製した。塗工したシートを真空中、80℃で1時間乾燥させることにより、実施例1のアノード触媒層を得た。これにより、Pt/Ti4O7触媒とIr触媒とを含む触媒を、水素欠乏耐性燃料電池用アノード触媒として得た。 0.2 g of the obtained Pt/Ti 4 O 7 catalyst, 16 mg of Ir catalyst (manufactured by Alpha Aesar, Iridium black, 99.95%), which is an oxygen generating catalyst, and 5% by mass Nafion (registered trademark, hereinafter the same) solution (Aldrich) After mixing 0.2 g of Nafion Perfluorinated resin solution (EW= 1100) and 0.08 g of 2-propanol in a nitrogen atmosphere at room temperature, dispersion treatment was performed using an ultrasonic dispersion machine at room temperature and in the air, and further stirring was performed using a stirrer for about 2 hours. A catalyst slurry solution was prepared by doing so. The PTFE sheet was fixed to the coating machine surface plate, and the catalyst layer was applied using an applicator adjusted to the desired gap. The amount of catalyst supported was adjusted by adjusting the gap width so that platinum was about 0.106 mg/cm 2 and iridium was about 0.043 mg/cm 2 . The anode catalyst layer of Example 1 was obtained by drying the coated sheet at 80° C. for 1 hour in vacuum. As a result, a catalyst containing a Pt/Ti 4 O 7 catalyst and an Ir catalyst was obtained as an anode catalyst for a hydrogen starvation resistant fuel cell.

比較例1:Pt/C触媒 + Ir触媒(Pt: 0.103mg/cm 2 、Ir: 0.044mg/cm 2
白金担持カーボン触媒(市販Pt/C、酸素発生触媒以外の貴金属材料としてのPt 37.9質量%)0.1g 、酸素発生触媒であるIr触媒16mg、5質量% Nafion溶液0.6 gを室温中で混合後、超音波分散機で分散処理を行い、さらにスターラーで約2時間攪拌することで、触媒スラリー溶液を調製した。PTFE製シートを塗工機定盤に固定し、所望のギャップに調整したアプリケーターにより触媒層を塗工した。触媒担持量は、白金が約0.103mg/cm2、イリジウムが約0.044mg/cm2となるようにギャップ幅を調整することによって調製した。塗工したシートを真空中、80℃で1時間乾燥させることにより、比較例1のアノード触媒層を得た。
Comparative example 1: Pt/C catalyst + Ir catalyst (Pt: 0.103mg/cm 2 , Ir: 0.044mg/cm 2 )
After mixing 0.1 g of platinum-supported carbon catalyst (commercially available Pt/C, 37.9% by mass of Pt as a noble metal material other than oxygen generating catalyst), 16 mg of Ir catalyst as oxygen generating catalyst, and 0.6 g of 5% by mass Nafion solution at room temperature, A catalyst slurry solution was prepared by performing dispersion treatment using an ultrasonic disperser and further stirring for about 2 hours using a stirrer. The PTFE sheet was fixed to the coating machine surface plate, and the catalyst layer was applied using an applicator adjusted to the desired gap. The amount of catalyst supported was adjusted by adjusting the gap width so that platinum was about 0.103 mg/cm 2 and iridium was about 0.044 mg/cm 2 . The anode catalyst layer of Comparative Example 1 was obtained by drying the coated sheet at 80° C. for 1 hour in a vacuum.

実施例2:Pt/Ti 4 O 7 触媒 + Ir触媒(Pt: 0.116mg/cm 2 、Ir: 0.027mg/cm 2
実施例1と同様にして得られたPt/Ti4O7触媒0.1gを、酸素発生触媒であるIr触媒5mg、5質量% Nafion溶液0.1g、2-プロパノール0.08gを混合後、白金が約0.116mg/cm2、イリジウムが約0.027mg/cm2となるようにアプリケーターのギャップ幅を調整したこと以外は、実施例1と同様の工程により実施例2のアノード触媒層を得た。これにより、Pt/Ti4O7触媒とIr触媒とを含む触媒を、水素欠乏耐性燃料電池用アノード触媒として得た。
Example 2: Pt/Ti 4 O 7 catalyst + Ir catalyst (Pt: 0.116mg/cm 2 , Ir: 0.027mg/cm 2 )
0.1 g of Pt/Ti 4 O 7 catalyst obtained in the same manner as in Example 1 was mixed with 5 mg of Ir catalyst as an oxygen generating catalyst, 0.1 g of 5% by mass Nafion solution, and 0.08 g of 2-propanol. An anode catalyst layer of Example 2 was obtained by the same process as Example 1, except that the gap width of the applicator was adjusted so that iridium was 0.116 mg/cm 2 and iridium was approximately 0.027 mg/cm 2 . As a result, a catalyst containing a Pt/Ti 4 O 7 catalyst and an Ir catalyst was obtained as an anode catalyst for a hydrogen starvation resistant fuel cell.

実施例3:Pt/Ti 4 O 7 触媒 + Ir触媒(Pt: 0.098mg/cm 2 、Ir: 0.014mg/cm 2
実施例1と同様にして得られたPt/Ti4O7触媒0.1gを、酸素発生触媒であるIr触媒3mg、5質量% Nafion溶液0.1g、2-プロパノール0.08gを混合後、白金が約0.098mg/cm2、イリジウムが約0.014mg/cm2となるようにアプリケーターのギャップ幅を調整したこと以外は、実施例1と同様の工程により実施例3のアノード触媒層を得た。これにより、Pt/Ti4O7触媒とIr触媒とを含む触媒を、水素欠乏耐性燃料電池用アノード触媒として得た。
Example 3: Pt/Ti 4 O 7 catalyst + Ir catalyst (Pt: 0.098mg/cm 2 , Ir: 0.014mg/cm 2 )
After mixing 0.1 g of Pt/Ti 4 O 7 catalyst obtained in the same manner as in Example 1 with 3 mg of Ir catalyst as an oxygen generating catalyst, 0.1 g of 5% by mass Nafion solution, and 0.08 g of 2-propanol, approximately The anode catalyst layer of Example 3 was obtained by the same process as Example 1 , except that the gap width of the applicator was adjusted so that iridium was 0.098 mg/cm 2 and iridium was approximately 0.014 mg/cm 2 . As a result, a catalyst containing a Pt/Ti 4 O 7 catalyst and an Ir catalyst was obtained as an anode catalyst for a hydrogen starvation resistant fuel cell.

実施例4:Pt/Ti 4 O 7 触媒 + Ir触媒(Pt: 0.079mg/cm 2 、Ir: 0.0092mg/cm 2
実施例1と同様にして得られたPt/Ti4O7触媒0.1gを、酸素発生触媒であるIr触媒2.5mg、5質量% Nafion溶液0.1g、2-プロパノール0.08gを混合後、白金が約0.079mg/cm2、イリジウムが約0.0092mg/cm2となるようにアプリケーターのギャップ幅を調整したこと以外は、実施例1と同様の工程により実施例4のアノード触媒層を得た。これにより、Pt/Ti4O7触媒とIr触媒とを含む触媒を、水素欠乏耐性燃料電池用アノード触媒として得た。
Example 4: Pt/Ti 4 O 7 catalyst + Ir catalyst (Pt: 0.079mg/cm 2 , Ir: 0.0092mg/cm 2 )
After mixing 0.1 g of Pt/Ti 4 O 7 catalyst obtained in the same manner as in Example 1 with 2.5 mg of Ir catalyst as an oxygen generating catalyst, 0.1 g of 5% by mass Nafion solution, and 0.08 g of 2-propanol, platinum An anode catalyst layer of Example 4 was obtained by the same process as Example 1, except that the gap width of the applicator was adjusted so that the amount of iridium was approximately 0.079 mg/cm 2 and the amount of iridium was approximately 0.0092 mg/cm 2 . As a result, a catalyst containing a Pt/Ti 4 O 7 catalyst and an Ir catalyst was obtained as an anode catalyst for a hydrogen starvation resistant fuel cell.

実施例5:Pt/Ti 4 O 7 触媒 + Ir触媒(Pt: 0.079mg/cm 2 、Ir: 0.0076mg/cm 2
実施例1と同様にして得られたPt/Ti4O7触媒0.1gを、酸素発生触媒であるIr触媒2mg、5質量% Nafion溶液0.1g、2-プロパノール0.08gを混合後、白金が約0.079mg/cm2、イリジウムが約0.0076mg/cm2となるようにアプリケーターのギャップ幅を調整したこと以外は、実施例1と同様の工程により実施例5のアノード触媒層を得た。これにより、Pt/Ti4O7触媒とIr触媒とを含む触媒を、水素欠乏耐性燃料電池用アノード触媒として得た。
Example 5: Pt/Ti 4 O 7 catalyst + Ir catalyst (Pt: 0.079mg/cm 2 , Ir: 0.0076mg/cm 2 )
After mixing 0.1 g of Pt/Ti 4 O 7 catalyst obtained in the same manner as in Example 1 with 2 mg of Ir catalyst as an oxygen generating catalyst, 0.1 g of 5% by mass Nafion solution, and 0.08 g of 2-propanol, approximately The anode catalyst layer of Example 5 was obtained by the same process as Example 1, except that the gap width of the applicator was adjusted so that iridium was 0.079 mg/cm 2 and iridium was approximately 0.0076 mg/cm 2 . As a result, a catalyst containing a Pt/Ti 4 O 7 catalyst and an Ir catalyst was obtained as an anode catalyst for a hydrogen starvation resistant fuel cell.

実施例6:Ir/Ti 4 O 7 触媒(Ir: 0.108mg/cm 2
紫外レーザー還元法により作製した導電性チタン酸化物であるマグネリ相Ti4O7に酸素発生触媒であるイリジウムを含侵還元法により担持することでIr/Ti4O7を得た。
Example 6: Ir/Ti 4 O 7 catalyst (Ir: 0.108 mg/cm 2 )
Ir/Ti 4 O 7 was obtained by supporting iridium, which is an oxygen generation catalyst, on Magnelli phase Ti 4 O 7 , which is a conductive titanium oxide prepared by an ultraviolet laser reduction method, by an impregnation reduction method.

マグネリ相Ti4O7粉末1.8gを 0.015M塩化イリジウム酸エタノール溶液200mLに加え(Irの担持量が20質量%となるように調整し)、超音波分散機によりよく分散させた。分散液を窒素流通下80℃で3時間加熱還流することにより、イリジウム錯体がTi4O7上に担持された触媒前駆体を作製した。触媒前駆体を管状電気炉にセットし、水素気流中900℃で1時間還元熱処理を行った。還元処理した触媒を0.5M硫酸水溶液に超音波分散し、80℃で2時間攪拌後、純水でよく洗浄して乾燥することによりIr/Ti4O7触媒を得た。このIr/Ti4O7触媒を実施例6の触媒とした。これにより、Ir/Ti4O7触媒を、水素欠乏耐性燃料電池用アノード触媒として得た。 1.8 g of Magnelli phase Ti 4 O 7 powder was added to 200 mL of a 0.015M chloroiridic acid ethanol solution (adjusted so that the supported amount of Ir was 20% by mass), and well dispersed using an ultrasonic disperser. A catalyst precursor in which an iridium complex was supported on Ti 4 O 7 was prepared by heating and refluxing the dispersion at 80° C. for 3 hours under nitrogen flow. The catalyst precursor was placed in a tubular electric furnace and subjected to reduction heat treatment at 900°C for 1 hour in a hydrogen stream. The reduced catalyst was ultrasonically dispersed in a 0.5M sulfuric acid aqueous solution, stirred at 80°C for 2 hours, thoroughly washed with pure water, and dried to obtain an Ir/Ti 4 O 7 catalyst. This Ir/Ti 4 O 7 catalyst was used as the catalyst of Example 6. As a result, an Ir/Ti 4 O 7 catalyst was obtained as an anode catalyst for a hydrogen starvation resistant fuel cell.

得られたIr/Ti4O7触媒0.1g、5質量% Nafion溶液0.1 g、プロピレングリコール0.1 gを室温・窒素雰囲気中で混合後、室温及び大気中で超音波分散機により分散処理を行い、さらにスターラーで約2時間攪拌することで、触媒スラリー溶液を調製した。PTFE製シートを塗工機定盤に固定し、所望のギャップに調整したアプリケーターにより触媒層を塗工した。触媒担持量は、イリジウムが約0.1 mg/cm2となるようにギャップ幅を調整することによって調製した。塗工したシートを真空中、80℃で1時間乾燥させることにより、実施例6のアノード触媒層を得た。 After mixing 0.1 g of the obtained Ir/Ti 4 O 7 catalyst, 0.1 g of 5% by mass Nafion solution, and 0.1 g of propylene glycol at room temperature in a nitrogen atmosphere, dispersion treatment was performed using an ultrasonic dispersion machine at room temperature and in the atmosphere. A catalyst slurry solution was prepared by further stirring with a stirrer for about 2 hours. The PTFE sheet was fixed to the coating machine surface plate, and the catalyst layer was applied using an applicator adjusted to the desired gap. The amount of catalyst supported was adjusted by adjusting the gap width so that iridium was about 0.1 mg/cm 2 . The anode catalyst layer of Example 6 was obtained by drying the coated sheet at 80° C. for 1 hour in vacuum.

実施例7:Pt/Ti 4 O 7 触媒 + Ir酸化物触媒(Pt: 0.093mg/cm 2 、IrO x : 0.014mg/cm 2
実施例1と同様にして得られたPt/Ti4O7触媒0.1gを、酸素発生触媒であるIr酸化物触媒(市販IrOx、Ir 76.7重量%)3mg、5質量% Nafion溶液0.1g、2-プロパノール0.08gを混合後、白金が約0.093mg/cm2、イリジウムが約0.011mg/cm2(IrOxが約0.014mg/cm2)となるようにアプリケーターのギャップ幅を調整したこと以外は、実施例1と同様の工程により実施例7のアノード触媒層を得た。これにより、Pt/Ti4O7触媒とIrOx触媒とを含む触媒を、水素欠乏耐性燃料電池用アノード触媒として得た。
Example 7: Pt/Ti 4 O 7 catalyst + Ir oxide catalyst (Pt: 0.093mg/cm 2 , IrO x : 0.014mg/cm 2 )
0.1 g of the Pt/Ti 4 O 7 catalyst obtained in the same manner as in Example 1 was mixed with 3 mg of an Ir oxide catalyst (commercially available IrO x , Ir 76.7% by weight) as an oxygen generating catalyst, 0.1 g of a 5% by mass Nafion solution, After mixing 0.08 g of 2-propanol, the gap width of the applicator was adjusted so that platinum was about 0.093 mg/cm 2 and iridium was about 0.011 mg/cm 2 (IrO x was about 0.014 mg/cm 2 ). An anode catalyst layer of Example 7 was obtained by the same process as in Example 1. As a result, a catalyst containing a Pt/Ti 4 O 7 catalyst and an IrO x catalyst was obtained as an anode catalyst for a hydrogen starvation resistant fuel cell.

比較例2:Pt/Ti 4 O 7 触媒(Pt: 0.11mg/cm 2
実施例1と同様にして得られたPt/Ti4O7触媒0.1gを5質量% Nafion溶液0.1g、2-プロパノール0.08gを混合後、白金が約0.11mg/cm2となるようにアプリケーターのギャップ幅を調整したこと以外は、実施例1と同様の工程により比較例2のアノード触媒層を得た。
Comparative example 2: Pt/Ti 4 O 7 catalyst (Pt: 0.11 mg/cm 2 )
After mixing 0.1 g of Pt/Ti 4 O 7 catalyst obtained in the same manner as in Example 1 with 0.1 g of 5% by mass Nafion solution and 0.08 g of 2-propanol, the applicator was used so that the platinum content was approximately 0.11 mg/cm 2 . An anode catalyst layer of Comparative Example 2 was obtained by the same process as Example 1 except that the gap width was adjusted.

比較例3:Pt/C触媒(Pt: 0.12mg/cm 2
Pt/C触媒0.1gを5質量% Nafion溶液0.6gと混合後、白金が約0.12mg/cm2となるようにアプリケーターのギャップ幅を調整したこと以外は、比較例1と同様の工程により比較例2のアノード触媒層を得た。
Comparative example 3: Pt/C catalyst (Pt: 0.12mg/cm 2 )
Comparison was made using the same process as Comparative Example 1, except that after mixing 0.1 g of Pt/C catalyst with 0.6 g of 5 mass% Nafion solution, the gap width of the applicator was adjusted so that the platinum content was approximately 0.12 mg/cm 2 An anode catalyst layer of Example 2 was obtained.

試験例1:水素欠乏試験評価
(1)カソード触媒層の作製
白金担持カーボン触媒(市販Pt/C、Pt 37.9質量%)0.2gに対して、質量比で6倍量の5質量% Nafion溶液を加え、超音波分散機で分散処理後、スターラーで約2時間攪拌することで、触媒スラリー溶液を調製した。PTFE製シートを塗工機定盤に固定し、所望のギャップに調整したアプリケーターにより触媒層を塗工した。塗工したシートは真空中、80℃で1時間乾燥させた。触媒担持量は基本的に白金がおよそ0.5mg/cm2となるように調製した。
Test example 1: Hydrogen deficiency test evaluation (1) Preparation of cathode catalyst layer For 0.2 g of platinum-supported carbon catalyst (commercially available Pt/C, Pt 37.9 mass%), add 6 times the amount of 5 mass% Nafion solution by mass. In addition, a catalyst slurry solution was prepared by dispersing with an ultrasonic disperser and stirring with a stirrer for about 2 hours. The PTFE sheet was fixed to the coating machine surface plate, and the catalyst layer was applied using an applicator adjusted to the desired gap. The coated sheets were dried in vacuum at 80°C for 1 hour. The amount of catalyst supported was basically adjusted to approximately 0.5 mg/cm 2 of platinum.

(2)MEAの作製
固体高分子電解質膜として、DuPont社製Nafion NR-212膜を用いた。アノード触媒層及びカソード触媒層を1cm角に切り出し、Nafion膜の両側に重ね合わせた後、140℃で6分間ホットプレスし、PTFEシートを剥がしとることでMEAを作製した。
(2) Preparation of MEA A DuPont Nafion NR-212 membrane was used as the solid polymer electrolyte membrane. The anode catalyst layer and the cathode catalyst layer were cut into 1 cm square pieces, stacked on both sides of the Nafion membrane, hot pressed at 140°C for 6 minutes, and the PTFE sheet was peeled off to produce an MEA.

(3)評価方法
ガス拡散層(GDL)として、マイクロポーラス層付きカーボンペーパー(SGL Carbon社製 GDL25BC)を1.35cm角に切り出し、MEAの両側の電極直上に配置した。1cm2の流路面積を有するカーボン流路板及び集電板、端板により両側からMEAを挟みこみ規定のトルクで締め付けることにより、評価セルを構成した。
(3) Evaluation method As a gas diffusion layer (GDL), carbon paper with a microporous layer (GDL25BC manufactured by SGL Carbon) was cut into 1.35 cm square pieces and placed directly above the electrodes on both sides of the MEA. An evaluation cell was constructed by sandwiching the MEA from both sides between a carbon channel plate having a channel area of 1 cm 2 , a current collector plate, and an end plate and tightening them to a specified torque.

評価セルを燃料電池特性評価装置にセットし、セル温度80℃に昇温しながらカソードに加湿水素(80℃加湿)、アノードに加湿窒素(80℃加湿)を供給した。セルが定常状態となり温度及び電圧が安定した後、アノードの初期サイクリックボルタモグラム(CV)を電位範囲0.1V - 1.0V、走査速度100mV/sで測定した。アノード(燃料極)及びカソード(空気極)のガスをパージしながらセル温度を室温まで一旦下げ、セルを再び80℃に昇温しながらアノードに加湿水素(80℃加湿)、カソードに加湿窒素(80℃加湿)を供給した。セルが定常状態となり温度及び電圧が安定した後、カソードの初期サイクリックボルタモグラム(CV)を電位範囲0.1V - 1.0V、走査速度100mV/sで測定した。カソードガスを加湿酸素に切替えて規定の開回路電圧が得られた後、1A/cm2の電流密度で3時間発電状態を維持した。その後、1A/cm2側から初期電流-電圧(I-V)特性データを取得した。アノードガスを加湿水素から加湿窒素に切り替え、セル電圧が0.3V以下になるまで保持した。ポテンショスタットにより200mA/cm2の定電流を印加し、セルを転極状態として2時間又はセル電圧が-2Vに達するまで継続させ、その間のセル電圧をモニターした。アノードガスを加湿水素に切替え、0.3A/cm2又は0.5A/cm2の電流密度で1晩発電を継続させた。翌日1A/cm2の電流密度で一定電圧となった後、水素欠乏試験後の電流-電圧(I-V)特性評価を行った。カソードガスを加湿窒素に切替え、電圧安定後に水素欠乏試験後のカソードサイクリックボルタモグラム(CV)を測定した。アノード及びカソードのガスをパージしながらセル温度を室温まで一旦下げ、セルを再び80℃に昇温しながらアノードに加湿窒素、カソードに加湿水素を供給した。セルが定常状態となり温度及び電圧が安定した後、アノードの水素欠乏試験後のサイクリックボルタモグラム(CV)を測定した。以上の評価によって、水素欠乏試験に対するアノード触媒の耐性と発電特性の劣化状況を確認することが可能となる。 The evaluation cell was set in a fuel cell characteristic evaluation device, and while the cell temperature was raised to 80°C, humidified hydrogen (humidified at 80°C) was supplied to the cathode and humidified nitrogen (humidified at 80°C) to the anode. After the cell was in steady state and the temperature and voltage were stable, the initial cyclic voltammogram (CV) of the anode was measured at a potential range of 0.1 V - 1.0 V and a scanning rate of 100 mV/s. While purging the gas at the anode (fuel electrode) and cathode (air electrode), the cell temperature is lowered to room temperature, and while the cell temperature is raised to 80℃ again, humidified hydrogen (humidified at 80℃) is placed on the anode, and humidified nitrogen (humidified at 80℃) is placed on the cathode. 80℃ humidification) was supplied. After the cell was in steady state and the temperature and voltage were stable, the initial cyclic voltammogram (CV) of the cathode was measured at a potential range of 0.1 V - 1.0 V and a scanning rate of 100 mV/s. After the cathode gas was switched to humidified oxygen and the specified open circuit voltage was obtained, power generation was maintained at a current density of 1 A/cm 2 for 3 hours. After that, initial current-voltage (IV) characteristic data was obtained from the 1A/cm 2 side. The anode gas was switched from humidified hydrogen to humidified nitrogen and maintained until the cell voltage became 0.3V or less. A constant current of 200 mA/cm 2 was applied using a potentiostat to keep the cell in a polarized state for 2 hours or until the cell voltage reached -2V, and the cell voltage was monitored during that time. The anode gas was switched to humidified hydrogen, and power generation was continued overnight at a current density of 0.3 A/cm 2 or 0.5 A/cm 2 . The next day, after the voltage became constant at a current density of 1 A/cm 2 , the current-voltage (IV) characteristics after the hydrogen starvation test were evaluated. The cathode gas was switched to humidified nitrogen, and after the voltage was stabilized, the cathode cyclic voltammogram (CV) after the hydrogen deficiency test was measured. While purging the gas at the anode and cathode, the cell temperature was once lowered to room temperature, and while the cell was heated again to 80°C, humidified nitrogen was supplied to the anode and humidified hydrogen to the cathode. After the cell was in a steady state and the temperature and voltage were stable, the cyclic voltammogram (CV) after the hydrogen depletion test of the anode was measured. Through the above evaluation, it is possible to confirm the resistance of the anode catalyst to the hydrogen starvation test and the deterioration of the power generation characteristics.

評価結果1:Pt/Ti 4 O 7 触媒を用いたセルの水素欠乏時の電圧変化
燃料電池試験セル(電極面積1cm2)を用い、アノードには水素の代わりに窒素を、カソードには酸素を流して水素欠乏状態とした上で、外部電源を用いて電圧(アノード側を電源のプラス極、カソード側を電源のマイナス極に接続)を印加し0.2A/cm2の電流を流して水素欠乏運転(転極)状態を再現した。転極状態でのセル電位の時間変化を図1に示す。
Evaluation result 1: Voltage change during hydrogen starvation in a cell using a Pt/Ti 4 O 7 catalyst A fuel cell test cell (electrode area 1 cm 2 ) was used, with nitrogen instead of hydrogen at the anode and oxygen at the cathode. After that, a voltage is applied using an external power supply (the anode side is connected to the positive pole of the power supply, and the cathode side is connected to the negative pole of the power supply), and a current of 0.2A/cm 2 is applied to create a hydrogen-depleted state. The operating (pole reversal) condition was reproduced. Figure 1 shows the change in cell potential over time in the polarity inversion state.

比較例1(Pt/C触媒)では電圧印加により-0.7V付近まで急低下(アノード電位は急上昇)した後もセル電圧が徐々に下がり、-0.9Vに達した付近から電圧低下が加速し始め、再び急速に電位が低下した(-2.0Vに達した所で実験打ち切り)。これに対して、実施例1(Pt/Ti4O7触媒)では白金担持量と酸素発生触媒であるイリジウム担持量は同等にもかかわらず、電圧印加直後に-0.7V付近まで低下後は7200秒後においてもわずかな電位低下が見られるのみで比較例1のような顕著な電圧低下が起こらなかった。 In Comparative Example 1 (Pt/C catalyst), the cell voltage gradually decreased even after it suddenly dropped to around -0.7V (the anode potential suddenly increased) due to voltage application, and the voltage drop started to accelerate around -0.9V. , the potential decreased rapidly again (the experiment was terminated when it reached -2.0V). On the other hand, in Example 1 (Pt/Ti 4 O 7 catalyst), although the amount of platinum supported and the amount of iridium supported, which is an oxygen generating catalyst, were the same, the voltage dropped to around -0.7V immediately after voltage application, and the voltage decreased to 7200 V. Even after a few seconds, only a slight potential drop was observed, and no significant voltage drop as in Comparative Example 1 occurred.

評価結果2:Pt/Ti 4 O 7 触媒を用いたセルの水素欠乏試験前後の発電特性
水素欠乏試験前後のセルの発電及び抵抗特性を実施例1及び比較例1についてそれぞれ図2及び図3に示す(実施例1は約7200秒の水素欠乏運転後、比較例1は約7000秒の水素欠乏運転後)。実施例1では、7200秒と極めて長時間の水素欠乏運転を行った後にも関わらず、水素欠乏試験後にセル電圧の低下は認められなかった。また、セル抵抗も増加することなく安定であった。一方、比較例1では、実施例1よりも短い約7000秒の水素欠乏運転後であるにも関わらず水素欠乏試験後は大幅なセル電圧の低下とセル抵抗の増大が見られた。
Evaluation result 2: Power generation characteristics of the cell using Pt/Ti 4 O 7 catalyst before and after the hydrogen depletion test The power generation and resistance characteristics of the cell before and after the hydrogen depletion test are shown in Figures 2 and 3 for Example 1 and Comparative Example 1, respectively. (Example 1 after about 7200 seconds of hydrogen starved operation, Comparative Example 1 after about 7000 seconds of hydrogen starved operation). In Example 1, no drop in cell voltage was observed after the hydrogen starvation test even after the hydrogen starvation operation was performed for an extremely long time of 7200 seconds. Furthermore, the cell resistance was stable without increasing. On the other hand, in Comparative Example 1, although the hydrogen starvation operation was approximately 7000 seconds shorter than in Example 1, a significant decrease in cell voltage and increase in cell resistance were observed after the hydrogen starvation test.

評価結果3:Pt/Ti 4 O 7 触媒を用いたセルの水素欠乏試験前後のCV変化
図4及び図5に、実施例1及び比較例1の水素欠乏試験前後におけるアノードのサイクリックボルタモグラム(CV)を示す。図4の実施例1では、水素欠乏試験後には二重層容量領域(0.3~0.6V付近)でわずかに電流値が増加しており、アノード触媒層に接するガス拡散層の一部の酸化が進んだことを示唆しているものの、初期のCV形状をほぼ保持しており、その影響は軽微であった。一方、比較例1では水素欠乏試験後に電流値が極端に増大し、CVの形状自体も変化していた。比較例1では、水素欠乏試験によりアノードが極めて高い電位に達したため、触媒層やガス拡散層等のカーボンが不可逆的且つ広範囲に酸化劣化したことを示唆している。
Evaluation result 3: CV change before and after hydrogen depletion test of cell using Pt/Ti 4 O 7 catalyst Figures 4 and 5 show the cyclic voltammograms (CV ) is shown. In Example 1 in Figure 4, the current value slightly increased in the double layer capacity region (around 0.3 to 0.6 V) after the hydrogen starvation test, indicating that oxidation of a portion of the gas diffusion layer in contact with the anode catalyst layer progressed. However, the initial CV shape was largely retained, and the effect was minor. On the other hand, in Comparative Example 1, the current value increased extremely after the hydrogen starvation test, and the shape of the CV itself changed. In Comparative Example 1, the anode reached an extremely high potential in the hydrogen depletion test, suggesting that the carbon in the catalyst layer, gas diffusion layer, etc. was irreversibly and extensively oxidized.

評価結果4:Pt/Ti 4 O 7 触媒に混合する酸素発生触媒含量の影響
Pt/Ti4O7触媒に混合する酸素発生触媒含量を減らしていった時の水素欠乏運転時のセル電圧変化の様子を図6に示す。酸素発生触媒含量が減少しても、0.0076mg/cm2(実施例5)以上であればその影響は少なく、0.014mg/cm2(実施例3)以上であれば2時間以上水素欠乏状態が継続しても、発電特性の低下につながるセル電圧の急激な低下は全く見られず、発電特性も維持できた(図7)。
Evaluation result 4: Effect of oxygen generating catalyst content mixed into Pt/Ti 4 O 7 catalyst
Figure 6 shows how the cell voltage changes during hydrogen starvation operation when the content of the oxygen generating catalyst mixed in the Pt/Ti 4 O 7 catalyst is reduced. Even if the content of the oxygen generating catalyst decreases, if it is 0.0076 mg/cm 2 (Example 5) or more, the effect will be small, and if it is 0.014 mg/cm 2 (Example 3) or more, the hydrogen depletion state will continue for more than 2 hours. Even after continued use, there was no sudden drop in cell voltage that would lead to deterioration in power generation characteristics, and power generation characteristics were maintained (Figure 7).

また、金属状のイリジウムのみならず、酸化物を用いた場合も同等の効果が得られた(図6)。 Furthermore, similar effects were obtained not only when using metallic iridium but also when using oxides (FIG. 6).

さらに、酸素発生触媒として金属状のイリジウム、ルテニウム等や、イリジウム及びルテニウムの合金を用いれば、白金触媒と同様に電気化学的な水素酸化触媒能を有している。従って、IrをTi4O7に担持したIr/Ti4O7触媒のみをアノード触媒として用いれば、実施例6のように高い水素酸化能と耐水素欠乏特性を両立することもできた(図6及び8)。 Furthermore, if metallic iridium, ruthenium, etc. or an alloy of iridium and ruthenium is used as an oxygen generating catalyst, it has the same electrochemical hydrogen oxidation catalytic ability as a platinum catalyst. Therefore, if only an Ir/Ti 4 O 7 catalyst in which Ir is supported on Ti 4 O 7 was used as an anode catalyst, it was possible to achieve both high hydrogen oxidation ability and hydrogen depletion resistance as in Example 6 (Fig. 6 and 8).

Claims (11)

水素欠乏耐性燃料電池用アノード触媒であって、酸素発生触媒、導電性チタン酸化物及び前記酸素発生触媒以外の貴金属材料を含有し、
前記酸素発生触媒以外の貴金属材料は触媒金属であり、
前記酸素発生触媒の含有量が、前記アノード触媒の総量を100質量%として0.1~30質量%であり、
前記酸素発生触媒中の貴金属の量が、前記アノード触媒の貴金属総量を100質量%として5~70質量%であり、
前記導電性チタン酸化物の含有量が、前記アノード触媒の総量を100質量%として、60~90質量%であり、
前記酸素発生触媒以外の貴金属材料の含有量が、前記アノード触媒の総量を100質量%として、5~30質量%である、触媒。
An anode catalyst for a hydrogen deficiency resistant fuel cell, comprising an oxygen generation catalyst, a conductive titanium oxide, and a noble metal material other than the oxygen generation catalyst,
The noble metal material other than the oxygen generating catalyst is a catalyst metal,
The content of the oxygen generating catalyst is 0.1 to 30 % by mass based on the total amount of the anode catalyst as 100% by mass,
The amount of noble metal in the oxygen generating catalyst is 5 to 70% by mass, based on the total amount of noble metal in the anode catalyst as 100% by mass,
The content of the conductive titanium oxide is 60 to 90 % by mass, with the total amount of the anode catalyst being 100% by mass,
A catalyst, wherein the content of noble metal materials other than the oxygen generating catalyst is 5 to 30 % by mass, with the total amount of the anode catalyst being 100% by mass.
前記酸素発生触媒が、イリジウム及びルテニウムの少なくとも1種を含む金属、合金並びにその酸化物よりなる群から選ばれる少なくとも1種である、請求項1に記載の触媒。 The catalyst according to claim 1, wherein the oxygen generating catalyst is at least one selected from the group consisting of metals, alloys, and oxides thereof containing at least one of iridium and ruthenium. 前記導電性チタン酸化物上に前記酸素発生触媒以外の貴金属材料が担持された貴金属材料担持導電性チタン酸化物と、前記酸素発生触媒を含むナノ粒子とを含有する、請求項1又は2に記載の触媒。 3. The method according to claim 1 or 2, comprising a noble metal material-supported conductive titanium oxide in which a noble metal material other than the oxygen generating catalyst is supported on the conductive titanium oxide, and nanoparticles containing the oxygen generating catalyst. catalyst. 前記酸素発生触媒以外の貴金属材料が、白金を含むナノ粒子を含有する、請求項1~3のいずれか1項に記載の触媒。 The catalyst according to any one of claims 1 to 3, wherein the noble metal material other than the oxygen generating catalyst contains nanoparticles containing platinum. 水素欠乏耐性燃料電池用アノード触媒であって、イリジウム及びルテニウムの少なくとも1種を含む金属及び合金よりなる群から選ばれる少なくとも1種と、導電性チタン酸化物とを含有し、
前記イリジウム及びルテニウムの少なくとも1種を含む金属及び合金の含有量が、前記アノード触媒の総量を100質量%として0.1~30質量%であり
記導電性チタン酸化物の含有量が、前記アノード触媒の総量を100質量%として60~90質量%であり、
する、触媒。
An anode catalyst for a hydrogen starvation resistant fuel cell, comprising at least one member selected from the group consisting of metals and alloys containing at least one member of iridium and ruthenium, and a conductive titanium oxide,
The content of the metal and alloy containing at least one of iridium and ruthenium is 0.1 to 30 % by mass, based on the total amount of the anode catalyst as 100% by mass ,
The content of the conductive titanium oxide is 60 to 90 % by mass based on the total amount of the anode catalyst as 100% by mass,
A catalyst.
前記導電性チタン酸化物上に酸素発生触媒以外の貴金属材料が担持された貴金属材料担持導電性チタン酸化物と、前記イリジウム及びルテニウムの少なくとも1種を含む金属並びに合金よりなる群から選ばれる少なくとも1種を含むナノ粒子とを含有し、
前記酸素発生触媒以外の貴金属材料は触媒金属であり、
前記イリジウム及びルテニウムの少なくとも1種を含む金属及び合金中の貴金属の量が、前記イリジウム及びルテニウムの少なくとも1種を含む金属及び合金と前記酸素発生触媒以外の貴金属材料中の貴金属との総量を100質量%として5~70質量%であり、
前記酸素発生触媒以外の貴金属材料の含有量が、前記アノード触媒の総量を100質量%として5~30質量%である、請求項5に記載の触媒。
At least one selected from the group consisting of a conductive titanium oxide supported on a noble metal material, in which a noble metal material other than an oxygen generating catalyst is supported on the conductive titanium oxide, and a metal and an alloy containing at least one of the iridium and ruthenium. nanoparticles containing seeds;
The noble metal material other than the oxygen generating catalyst is a catalyst metal,
The amount of noble metal in the metal and alloy containing at least one of iridium and ruthenium is such that the total amount of the metal and alloy containing at least one of iridium and ruthenium and the noble metal in the noble metal material other than the oxygen generating catalyst is 100%. 5 to 70% by mass as mass%,
The catalyst according to claim 5, wherein the content of the noble metal material other than the oxygen generating catalyst is 5 to 30 % by mass, based on the total amount of the anode catalyst as 100% by mass.
前記酸素発生触媒以外の貴金属材料が、白金を含むナノ粒子を含有する、請求項6に記載の触媒。 The catalyst according to claim 6, wherein the noble metal material other than the oxygen generating catalyst contains nanoparticles containing platinum. 前記導電性チタン酸化物の上に、前記イリジウム及びルテニウムの少なくとも1種を含む金属並びに合金よりなる群から選ばれる少なくとも1種のみからなるナノ粒子が担持されている、請求項5に記載の触媒。 The catalyst according to claim 5, wherein nanoparticles made of at least one selected from the group consisting of metals and alloys containing at least one of iridium and ruthenium are supported on the conductive titanium oxide. . 前記導電性チタン酸化物が、TinO2n-1(nは4~10の整数を示す)で表される化合物である、請求項1~8のいずれか1項に記載の触媒。 The catalyst according to any one of claims 1 to 8, wherein the conductive titanium oxide is a compound represented by Ti n O 2n-1 (n is an integer from 4 to 10). 請求項1~9のいずれか1項に記載の触媒を用いた燃料電池用アノード。 An anode for a fuel cell using the catalyst according to any one of claims 1 to 9. 請求項10に記載のアノードを負極として用いた、燃料電池。 A fuel cell using the anode according to claim 10 as a negative electrode.
JP2018218916A 2018-11-22 2018-11-22 Anode catalyst for hydrogen starvation tolerant fuel cells Active JP7340831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018218916A JP7340831B2 (en) 2018-11-22 2018-11-22 Anode catalyst for hydrogen starvation tolerant fuel cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018218916A JP7340831B2 (en) 2018-11-22 2018-11-22 Anode catalyst for hydrogen starvation tolerant fuel cells

Publications (2)

Publication Number Publication Date
JP2020087644A JP2020087644A (en) 2020-06-04
JP7340831B2 true JP7340831B2 (en) 2023-09-08

Family

ID=70908582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018218916A Active JP7340831B2 (en) 2018-11-22 2018-11-22 Anode catalyst for hydrogen starvation tolerant fuel cells

Country Status (1)

Country Link
JP (1) JP7340831B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112838226B (en) * 2021-01-22 2022-12-16 中汽创智科技有限公司 Anti-reversal catalyst, preparation method and application
CN112928285A (en) * 2021-03-10 2021-06-08 上海电气集团股份有限公司 Gas diffusion layer, preparation method thereof, fuel cell anode and fuel cell
CN115986141A (en) * 2023-01-17 2023-04-18 福州大学 Anode anti-poisoning catalyst and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003508877A (en) 1999-08-23 2003-03-04 バラード パワー システムズ インコーポレイティド Anode structure of fuel cell for obtaining resistance to voltage reversal
JP2008004453A (en) 2006-06-23 2008-01-10 Toyota Motor Corp Membrane electrode assembly for fuel cell
JP2014505330A (en) 2010-12-23 2014-02-27 ソルビコア・ゲーエムベーハー・ウント・コ・カーゲー Improved membrane electrode assembly for PEM fuel cells
JP2016514346A (en) 2013-02-21 2016-05-19 ソルビコア・ゲーエムベーハー・ウント・コ・カーゲー Barrier layer for preventing corrosion in electrochemical devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003508877A (en) 1999-08-23 2003-03-04 バラード パワー システムズ インコーポレイティド Anode structure of fuel cell for obtaining resistance to voltage reversal
JP2008004453A (en) 2006-06-23 2008-01-10 Toyota Motor Corp Membrane electrode assembly for fuel cell
JP2014505330A (en) 2010-12-23 2014-02-27 ソルビコア・ゲーエムベーハー・ウント・コ・カーゲー Improved membrane electrode assembly for PEM fuel cells
JP2016514346A (en) 2013-02-21 2016-05-19 ソルビコア・ゲーエムベーハー・ウント・コ・カーゲー Barrier layer for preventing corrosion in electrochemical devices

Also Published As

Publication number Publication date
JP2020087644A (en) 2020-06-04

Similar Documents

Publication Publication Date Title
JP4971898B2 (en) Supported catalyst for fuel cell and method for producing the same, electrode for fuel cell including the supported catalyst, membrane electrode assembly including the electrode, and fuel cell including the membrane electrode assembly
EP3084867B1 (en) Catalyst layer
JP6672272B2 (en) catalyst
JP7190462B2 (en) Membrane electrode assembly
EP3167502B1 (en) Cathode design for electrochemical cells
US20060257719A1 (en) Catalyst for fuel cell electrode
US11264624B2 (en) Electrocatalyst
JP2006260909A (en) Membrane electrode assembly and polymer electrolyte fuel cell using the same
KR20100069492A (en) Electrode catalyst for fuel cell and fuel cell including electrode comprising the electrode catalyst
JP7340831B2 (en) Anode catalyst for hydrogen starvation tolerant fuel cells
WO2012057236A1 (en) Anode-side catalyst composition for fuel cells, and membrane electrode assembly (mea) for solid polymer fuel cells which comprises same
WO2020059504A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
US9543591B2 (en) Non-carbon mixed-metal oxide electrocatalysts
WO2020059503A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
KR20060104821A (en) Catalyst for fuel cell, preparation method thereof, and fuel cell system comprising the same
WO2020059502A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
US9966609B2 (en) Gas diffusion electrode and process for making same
KR102544711B1 (en) Electrode for fuel cell using Two types of carbon with different shapes and membrane electrode assembly including same
JP7303805B2 (en) catalyst
Ye Reversal-tolerant catalyst layers
WO2020059501A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
KR20230084649A (en) Electrolyte membrane for fuel cell and fuel cell comprising same
AU2022314263A1 (en) Oxygen evolution reaction catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220531

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230822

R150 Certificate of patent or registration of utility model

Ref document number: 7340831

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150