JP7334405B2 - Rankine cycle system - Google Patents

Rankine cycle system Download PDF

Info

Publication number
JP7334405B2
JP7334405B2 JP2018184009A JP2018184009A JP7334405B2 JP 7334405 B2 JP7334405 B2 JP 7334405B2 JP 2018184009 A JP2018184009 A JP 2018184009A JP 2018184009 A JP2018184009 A JP 2018184009A JP 7334405 B2 JP7334405 B2 JP 7334405B2
Authority
JP
Japan
Prior art keywords
working fluid
evaporator
pipe
exhaust gas
expander
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018184009A
Other languages
Japanese (ja)
Other versions
JP2020051398A (en
Inventor
晃太 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2018184009A priority Critical patent/JP7334405B2/en
Publication of JP2020051398A publication Critical patent/JP2020051398A/en
Application granted granted Critical
Publication of JP7334405B2 publication Critical patent/JP7334405B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

本開示は、ランキンサイクルシステムに関する。 The present disclosure relates to Rankine cycle systems.

エンジンの排気のエネルギーの一部を回収して、この回収したエネルギーによりエンジンに接続する膨張器を駆動させて、この駆動力をエンジンのアシストに使用するランキンサイクルシステムが提案されている(例えば、特許文献1参照)。 A Rankine cycle system has been proposed in which part of the energy of the engine exhaust is recovered, the recovered energy is used to drive an expander connected to the engine, and this driving force is used to assist the engine (for example, See Patent Document 1).

特開2018―17203号公報Japanese Patent Application Laid-Open No. 2018-17203

上記のランキンサイクルシステムでは、このシステム内の蒸発器の出口と膨張器の入口の間の作動流体用の配管が外気に曝されているため、作動流体がこの配管を通過中に外気で冷却され、膨張器で出力可能な動力が低減する。 In the Rankine cycle system described above, the piping for the working fluid between the outlet of the evaporator and the inlet of the expander in the system is exposed to the outside air so that the working fluid is cooled by the outside air while passing through this piping. , the power that can be output by the inflator is reduced.

本開示は、膨張器で出力可能な動力の低減を抑制することができるランキンサイクルシステムを提供することにある。 An object of the present disclosure is to provide a Rankine cycle system capable of suppressing reduction in power that can be output by an expander.

上記の目的を達成するための本発明の態様のランキンサイクルシステムは、内燃機関の排気管を通過する排気と作動流体を熱交換させる蒸発器と、前記蒸発器で排気と熱交換した作動流体を膨張させて動力を出力する膨張器と、を備えて構成されるランキンサイクルシステムにおいて、作動流体を内部に通過させる作動流体用配管における、前記蒸発器の出口と前記膨張器の入口の間の少なくとも一部である温度調整部は、前記蒸発器よりも上流で前記蒸発器での熱交換に使用される排気が通過する主流の排気管から分岐して前記蒸発器よりも下流の前記主流の排気管に合流することにより、前記蒸発器をバイパスするバイパス管に覆われていて、前記バイパス管を流れる排気と作動流体を熱交換させることにより、前記膨張器の入口を通過する作動流体の温度を前記蒸発器の出口を通過する作動流体の温度を超える温度にする構成を有する。 A Rankine cycle system according to an aspect of the present invention for achieving the above object includes an evaporator that exchanges heat between a working fluid and exhaust gas passing through an exhaust pipe of an internal combustion engine, and a working fluid that has undergone heat exchange with the exhaust gas in the evaporator. and an expander that expands to output power, at least between the outlet of the evaporator and the inlet of the expander in a working fluid pipe through which the working fluid passes The temperature adjustment unit, which is a part, branches from a main exhaust pipe through which exhaust gas used for heat exchange in the evaporator passes upstream of the evaporator and is downstream of the evaporator. By joining the pipes, it is covered with a bypass pipe that bypasses the evaporator, and by exchanging heat between the exhaust gas flowing through the bypass pipe and the working fluid, the temperature of the working fluid passing through the inlet of the expander is reduced. A configuration is provided to bring the temperature above the temperature of the working fluid passing through the outlet of the evaporator.

本開示によれば、膨張器で出力可能な動力の低減を抑制することができる。 According to the present disclosure, it is possible to suppress reduction in the power that can be output by the expander.

第1実施形態のランキンサイクルシステムを例示する図である。It is a figure which illustrates the Rankine cycle system of 1st Embodiment. 第2実施形態のランキンサイクルシステムを例示する図である。It is a figure which illustrates the Rankine cycle system of 2nd Embodiment.

以下、本開示のランキンサイクルシステムについて、図面を参照しながら説明する。図1に例示するように、第1実施形態のランキンサイクルシステム1はその作動流体用の流路(作動流体用配管)2に、タンクと、ポンプと、蒸発器3と、膨張器4と、凝縮器と、を備えて構成されるシステムである。 The Rankine cycle system of the present disclosure will be described below with reference to the drawings. As illustrated in FIG. 1, the Rankine cycle system 1 of the first embodiment includes a tank, a pump, an evaporator 3, an expander 4, and a and a condenser.

作動流体用の流路2は、作動流体Wを循環させる閉流路である。タンクは、作動流体用の流路2に配置されて作動流体Wを貯留する装置である。ポンプは、タンクより下流側の作動流体用の流路2に配置されて、タンクから流入した作動流体Wに流路2の循環用の駆動力を付与する装置である。蒸発器3は、ポンプより下流側の作動流体用の流路2に配置されて、エンジン(内燃機関)の排気管5を通過する排気Gと作動流体Wを熱交換させる装置である。この熱交換により作動流体Wの大部分は排気Gで加熱されて蒸発する。膨張器4は、蒸発器3より下流側の作動流体用の流路2に配置されて、蒸発器3で排気Gと熱交換した作動流体Wを膨張させて動力を出力する装置である。膨張器4の出力軸4aには断接装置(クラッチ等)を介して駆動装置(エンジンやモータ等)が接続されており、断接装置の接続時に作動流体Wの膨張により出力軸4aに発生した動力が駆動装置に伝達される。凝縮器は、膨張器4より下流側で、かつ、タンクより上流側の作動流体用の流路2に配置されて作動流体Wを凝縮させる装置である。 The working fluid flow path 2 is a closed flow path through which the working fluid W is circulated. The tank is a device that is arranged in the working fluid flow path 2 and stores the working fluid W. As shown in FIG. The pump is a device that is arranged in the working fluid flow path 2 on the downstream side of the tank and applies driving force for circulation in the flow path 2 to the working fluid W that has flowed in from the tank. The evaporator 3 is arranged in the working fluid flow path 2 on the downstream side of the pump, and is a device that exchanges heat between the working fluid W and the exhaust gas G passing through the exhaust pipe 5 of the engine (internal combustion engine). Due to this heat exchange, most of the working fluid W is heated by the exhaust gas G and evaporated. The expander 4 is a device arranged in the working fluid flow path 2 on the downstream side of the evaporator 3 to expand the working fluid W heat-exchanged with the exhaust gas G in the evaporator 3 to output power. A driving device (engine, motor, etc.) is connected to the output shaft 4a of the expander 4 via a connecting/disconnecting device (clutch, etc.). The resulting power is transmitted to the driving device. The condenser is a device that is arranged downstream of the expander 4 and upstream of the tank in the working fluid flow path 2 to condense the working fluid W. As shown in FIG.

本実施形態のランキンサイクルシステム1では、作動流体Wを内部に通過させる作動流体用配管2における、蒸発器3の出口と膨張器4の入口の間の配管2aの少なくとも一部の配管である温度調整部2bで、蒸発器3よりも上流の排気管5を流れる排気Gと作動流体Wを熱交換させる。 In the Rankine cycle system 1 of the present embodiment, the temperature of at least a part of the pipe 2a between the outlet of the evaporator 3 and the inlet of the expander 4 in the working fluid pipe 2 through which the working fluid W passes. Exhaust gas G flowing through the exhaust pipe 5 upstream of the evaporator 3 and the working fluid W are heat-exchanged in the adjustment unit 2 b.

第1実施形態のランキンサイクルシステム1では、図1に例示するように、温度調整部2bを蒸発器3よりも上流の排気管5で覆うように構成する。温度調整部2bの内部を通過する作動流体Wは、温度調整部2bを覆った排気管5を流れる排気Gと熱交換する。蒸発器3の出口と膨張器4の入口の間の配管2aにおける温度調整部2bの範囲は、膨張器4の入口を通過する作動流体Wの温度が蒸発器3の出口を通過する作動流体Wの温度を超えるように設定される。 In the Rankine cycle system 1 of the first embodiment, as illustrated in FIG. 1 , the temperature control section 2b is configured to be covered with the exhaust pipe 5 upstream of the evaporator 3 . The working fluid W passing through the temperature adjusting portion 2b exchanges heat with the exhaust gas G flowing through the exhaust pipe 5 covering the temperature adjusting portion 2b. The range of the temperature adjustment part 2b in the pipe 2a between the outlet of the evaporator 3 and the inlet of the expander 4 is the temperature of the working fluid W passing through the outlet of the evaporator 3. is set above the temperature of

蒸発器3の出口と膨張器4の入口の間の作動流体用の配管2aに関して、温度調整部2bは一続きの配管であるが、この配管2bはその形状に応じて配管2baと配管2bbとに分けられる。配管2baは、排気管5の断面に関してその中央部を排気Gの通過方向に排気管5の第1外壁面5aから延在して形成される配管である。配管2bbは、第1外壁面5aとは逆側の配管2aaの一端2cに連通するとともに排気管5の径方向に排気管5の第2外壁面5bまで延在して形成される配管である。 Regarding the pipe 2a for the working fluid between the outlet of the evaporator 3 and the inlet of the expander 4, the temperature control unit 2b is a continuous pipe, and this pipe 2b is divided into a pipe 2ba and a pipe 2bb depending on its shape. divided into The pipe 2ba is formed by extending the central portion of the cross section of the exhaust pipe 5 from the first outer wall surface 5a of the exhaust pipe 5 in the direction in which the exhaust gas G passes. The pipe 2bb is a pipe that communicates with one end 2c of the pipe 2aa opposite to the first outer wall surface 5a and extends in the radial direction of the exhaust pipe 5 to the second outer wall surface 5b of the exhaust pipe 5. .

配管2baを排気管5の断面に関してその中央部を排気Gの通過方向に延在して形成することで、排気管5の断面に関してその外周部を通過する排気Gと比較して高温の排気Gと作動流体Wを熱交換させることができる。それ故、作動流体Wの昇温性能が向上する。また、配管2baに連通する配管2bbを排気管5の径方向に延在して形成することで、膨張器4への配管2bの連結が容易になる。 By forming the pipe 2ba so that the central part of the cross section of the exhaust pipe 5 extends in the passage direction of the exhaust gas G, the exhaust gas G having a higher temperature than the exhaust gas G passing through the outer peripheral part of the cross section of the exhaust pipe 5 is formed. and the working fluid W can be heat-exchanged. Therefore, the temperature rise performance of the working fluid W is improved. Further, by forming the pipe 2bb communicating with the pipe 2ba so as to extend in the radial direction of the exhaust pipe 5, the pipe 2b can be easily connected to the expander 4. As shown in FIG.

第2実施形態のランキンサイクルシステム1では、図2に例示するように、排気管5に蒸発器3をバイパスするバイパス管6を設けて、温度調整部2bをバイパス管6で覆うように構成する。第1実施形態とは、温度調整部2bを排気管5ではなくバイパス管6で覆う点で異なり、その他の点で同じである。温度調整部2bの内部を通過する作動流体Wは、温度調整部2bを覆ったバイパス管6を流れる排気Gと熱交換する。バイパス管6を流れる排気Gは蒸発器3よりも上流の排気管5を流れる排気Gの一部に相当する。蒸発器3の出口と膨張器4の入口の間の配管2aにおける温度調整部2bの範囲は、膨張器4の入口を通過する作動流体Wの温度が蒸発器3の出口を通過する作動流体Wの温度を超えるように設定される。 In the Rankine cycle system 1 of the second embodiment, as illustrated in FIG. 2, a bypass pipe 6 that bypasses the evaporator 3 is provided in the exhaust pipe 5, and the temperature adjustment unit 2b is covered with the bypass pipe 6. . This embodiment differs from the first embodiment in that the temperature control section 2b is covered with a bypass pipe 6 instead of the exhaust pipe 5, and the other points are the same. The working fluid W passing through the temperature adjusting portion 2b exchanges heat with the exhaust gas G flowing through the bypass pipe 6 covering the temperature adjusting portion 2b. The exhaust gas G flowing through the bypass pipe 6 corresponds to part of the exhaust gas G flowing through the exhaust pipe 5 upstream of the evaporator 3 . The range of the temperature adjustment part 2b in the pipe 2a between the outlet of the evaporator 3 and the inlet of the expander 4 is the temperature of the working fluid W passing through the outlet of the evaporator 3. is set above the temperature of

第1、2実施形態のランキンサイクルシステム1では、作動流体Wは蒸発器3で排気Gと熱交換することでその大部分は加熱されて蒸発する。排気Gと熱交換して蒸発器3の出口より流出した作動流体Wは、蒸発器3より上流側の排気管5(またはバイパス管6)を通過する排気Gと熱交換して昇温して膨張器4の入口に流入する。膨張器4に流入した作動流体Wは膨張してその出力軸4aに動力を出力する。 In the Rankine cycle system 1 of the first and second embodiments, the working fluid W exchanges heat with the exhaust gas G in the evaporator 3, so that most of it is heated and evaporated. The working fluid W that exchanges heat with the exhaust gas G and flows out from the outlet of the evaporator 3 exchanges heat with the exhaust gas G passing through the exhaust pipe 5 (or the bypass pipe 6) on the upstream side of the evaporator 3, and is heated. It flows into the inlet of the expander 4 . The working fluid W flowing into the expander 4 expands and outputs power to its output shaft 4a.

本実施形態(第1、2実施形態)のランキンサイクルシステム1によれば、蒸発器3の出口と膨張器4の入口の間の作動流体用の配管2aの少なくとも一部である温度調整部2bで、蒸発器3よりも上流の排気管5を流れる排気G(または、この排気Gの一部であるバイパス管6を流れる排気G)と作動流体Wを熱交換させる。これにより、蒸発器3を通過後の作動流体Wを蒸発器3よりも上流の排気管5を流れる排気Gと熱交換してさらに昇温させることができるので、膨張器4で出力可能な動力の低減を抑制することができる。また、温度調整部2bで作動流体Wをさらに昇温させることで、蒸発器3で未蒸発となった作動流体Wの蒸発を促進することができる。 According to the Rankine cycle system 1 of the present embodiment (first and second embodiments), the temperature adjustment portion 2b that is at least part of the working fluid pipe 2a between the outlet of the evaporator 3 and the inlet of the expander 4 , the exhaust gas G flowing through the exhaust pipe 5 upstream of the evaporator 3 (or the exhaust gas G flowing through the bypass pipe 6 which is a part of the exhaust gas G) and the working fluid W are heat-exchanged. As a result, the working fluid W after passing through the evaporator 3 can be heat-exchanged with the exhaust gas G flowing through the exhaust pipe 5 upstream of the evaporator 3, and the temperature can be further increased, so that the power that can be output by the expander 4 can be suppressed. Moreover, by further raising the temperature of the working fluid W in the temperature adjustment part 2b, the evaporation of the working fluid W that has not been evaporated in the evaporator 3 can be promoted.

なお、この構成は、蒸発器3の出口と膨張器4の入口の間の作動流体用の配管2aを断熱材で覆って外気を遮断する構成のように作動流体Wを保温するものではなく、作動流体Wをさらに昇温させるものである。したがって、膨張器4で出力可能な動力は比較的大きくなる。 This configuration does not keep the temperature of the working fluid W unlike the configuration in which the piping 2a for the working fluid between the outlet of the evaporator 3 and the inlet of the expander 4 is covered with a heat insulating material to shut off the outside air. The temperature of the working fluid W is further increased. Therefore, the power that can be output from the expander 4 is relatively large.

また、この構成は、蒸発器3の出口と膨張器4の入口の間の作動流体用の配管2aをヒータ等の加熱装置で覆うとともに加熱装置の加熱量を制御しながら配管2aを加熱する構成とは異なり、制御が不要で簡易な構成である。 In this configuration, the working fluid pipe 2a between the outlet of the evaporator 3 and the inlet of the expander 4 is covered with a heating device such as a heater, and the pipe 2a is heated while controlling the heating amount of the heating device. Unlike , it does not require control and has a simple configuration.

第1実施形態のように温度調整部2bを蒸発器3よりも上流の排気管5で覆う場合には、第2実施形態と比較してバイパス管6の設置スペースが不要となるので省スペースである。第2実施形態のように温度調整部2bをバイパス管6で覆う場合には、第1実施形態と比較してバイパス管6を新たに設けるので、バイパス管6で覆われる温度調整部2bの範囲を比較的容易に大きくすることができる。 When the temperature control unit 2b is covered with the exhaust pipe 5 upstream of the evaporator 3 as in the first embodiment, the installation space for the bypass pipe 6 is not required as compared with the second embodiment, which saves space. be. When the temperature adjustment unit 2b is covered with the bypass pipe 6 as in the second embodiment, the bypass pipe 6 is newly provided compared to the first embodiment, so the range of the temperature adjustment unit 2b covered with the bypass pipe 6 can be increased relatively easily.

温度調整部2bの内壁面または外壁面にフィンを設けて、作動流体Wと排気Gの熱交換性能を向上させると好ましい。 It is preferable to improve the heat exchange performance between the working fluid W and the exhaust gas G by providing fins on the inner wall surface or the outer wall surface of the temperature control part 2b.

温度調整部2bの内壁面(外壁面)にフィンを複数個配置する場合、これらのフィンを作動流体W(排気G)の流れの方向に対して配置してもよいし、これらのフィンを温度調整部2bの同一断面に対して配置してもよい。あるいは、これらのフィンの配置を組み合わせてもよい。 When a plurality of fins are arranged on the inner wall surface (outer wall surface) of the temperature control unit 2b, these fins may be arranged in the direction of flow of the working fluid W (exhaust gas G), or these fins may be arranged in the direction of the flow of the working fluid W (exhaust gas G). You may arrange|position with respect to the same cross section of the adjustment part 2b. Alternatively, these fin arrangements may be combined.

温度調整部2bの内壁面または外壁面に対して、上記のフィンの配置を組み合わせてもよい。また、排気Gの流れの方向に対してフィンを複数個配置する場合は、上流側のフィンの表面積よりも下流側のフィンの表面積を大きくしてもよい。 The arrangement of the fins described above may be combined with the inner wall surface or the outer wall surface of the temperature control section 2b. Further, when a plurality of fins are arranged in the direction of flow of the exhaust gas G, the surface area of the fins on the downstream side may be larger than the surface area of the fins on the upstream side.

また、温度調整部2bの断面形状を通常の配管の断面形状(例えば円形状)よりも表面積の大きい形状(例えば花弁形状)とする。この構成によれば、比較的大きな排気Gの熱量が温度調整部2bの壁面を介して作動流体Wに伝熱されるので、作動流体Wと排気Gの熱交換性能を向上させることができる。 Moreover, the cross-sectional shape of the temperature control part 2b is set to a shape (for example, petal shape) having a larger surface area than the cross-sectional shape (for example, circular shape) of a normal pipe. According to this configuration, a relatively large amount of heat of the exhaust gas G is transferred to the working fluid W through the wall surface of the temperature adjustment part 2b, so the heat exchange performance between the working fluid W and the exhaust gas G can be improved.

第1実施形態のように、温度調整部2bを排気Gの通過方向に延在する配管2baと排気Gの径方向に延在する配管2bbで構成する場合には、配管2baの壁面の表面積が配管2bbの壁面の表面積より大きい構成にすると好ましい。例えば、配管2baの長さを配管2bbの長さよりも長くすることや、配管2baを少なくとも1回以上屈曲させた形状(折り返し形状、らせん形状等)にすることが好ましい。 As in the first embodiment, when the temperature control unit 2b is composed of the pipe 2ba extending in the passage direction of the exhaust gas G and the pipe 2bb extending in the radial direction of the exhaust gas G, the surface area of the wall surface of the pipe 2ba is It is preferable to make the structure larger than the surface area of the wall surface of the pipe 2bb. For example, it is preferable that the length of the pipe 2ba is longer than the length of the pipe 2bb, or that the pipe 2ba is bent at least once (folded shape, spiral shape, etc.).

このように構成することで、配管の外周部を通過する排気Gと比較して高温である配管の中央部を通過する排気Gと作動流体Wの熱交換を促進するので、作動流体Wの昇温を促進することができる。 By configuring in this way, heat exchange between the exhaust gas G passing through the central portion of the pipe and the working fluid W, which has a higher temperature than the exhaust gas G passing through the outer peripheral portion of the pipe, is promoted, so that the working fluid W rises. Can promote warmth.

1 ランキンサイクルシステム
2 作動流体用の流路(配管)
2a 蒸発器の出口と膨張器の入口の間の作動流体用の配管
2b 温度調整部
3 蒸発器
4 膨張器
4a 膨張器の出力軸
5 排気管
6 バイパス管
1 Rankine cycle system 2 Flow path (piping) for working fluid
2a Piping for working fluid between outlet of evaporator and inlet of expander 2b Temperature control section 3 Evaporator 4 Expander 4a Output shaft of expander 5 Exhaust pipe 6 Bypass pipe

Claims (1)

内燃機関の排気管を通過する排気と作動流体を熱交換させる蒸発器と、前記蒸発器で排気と熱交換した作動流体を膨張させて動力を出力する膨張器と、を備えて構成されるランキンサイクルシステムにおいて、
作動流体を内部に通過させる作動流体用配管における、前記蒸発器の出口と前記膨張器の入口の間の少なくとも一部である温度調整部は、前記蒸発器よりも上流で前記蒸発器での熱交換に使用される排気が通過する主流の排気管から分岐して前記蒸発器よりも下流の前記主流の排気管に合流することにより、前記蒸発器をバイパスするバイパス管に覆われていて、前記バイパス管を流れる排気と作動流体を熱交換させることにより、前記膨張器の入口を通過する作動流体の温度を前記蒸発器の出口を通過する作動流体の温度を超える温度にする構成を有するランキンサイクルシステム。
Rankine comprising: an evaporator for exchanging heat between a working fluid and exhaust gas passing through an exhaust pipe of an internal combustion engine; and an expander for expanding the working fluid heat-exchanged with the exhaust gas by the evaporator to output power. In the cycle system,
A temperature adjustment part, which is at least a part between an outlet of the evaporator and an inlet of the expander in the working fluid pipe through which the working fluid passes , is arranged upstream of the evaporator to control heat in the evaporator. It is covered with a bypass pipe that bypasses the evaporator by branching from the main exhaust pipe through which the exhaust gas used for replacement passes and joining the main exhaust pipe downstream of the evaporator, A Rankine cycle having a configuration in which the temperature of the working fluid passing through the inlet of the expander exceeds the temperature of the working fluid passing through the outlet of the evaporator by exchanging heat between the exhaust gas flowing through the bypass pipe and the working fluid. system.
JP2018184009A 2018-09-28 2018-09-28 Rankine cycle system Active JP7334405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018184009A JP7334405B2 (en) 2018-09-28 2018-09-28 Rankine cycle system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018184009A JP7334405B2 (en) 2018-09-28 2018-09-28 Rankine cycle system

Publications (2)

Publication Number Publication Date
JP2020051398A JP2020051398A (en) 2020-04-02
JP7334405B2 true JP7334405B2 (en) 2023-08-29

Family

ID=69996496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018184009A Active JP7334405B2 (en) 2018-09-28 2018-09-28 Rankine cycle system

Country Status (1)

Country Link
JP (1) JP7334405B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012522920A (en) 2009-03-25 2012-09-27 フォルシア システム デシャップマン Exhaust line for automobile with closed closed cycle for exhaust gas thermal energy, and accompanying control method
JP2012189059A (en) 2011-03-14 2012-10-04 Toyota Industries Corp Waste heat recovery apparatus
JP2017141692A (en) 2016-02-08 2017-08-17 トヨタ自動車株式会社 Waste heat recovery device
JP2018017204A (en) 2016-07-29 2018-02-01 いすゞ自動車株式会社 Rankine cycle system of vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012522920A (en) 2009-03-25 2012-09-27 フォルシア システム デシャップマン Exhaust line for automobile with closed closed cycle for exhaust gas thermal energy, and accompanying control method
JP2012189059A (en) 2011-03-14 2012-10-04 Toyota Industries Corp Waste heat recovery apparatus
JP2017141692A (en) 2016-02-08 2017-08-17 トヨタ自動車株式会社 Waste heat recovery device
JP2018017204A (en) 2016-07-29 2018-02-01 いすゞ自動車株式会社 Rankine cycle system of vehicle

Also Published As

Publication number Publication date
JP2020051398A (en) 2020-04-02

Similar Documents

Publication Publication Date Title
US7921640B2 (en) Exhaust gas waste heat recovery
JP5551508B2 (en) Control device for working fluid circulating in closed circuit operating according to Rankine cycle and method of using the same
JP5108462B2 (en) Heat recovery equipment
EP1801531A1 (en) Waste heat collecting apparatus
JP2008038807A (en) Gas turbine and transition piece
JP2013064583A (en) Vehicle heat exchanger
US11448098B2 (en) Arrangement for converting thermal energy from lost heat of an internal combustion engine
JP2009185773A (en) Exhaust heat utilization device
JP2013024543A (en) Heat exchanger, and heat pump heating device using the same
JP2015206359A (en) Fuel heating system for use with combined cycle gas turbine
JP7334405B2 (en) Rankine cycle system
KR20140100576A (en) Gas turbine
JP2018100616A (en) Rankine cycle system
JP4844600B2 (en) Exhaust heat recovery unit
JP4911127B2 (en) Internal combustion engine warm-up control system
BR112017000919B1 (en) PRESSURE WAVE SUPERFEEDER
JP5668318B2 (en) Vehicle cooling device
JP6350493B2 (en) Engine lubrication equipment
JP2018017204A (en) Rankine cycle system of vehicle
JP5984464B2 (en) Steam valve and steam turbine
KR101619532B1 (en) An engine exhaust steam withdrawal apparatus of vehicle
EP3066313B1 (en) Method for operating an internal combustion engine
JP5919668B2 (en) Cooling system
US10138790B2 (en) Heat recovery device of a vehicle and an assembly having the same
JP2017155672A (en) Liquid circulation system of vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230731

R150 Certificate of patent or registration of utility model

Ref document number: 7334405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150