JP7339918B2 - Armature core for axial gap type rotating electric machine, method for manufacturing armature core for axial gap type rotating electric machine - Google Patents

Armature core for axial gap type rotating electric machine, method for manufacturing armature core for axial gap type rotating electric machine Download PDF

Info

Publication number
JP7339918B2
JP7339918B2 JP2020067493A JP2020067493A JP7339918B2 JP 7339918 B2 JP7339918 B2 JP 7339918B2 JP 2020067493 A JP2020067493 A JP 2020067493A JP 2020067493 A JP2020067493 A JP 2020067493A JP 7339918 B2 JP7339918 B2 JP 7339918B2
Authority
JP
Japan
Prior art keywords
armature
axial direction
tip
disk body
hereinafter referred
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020067493A
Other languages
Japanese (ja)
Other versions
JP2021164385A (en
Inventor
直輝 堀江
功隆 藤井
俊輔 竹口
邦浩 井口
孝幸 小林
洋敬 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Piston Ring Co Ltd
Yamaha Motor Co Ltd
Original Assignee
Nippon Piston Ring Co Ltd
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Piston Ring Co Ltd, Yamaha Motor Co Ltd filed Critical Nippon Piston Ring Co Ltd
Priority to JP2020067493A priority Critical patent/JP7339918B2/en
Publication of JP2021164385A publication Critical patent/JP2021164385A/en
Application granted granted Critical
Publication of JP7339918B2 publication Critical patent/JP7339918B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)

Description

本発明は、電動機や発電機となるアキシャルギャップ型回転電機に用いられる電機子等に関する。 The present invention relates to an armature and the like used in an axial gap type rotary electric machine that serves as an electric motor and a generator.

発電機や電動機となるアキシャルギャップ型回転電機は、ロータとステータが、回転軸の軸方向に対向状態で配置される。ロータとステータの一方は、巻き線(コイル)を有する電機子となり、この電機子に電流を流すことで回転磁界を発生する。ロータとステータの他方は、電機子と対向する対向子(界磁子)となり、例えば永久磁石を有して構成されて、電機子の回転磁界との相互作用によって回転力(トルク)を生じさせる。なお、アキシャルギャップ型回転電機の場合、一般的に、ステータ側が電機子となる場合が多い。 2. Description of the Related Art In an axial gap type rotary electric machine, which serves as a generator or an electric motor, a rotor and a stator are arranged facing each other in the axial direction of a rotating shaft. One of the rotor and stator serves as an armature having windings (coils), and a rotating magnetic field is generated by applying a current to the armature. The other of the rotor and stator serves as a counter element (field element) that faces the armature, and is configured with, for example, a permanent magnet, and generates rotational force (torque) through interaction with the rotating magnetic field of the armature. . In the case of an axial gap type rotary electric machine, the stator side often serves as the armature.

電機子は、インサート成形によって、電機子コアと巻き線が樹脂で一体化される。電機子コア(鉄心)は、円盤状(円盤状にはリング状の概念を含む)に構成される円盤体(ヨーク)と、この円盤体に対して突出するように配置される突出体(ティース)を備える。突出体は、円盤体に対して周方向に複数配置される。巻き線は、コアの各突出体の周囲に巻き付けられる。 In the armature, the armature core and the windings are integrated with resin by insert molding. The armature core (iron core) consists of a disk body (yoke) configured in a disk shape (the disk shape includes the concept of a ring) and protruding bodies (teeth) arranged to protrude from the disk body (yoke) ). A plurality of protrusions are arranged in the circumferential direction with respect to the disc body. A winding is wrapped around each projection of the core.

電機子コアは、主に、軟磁性鋼板(電磁鋼板)を積層して構成される。この軟磁性鋼板は、板の面方向に磁路を形成しやすい特性を有する。巻き線によって生成する磁界を、対向子に効果的に伝えるために、円盤体(ヨーク)は、電機子の回転軸に対して直交方向(径方向及び周方向)に広がる円盤状の軟磁性鋼板を、電機子の軸方向に積層して構成される。突出体は、電機子の軸方向及び周方向に広がる矩形の軟磁性鋼板を、電機子の径方向に積層することでブロック形状に構成される。 The armature core is mainly configured by laminating soft magnetic steel plates (electromagnetic steel plates). This soft magnetic steel sheet has the property of easily forming a magnetic path in the surface direction of the sheet. In order to effectively transmit the magnetic field generated by the windings to the counter element, the disk body (yoke) is a disk-shaped soft magnetic steel plate that spreads in the direction perpendicular to the rotation axis of the armature (radial direction and circumferential direction). are stacked in the axial direction of the armature. The projecting body is configured in a block shape by stacking rectangular soft magnetic steel plates extending in the axial direction and the circumferential direction of the armature in the radial direction of the armature.

以上の通り、アキシャルギャップ型回転電機の電機子コアを軟磁性鋼板によって製造しようとすると、複雑な積層構造となり、製造コストが増大する。そこで、電機子コアを圧粉鉄心にすることが行われている。具体的には、磁性を有する金属粉に絶縁被膜を形成して単磁区化しておき、この金属粉に潤滑材等を混合して金型を用いて加圧(プレス)成形する。この成形品を焼鈍することで、圧粉鉄心の電機子コアが製造される。 As described above, if an attempt is made to manufacture the armature core of the axial gap type rotating electrical machine from soft magnetic steel sheets, the structure will be complicated and the manufacturing cost will increase. Therefore, the powder core is used as the armature core. Specifically, an insulating film is formed on a magnetic metal powder to form a single magnetic domain, and a lubricating agent or the like is mixed with the metal powder and press-molded using a mold. By annealing this molded product, an armature core of a dust core is manufactured.

電機子コア全体を、圧粉鉄心によって一体成形しようとすると、そのサイズが大きいために成形荷重が大きくなり、プレス機械の制約を受けやすい。そこで、電機子コアを周方向に分割した分割コアとし、この分割コアを圧粉鉄心で成形する試みがなされている(特許文献1参照)。 If the entire armature core is integrally formed with a dust core, the large size of the powder core results in a large forming load, which is likely to be restricted by the press machine. Therefore, an attempt has been made to divide the armature core into split cores in the circumferential direction and form the split cores with powder cores (see Patent Document 1).

特開2017-229191号公報JP 2017-229191 A

複数の分割コアを組み合わせて一体化した電機子コアを構成すると、全体の剛性が低下する。特に、アキシャルギャップ型回転電機の電機子コアには、軸方向の反力(スラスト反力)が作用するので、電機子コアが変形しやすい。電機子コアが変形すると、対向子と干渉する可能性があることから、エアギャップを大きく確保しなければならず、回転電機が大型化してしまう。 If an armature core is formed by combining a plurality of split cores into an integrated unit, the rigidity of the entire armature is lowered. In particular, since an axial reaction force (thrust reaction force) acts on the armature core of an axial gap type rotating electric machine, the armature core is easily deformed. If the armature core is deformed, it may interfere with the counterpart, so a large air gap must be ensured, resulting in an increase in the size of the rotating electric machine.

本発明は上記問題点に鑑みてなされたものであり、剛性と製造の容易性を合理的に両立させることが可能なアキシャルギャップ型回転電機用の電機子コア等を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide an armature core or the like for an axial gap type rotary electric machine, which can reasonably achieve both rigidity and ease of manufacture. .

上記目的を達成する本発明は、アキシャルギャップ型の回転電機に用いられる電機子のコアであって、電機子の回転軸方向(以下、電機子軸方向)に対して、径方向(以下、電機子径方向)及び周方向(以下、電機子周方向)に延在する円盤体と、前記円盤体と組み合わされて、該円盤体の表面から電機子軸方向に突出するように配置される複数の突出体と、を備えてなり、前記突出体は、鉄粉を圧縮形成することで得られる圧粉鉄心であることを特徴とする、アキシャルギャップ型回転電機用の電機子コア。 The present invention, which achieves the above objects, provides an armature core used in an axial gap type rotating electrical machine, wherein the radial direction (hereinafter referred to as the a disk extending in the armature radial direction) and in the circumferential direction (hereinafter referred to as the armature circumferential direction); and a protruding body, wherein the protruding body is a dust core obtained by compressing iron powder.

上記電機子コアに関連して、前記円盤体は、円盤状の軟磁性鋼板を電機子軸方向に積層した積層鋼板であることを特徴とする。 In relation to the armature core, the disk body is a laminated steel plate obtained by laminating disk-shaped soft magnetic steel plates in the armature axial direction.

上記電機子コアに関連して、前記突出体は、電機子軸方向から視た場合に略台形形状となることを特徴とする。 In relation to the armature core, the protruding body is characterized in that it has a substantially trapezoidal shape when viewed from the armature axial direction.

上記電機子コアに関連して、前記突出体は、電機子軸方向の先端側に向く先端面と、電機子軸方向の基端側に向く基端面と、前記先端面と前記基端面をつなぐ周壁と、を有することを特徴とする。 In relation to the armature core, the protruding body includes a distal end surface facing the distal end side in the armature axial direction, a proximal end surface facing the proximal end side in the armature axial direction, and connecting the distal end surface and the proximal end surface. and a peripheral wall.

上記電機子コアに関連して、前記周壁は、電機子径方向内側に向く内壁面と、電機子径方向外側に向く外壁面と、電機子周方向に向く一対の側壁面と、を有することを特徴とする。 In relation to the armature core, the peripheral wall has an inner wall surface facing inward in the armature radial direction, an outer wall surface facing outward in the armature radial direction, and a pair of side wall surfaces facing in the armature circumferential direction. characterized by

上記電機子コアに関連して、前記突出体における前記先端面の周縁には、該先端面よりも基端側に退避する先端側退避面が形成されることを特徴とする。 In relation to the armature core, the projecting body is characterized in that a tip-side retraction surface retracting toward the base end side of the tip surface is formed on the periphery of the tip surface of the projecting body.

上記電機子コアに関連して、前記突出体における前記基端面の周縁には、該基端面よりも先端側に退避する基端側退避面が形成されることを特徴とする。 In relation to the armature core, the projecting body is characterized in that a proximal side retracting surface retracting to the distal side from the proximal end surface is formed on the peripheral edge of the proximal end surface of the protruding body.

上記電機子コアに関連して、前記突出体における前記周壁には、電機子軸方向に係合可能な係合段部が形成されることを特徴とする。 In relation to the armature core, the peripheral wall of the protruding body is formed with an engagement stepped portion that can be engaged in the armature axial direction.

上記電機子コアに関連して、前記突出体における前記周壁には、電機子軸方向に延在する周壁側溝部又は周壁側凸部が形成されることを特徴とする。 In relation to the armature core, the peripheral wall of the projecting body is formed with a peripheral wall-side groove portion or a peripheral wall-side protrusion extending in the armature axial direction.

上記電機子コアに関連して、前記突出体における前記基端面には、電機子軸方向に突出する基端側凸部が形成されることを特徴とする。 In relation to the armature core, the base end surface of the protruding body is formed with a base-end-side convex portion that protrudes in the armature axial direction.

上記電機子コアに関連して、前記基端側凸部は、電機子径方向に沿って複数形成されることを特徴とする。 In relation to the armature core, a plurality of the base-end-side protrusions are formed along the radial direction of the armature.

上記電機子コアに関連して、前記周壁は、電機子軸方向に向かうに連れて、電機子径方向及び/又は電機子周方向に変位する傾斜面を含むことを特徴とする。 In relation to the armature core, the peripheral wall includes an inclined surface displaced in the armature radial direction and/or the armature circumferential direction along the armature axial direction.

上記電機子コアに関連して、前記突出体は、電機子軸方向に貫通する貫通孔が形成されることを特徴とする。 In relation to the armature core, the protruding body is characterized by having a through hole penetrating in the armature axial direction.

上記電機子コアに関連して、前記円盤体は、前記突出体の基端側の少なくとも一部収容する収容部を有することを特徴とする。 In relation to the armature core, the disk body has a housing portion that houses at least a part of the base end side of the projecting body.

上記目的を達成する本発明は、上記電機子コアと、前記突出体を取り囲むように配置される巻き線部と、前記電機子コア及び前記巻き線部をまとめて覆う樹脂部と、を備えることを特徴とする、アキシャルギャップ型回転電機用の電機子である。 The present invention for achieving the above objects includes the above armature core, a winding portion arranged to surround the projecting body, and a resin portion collectively covering the armature core and the winding portion. An armature for an axial gap type rotary electric machine characterized by

上記目的を達成する本発明は、上記電機子と、前記電機子に対して電機子軸方向に対向して配置される対向子と、を備えることを特徴とするアキシャルギャップ型回転電機である。 The present invention for achieving the above object is an axial gap type rotating electric machine comprising the above-described armature and a counterpiece arranged to face the armature in the armature axial direction.

上記目的を達成する本発明は、上記電機子のインサート成形用金型であって、キャビティーには、複数の前記突出体の先端面が同一位置となるように保持する基準面が形成されることを特徴とする電機子のインサート成形用金型である。 The present invention, which achieves the above object, is an insert molding mold for the armature, wherein the cavity is formed with a reference surface for holding the tip surfaces of the plurality of protrusions so as to be in the same position. A metal mold for insert molding of an armature characterized by:

上記インサート成形用金型に関連して、前記キャビティーには、前記円盤体を、前記突出体の基端近傍に保持する円盤体保持部が形成されることを特徴とする。 In relation to the above-described insert molding die, the cavity is characterized by forming a disk body holding portion that holds the disk body in the vicinity of the base end of the protrusion.

本発明によれば、剛性と製造の容易性を合理的に両立させることが可能なアキシャルギャップ型回転電機用の電機子コア等を得ることが出来る。 According to the present invention, it is possible to obtain an armature core or the like for an axial gap type rotary electric machine that can rationally achieve both rigidity and ease of manufacture.

本発明の実施の形態における電機子の電機子コアの(A)平面図であり、(B)正面図である。It is (A) a top view of the armature core of the armature in embodiment of this invention, (B) is a front view. 同電機子コアの円盤体の平面図である。It is a top view of the disk body of the same armature core. (A)は同電機子コアの突出体の平面図であり、(B)は同突出体単体の六面図である。(A) is a plan view of a protruding body of the armature core, and (B) is a six-sided view of the single protruding body. (A)は同突出体の平面図であり、(B)及び(C)は同突出体をプレス成形する状態を説明する断面図及び部分拡大図である。(A) is a plan view of the same protrusion, and (B) and (C) are a cross-sectional view and a partially enlarged view for explaining a state of press-molding the same protrusion. (A)は、同電機子の平面図であり、(B)は、同電機子の正面図であり、(C)は、同電機子をインサート成形する際の金型の状態を示す(A)のC-C矢視断面図である。(A) is a plan view of the same armature, (B) is a front view of the same armature, and (C) shows the state of the mold when insert molding the same armature (A ) is a cross-sectional view taken along line CC. (A)は同電機子の一部を拡大して示す平面図であり、(B)は(A)のB-B矢視断面図であり、(C)は、(A)のC-C矢視断面図である。(A) is a plan view showing an enlarged part of the same armature, (B) is a cross-sectional view taken along line BB of (A), and (C) is CC of (A). It is an arrow sectional view. (A)は、本実施形態の変形例となる電機子の突出体単体の六面図であり、(B)ないし(E)は同電機子の一部を拡大して径方向外周側から視た断面図である。(A) is a hexahedral view of a single projecting body of an armature that is a modification of the present embodiment, and (B) to (E) are partially enlarged views of the same armature as viewed from the radially outer peripheral side. is a cross-sectional view. (A)は、本実施形態の変形例となる電機子の突出体単体の六面図であり、(B)および(C)は同突出体を円盤体に係合させる工程を示す部分拡大した断面図及び平面図であり、(D)は同電機子の一部を拡大して周方向から視た断面図である。(A) is a six-sided view of a single protruding body of the armature, which is a modified example of the present embodiment, and (B) and (C) are partially enlarged views showing a process of engaging the same protruding body with a disk body. It is sectional drawing and a top view, (D) is sectional drawing which expanded a part of the same armature, and was seen from the circumferential direction. (A)は、本実施形態の変形例となる電機子の突出体単体の六面図であり、(B)は同電機子の一部を拡大して径方向外周側から視た断面図であり、(C)は同突出体単体の正面図及び側面図である。(A) is a six-sided view of a single projecting body of an armature that is a modification of the present embodiment, and (B) is a cross-sectional view of a part of the same armature that is enlarged and viewed from the radially outer peripheral side. (C) is a front view and a side view of the single protrusion. (A)は、本実施形態の変形例となる電機子の突出体単体の六面図であり、(B)および(C)は同電機子の一部を拡大して周方向側面側から視た断面図である。(A) is a six-sided view of a single protruding body of an armature that is a modification of the present embodiment, and (B) and (C) are partially enlarged views of the same armature as viewed from the side in the circumferential direction. is a cross-sectional view. (A)は、本実施形態の変形例となる電機子の突出体単体の六面図であり、(B)は、(A)のB-B矢視方向から同電機子の一部を拡大して径方向外周側から視た断面図であり、(C)は(A)及び(B)のC-C矢視断面図であり、(D)は(A)及び(B)のD-D矢視断面図である。(A) is a six-sided view of a single projecting body of an armature that is a modified example of the present embodiment, and (B) is an enlarged view of a part of the same armature from the direction of arrows BB in (A). (C) is a cross-sectional view of (A) and (B) taken along line CC, and (D) is a cross-sectional view of (A) and (B) taken along line D- It is a D arrow sectional view. (A)は、本実施形態の変形例となる電機子の突出体単体の六面図であり、(B)は同電機子の一部を拡大して周方向側面側から視た断面図である。(A) is a six-sided view of a single protruding body of an armature that is a modification of the present embodiment, and (B) is a cross-sectional view of a part of the same armature that is enlarged and viewed from the side in the circumferential direction. be. (A)は、本実施形態の変形例となる電機子の突出体単体の六面図であり、(B)は同電機子の一部を拡大して径方向外周側から視た断面図である。(A) is a six-sided view of a single projecting body of an armature that is a modification of the present embodiment, and (B) is a cross-sectional view of a part of the same armature that is enlarged and viewed from the radially outer peripheral side. be. (A)は、本実施形態の変形例となる電機子の突出体単体の六面図であり、(B)は同電機子の一部を拡大して径方向外周側から視た断面図である。(A) is a six-sided view of a single projecting body of an armature that is a modification of the present embodiment, and (B) is a cross-sectional view of a part of the same armature that is enlarged and viewed from the radially outer peripheral side. be. (A)は、本実施形態の変形例となる電機子コアの円盤体の平面図であり、(B)は(A)のB-B矢視断面図であり、(C)は同円盤体を用いた電機子コアの断面図である。(A) is a plan view of a disk body of an armature core that is a modification of the present embodiment, (B) is a cross-sectional view of (A) taken along line BB, and (C) is the same disk body. is a cross-sectional view of an armature core using .

以下、本発明の実施の形態について添付図面を参照して説明する。添付図面は発明を実施する形態の一例であって、図中、同一の符号を付した部分は同一物を表わす。また、各図における各部の形状や寸法比は、必ずしも正確なものではない。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. The attached drawings are an example of the embodiment of the invention, and in the drawings, the same parts are denoted by the same reference numerals. Also, the shape and dimensional ratio of each part in each drawing are not necessarily accurate.

図1に、本実施形態の電機子コア1の全体構造を示す。電機子コア1は、アキシャルギャップ型の回転電機(発電機又は電動機)の電機子に用いられるものであり、ここではステータとなる場合を例示する。電機子コア1は、円盤体(ヨーク)10と突出体(ティース)30を有する。円盤体10は、電機子の軸方向(以下、電機子軸方向Z)に対して直交するプレート形状であって、径方向(以下、電機子径方向K)及び周方向(以下、電機子周方向S)に延在する。なお、本実施形態の円盤体10は、リング形状となっており、軸心側に円形開口12が形成される。この円形開口12内に、回転電機の回転軸が収容される。 FIG. 1 shows the overall structure of an armature core 1 of this embodiment. The armature core 1 is used in an armature of an axial gap type rotary electric machine (generator or motor), and here, a stator is exemplified. The armature core 1 has a disk body (yoke) 10 and protrusions (teeth) 30 . The disk body 10 has a plate shape perpendicular to the axial direction of the armature (hereinafter referred to as the armature axial direction Z), and extends in the radial direction (hereinafter referred to as the armature radial direction K) and the circumferential direction (hereinafter referred to as the armature circumferential direction). extending in direction S). The disc body 10 of this embodiment has a ring shape, and a circular opening 12 is formed on the axial center side. The rotary shaft of the rotary electric machine is accommodated in this circular opening 12 .

円盤体10は、平面視(軸方向視)する場合に同一外形となる円盤状の軟磁性鋼板を、電機子軸方向Zに積層した積層鋼板となる。円盤体10は、この積層鋼板によってスラスト力に対して高い剛性が確保される。 The disc body 10 is a laminated steel plate in which disc-shaped soft magnetic steel plates having the same outer shape when viewed from above (viewed in the axial direction) are laminated in the armature axial direction Z. As shown in FIG. The disc body 10 is secured with high rigidity against thrust force by the laminated steel plates.

同一形状となる複数(ここでは12個)の突出体30は、この円盤体10に組み合わされる。図1(B)に示すように、突出体30は、円盤体10の表面10Aから、電機子軸方向Zに突出するように配置される。複数の突出体30は、周方向に等間隔(ここでは15度間隔)で配置される。 A plurality (here, 12 pieces) of protrusions 30 having the same shape are combined with this disc body 10 . As shown in FIG. 1B, the protruding body 30 is arranged to protrude in the armature axial direction Z from the surface 10A of the disk body 10 . The plurality of protrusions 30 are arranged at equal intervals (here, at intervals of 15 degrees) in the circumferential direction.

突出体30は、鉄粉を圧縮形成することで得られる圧粉鉄心となる。具体的に、磁性を有する金属粒子(粉末)の表面を絶縁被膜した原材料を用い、この粉末を金型圧縮工程(プレス工程)によって成形し、熱処理(焼鈍)を行うことで製作される。なお、原材料の一部に樹脂を含ませることもできる。 The projecting body 30 is a dust core obtained by compressing iron powder. Specifically, it is manufactured by using a raw material in which the surface of magnetic metal particles (powder) is coated with an insulating coating, molding this powder by a mold compression process (pressing process), and performing heat treatment (annealing). In addition, resin can be included in a part of raw materials.

図2に示すように、円盤体10は、突出体30を収容するための収容部14を、周方向に一定の間隔で複数備えている。本実施形態において、収容部14は軸方向に貫通する開口となっており、突出体30の外形と近似形状となる。円盤体10は、この収容部14を取り囲むようにして、円弧又は部分円弧となる内側リング部20と、円弧又は部分円弧となる外側リング部21と、径方向延在部22を有する。内側リング部20は、収容部14の径方向内側縁を形成する環状部材となり、外側リング部21は、収容部14の径方向外側縁を形成する環状部材となる。径方向延在部22は、内側リング部20と外側リング部21を繋ぐように径方向に延びる帯状部材となり、収容部14の両側縁を形成する。 As shown in FIG. 2, the disk body 10 has a plurality of housing portions 14 for housing the projecting bodies 30 at regular intervals in the circumferential direction. In the present embodiment, the accommodating portion 14 is an opening penetrating in the axial direction, and has a shape similar to the outer shape of the projecting body 30 . The disk body 10 has an inner ring portion 20 that is a circular arc or a partial circular arc, an outer ring portion 21 that is a circular arc or a partial circular arc, and a radially extending portion 22 so as to surround the housing portion 14 . The inner ring portion 20 serves as an annular member forming the radially inner edge of the housing portion 14 , and the outer ring portion 21 serves as an annular member forming the radially outer edge of the housing portion 14 . The radially extending portion 22 is a belt-like member extending radially to connect the inner ring portion 20 and the outer ring portion 21 and forms both side edges of the accommodating portion 14 .

外側リング部21には、隔離スリット24が形成される。この隔離スリット24は、円盤体10の内側縁と収容部14を貫く空隙となる。隔離用スリット24は、収容部14の周囲(内側リング部20、外側リング部21、径方向延在部22)を周回する渦電流の発生を抑制する役割を担う。なお、隔離スリット24は、収容部14の周縁に形成されていればその場所は問わない。例えば、径方向延在部22に形成されても良い。 An isolation slit 24 is formed in the outer ring portion 21 . The isolation slit 24 serves as a gap penetrating the inner edge of the disc body 10 and the housing portion 14 . The isolation slits 24 serve to suppress the generation of eddy currents circulating around the housing portion 14 (the inner ring portion 20, the outer ring portion 21, and the radially extending portion 22). It should be noted that the separation slit 24 can be placed anywhere as long as it is formed along the periphery of the housing portion 14 . For example, it may be formed in the radially extending portion 22 .

更に隔離スリット24には、後述するインサート成形時に樹脂を流し込むことで、突出体30を樹脂で固定する役割も担う。 Furthermore, the isolation slits 24 also play a role of fixing the projecting bodies 30 with resin by pouring resin into the isolation slits 24 during insert molding, which will be described later.

図3(A)に、12個の突出体30を示す。各突出体30は、図3(B)に示すように、電機子軸方向Z(図1B参照)から視た場合に、略台形形状となる。突出体30を台形形状とすることによって、円盤体10の限られたスペース内に、できる限り緻密に、多くの突出体30を配置できる。なお、本実施形態では24個の突出体30を配置する場合を例示するが、本発明はこれに限定されない。例えば、6個以上の突出体30を配置することが好ましく、好ましくは12個以上配置する。さらに望ましくは、18個以上配置する。 Twelve protrusions 30 are shown in FIG. As shown in FIG. 3B, each protrusion 30 has a substantially trapezoidal shape when viewed from the armature axial direction Z (see FIG. 1B). By forming the protrusions 30 into a trapezoidal shape, many protrusions 30 can be arranged as densely as possible within the limited space of the disc body 10 . In addition, although the case where 24 protrusions 30 are arranged is illustrated in this embodiment, the present invention is not limited to this. For example, it is preferable to arrange 6 or more projections 30, preferably 12 or more. More desirably, 18 or more are arranged.

各突出体30を略台形形状とすることで、特に内周側において、突出体30に巻き付けられる巻き線の巻き付け角を緩くすることができる。 By forming each projecting body 30 into a substantially trapezoidal shape, the winding angle of the winding wound around the projecting body 30 can be made loose, particularly on the inner peripheral side.

図3(B)に示すように、突出体30は、電機子軸方向Zの先端側に向く先端面32と、電機子軸方向Zの基端側に向く基端面34と、先端面32と基端面34をつなぐ周壁36を有する。この周壁36は、電機子径方向Kの内側に向く内壁面36Aと、電機子径方向Kの外側に向く外壁面36Bと、電機子周方向Sに向く一対の側壁面36Cを有する。この結果、突出体30は六面体構造となる。内壁面36Aと一対の側壁面36Cの境界(角部)は、平面視部分円弧状の湾曲面となる。同様に、外壁面36Bと一対の側壁面36Cの境界(角部)も、平面視部分円弧状の湾曲面となっている。湾曲面とすることで、巻き線に傷が付くことを回避する。これらの湾曲面の曲率半径は0.5mm以上が好ましく、さらに好ましくは1.0mm以上に設定する。 As shown in FIG. 3B, the projecting body 30 has a tip surface 32 facing the tip side in the armature axial direction Z, a base end surface 34 facing the base end side in the armature axial direction Z, and a tip face 32. It has a peripheral wall 36 that connects the proximal face 34 . The peripheral wall 36 has an inner wall surface 36A facing inward in the armature radial direction K, an outer wall surface 36B facing outward in the armature radial direction K, and a pair of side wall surfaces 36C facing in the armature circumferential direction S. As a result, the protrusion 30 has a hexahedral structure. Boundaries (corners) between the inner wall surface 36A and the pair of side wall surfaces 36C are curved surfaces that are partially arcuate in plan view. Similarly, the boundaries (corners) between the outer wall surface 36B and the pair of side wall surfaces 36C are curved surfaces that are partially arcuate in plan view. By forming a curved surface, it is possible to avoid damage to the winding wire. The radius of curvature of these curved surfaces is preferably 0.5 mm or more, more preferably 1.0 mm or more.

内壁面36Aは、電機子径方向Kの外側に凹む湾曲状の平面とすることができ、外壁面36Bは、電機子径方向Kの外側に凸となる湾曲状の平面とすることができる。また、内壁面36Aの最大の幅W1は、外壁面36Bの最大の幅W2よりも小さく設定される。一方、幅W1はできる限り大きいことが望ましく、幅W2の1/10以上に設定される。内壁面36Aの幅W1が大きいほど、これに巻き付けられる巻き線の巻き付け角を緩くすることができるからである。 The inner wall surface 36A can be a curved plane that is recessed outward in the armature radial direction K, and the outer wall surface 36B can be a curved plane that is convex outward in the armature radial direction K. Also, the maximum width W1 of the inner wall surface 36A is set smaller than the maximum width W2 of the outer wall surface 36B. On the other hand, the width W1 is desirably as large as possible, and is set to 1/10 or more of the width W2. This is because the larger the width W1 of the inner wall surface 36A, the looser the winding angle of the winding wound thereon.

図4(A)に拡大して示すように、突出体30における先端面32の周縁には、この先端面32よりも基端側に退避する先端側退避面32Aが形成される。図4(B)に示すように、突出体30をプレス成形する場合、突出体30の周壁36を成形するダイ300と、先端面32(又は基端面34)を形成するパンチ310を利用する。なお、図4(B)の右側拡大図はパンチ310(上パンチ)が、突出体30(鉄粉)と接触する直前を示す模式図である。ダイ300とパンチ310の内部空間となるキャビティーに鉄粉を充填した後、図4(C)に示すように、パンチ310を下降させて鉄粉を圧縮する。その際、右側拡大図に示すように、パンチ310とダイ300の隙間によって軸方向に突出するバリ38が形成される。本実施形態では、バリ38の最大突出量(突出想定量)L1よりも大きい距離となるL2で、先端側退避面32Aを先端面32から基端側に退避させている。結果、バリ38の先端が、先端面32よりも突出することがない。なお、バリ38の突出量は、例えば、0.1mm~0.2mmとなるので、先端側退避面32Aの退避距離は0.2mm以上であることが好ましく、より好ましくは0.5mm以上に設定する。ちなみにバリ38が、先端面32よりも電機子軸方向Zに突出すると、後述するインサート成形時において突出体30の位置決め精度が悪化したり、対向子(例えばロータ)と接触して不具合を起こしたりする可能性がある。 As shown in an enlarged view in FIG. 4A, a tip side retraction surface 32A retracting to the base end side of the tip surface 32 is formed on the peripheral edge of the tip surface 32 of the projecting body 30. As shown in FIG. As shown in FIG. 4B, when press-molding the projecting body 30, a die 300 for forming the peripheral wall 36 of the projecting body 30 and a punch 310 for forming the distal end surface 32 (or the proximal end surface 34) are used. The right side enlarged view of FIG. 4(B) is a schematic diagram showing the punch 310 (upper punch) immediately before coming into contact with the projecting body 30 (iron powder). After the iron powder is filled into the cavity, which is the internal space of the die 300 and the punch 310, the punch 310 is lowered to compress the iron powder as shown in FIG. 4(C). At that time, as shown in the right enlarged view, a burr 38 protruding in the axial direction is formed by the gap between the punch 310 and the die 300 . In the present embodiment, the tip-side withdrawal surface 32A is retracted from the tip surface 32 toward the base end by a distance L2 that is larger than the maximum protrusion amount (expected protrusion amount) L1 of the burr 38 . As a result, the tip of the burr 38 does not protrude beyond the tip surface 32 . Since the amount of protrusion of the burr 38 is, for example, 0.1 mm to 0.2 mm, the retraction distance of the tip side retraction surface 32A is preferably 0.2 mm or more, more preferably 0.5 mm or more. do. By the way, if the burr 38 protrudes in the armature axial direction Z beyond the tip surface 32, the positioning accuracy of the protruding body 30 deteriorates during insert molding, which will be described later, or contact with the counterpart (for example, the rotor) causes a problem. there's a possibility that.

なお、上記先端側退避面32Aと同様の趣旨の下、図4(B)および(C)の左側拡大図に示すように、突出体30における基端面34の周縁にも、この基端面34よりも先端側に退避する基端側退避面34Aが形成されることが好ましい。 For the same purpose as the distal side withdrawal surface 32A, as shown in the enlarged left side views of FIGS. It is preferable that a base-side retraction surface 34A that retracts toward the distal end side is formed.

図5(A)及び(B)に、この電機子コア1と巻き線50を、樹脂60によって組み合わせた状態でインサート成形された電機子100を示す。巻き線50は、突出体30に巻き付けられる。樹脂60は、巻き線50や突出体30を包み込むことで、全体を一体化する。説明の便宜上、樹脂60の外形を点線で示している。図5(A)に示すように、電機子コア1の円盤体10において、外側リング部21(図2参照)の表面10Aの一部は、樹脂60によって覆われずに露出している。換言すると、樹脂60には逃げ部60Aが形成されており、これにより円盤体10の表面10Aが部分的に露出している。これは、インサート成形の際に、円盤体10をキャビティー内に位置決めする際に利用された部分となる。 FIGS. 5A and 5B show an armature 100 insert-molded in a state in which the armature core 1 and the winding 50 are combined with a resin 60. FIG. A winding 50 is wound around the protrusion 30 . The resin 60 wraps the winding wire 50 and the projecting body 30 to integrate the whole. For convenience of explanation, the outline of the resin 60 is indicated by dotted lines. As shown in FIG. 5A, in the disk body 10 of the armature core 1, a portion of the surface 10A of the outer ring portion 21 (see FIG. 2) is exposed without being covered with the resin 60. As shown in FIG. In other words, the resin 60 has an escape portion 60A, which partially exposes the surface 10A of the disc body 10. As shown in FIG. This is a portion used for positioning the disc body 10 in the cavity during insert molding.

図5(C)に、電機子100のインサート成形用の金型200を示す。金型200のキャビティーの鉛直方向の底面には、複数の突出体30の先端面32を同一位置に保持する基準面210が形成される。この基準面210によって、複数の突出体30の先端面32の電機子軸方向Z位置を、互いに高精度に一致させることができる。さらにキャビティー内には、基準面210によりも鉛直方向の上方側において、円盤体10を鉛直下側から保持する円盤体保持部220が形成される。この円盤体保持部220によって、基準面210を基準とした円盤体10の電機子軸方向Zの位置及び電機子軸方向Zに対する直交度を高精度に決定する。円盤体保持部220と円盤体10の接触部分には樹脂が流れ込まないため、成形後における樹脂60の逃げ部60Aとなる。なお、キャビティーの天井面230と突出体30の基端面34の間、及び、キャビティーの天井面230と円盤体10の裏面10Bの間には隙間が形成される。結果、この隙間に樹脂60が流れ込むので、図5(B)に示すように、インサート成形後の突出体30の基端面34及び円盤体10の裏面10Bの全部または一部は、樹脂60によって覆われる。結果、円盤体10や突出体30に、電機子軸方向Zにおける基端側に向かうスラスト力が作用しても、樹脂60がそのスラスト力を受け止めることができる。 FIG. 5(C) shows a mold 200 for insert molding the armature 100 . A reference surface 210 is formed on the bottom surface in the vertical direction of the cavity of the mold 200 to hold the tip surfaces 32 of the plurality of protrusions 30 at the same position. With this reference surface 210, the Z positions of the tip surfaces 32 of the plurality of projecting bodies 30 in the armature axis direction can be matched with each other with high accuracy. Furthermore, in the cavity, a disk body holding portion 220 is formed above the reference plane 210 in the vertical direction and holds the disk body 10 from the vertically lower side. The disk body holding portion 220 determines the position of the disk body 10 in the armature axial direction Z with respect to the reference surface 210 and the orthogonality to the armature axial direction Z with high accuracy. Since the resin does not flow into the contact portion between the disc body holding portion 220 and the disc body 10, the portion becomes an escape portion 60A for the resin 60 after molding. A gap is formed between the ceiling surface 230 of the cavity and the base end surface 34 of the protruding body 30 and between the ceiling surface 230 of the cavity and the back surface 10B of the disc body 10 . As a result, the resin 60 flows into this gap, so that all or part of the base end surface 34 of the protruding body 30 and the rear surface 10B of the disk body 10 after insert molding are covered with the resin 60 as shown in FIG. will be As a result, even if a thrust force directed toward the base end side in the armature axial direction Z acts on the disc body 10 and the projecting body 30, the resin 60 can receive the thrust force.

突出体30を圧粉鉄心とする場合、成形工程や熱処理工程で寸法変化が生じやすい。すなわち、突出体30の電機子軸方向Zの寸法に誤差が生じやすい。そこで本実施形態の金型200のように、複数の突出体20の先端面32を保持する基準面210を設けることで、突出体30の寸法誤差を、基端面34側に集約させる。また、円盤体10の位置決めも、突出体30を利用することなく、円盤体保持部220によって行うことで、高精度化できる。なお、この金型200によってインサート成形した場合、先端面32は樹脂60から露出した状態となる。 When the protruding body 30 is a dust core, it is likely to undergo dimensional changes during the molding process and the heat treatment process. That is, the dimension of the protruding body 30 in the armature axial direction Z is likely to have an error. Therefore, by providing the reference surface 210 that holds the distal end surfaces 32 of the plurality of projecting bodies 20 as in the mold 200 of the present embodiment, the dimensional errors of the projecting bodies 30 are concentrated on the proximal end surface 34 side. Further, positioning of the disc body 10 can be performed with high accuracy by using the disc body holding portion 220 without using the projecting body 30 . Note that, when insert molding is performed using this mold 200 , the front end surface 32 is exposed from the resin 60 .

図6(A)に示すように、円盤体10には、隔離スリット24が形成される。結果、インサート成形後は、図6(B)に示すように、樹脂60が、隔離スリット24に流れ込む。結果、円盤体10の収容部14と突出体30の隙間にも、樹脂60が充填されるので、インサート成形後において、円盤体10と突出体30の相対移動が抑制され、全体の剛性が高くなる。 As shown in FIG. 6A, an isolation slit 24 is formed in the disc body 10 . As a result, after insert molding, the resin 60 flows into the isolation slit 24 as shown in FIG. 6(B). As a result, since the resin 60 is also filled in the gap between the accommodating portion 14 of the disk body 10 and the projecting body 30, the relative movement between the disk body 10 and the projecting body 30 is suppressed after insert molding, and the rigidity of the whole is high. Become.

以上の通り、本実施形態の電機子コア1は、円盤体10と突出体30が別部材となっており、円盤体10を積層鋼板で構成しつつ、突出体30を圧粉鉄心としている。円盤体10によって電機子コア1の全体的な剛性を高めつつも、突出体30を所望形状に自在に成形可能となる。 As described above, in the armature core 1 of the present embodiment, the disk body 10 and the protrusions 30 are separate members, and the disk body 10 is composed of laminated steel plates, while the protrusions 30 are dust cores. While the overall rigidity of the armature core 1 is increased by the disk body 10, the protruding body 30 can be freely formed into a desired shape.

図6(C)に示すように、圧粉鉄心となる突出体30は、磁路の形成が無方向(自在)となるので、電機子軸方向Zに延びる磁路を、基端側において円盤体10側(ここでは電機子周方向S)に屈曲させることができる。一方、電磁鋼板で形成される円盤体10は、平面方向(ここでは電機子周方向S)に沿った磁路を形成しやすい。従って、収容部14に突出体30を収容させることで、突出体30の基端側の内部に形成される磁路と、円盤体10に形成される磁路の方向を連続(一致)させることが可能となり、ロスの少ない磁界を生成できる。 As shown in FIG. 6(C), the protruding body 30 that becomes the dust core forms a magnetic path in no direction (freely). It can be bent toward the body 10 (here, in the armature circumferential direction S). On the other hand, the disk body 10 made of an electromagnetic steel sheet easily forms a magnetic path along the planar direction (here, the armature circumferential direction S). Therefore, by housing the projecting body 30 in the housing part 14, the direction of the magnetic path formed inside the base end side of the projecting body 30 and the direction of the magnetic path formed in the disk body 10 can be made continuous (matched). is possible, and a magnetic field with little loss can be generated.

更に本実施形態の突出体30は、電機子軸方向Zから視た場合に略台形形状としている。このようにすると、図1に示すように、リング状の電機子コア1において、周方向に多数の突出体30を緻密に配置できる。結果、トルクに影響を与え得る先端面32の総面積を増やすことが可能となる。また、軸心側が鋭角となる扇型と比較して、内周側(軸心側)に内壁面36Aを確保できる結果、巻き線の巻き付け角度を緩やかにできるので、巻き線の損傷を抑制できる。 Furthermore, the projecting body 30 of this embodiment has a substantially trapezoidal shape when viewed from the armature axial direction Z. As shown in FIG. In this way, as shown in FIG. 1, in the ring-shaped armature core 1, a large number of projections 30 can be densely arranged in the circumferential direction. As a result, it is possible to increase the total area of the tip surface 32 that can affect the torque. In addition, as compared with the fan shape having an acute angle on the shaft center side, the inner wall surface 36A can be secured on the inner peripheral side (the shaft center side). .

次に、図7以降を参照して、本実施形態の電機子100及び電機子コア1の変形例について説明する。なお、図7以降では、本実施形態と異なる部分について図示及び説明を行い、共通する部分の図示及び説明を省略する。 Next, modifications of the armature 100 and the armature core 1 of the present embodiment will be described with reference to FIG. 7 onward. 7 and subsequent figures, portions different from the present embodiment will be illustrated and described, and illustrations and descriptions of common portions will be omitted.

図7(A)に示す突出体30は、周壁36において、電機子軸方向Zに係合可能な係合段部40が形成される。ここでは、突出体30の基端側が、電機子周方向Sに拡張しており、その境界が係合段部40となる。係合段部40は、電機子軸方向Zの先端側に向く係合面を有する。図7(B)に示すようにインサート成形を行うと、係合段部40と巻き線50(又は樹脂60)が電機子軸方向Zに係合するので、磁力によって突出体30が電機子軸方向Zの先端側に引っ張られても、その移動が抑制される。 The projecting body 30 shown in FIG. 7A is formed with an engaging stepped portion 40 that can be engaged in the armature axial direction Z at the peripheral wall 36 . Here, the base end side of the projecting body 30 extends in the armature circumferential direction S, and the boundary thereof becomes the engagement stepped portion 40 . The engagement stepped portion 40 has an engagement surface facing the tip side in the armature axial direction Z. As shown in FIG. When insert molding is performed as shown in FIG. 7B, the engagement stepped portion 40 and the winding wire 50 (or the resin 60) are engaged in the armature axis direction Z, so that the protrusion 30 is moved by the magnetic force to the armature axis. Even if it is pulled toward the tip side in the direction Z, its movement is suppressed.

なお、図7(C)に示すように、この係合段部40の係合面を、円盤体10に係合させることが好ましい。このようにすると、磁力によって突出体30が電機子軸方向Zの先端側に引っ張られても、係合段部40が円盤体10と係合してその移動が抑制される。なお、図7(D)に示すように、係合段部40を、一対の円盤体10,11で挟み込むことも可能であり、このようにすると、突出体30の電機子軸方向Zの双方向の移動を規制できる。さらに図7(E)に示すように、係合段部40(本体よりも拡張する部分)を、周壁36における電機子軸方向Zの途中に突出するように形成することも好ましい。このようにすると、電機子軸方向Zの先端側に向く先端側係合面40Aと、基端側に向く基端側係合面40Bを形成できる。基端側係合面40Bを、円盤体10(または樹脂60)に係合させることで、突出体30の基端側への移動を規制することも可能となる。なお、ここでは周壁36における一対の側壁面36Cに係合段部40を形成する場合を示すが、内壁面36Aまたは外壁面36Bに形成してもよい。 In addition, as shown in FIG. 7(C), it is preferable to engage the engaging surface of the engaging stepped portion 40 with the disc body 10 . In this way, even if the protruding body 30 is pulled toward the tip side in the armature axial direction Z by the magnetic force, the engaging stepped portion 40 engages with the disk body 10 to suppress its movement. In addition, as shown in FIG. 7(D), it is also possible to sandwich the engaging stepped portion 40 between a pair of disk bodies 10 and 11. In this way, the protruding body 30 can be moved in the armature axial direction Z. directional movement can be regulated. Furthermore, as shown in FIG. 7(E), it is also preferable to form an engagement stepped portion 40 (a portion extending from the main body) so as to protrude in the middle of the peripheral wall 36 in the armature axial direction Z. As shown in FIG. In this way, the tip side engaging surface 40A facing the tip side in the armature axial direction Z and the base end side engaging surface 40B facing the base end side can be formed. By engaging the proximal side engaging surface 40B with the disc body 10 (or the resin 60), it is also possible to restrict the movement of the projecting body 30 to the proximal side. Here, the case where the engaging stepped portion 40 is formed on the pair of side wall surfaces 36C of the peripheral wall 36 is shown, but it may be formed on the inner wall surface 36A or the outer wall surface 36B.

また、図8(A)に示すように、突出体30の周壁36において、電機子軸方向Zに沿って異なる位置、且つ、電機子軸方向Zに重ならない位置に、複数の係合段部40を形成することも好ましい。ここでは内壁面36Aにおいて、基端面34に近い位置となる第一係合段部41が形成され、外壁面36Bにおいて、第一係合段部41よりも先端側にずれた位置に第二係合段部42が形成される。同時に、円盤体10における収容部14のサイズを大きめに設定しておくことで、突出体30が電機子径方向Kにスライド可能にする。図8(B)に示すように、突出体30を、第一係合段部41が収容部14に干渉しないように挿入して、第二係合段部42と円盤体10の表面10Aを係合させた後、図8(C)に示すように、突出体30を電機子径方向Kの内側(軸心側)にスライドさせることで、第一係合段部41を円盤体10に係合させる。結果、突出体30と円盤体10を、電機子軸方向Zの双方向に係合させることができる。その後、図8(D)に示すように、インサート成形によって、樹脂60で一体的に固めることで、突出体30の電機子径方向Kのスライドを規制できる。なお、複数の係合段部40が、電機子軸方向Zに重ならない位置に配置する理由は、プレス成形後の成形体をダイから容易に離型させるためである。 Further, as shown in FIG. 8A, on the peripheral wall 36 of the projecting body 30, a plurality of engaging stepped portions are provided at different positions along the armature axial direction Z and at positions not overlapping in the armature axial direction Z. Forming 40 is also preferred. Here, on the inner wall surface 36A, a first engaging stepped portion 41 is formed at a position close to the base end surface 34, and on the outer wall surface 36B, a second engaging stepped portion 41 is formed at a position shifted to the distal side from the first engaging stepped portion 41. A joint portion 42 is formed. At the same time, by setting the size of the accommodation portion 14 in the disk body 10 to be large, the projecting body 30 can be slid in the armature radial direction K. As shown in FIG. As shown in FIG. 8B, the projecting body 30 is inserted so that the first engaging stepped portion 41 does not interfere with the accommodating portion 14, and the second engaging stepped portion 42 and the surface 10A of the disk body 10 are aligned. After the engagement, as shown in FIG. 8C, by sliding the protruding body 30 inward (toward the shaft center) in the armature radial direction K, the first engaging stepped portion 41 is attached to the disk body 10. Engage. As a result, the protruding body 30 and the disk body 10 can be engaged in both directions in the armature axial direction Z. As shown in FIG. After that, as shown in FIG. 8(D), by integrally hardening with a resin 60 by insert molding, the sliding of the protruding body 30 in the armature radial direction K can be restricted. The reason why the plurality of engaging stepped portions 40 are arranged at positions that do not overlap in the armature axial direction Z is to allow the press-molded compact to be easily released from the die.

図9(A)の突出体30は、基端面34において、電機子軸方向Zに突出する基端側凸部43が形成される。この基端側凸部43は、電機子径方向Kに沿って複数形成されると共に、電機子周方向Sに沿って複数形成される。結果、全体として、いわゆる格子状又はローレット形状の突起となる。図9(B)に示すように、この突出体30をインサート成形すると、樹脂60と基端面34の接触面積が増大して、両者の結合力を高めることが可能となる。なお、図9(C)に示すように、基端側凸部43は、成形性を考慮して、角部をR形状(湾曲形状)とすることが好ましい。 A protruding body 30 shown in FIG. 9A has a protruding portion 43 protruding in the armature axial direction Z on the proximal end surface 34 . A plurality of base-end-side convex portions 43 are formed along the armature radial direction K and formed along the armature circumferential direction S. As shown in FIG. As a result, a so-called lattice-shaped or knurled projection is obtained as a whole. As shown in FIG. 9(B), insert molding of the protruding body 30 increases the contact area between the resin 60 and the base end surface 34, making it possible to increase the bonding force between the two. In addition, as shown in FIG. 9(C), it is preferable that the corners of the base-end-side convex portion 43 have an R shape (curved shape) in consideration of moldability.

図10(A)の突出体30は、基端面34において、電機子軸方向Zに突出する基端側凸部43を、電機子径方向Kに沿って複数有している。図10(B)に示すように、円盤体10の収容部14を有底構造とし、その底面に、予め、基端側凸部43と反対形状となる凹部を形成しておくことで、両者を嵌め合わせることができる。また例えば、図10(C)に示すように、円盤体10の収容部14において、基端側凸部43に対応する複数の貫通孔を形成しておき、この貫通孔と基端側凸部43を嵌め合わせることも可能である。 The projecting body 30 of FIG. 10A has a plurality of proximal-side projections 43 projecting in the armature axial direction Z along the armature radial direction K on the proximal end surface 34 . As shown in FIG. 10(B), the housing portion 14 of the disc body 10 has a bottomed structure. can be fitted together. Further, for example, as shown in FIG. 10C, a plurality of through-holes corresponding to the proximal-side protrusions 43 are formed in the accommodating portion 14 of the disc body 10, and the through-holes and the proximal-side protrusions It is also possible to fit 43 together.

図11(A)の突出体30は、周壁36において、電機子軸方向Zに延在する周壁側溝部44が形成される。この周壁側溝部44は、プレス成形及び離型の容易性から、周壁36における電機子軸方向Zの途中から始まり、基端面34に達してる。このようにすると、図11(B)(C)及び(D)に示すように、周壁側溝部44に樹脂を流し込むことが可能となるので、樹脂60と周壁36の接触面積が増大し、両者の結合力を高めることが可能となる。また、周壁側溝部44を周壁36の途中で終了させることで、軸方向の段部も形成され、樹脂60と周壁36を電機子軸方向Zに係合させることができる。なお、ここでは周壁36に溝を形成する場合を例示したが、本発明はこれに限定されない。周壁36において、電機子軸方向Zに延在する列状の周壁側凸部(突起)を形成しても良い。 The projecting body 30 shown in FIG. 11A has a peripheral wall side groove portion 44 extending in the armature axial direction Z in the peripheral wall 36 . The peripheral wall side groove portion 44 starts in the middle of the peripheral wall 36 in the armature axial direction Z and reaches the base end surface 34 for ease of press molding and mold release. In this way, as shown in FIGS. 11B, 11C, and 11D, resin can be poured into the peripheral wall groove 44, so that the contact area between the resin 60 and the peripheral wall 36 is increased. It is possible to increase the bonding strength of Further, by terminating the peripheral wall side groove portion 44 in the middle of the peripheral wall 36, an axial stepped portion is also formed, and the resin 60 and the peripheral wall 36 can be engaged in the armature axial direction Z. FIG. In addition, although the case where the groove|channel is formed in the surrounding wall 36 was illustrated here, this invention is not limited to this. In the peripheral wall 36, rows of peripheral wall-side projections (protrusions) extending in the armature axial direction Z may be formed.

図12(A)の突出体30には、電機子軸方向Zに貫通する貫通孔45が形成される。図12(B)に示すように、例えば、この貫通孔45にボルトを挿入して、円盤体10と螺合させることで、突出体30を円盤体10に固定できる。なお、本発明は貫通孔45に限られず、基端面34側に雌ねじ孔を形成することで、この突出体30を雄ねじと螺合させるようにして固定することもできる。 A through hole 45 penetrating in the armature axial direction Z is formed in the projecting body 30 of FIG. 12(A). As shown in FIG. 12(B), for example, by inserting a bolt into the through hole 45 and screwing the bolt into the disc body 10, the protruding body 30 can be fixed to the disc body 10. As shown in FIG. In addition, the present invention is not limited to the through hole 45, and by forming a female threaded hole on the base end surface 34 side, the projecting body 30 can be fixed by being screwed with a male screw.

図13(A)の突出体30は、先端側に拡張部46が形成される。この拡張部46は、本体に対して電機子径方向K及び/又は電機子周方向Sに拡張している。結果、図13(B)に示すように、突出体30の先端面32をヨークとして機能させることが可能となり、対向子(例えばロータ)と向き合う面積を増大させることが可能となる。 The projecting body 30 of FIG. 13(A) is formed with an extended portion 46 on the distal end side. The extended portion 46 extends in the armature radial direction K and/or the armature circumferential direction S with respect to the main body. As a result, as shown in FIG. 13(B), it is possible to make the tip surface 32 of the projecting body 30 function as a yoke, and to increase the area facing the counterpart (for example, the rotor).

図14(A)の突出体30は、周壁36に、電機子軸方向Zに向かうに連れて電機子径方向K及び/又は電機子周方向Sに変位する傾斜面47が形成される。なお、ここでは一対の側壁面36Cそのものが、先端面32から基端面34に向けて電機子周方向Sに広がるようなテーパー形状の傾斜面47となる。このようにすると、図14(B)に示すように、磁力によって突出体30が電機子軸方向Zの先端側に引っ張られても、樹脂60が、突出体30の傾斜面47と係合してその移動が抑制される。なお、この傾斜面47は、内壁面36Aまたは外壁面36Bに形成してもよく、その場合は電機子径方向Kに変位する傾斜面となる。また、基端面34から先端面32に向けて広がるようなテーパー形状の傾斜面47としても良い。 The projecting body 30 shown in FIG. 14A has a peripheral wall 36 formed with an inclined surface 47 that is displaced in the armature radial direction K and/or the armature circumferential direction S along the armature axial direction Z. As shown in FIG. Here, the pair of side wall surfaces 36</b>C itself forms a tapered inclined surface 47 extending in the armature circumferential direction S from the tip surface 32 toward the base end surface 34 . With this arrangement, as shown in FIG. 14B, even if the projecting body 30 is pulled toward the distal end side in the armature axial direction Z by the magnetic force, the resin 60 is engaged with the inclined surface 47 of the projecting body 30. and its movement is suppressed. The inclined surface 47 may be formed on the inner wall surface 36A or the outer wall surface 36B. Alternatively, the tapered inclined surface 47 that widens from the proximal end surface 34 toward the distal end surface 32 may be used.

図15(A)及び(B)の円盤体10は、収容部14が、底面14Aを有する有底状態の凹部となる。隔離スリット24は、収容部14まで連通するようになっている。図15(C)に示すように、突出体30は、基端面34が底面14Aと当接するようにして、収容部14に収容される。 In the disc body 10 shown in FIGS. 15A and 15B, the housing portion 14 is a bottomed concave portion having a bottom surface 14A. The isolation slit 24 communicates with the housing portion 14 . As shown in FIG. 15C, the projecting body 30 is accommodated in the accommodating portion 14 such that the base end surface 34 contacts the bottom surface 14A.

なお、上記実施形態では、電機子コア1の円盤体10が、360度の位相で完全につながっている環状のリングとなる場合を例示したが、本発明はこれに限定されず、例えば、円盤体が部分円弧(部分リング)状となる場合も含む。また、本実施形態では、電機子100がステータとなる場合を例示しているが、ロータとして機能させることもできる。 In the above-described embodiment, the disk body 10 of the armature core 1 is an annular ring that is completely connected in phases of 360 degrees, but the present invention is not limited to this. It also includes cases where the body has a partial circular arc (partial ring) shape. Moreover, although the armature 100 serves as a stator in this embodiment, it can also function as a rotor.

なお、本発明の電機子等は、上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。 It should be noted that the armature and the like of the present invention are not limited to the above-described embodiments, and it goes without saying that various modifications can be made without departing from the gist of the present invention.

1 電機子コア
10 円盤体
10A 表面
10B 裏面
14 収容部
24 隔離スリット
30 突出体
32 先端面
32A 先端側退避面
34 基端面
34A 基端側退避面
36 周壁
36A 内壁面
36B 外壁面
36C 側壁面
38 バリ
40 係合段部
43 基端側凸部
44 周壁側溝部
45 貫通孔
46 拡張部
50 巻き線
60 樹脂
100 電機子
200 金型
210 基準面
220 円盤体保持部
230 天井面
300 ダイ
310 パンチ
K 電機子径方向
S 電機子周方向
Z 電機子軸方向
1 armature core 10 disk body 10A front surface 10B rear surface 14 accommodating portion 24 isolation slit 30 projecting body 32 tip surface 32A tip side withdrawal surface 34 base end surface 34A base end side withdrawal surface 36 peripheral wall 36A inner wall surface 36B outer wall surface 36C side wall surface 38 burr 40 Engagement stepped portion 43 Base end side convex portion 44 Peripheral wall side groove portion 45 Through hole 46 Expansion portion 50 Winding wire 60 Resin 100 Armature 200 Mold 210 Reference surface 220 Disk body holding portion 230 Ceiling surface 300 Die 310 Punch K Armature Radial direction S Armature circumferential direction Z Armature axial direction

Claims (8)

アキシャルギャップ型の回転電機に用いられる電機子のコアであって、
電機子の回転軸方向(以下、電機子軸方向)に対して、径方向(以下、電機子径方向)及び周方向(以下、電機子周方向)に延在する円盤体と、
前記円盤体と組み合わされて、該円盤体の表面から電機子軸方向に突出するように配置される複数の突出体と、を備えてなり、
前記突出体は、鉄粉を圧縮形成することで得られる圧粉鉄心であり、
前記突出体は、
電機子軸方向の先端側に向く先端面と、
電機子軸方向の基端側に向く基端面と、
前記先端面と前記基端面をつなぐ周壁と、を有し、
前記突出体における前記先端面の周縁には、該先端面よりも基端側に退避する先端側退避面が形成され、
前記先端側退避面の縁に、前記先端面側に突出するバリが形成されることを特徴とする、
アキシャルギャップ型回転電機用の電機子コア。
An armature core used in an axial gap type rotating electric machine,
a disk body extending in a radial direction (hereinafter referred to as an armature radial direction) and a circumferential direction (hereinafter referred to as an armature circumferential direction) with respect to a rotational axis direction of the armature (hereinafter referred to as an armature axial direction);
a plurality of projecting bodies arranged to be combined with the disk body and project from the surface of the disk body in the armature axial direction,
The protruding body is a dust core obtained by compressing iron powder,
The projecting body is
a tip surface facing the tip side in the armature axial direction;
a base end face facing the base end side in the armature axial direction;
a peripheral wall connecting the distal end surface and the proximal end surface;
A tip-side retraction surface retracting to the proximal side from the tip surface is formed on the peripheral edge of the tip surface of the projecting body,
A burr projecting to the tip surface side is formed on the edge of the tip side retraction surface ,
Armature core for axial gap type rotating electric machine.
前記先端面を基準とした前記先端側退避面の電機子軸方向の退避距離は、前記バリの突出量よりも大きく設定されることを特徴とする、 A retraction distance in the armature axial direction of the tip side retraction surface with respect to the tip surface is set larger than the protrusion amount of the burr,
請求項1に記載のアキシャルギャップ型回転電機用の電機子コア。 An armature core for an axial gap type rotary electric machine according to claim 1.
アキシャルギャップ型の回転電機に用いられる電機子のコアであって、 An armature core used in an axial gap type rotating electric machine,
電機子の回転軸方向(以下、電機子軸方向)に対して、径方向(以下、電機子径方向)及び周方向(以下、電機子周方向)に延在する円盤体と、 a disk body extending in a radial direction (hereinafter referred to as an armature radial direction) and a circumferential direction (hereinafter referred to as an armature circumferential direction) with respect to a rotational axis direction of the armature (hereinafter referred to as an armature axial direction);
前記円盤体と組み合わされて、該円盤体の表面から電機子軸方向に突出するように配置される複数の突出体と、を備えてなり、 a plurality of projecting bodies arranged to be combined with the disk body and project from the surface of the disk body in the armature axial direction,
前記突出体は、 The projecting body is
電機子軸方向の先端側に向く先端面と、 a tip surface facing the tip side in the armature axial direction;
電機子軸方向の基端側に向く基端面と、 a base end face facing the base end side in the armature axial direction;
前記先端面と前記基端面をつなぐ周壁と、 a peripheral wall connecting the distal end surface and the proximal end surface;
前記先端面の周縁において、該先端面よりも基端側に退避する先端側退避面と、が、鉄粉から一度の圧縮によってまとめて形成された圧粉鉄心であり、 A tip-side retraction surface that retracts toward the base end side of the tip surface at the peripheral edge of the tip surface is a powder iron core that is collectively formed by one-time compression from iron powder,
前記先端面を基準とした前記先端側退避面の電機子軸方向の退避距離は、0.2mm以上となることを特徴とする、 The retraction distance in the armature axial direction of the tip side retraction surface with respect to the tip surface is 0.2 mm or more,
アキシャルギャップ型回転電機用の電機子コア。 Armature core for axial gap type rotating electric machine.
アキシャルギャップ型の回転電機に用いられる電機子のコアであって、
電機子の回転軸方向(以下、電機子軸方向)に対して、径方向(以下、電機子径方向)及び周方向(以下、電機子周方向)に延在する円盤体と、
前記円盤体と組み合わされて、該円盤体の表面から電機子軸方向に突出するように配置される複数の突出体と、を備えてなり、
前記突出体は、鉄粉を圧縮形成することで得られる圧粉鉄心であり、
前記突出体は、
電機子軸方向の先端側に向く先端面と、
電機子軸方向の基端側に向く基端面と、
前記先端面と前記基端面をつなぐ周壁と、を有し、
前記突出体における前記基端面の周縁には、該基端面よりも先端側に退避する基端側退避面が形成され、
前記基端側退避面の縁に、前記基端面側に突出するバリが形成されることを特徴とする、
アキシャルギャップ型回転電機用の電機子コア。
An armature core used in an axial gap type rotating electric machine,
a disk body extending in a radial direction (hereinafter referred to as an armature radial direction) and a circumferential direction (hereinafter referred to as an armature circumferential direction) with respect to a rotational axis direction of the armature (hereinafter referred to as an armature axial direction);
a plurality of projecting bodies arranged to be combined with the disk body and project from the surface of the disk body in the armature axial direction,
The protruding body is a dust core obtained by compressing iron powder,
The projecting body is
a tip surface facing the tip side in the armature axial direction;
a base end face facing the base end side in the armature axial direction;
a peripheral wall connecting the distal end surface and the proximal end surface;
A proximal side retracting surface retracting to the distal side from the proximal surface is formed on the peripheral edge of the proximal surface of the projecting body,
A burr projecting toward the proximal surface is formed on the edge of the proximal side retraction surface,
Armature core for axial gap type rotating electric machine.
前記基端面を基準とした前記基端側退避面の電機子軸方向の退避距離は、前記バリの突出量よりも大きく設定されることを特徴とする、A retraction distance in the armature axial direction of the base end side retraction surface with respect to the base end surface is set to be larger than the protrusion amount of the burr,
請求項4に記載のアキシャルギャップ型回転電機用の電機子コア。 An armature core for an axial gap type rotary electric machine according to claim 4.
アキシャルギャップ型の回転電機に用いられる電機子のコアであって、 An armature core used in an axial gap type rotating electric machine,
電機子の回転軸方向(以下、電機子軸方向)に対して、径方向(以下、電機子径方向)及び周方向(以下、電機子周方向)に延在する円盤体と、 a disk body extending in a radial direction (hereinafter referred to as an armature radial direction) and a circumferential direction (hereinafter referred to as an armature circumferential direction) with respect to a rotational axis direction of the armature (hereinafter referred to as an armature axial direction);
前記円盤体と組み合わされて、該円盤体の表面から電機子軸方向に突出するように配置される複数の突出体と、を備えてなり、 a plurality of projecting bodies arranged to be combined with the disk body and project from the surface of the disk body in the armature axial direction,
前記突出体は、 The projecting body is
電機子軸方向の先端側に向く先端面と、 a tip surface facing the tip side in the armature axial direction;
電機子軸方向の基端側に向く基端面と、 a base end face facing the base end side in the armature axial direction;
前記先端面と前記基端面をつなぐ周壁と、 a peripheral wall connecting the distal end surface and the proximal end surface;
前記基端面の周縁において、該基端面よりも先端側に退避する基端側退避面と、が、鉄粉から一度の圧縮によってまとめて形成された圧粉鉄心であり、 A base-side withdrawal surface that retreats toward the tip side of the base-end surface at the peripheral edge of the base-end surface is a dust core formed by one-time compression from iron powder,
前記基端面を基準とした前記基端側退避面の電機子軸方向の退避距離は、0.2mm以上となることを特徴とする、 The retraction distance in the armature axial direction of the proximal retraction surface with respect to the proximal surface is 0.2 mm or more,
アキシャルギャップ型回転電機用の電機子コア。 Armature core for axial gap type rotating electric machine.
アキシャルギャップ型の回転電機に用いられる電機子のコアの製造方法であって、
前記コアは、
電機子の回転軸方向(以下、電機子軸方向)に対して、径方向(以下、電機子径方向)及び周方向(以下、電機子周方向)に延在する円盤体と、
前記円盤体と組み合わされて、該円盤体の表面から電機子軸方向に突出するように配置される複数の突出体と、を備えてなり、
前記突出体は、ダイ及びパンチを有する金型のキャビティーに鉄粉を充填して圧縮形成する際に、
電機子軸方向の先端側に向く先端面と、
電機子軸方向の基端側に向く基端面と、
前記先端面と前記基端面をつなぐ周壁と、
前記先端面の周縁において、該先端面よりも基端側に退避する先端側退避面と、をまとめて形成することを特徴とする、
アキシャルギャップ型回転電機用の電機子コアの製造方法
A method for manufacturing an armature core used in an axial gap type rotating electrical machine, comprising:
The core is
a disk body extending in a radial direction (hereinafter referred to as an armature radial direction) and a circumferential direction (hereinafter referred to as an armature circumferential direction) with respect to a rotational axis direction of the armature (hereinafter referred to as an armature axial direction);
a plurality of projecting bodies arranged to be combined with the disk body and project from the surface of the disk body in the armature axial direction,
When the cavity of a mold having a die and a punch is filled with iron powder and compression-formed,
a tip surface facing the tip side in the armature axial direction;
a base end face facing the base end side in the armature axial direction;
a peripheral wall connecting the distal end surface and the proximal end surface;
At the peripheral edge of the tip surface, a tip side retraction surface that retracts to the proximal side from the tip surface is collectively formed,
A method of manufacturing an armature core for an axial gap type rotating electric machine .
アキシャルギャップ型の回転電機に用いられる電機子のコアの製造方法であって、
前記コアは、
電機子の回転軸方向(以下、電機子軸方向)に対して、径方向(以下、電機子径方向)及び周方向(以下、電機子周方向)に延在する円盤体と、
前記円盤体と組み合わされて、該円盤体の表面から電機子軸方向に突出するように配置される複数の突出体と、を備えてなり、
前記突出体は、ダイ及びパンチを有する金型のキャビティーに鉄粉を充填して圧縮形成する際に、
電機子軸方向の先端側に向く先端面と、
電機子軸方向の基端側に向く基端面と、
前記先端面と前記基端面をつなぐ周壁と、
前記基端面の周縁において、該基端面よりも先端側に退避する基端側退避面と、をまとめて形成することを特徴とする、
アキシャルギャップ型回転電機用の電機子コアの製造方法
A method for manufacturing an armature core used in an axial gap type rotating electrical machine, comprising:
The core is
a disk body extending in a radial direction (hereinafter referred to as an armature radial direction) and a circumferential direction (hereinafter referred to as an armature circumferential direction) with respect to a rotational axis direction of the armature (hereinafter referred to as an armature axial direction);
a plurality of projecting bodies arranged to be combined with the disk body and project from the surface of the disk body in the armature axial direction,
When the cavity of a mold having a die and a punch is filled with iron powder and compression-formed,
a tip surface facing the tip side in the armature axial direction;
a base end face facing the base end side in the armature axial direction;
a peripheral wall connecting the distal end surface and the proximal end surface;
At the peripheral edge of the proximal surface, a proximal side withdrawal surface that retreats to the distal side from the proximal surface is formed together,
A method of manufacturing an armature core for an axial gap type rotating electric machine .
JP2020067493A 2020-04-03 2020-04-03 Armature core for axial gap type rotating electric machine, method for manufacturing armature core for axial gap type rotating electric machine Active JP7339918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020067493A JP7339918B2 (en) 2020-04-03 2020-04-03 Armature core for axial gap type rotating electric machine, method for manufacturing armature core for axial gap type rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020067493A JP7339918B2 (en) 2020-04-03 2020-04-03 Armature core for axial gap type rotating electric machine, method for manufacturing armature core for axial gap type rotating electric machine

Publications (2)

Publication Number Publication Date
JP2021164385A JP2021164385A (en) 2021-10-11
JP7339918B2 true JP7339918B2 (en) 2023-09-06

Family

ID=78003887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020067493A Active JP7339918B2 (en) 2020-04-03 2020-04-03 Armature core for axial gap type rotating electric machine, method for manufacturing armature core for axial gap type rotating electric machine

Country Status (1)

Country Link
JP (1) JP7339918B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007028855A (en) 2005-07-20 2007-02-01 Yamaha Motor Co Ltd Rotary electric machine and electric wheelchair
JP2008131784A (en) 2006-11-22 2008-06-05 Daikin Ind Ltd Motor
JP2008245503A (en) 2007-10-24 2008-10-09 Daikin Ind Ltd Motor, manufacturing method of motor and compressor
JP2009124794A (en) 2007-11-12 2009-06-04 Sumitomo Electric Ind Ltd Stator for axial motor, and axial motor
JP2009142095A (en) 2007-12-07 2009-06-25 Sumitomo Electric Ind Ltd Stator core for axial-gap motor
JP2011045241A (en) 2010-12-02 2011-03-03 Daikin Industries Ltd Core for armature
JP2014017904A (en) 2012-07-05 2014-01-30 Canon Electronics Inc Electromagnetic apparatus using dust core and process of manufacturing the same
JP2017535238A (en) 2014-10-17 2017-11-24 コリア エレクトロニクス テクノロジ インスティチュート Flat motor stator and flat motor using the same
JP2017229191A (en) 2016-06-24 2017-12-28 住友電工焼結合金株式会社 Dust core, stator core and stator

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007028855A (en) 2005-07-20 2007-02-01 Yamaha Motor Co Ltd Rotary electric machine and electric wheelchair
JP2008131784A (en) 2006-11-22 2008-06-05 Daikin Ind Ltd Motor
JP2008245503A (en) 2007-10-24 2008-10-09 Daikin Ind Ltd Motor, manufacturing method of motor and compressor
JP2009124794A (en) 2007-11-12 2009-06-04 Sumitomo Electric Ind Ltd Stator for axial motor, and axial motor
JP2009142095A (en) 2007-12-07 2009-06-25 Sumitomo Electric Ind Ltd Stator core for axial-gap motor
JP2011045241A (en) 2010-12-02 2011-03-03 Daikin Industries Ltd Core for armature
JP2014017904A (en) 2012-07-05 2014-01-30 Canon Electronics Inc Electromagnetic apparatus using dust core and process of manufacturing the same
JP2017535238A (en) 2014-10-17 2017-11-24 コリア エレクトロニクス テクノロジ インスティチュート Flat motor stator and flat motor using the same
JP2017229191A (en) 2016-06-24 2017-12-28 住友電工焼結合金株式会社 Dust core, stator core and stator

Also Published As

Publication number Publication date
JP2021164385A (en) 2021-10-11

Similar Documents

Publication Publication Date Title
EP2557660B1 (en) Layered iron core of rotary electrical machine
JP2003169431A (en) Motor
WO2007141907A1 (en) Split type iron core and its manufacturing method, and stator iron core
JP2007274809A (en) Stator, and rotating electric machine
JP2003244877A (en) Rotor for dynamo-electric machine and manufacturing method therefor
JP6378660B2 (en) Stator structure and resolver
JP5164026B2 (en) Electric motor stator and permanent magnet type electric motor using the same
JP2022127931A (en) Structure and manufacturing method of motor armature
JP2011147200A (en) Motor armature
JP4791387B2 (en) Armature
JP2009100489A (en) Slotless rotary electric machine
JP2009254109A (en) Stator and method of manufacturing the sator
JP7339918B2 (en) Armature core for axial gap type rotating electric machine, method for manufacturing armature core for axial gap type rotating electric machine
JP2006345672A (en) Stator of rotating electric machine
JP2007244069A (en) Manufacturing method of stator core and stator core
JP2008029157A (en) Stator core
WO2023276264A1 (en) Rotor, ipm motor, and rotor manufacturing method
JP2009106004A (en) Rotary electric machine
JP4278997B2 (en) Stator manufacturing method
JP2003319578A (en) Armature for rotating electric machine and its manufacturing method
JP2010011569A (en) Stator
JP2003294488A (en) Stator structure for resolver
JP2007181348A (en) Method for manufacturing stator
JP2008048502A (en) Electric motor
JP2012105543A (en) Stator for electric motor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200406

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230825

R150 Certificate of patent or registration of utility model

Ref document number: 7339918

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150