JP7330257B2 - Annular member manufacturing method - Google Patents

Annular member manufacturing method Download PDF

Info

Publication number
JP7330257B2
JP7330257B2 JP2021209842A JP2021209842A JP7330257B2 JP 7330257 B2 JP7330257 B2 JP 7330257B2 JP 2021209842 A JP2021209842 A JP 2021209842A JP 2021209842 A JP2021209842 A JP 2021209842A JP 7330257 B2 JP7330257 B2 JP 7330257B2
Authority
JP
Japan
Prior art keywords
slice
annular member
hole
substrate
slices
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021209842A
Other languages
Japanese (ja)
Other versions
JP2022105482A (en
Inventor
立軍 同
歓慶 楊
瑞興 白
偉 鄭
亜雄 周
丁▲ウェン▼ 王
東剣 彭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xi'an Space Engine Co Ltd
Original Assignee
Xi'an Space Engine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xi'an Space Engine Co Ltd filed Critical Xi'an Space Engine Co Ltd
Publication of JP2022105482A publication Critical patent/JP2022105482A/en
Application granted granted Critical
Publication of JP7330257B2 publication Critical patent/JP7330257B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Laser Beam Processing (AREA)

Description

本発明は、付加製造の技術分野に関し、具体的には、挟層直溝環状部材の製造方法に関する。 TECHNICAL FIELD The present invention relates to the technical field of additive manufacturing, and more particularly to a method for manufacturing a narrow layer straight groove annular member.

レーザ溶融積層成形は、デジタル技術、製造技術、レーザ技術をまとめた先端製造技術として、従来の製造技術に比べて、金型の必要がなく、材料利用率が高く、総合機械特性に優れ、加工周期が短いなどの利点を有し、航空宇宙分野で幅広く使用されている。しかし、成形物の表面が粗く、サイズ精度が低いため、直接使用の要求を満たすことができない。特に、挟層直溝環状部材は、挟層直溝構造に加工欠陥が形成されやすく、次の処理を行うことができない。そのため、レーザ溶融積層成形とレーザ切断除去とを組み合わせた製造技術により挟層直溝環状部材全体の製造を行うことは大きい応用の見込みを有する。 Laser fused lamination molding is an advanced manufacturing technology that integrates digital technology, manufacturing technology, and laser technology. It has advantages such as a short period, and is widely used in the aerospace field. However, the surface of the molding is rough and the size accuracy is low, so it cannot meet the requirements of direct use. In particular, in the narrow layer straight groove annular member, processing defects are likely to be formed in the narrow layer straight groove structure, and the following processing cannot be performed. Therefore, the production of the entire narrow-layered straight-groove annular member by a manufacturing technique that combines laser fusion lamination molding and laser cutting removal has great potential for application.

挟層直溝環状部材は、現在鍛造+機械加工+溶接法により製造されており、鍛造品をブランクとして採用し、機械加工とフライス加工により流路構造を形成し、製造後に溶接することにより得られる。基体材料に比べ、溶接部の強度が低く、溶接部の割れ現象が頻繁に見られ、部材の信頼性が大きく低下する。 Narrow-layer straight-groove annular members are currently manufactured by forging, machining, and welding. be done. Compared to the base material, the strength of the weld zone is low, cracking of the weld zone is frequently observed, and the reliability of the member is greatly reduced.

本発明解が解決しようとする課題は、従来技術の不足を解決するために、挟層直溝環状部材の製造方法を提供することである。この方法により得られた環状部材は、性能が高く、サイズ精度が高く、低表面粗さが低いため、挟層直溝環状部材の製造に新しい方法を提供する。 The problem to be solved by the solution of the present invention is to provide a method for manufacturing a narrow-layer straight-groove annular member to overcome the deficiencies of the prior art. The annular members obtained by this method have high performance, high dimensional accuracy, and low surface roughness, thus providing a new method for the production of narrow layer straight groove annular members.

本発明の目的は以下の技術案により達成される。
挟層直溝環状部材の製造方法であって、
前記挟層直溝環状部材の形状は中空円柱状であり、前記挟層直溝環状部材の材料はステンレス鋼であり、前記挟層直溝環状部材の高さは600mm以上であり、前記挟層直溝環状部材の外径は600mm以上であり、前記挟層直溝環状部材の壁厚さは15~30mmであり、前記挟層直溝環状部材の内側壁には周方向に沿って複数の第1通孔が均等に分布し、前記第1通孔は前記挟層直溝環状部材の軸方向に沿って延在し、前記挟層直溝環状部材の第1通孔の断面の輪郭は前記挟層直溝環状部材の断面の一部であり、前記挟層直溝環状部材の前記第1通孔の径方向サイズは4~8mmであり、周方向角度は6~30°であり、
基板を提供し、前記基板の形状は中空円柱であり、前記基板の底端にはノッチが形成され、前記ノッチの数は前記挟層直溝環状部材の前記第1通孔の数に一致し、前記ノッチの位置は前記挟層直溝環状部材の前記第1通孔の位置に対応し、前記基板の内外径は成形される前記挟層直溝環状部材の内外径に一致し、
前記方法は、以下のステップを含み、
(1)モデリングソフトウェアPro/engineer又はUGにより成形される前記挟層直溝環状部材の三次元モデルを構築し、そして、前記挟層直溝環状部材の三次元モデルの外面に対して前記挟層直溝環状部材の三次元モデルの法線方向に沿って厚みを2~4mm増加させ、前記挟層直溝環状部材の三次元モデルの底部の長さを6~15mm増加させ、これによって前記基板を作製し、モデルを構築した後、前記挟層直溝環状部材の三次元モデルをSTL形式として導出し、導出精度は0.005mm以上であり、
(2)ステップ(1)で構築された前記挟層直溝環状部材の三次元モデルを前記挟層直溝環状部材の三次元モデルの軸方向に沿ってスライスし、N枚のスライスを取得し、Nが1より大きい正整数であり、1枚目のスライスは成形される前記挟層直溝環状部材の最底端であり、N枚目のスライスは成形される前記挟層直溝環状部材の最頂端であり、それぞれのスライスは第2通孔を有し、それぞれのスライスの厚みは0.5~1mmであり、
(3)ステップ(1)で作製された前記基板上に1枚目のスライスのレーザ溶融積層成形を行い、1枚目のスライスが成形された後、1枚目のスライス上に2枚目の前記スライスのレーザ溶融積層成形を行い、2枚目の前記スライスが成形された後、2枚目のスライス上に3枚目のスライスのレーザ溶融積層成形を行い、i枚の前記スライスの成形が完成するまで繰り返し、ここで、i=1,2,3...N-2であり、iが1以上の正整数であり、成形されたスライスの総厚みは1mm以上かつ3mm以下であり、
(4)ステップ(3)で得られたそれぞれのスライスの前記第2通孔が成形される前記挟層直溝環状部材の前記第1通孔のサイズと一致するように、ステップ(3)で得られたそれぞれのスライスの前記第2通孔に対してレーザ切断除去成形を行い、
(5)ステップ(4)で得られた前記スライス上にi+1枚目のスライスのレーザ溶融積層成形を行い、
(6)ステップ(5)で得られたi+1枚目のスライスの前記第2通孔が成形される前記挟層直溝環状部材の前記第1通孔のサイズと一致するように、ステップ(5)で得られたi+1枚目のスライスの前記第2通孔に対してレーザ切断除去成形を行い、
(7)ステップ(6)で得られたi+1枚目のスライス上にi+2枚目のスライスのレーザ溶融積層成形を行い、
(8)ステップ(7)で得られたi+2枚目のスライスの前記第2通孔が成形される前記挟層直溝環状部材の前記第1通孔のサイズと一致するように、ステップ(7)で得られたi+2枚目のスライスの前記第2通孔に対してレーザ切断除去成形を行い、
上記のように繰り返し、
(9)ステップ(8)で得られたi+2枚目のスライス上にN枚目のスライスのレーザ溶融積層成形を行い、
(10)N枚目のスライスの前記第2通孔が成形される前記挟層直溝環状部材の前記第1通孔のサイズと一致するように、ステップ(9)で得られたN枚目のスライスの前記第2通孔に対してレーザ切断除去成形を行い、
(11)ステップ(10)で得られたそれぞれのスライス及び前記基板をアニール処理し、アニール処理後に、前記基板及び前記スライスを分離し、それぞれのスライスと前記基板との分離を完成し、
アニール処理の温度は450℃~560℃であり、450℃~560℃の条件下でそれぞれのスライス及び前記基板を4~6時間保温し、そして保温後のそれぞれの前記スライス及び前記基板を空冷し、
ワイヤカットにより前記基板及び前記スライスを分離し、前記ワイヤカットのパラメータは、前記ワイヤカットを行うパルス波形:矩形、パルス幅:25μs~50μs、パルス間隔:15μs~250μs、電流:3A~6Aであり、
(12)ステップ(11)で分離されたそれぞれのスライスを熱処理し、成形される前記挟層直溝環状部材全体の製造を完成し、前記挟層直溝環状部材を得る、製造方法。
The object of the present invention is achieved by the following technical proposals.
A method for manufacturing a narrow layer straight groove annular member, comprising:
The shape of the pinch layer straight groove annular member is a hollow columnar shape, the material of the pinch layer straight groove annular member is stainless steel, the height of the pinch layer straight groove annular member is 600 mm or more, and the pinch layer The outer diameter of the straight grooved annular member is 600 mm or more, the wall thickness of the narrow layered straight grooved annular member is 15 to 30 mm, and the inner wall of the narrowed layered straight grooved annular member has a plurality of grooves along the circumferential direction. The first through holes are evenly distributed, the first through holes extend along the axial direction of the narrow layer straight groove annular member, and the cross-sectional profile of the first through holes of the narrow layer straight groove annular member is The first through hole of the narrow layer straight grooved annular member, which is a part of the cross section of the narrow layered straight grooved annular member, has a radial size of 4 to 8 mm and a circumferential angle of 6 to 30°,
providing a substrate, the shape of the substrate being a hollow cylinder, the bottom end of the substrate being formed with notches, the number of the notches being equal to the number of the first through holes of the narrow-layer straight-groove annular member; , the position of the notch corresponds to the position of the first through hole of the narrow layer straight groove annular member, the inner and outer diameters of the substrate match the inner and outer diameters of the narrow layer straight groove annular member to be formed,
The method includes the steps of:
(1) Build a three-dimensional model of the narrow layer straight groove annular member formed by modeling software Pro/engineer or UG, and apply the narrow layer to the outer surface of the three-dimensional model of the narrow layer straight groove annular member. The thickness is increased by 2 to 4 mm along the normal direction of the three-dimensional model of the straight groove annular member, and the length of the bottom of the three-dimensional model of the narrow layer straight groove annular member is increased by 6 to 15 mm, whereby the substrate After constructing a model, a three-dimensional model of the narrow layer straight groove annular member is derived as an STL format, and the derivation accuracy is 0.005 mm or more,
(2) Slice the three-dimensional model of the narrow layer straight groove annular member constructed in step (1) along the axial direction of the three-dimensional model of the narrow layer straight groove annular member to obtain N slices. , N is a positive integer greater than 1, the first slice is the bottom end of the narrow layer straight groove annular member to be formed, and the Nth slice is the narrow layer straight groove annular member to be formed. each slice has a second through hole, the thickness of each slice is 0.5 to 1 mm,
(3) Perform laser fusion lamination molding of a first slice on the substrate produced in step (1), and after the first slice is molded, a second slice is formed on the first slice. After the second slice is molded by laser fusion lamination molding of the slices, the laser fusion lamination molding of the third slice is performed on the second slice, and the i slices are molded. Repeat until completed, where i = 1, 2, 3 ... N-2, i is a positive integer greater than or equal to 1, and the total thickness of the formed slice is greater than or equal to 1 mm and less than or equal to 3 mm;
(4) in step (3), such that the second through hole of each slice obtained in step (3) matches the size of the first through hole of the narrow layer straight groove annular member to be formed; performing laser cutting removal molding on the second through-holes of the obtained slices;
(5) performing laser fusion lamination molding of the (i+1)th slice on the slice obtained in step (4);
(6) step (5) so that the second through hole of the i+1th slice obtained in step (5) matches the size of the first through hole of the narrow layer straight groove annular member to be formed; ), laser cutting removal molding is performed on the second through-hole of the i+1 slice obtained in ),
(7) performing laser fusion lamination molding of the (i+2)th slice on the (i+1)th slice obtained in step (6);
(8) step (7) so that the second through hole of the (i+2)th slice obtained in step (7) matches the size of the first through hole of the narrow layer straight groove annular member to be formed; ), laser cutting removal molding is performed on the second through-hole of the i+2 slice obtained in ),
Repeat as above,
(9) performing laser fusion lamination molding of the N-th slice on the (i+2)-th slice obtained in step (8);
(10) Nth slice obtained in step (9) so that the size of the second through hole of the Nth slice matches the size of the first through hole of the narrow layer straight groove annular member to be formed. Laser cutting removal molding is performed on the second through hole of the slice of
(11) annealing each slice obtained in step (10) and the substrate, separating the substrate and the slice after annealing, completing the separation of each slice and the substrate;
The temperature of the annealing treatment is 450° C. to 560° C., and the slices and the substrate are kept at 450° C. to 560° C. for 4 to 6 hours, and the slices and the substrate are air-cooled after the heat retention. ,
The substrate and the slice are separated by wire cutting, and the parameters of the wire cutting are pulse waveform for wire cutting: rectangular, pulse width: 25 μs to 50 μs, pulse interval: 15 μs to 250 μs, current: 3 A to 6 A. ,
(12) A manufacturing method, wherein each slice separated in step (11) is heat-treated to complete the production of the entire narrow layered straight grooved annular member to be formed, thereby obtaining the narrowed layered straight grooved annular member.

レーザ溶融積層成形プロセスのパラメータは、レーザパワー:2600W~3000W、レーザスポットサイズ:3~6mm、走査速度:800mm/min~1100mm/min、走査ピッチ:2mm~2.5mm、粉末供給量:20g/min~30g/min、各層の厚み:0.5mm~1mmである。 The parameters of the laser fusion lamination molding process are: laser power: 2600 W to 3000 W, laser spot size: 3 to 6 mm, scanning speed: 800 mm/min to 1100 mm/min, scanning pitch: 2 mm to 2.5 mm, powder feeding amount: 20 g/ min to 30 g/min, thickness of each layer: 0.5 mm to 1 mm.

レーザ除去成形プロセスのパラメータは、レーザパワー:2600W~3000W、レーザスポットサイズ:0.2~0.8mm、走査速度:600mm/min~1500mm/min、補助ガス圧力:0.6Mpa~1.8Mpa、レーザ除去成形過程に使用される不活性ガス、例えば、アルゴンガスを用いて保護し、酸素含有量が1000PPM未満に要求される。 The parameters of the laser ablation molding process are laser power: 2600W-3000W, laser spot size: 0.2-0.8mm, scanning speed: 600mm/min-1500mm/min, auxiliary gas pressure: 0.6Mpa-1.8Mpa, An inert gas used in the laser ablation molding process, such as argon gas, is used for protection, and the oxygen content is required to be less than 1000 PPM.

分離されたそれぞれのスライスを熱処理する際に、分離されたそれぞれの前記スライスに対して順に固溶化処理、低温処理及び焼戻し処理を行う。 When heat-treating each of the separated slices, each of the separated slices is sequentially subjected to solution treatment, low-temperature treatment, and tempering.

分離されたそれぞれのスライスを固溶化処理する際に、圧力が10-3Pa以下であり、温度が1050℃~1130℃であり、保温時間が2~4時間であり、不活性ガスを補充して保温後のそれぞれのスライスを冷却する。 When each separated slice is solution treated, the pressure is 10 −3 Pa or less, the temperature is 1050° C. to 1130° C., the heat retention time is 2 to 4 hours, and inert gas is replenished. Cool each slice after incubation.

固溶化処理されたそれぞれのスライスを低温処理する際に、温度が-70℃~-80℃であり、保温時間が3.5-4.5時間であり、保温後のそれぞれのスライスを室温に回復させる。 When each solution treated slice is cold treated, the temperature is -70 ° C to -80 ° C, the incubation time is 3.5-4.5 hours, and each slice is cooled to room temperature after incubation. recover.

低温処理されたそれぞれのスライスを焼戻し処理する際に、温度が250℃~320℃であり、保温時間が3-6時間であり、保温後のそれぞれのスライスを室温に空冷する。 When tempering each low-temperature treated slice, the temperature is 250° C.-320° C., the incubation time is 3-6 hours, and each slice is air-cooled to room temperature after the incubation.

本発明は、従来技術に比べて以下の有益な効果を有する。
(1)レーザ付加・除去により挟層直溝環状部材の全体を製造し、三次元モデルにより挟層直溝環状部材の高精度のニアネットシェイプ成形を達成し、レーザ溶融積層成形の応用範囲を大幅に広め、鍛造+機械加工+溶接法に比べ、周期が半分以上減少され、1台のレーザ付加・除去設備だけで成形プロセス全体を完成できるため、コストが大幅に削減される。
The present invention has the following beneficial effects over the prior art.
(1) Manufacture the entire narrow layer straight groove annular member by laser addition and removal, achieve high-precision near net shape molding of the narrow layer straight groove annular member with a three-dimensional model, and expand the application range of laser fusion lamination molding. Compared with the forging + machining + welding method, the cycle is reduced by more than half, and the entire forming process can be completed with only one laser addition/removal equipment, which greatly reduces the cost.

(2)レーザ溶融積層成形により全体的に製造された挟層直溝環状部材は、内部にマクロ偏析がなく、異なる部位の組織構造に明らかな違いがなく、内部組織の結晶粒が微細であり、機械的特性に優れ、鍛造基準の要求を完全に満たすことができる。 (2) The narrow-layered straight-groove annular member manufactured entirely by laser fusion lamination molding has no internal macrosegregation, no apparent difference in the structure of different parts, and fine grains in the internal structure. , has excellent mechanical properties and can fully meet the requirements of forging standards.

(3)本発明は挟層直溝環状部材の製造方法を開示する。この方法は、以下のステップを含む。即ち、レーザ溶融積層成形に適用される挟層直溝環状部材の三次元モデルを構築すし、材料の特性に応じてスライスソフトウェアプラットフォームにおけるレーザ溶融積層成形のプロセスパラメータ及びレーザ切断除去製造のプロセスパラメータを設定し、成長方向を確定した後、挟層直溝環状部材の三次元モデルを配置し、それを設定されたスライスソフトウェアプラットフォームに導入してスライス処理を行い、不活性ガスの保護下で付加・除去製造を行い、成形終了後にチャンバ内の粉末を回収し、分離していないそれぞれのスライス及び基板をアニール処理し、ワイヤカットにより基板とそれぞれのスライスを分離し、分離されたそれぞれのスライスを最終熱処理し、最終的な挟層直溝環状部材を得る。本発明で得られた挟層直溝環状部材は性能が高く、低表面粗さが低く、成形精度が高く、挟層直溝環状部材の最終的な製造のために新しい方法を提供する。 (3) The present invention discloses a method for manufacturing a narrow layer straight groove annular member. This method includes the following steps. That is, a three-dimensional model of a narrow-layer straight-groove annular member applied to laser fusion lamination molding is constructed, and the process parameters of laser fusion lamination molding and laser cutting removal manufacturing process parameters are set in the slice software platform according to the characteristics of the material. After setting and determining the growth direction, the three-dimensional model of the narrow-layered straight-groove annular member is placed, and it is introduced into the configured slicing software platform for slicing, adding and applying under the protection of inert gas. Removal manufacturing is performed, the powder in the chamber is recovered after molding is completed, each unseparated slice and substrate are annealed, the substrate and each slice are separated by wire cutting, and each separated slice is finally processed. Heat treatment is performed to obtain the final narrow layer straight grooved annular member. The narrow layer straight groove annular member obtained in the present invention has high performance, low surface roughness, high forming accuracy, and provides a new method for the final production of the narrow layer straight groove annular member.

以下の好ましい実施形態の記載により、様々な他の利点及び優位性は当業者にとって明確になる。図面は好ましい実施形態のみを示しており、本発明を制限するものではない。図面全体において、同じ符号で同じ部品を表す。 Various other advantages and advantages will become apparent to those skilled in the art from the following description of preferred embodiments. The drawings show only preferred embodiments and do not limit the invention. Like numbers refer to like parts throughout the drawings.

本発明の実施例で提供される挟層直溝環状部材の三次元モデルの模式図である。FIG. 3 is a schematic diagram of a three-dimensional model of a narrow layer straight groove annular member provided in an embodiment of the present invention; 本発明の実施例で提供される挟層直溝環状部材の三次元モデルの別の模式図である。FIG. 4 is another schematic diagram of a three-dimensional model of a narrow layer straight groove annular member provided in an embodiment of the present invention; 本発明の実施例で提供される挟層直溝環状部材の成形態様の模式図である。FIG. 4 is a schematic diagram of a forming mode of a narrow-layer straight-groove annular member provided in an embodiment of the present invention; 本発明の実施例で提供される挟層直溝環状部材の成形態様の別の模式図である。FIG. 4 is another schematic view of the forming mode of the narrow-layer straight-groove annular member provided in the embodiment of the present invention; 本発明の実施例で提供される挟層直溝環状部材の成形に使用される基板の模式図である。FIG. 2 is a schematic diagram of a substrate used to form a narrow layer straight groove annular member provided in an embodiment of the present invention; 本発明の実施例で提供される挟層直溝環状部材の成形に使用される基板の別の模式図である。FIG. 4 is another schematic diagram of a substrate used to form a narrow layer straight groove annular member provided in an embodiment of the present invention;

以下、図面を参照しながら本発明の例示的な実施例を詳しく説明する。図面に本発明の例示的な実施例が示されるが、様々な態様で発明を実施することができ、本明細書に記載の実施例に制限されないことが理解され得る。また、これらの実施例は、本発明をより良く理解し、本発明の範囲を完全に当業者に伝えるためのものである。矛盾しない限り、本発明の実施例及び実施例における特徴は互いに組み合わせることができる。以下、図面及び実施例により本発明を詳しく説明する。 Exemplary embodiments of the invention are described in detail below with reference to the drawings. While the drawings illustrate illustrative embodiments of the invention, it will be appreciated that the invention can be embodied in many different forms and is not limited to the embodiments set forth herein. Rather, these examples are provided so that the invention may be better understood, and to fully convey the scope of the invention to those skilled in the art. Embodiments of the invention and features in embodiments can be combined with each other unless inconsistent. The present invention will be described in detail below with reference to drawings and examples.

本実施例は、挟層直溝環状部材の製造方法を提供する。図1a、図1b、図2a、図2b、図3a、図3bに示すように、この方法は以下のステップを含む。
(1)レーザ溶融積層成形に適用される挟層直溝環状部材の三次元モデルを構築する。
(2)スライスソフトウェアプラットフォームにおけるレーザ溶融積層成形のプロセスパラメータ及びレーザ切断除去製造のプロセスパラメータを設定する。
(3)成長方向を確定した後、挟層直溝環状部材の三次元モデルを配置し、挟層直溝環状部材の三次元モデルを設定されたスライスソフトウェアプラットフォームに導入してスライス処理を行う。
(4)不活性ガスの保護下で、スライス処理された挟層直溝環状部材の三次元モデルを付加・除去成形する。
(5)成形終了後、チャンバ内の粉末を回収し、分離していない挟層直溝環状部材及び基板をアニール処理する。
(7)ワイヤカットにより基板と挟層直溝環状部材とを分離する。
(8)挟層直溝環状部材を最終熱処理する。
This embodiment provides a method of manufacturing a narrow layer straight groove annular member. As shown in FIGS. 1a, 1b, 2a, 2b, 3a, 3b, the method includes the following steps.
(1) Construct a three-dimensional model of a narrow-layer straight-groove annular member that is applied to laser fused lamination molding.
(2) setting the process parameters of laser fused lamination molding and laser cutting ablation manufacturing in the slicing software platform;
(3) After the growth direction is determined, the three-dimensional model of the narrow layer straight groove annular member is arranged, and the three-dimensional model of the narrow layer straight groove annular member is introduced into the set slicing software platform for slicing.
(4) Under the protection of an inert gas, add-subtract a three-dimensional model of the sliced narrow-layer straight-slot annular member.
(5) After the molding is completed, the powder in the chamber is recovered, and the unseparated narrow-layer straight-groove annular member and substrate are annealed.
(7) Separate the substrate from the narrow layer straight groove annular member by wire cutting.
(8) Final heat treatment of the straight-groove annular member.

ステップ(1)において、モデリングソフトウェアPro/engineer又はUGにより挟層直溝環状部材の三次元モデルを設計する。挟層直溝環状部材の三次元モデルの外面全体に対して、挟層直溝環状部材の三次元モデル法線方向に沿って2mmの厚み取り代(machining allowance)を増加し、挟層直溝環状部材の三次元モデルの下面全体に対して平坦化処理を行い、6mmの底部取り代を添加する。モデル構築した後、挟層直溝環状部材の三次元モデルをSTL形式として導出する。導出精度は0.005mm以上である。具体的には、図2a、図2bに示す挟層直溝環状部材を描く。環壁の厚みは17mm,挟層直溝環状部材の厚みは4mmであり、幅面全体はサイズが600mm×600mmのフレーム枠であり、成長方向の高さは606mmである。 In step (1), a three-dimensional model of the narrow layer straight groove annular member is designed by modeling software Pro/engineer or UG. A machining allowance of 2 mm is increased along the normal direction of the three-dimensional model of the narrow layer straight groove annular member for the entire outer surface of the three-dimensional model of the narrow layer straight groove annular member, and the narrow layer straight groove is formed. The entire lower surface of the three-dimensional model of the annular member is flattened and a bottom machining allowance of 6 mm is added. After constructing the model, a three-dimensional model of the narrow-layer straight-groove annular member is derived in STL format. The derivation accuracy is 0.005 mm or more. Specifically, the narrow layer straight groove annular member shown in Figures 2a and 2b is depicted. The thickness of the annular wall is 17 mm, the thickness of the narrow layer straight groove annular member is 4 mm, the entire width surface is a frame with a size of 600 mm×600 mm, and the height in the growing direction is 606 mm.

ステップ(2)において、スライスソフトウェアプラットフォームを設定する際に、高強度ステンレス鋼材料の特性に応じてスライスソフトウェアプラットフォームにおけるレーザ溶融積層成形のプロセスパラメータ及びレーザ切断除去製造のプロセスパラメータを設定する。レーザ溶融積層成形プロセスパラメータは、レーザパワー2600W~3000W、レーザスポットサイズ4~6mm、走査速度800mm/min~1100mm/min、走査ピッチ2mm~2.5mm、粉末供給量20g/min~30g/min、ザスポットサイズ0.2~0.8mm、走査速度600mm/min~1500mm/min、補助ガス圧力0.6Mpa~1.8Mpaである。走査する際に、まずスライス領域の輪郭部分を走査し、さらに「之」字状で内部充填領域を走査し、層間の位相角は90°であり、1層の領域を走査した後、レーザ溶融積層用の粉末フィーダーをオフにし、補助ガススイッチをオンにし、挟層直溝のレーザ切断を行う。切断終了後、補助ガススイッチをオフにし、粉末フィーダーを起動し、次の層のレーザ溶融積層成形を行う。挟層直溝環状部材の初期成形段階では、直溝のレーザ切断を行わず、部品が高さ1mm以上に成形した後、直溝のレーザ切断とレーザ溶融積層成形とを組み合わせて実行する。 In step (2), when setting up the slicing software platform, set the process parameters of laser fused deposition molding and laser cutting ablation manufacturing in the slicing software platform according to the characteristics of the high-strength stainless steel material. The laser melting lamination molding process parameters are laser power 2600W-3000W, laser spot size 4-6mm, scanning speed 800mm/min-1100mm/min, scanning pitch 2mm-2.5mm, powder feeding amount 20g/min-30g/min, The spot size is 0.2 to 0.8 mm, the scanning speed is 600 mm/min to 1500 mm/min, and the auxiliary gas pressure is 0.6 Mpa to 1.8 Mpa. When scanning, the outline of the sliced area is first scanned, and then the inner filling area is scanned in the shape of a square. The phase angle between the layers is 90°. The powder feeder for lamination is turned off, the auxiliary gas switch is turned on, and laser cutting of the narrow layer straight groove is performed. After the cutting is finished, the auxiliary gas switch is turned off, the powder feeder is activated, and the next layer is laser-fused lamination-molded. In the initial forming stage of the narrow-layer straight-groove annular member, straight-groove laser cutting is not performed.

ステップ(3)において、取り代が添加された挟層直溝環状部材のモデルを三次元モデル処理ソフトウェアに導入し、図2a、図2bに示すように、モデルの成長方向(即ち、Z方向)を調整し、モデルの配置位置と基板の実際配置位置とを一致させ、モデルと基板とのX軸及びY軸方向における一致精度を±0.15に制御し、スライスソフトウェアプラットフォームに導入して剖切を行い、加工プログラムを取得する。 In step (3), the model of the narrow layer straight groove annular member with the machining allowance is introduced into the three-dimensional model processing software, and the growth direction (that is, the Z direction) of the model is shown in FIGS. 2a and 2b. to match the placement position of the model and the actual placement position of the substrate, control the matching accuracy between the model and the substrate in the X-axis and Y-axis directions to ±0.15, and introduce it into the slice software platform for autopsy. to obtain the machining program.

ステップ(4)において、不活性ガスはアルゴンガスであり、成形過程における雰囲気の酸素含有量は1000PPM未満に要求される。設備洗浄機能を起動し、成形チャンバ内における雰囲気の酸素含有量が1000PPM未満になった後、レーザ機能を起動して付加・除去成形を始める。成形過程において成形チャンバ内の酸素含有量が常に1000PPM未満であるようにアルゴンガスを継続的に供給し続ける。 In step (4), the inert gas is argon gas, and the oxygen content in the atmosphere during the molding process is required to be less than 1000PPM. After the facility cleaning function is activated and the oxygen content of the atmosphere in the molding chamber is less than 1000 PPM, the laser function is activated to begin the add-remove molding. Argon gas is continuously supplied so that the oxygen content in the molding chamber is always less than 1000 PPM during the molding process.

ステップ(5)において、挟層直溝環状部材のレーザ付加・除去製造が完成した後、挟層直溝環状部材を4時間以上冷却してからチャンバドアを開けて挟層直溝環状部材を取り出す。挟層直溝環状部材を取り出した後、挟層直溝環状部材及び基板上の粉末を回収し、分離していない挟層直溝環状部材と基板を同時にアニール熱処理する。アニール処理の方法は、450℃~560℃で4~6時間保温し、空冷することである。 In step (5), after the laser addition/removal manufacturing of the narrow layer straight groove annular member is completed, the narrow layer straight groove annular member is cooled for at least 4 hours, and then the chamber door is opened to take out the narrow layer straight groove annular member. . After the narrow layer straight groove annular member is taken out, the powder on the narrow layer straight groove annular member and the substrate is collected, and the unseparated narrow layer straight groove annular member and the substrate are subjected to annealing heat treatment at the same time. Annealing treatment is carried out at 450° C. to 560° C. for 4 to 6 hours followed by air cooling.

ステップ(6)において、高速往復ワイヤ放電加工により基板と挟層直溝環状部材をワイヤカットして分離する。分離過程において、高速往復ワイヤが基板面に密接することを確保する。ワイヤカットパラメータは、ワイヤカット装置のパルス波形:矩形、パルス幅:25μs~50μs、パルス間隔:15μs~250μs、電流:3A~6Aである。 In step (6), the substrate and the narrow-layer straight-groove annular member are wire-cut and separated by high-speed reciprocating wire electric discharge machining. Ensure that the high-speed reciprocating wire is in close contact with the substrate surface during the separation process. The wire cutting parameters are the pulse waveform of the wire cutting device: rectangular, pulse width: 25 μs to 50 μs, pulse interval: 15 μs to 250 μs, current: 3 A to 6 A.

ステップ(7)において、挟層直溝環状部材を最終熱処理する。(a)固溶化処理:圧力が10-3Pa以下の真空環境、温度が1050℃~1130℃の条件下で挟層直溝環状部材を2~4時間保温し、不活性ガスを導入して保温された挟層直溝環状部材を冷却する。(b)低温処理:温度が-70℃~-80℃の条件下で、固溶化処理された上記挟層直溝環状部材を4時間±30分間保温し、そして、保温後の挟層直溝環状部材を室温に回復させる。(c)焼戻し処理:温度が250℃~320℃の条件下で、低温処理された挟層直溝環状部材を3~6時間保温し、そして、保温後の挟層直溝環状部材を室温に空冷する。 In step (7), the narrow layer straight grooved annular member is subjected to a final heat treatment. (a) Solution treatment: In a vacuum environment with a pressure of 10 −3 Pa or less and a temperature of 1050° C. to 1130° C., the pinched layer straight groove annular member is kept warm for 2 to 4 hours, and an inert gas is introduced. The heat-insulated narrow layer straight groove annular member is cooled. (b) Low-temperature treatment: The solution-treated narrow-layer straight groove annular member is kept at a temperature of -70°C to -80°C for 4 hours ± 30 minutes, and the narrow-layer straight groove after heat retention. Allow the annular member to return to room temperature. (c) Tempering treatment: The narrow layer straight groove annular member subjected to the low temperature treatment is kept at a temperature of 250°C to 320°C for 3 to 6 hours. Air cool.

実施例
高強度ステンレス鋼挟層直溝環状部材の製造方法により製造された挟層直溝環状部材は中空円柱状であり、挟層直溝環状部材の材料が0Cr13NiCoMoステンレス鋼であり、挟層直溝環状部材の高さが600mm、外径が600mm、壁厚さが15mmである。挟層直溝の環状の内側壁には周方向に沿って第1通孔が均等に分布する。第1通孔は、挟層直溝環状部材の軸方向に沿って延在する。第1通孔の断面は挟層直溝環状部材の断面の一部である。第1通孔の径方向サイズは4mm以内であり、周方向角度は6°である。第1通孔の数は30個である。この方法で使用される基板は中空円柱状であり、基板の底端にはノッチが形成され、ノッチの数が挟層直溝環状部材の第1通孔の数と同じである。ノッチの位置は挟層直溝環状部材の第1通孔位置に対応する。このノッチは、成形過程中で落ちた金属粉末が基板から排出されるためのものである。基板の内外径は成形される挟層直溝環状部材の内外径に一致する。
Example The narrow layer straight groove annular member manufactured by the manufacturing method of the high strength stainless steel narrow layer straight groove annular member has a hollow cylindrical shape, and the material of the narrow layer straight groove annular member is 0 3 Cr 13 Ni 5 Co 9 Mo. 5 stainless steel, the height of the narrow layer straight groove annular member is 600 mm, the outer diameter is 600 mm, and the wall thickness is 15 mm. The first through holes are evenly distributed along the circumferential direction on the annular inner wall of the narrow layer straight groove. The first through hole extends along the axial direction of the narrow layer straight groove annular member. The cross section of the first through hole is a part of the cross section of the narrow layer straight groove annular member. The radial size of the first through hole is 4 mm or less, and the circumferential angle is 6°. The number of first through holes is 30. The substrate used in this method has a hollow cylindrical shape, and notches are formed at the bottom end of the substrate, and the number of notches is the same as the number of first through holes of the narrow layer straight groove annular member. The position of the notch corresponds to the position of the first through hole of the narrow layer straight groove annular member. This notch is for the metal powder that falls out during the molding process to escape from the substrate. The inner and outer diameters of the substrate correspond to the inner and outer diameters of the narrow layer straight groove annular member to be molded.

上記方法は以下のステップを含む。
(1)モデリングソフトウェアPro/engineerを用いて成形される挟層直溝環状部材の三次元モデルを構築する。挟層直溝環状部材の三次元モデルの外面に対して挟層直溝環状部材の三次元モデルの法線方向に沿って厚みを2mm増加させる。法線方向は軸方向に垂直である。挟層直溝環状部材の三次元モデルの底部に対して6mmの長さ取り代を添加する。これによって、基板を作製する。モデルを構築した後、挟層直溝環状部材の三次元モデルをSTL形式として導出する。導出精度は0.005mm以上である。
(2)ステップ(1)で構築された挟層直溝環状部材の三次元モデルを軸方向に沿ってスライスし、100枚のスライスを得る。1枚目のスライスを成形される部材の最底端とし、100枚目のスライスを成形される部材の最頂端とし、それぞれのスライスの厚みを0.5mmとする。
(3)ステップ(1)で作製された基板上に1枚目のスライスのレーザ溶融積層成形を行い、1枚目のスライスが成形された後、1枚目のスライス上に2枚目のスライスのレーザ溶融積層成形を行い、この場合、成形後のスライスの総厚みは1mmとなる。
(4)ステップ(3)で得られたそれぞれのスライスの第2通孔に対してレーザ切断除去成形を行う。スライスに成形された第2通孔のサイズは成形される挟層直溝環状部材の第1通孔のサイズよりも小さいため、それぞれのスライスの第2通孔は成形される挟層直溝環状部材の第1通孔のサイズと一致する。
(5)ステップ(4)で得られた2枚目のスライス上に3枚目のスライスのレーザ溶融積層成形を行う。
(6)3枚目のスライスの第2通孔が成形される挟層直溝環状部材の第1通孔のサイズと一致するように、ステップ(5)で得られた3枚目のスライス上の第2通孔に対してレーザ切断除去成形を行う。
(7)ステップ(6)で得られた3枚目のスライス上に4枚目のスライスのレーザ溶融積層成形を行う。
(8)4枚目のスライスの第2通孔が成形される挟層直溝環状部材の第1通孔のサイズと一致するように、ステップ(7)で得られた4枚目のスライスの第2通孔に対してレーザ切断除去成形を行う。
99枚目のスライスが成形されるまで上記のように繰り返す。
(9)ステップ(8)で得られた99枚目のスライス上に100枚目のスライスのレーザ溶融積層成形を行う。
(10)100枚目のスライスの第2通孔が成形される挟層直溝環状部材の第1通孔のサイズと一致するように、ステップ(9)で得られた100枚目のスライスの第2通孔に対してレーザ切断除去成形を行う。
(11)ステップ(10)で得られたそれぞれのスライス及び基板に対してアニール処理を行う。アニール処理した後、基板と1枚目のスライスを分離する。
アニール処理の温度は450℃である。450℃の条件下でそれぞれのスライス及び基板を6時間保温し、そして保温後のそれぞれのスライス及び基板を空冷する。
ワイヤカットにより基板と上記スライスを分離する。ワイヤカットを行う装置のパラメータは、パルス波形:矩形、パルス幅:25μs、パルス間隔:15μs、電流:3Aである。
(12)ステップ(11)で分離したそれぞれのスライスを熱処理し、成形される挟層直溝環状部材全体の製造を完成し、挟層直溝環状部材を得る。
The method includes the following steps.
(1) Construct a three-dimensional model of the narrow layer straight groove annular member to be molded using the modeling software Pro/engineer. The thickness is increased by 2 mm along the normal direction of the three-dimensional model of the narrow layer straight groove annular member with respect to the outer surface of the three-dimensional model of the narrow layer straight groove annular member. The normal direction is perpendicular to the axial direction. A 6 mm length machining allowance is added to the bottom of the three-dimensional model of the narrow layer straight groove annular member. Thus, a substrate is produced. After building the model, a three-dimensional model of the narrow layer straight groove annular member is derived in STL format. The derivation accuracy is 0.005 mm or more.
(2) Slicing the three-dimensional model of the narrow layer straight groove annular member constructed in step (1) along the axial direction to obtain 100 slices. The first slice is the bottommost edge of the molded member, the 100th slice is the topmost edge of the molded member, and the thickness of each slice is 0.5 mm.
(3) Perform laser fusion lamination forming of the first slice on the substrate produced in step (1), and after the first slice is formed, the second slice is formed on the first slice. In this case, the total thickness of the slice after molding is 1 mm.
(4) Laser cutting removal molding is performed on the second through hole of each slice obtained in step (3). Since the size of the second through hole formed in the slice is smaller than the size of the first through hole of the formed narrow layer straight groove annular member, the second through hole of each slice is formed in the formed narrow layer straight groove annular member. It matches the size of the first through hole of the member.
(5) laser fusion lamination molding of the third slice on the second slice obtained in step (4);
(6) On the third slice obtained in step (5), so that the second through hole of the third slice matches the size of the first through hole of the narrow layer straight groove annular member to be formed. Laser cutting removal molding is performed on the second through hole of .
(7) laser fusion lamination molding of the fourth slice on the third slice obtained in step (6);
(8) The fourth slice obtained in step (7) is shaped so that the second through hole of the fourth slice matches the size of the first through hole of the narrow layer straight groove annular member to be formed. Laser cutting removal molding is performed on the second through hole.
Repeat as above until the 99th slice is formed.
(9) Laser fusion lamination molding of the 100th slice is performed on the 99th slice obtained in step (8).
(10) The 100th slice obtained in step (9) is adjusted so that the second through hole of the 100th slice matches the size of the first through hole of the narrow layer straight groove annular member to be formed. Laser cutting removal molding is performed on the second through hole.
(11) Annealing is performed on each slice and substrate obtained in step (10). After annealing, the substrate and the first slice are separated.
The annealing temperature is 450°C. Each slice and substrate are kept at 450° C. for 6 hours, and each slice and substrate are air-cooled after the keeping.
A wire cut separates the substrate from the slice. The parameters of the device for wire cutting are: pulse waveform: rectangular, pulse width: 25 μs, pulse interval: 15 μs, current: 3A.
(12) Each slice separated in step (11) is heat-treated to complete the production of the entire narrow layer straight groove annular member to be formed, thereby obtaining a narrow layer straight groove annular member.

レーザ溶融積層成形プロセスのパラメータは、レーザパワー:2600W、レーザスポットサイズ:3mm。走査速度:800mm/min、走査ピッチ:2mm、粉末供給量:20g/min、各層の厚み:0.5mmである。 The parameters of the laser fused lamination molding process are laser power: 2600 W, laser spot size: 3 mm. Scanning speed: 800 mm/min, scanning pitch: 2 mm, powder supply amount: 20 g/min, thickness of each layer: 0.5 mm.

レーザ除去成形プロセスのパラメータは、レーザパワー:2600W、レーザスポットサイズ:0.2mm、走査速度:600mm/min、補助ガス圧力:0.6Mpaである。レーザ除去成形の過程において不活性ガス、例えば、アルゴンガスを用いて保護し、酸素含有量が1000PPM未満に要求される。 The parameters of the laser ablation molding process are laser power: 2600 W, laser spot size: 0.2 mm, scanning speed: 600 mm/min, auxiliary gas pressure: 0.6 Mpa. In the process of laser ablation molding, an inert gas such as argon gas is used for protection, and the oxygen content is required to be less than 1000 PPM.

熱処理する際に、分離されたそれぞれのスライスを順に固溶化処理、低温処理及び焼戻し処理する。 During the heat treatment, each separated slice is sequentially solution treated, low temperature treated and tempered.

分離されたそれぞれのスライスを固溶化処理する際に、圧力が10-3Pa以下であり、温度が1050℃であり、保温時間が2時間であり、不活性ガスを補充して保温後のそれぞれのスライスを冷却する。 When the separated slices were solution treated, the pressure was 10 −3 Pa or less, the temperature was 1050° C., the heat retention time was 2 hours, and the inert gas was replenished and the heat retention was performed. Cool the slices.

固溶化処理されたそれぞれのスライスを低温処理する際に、温度が-70℃であり、保温時間が4.5であり、保温後のそれぞれのスライスを室温に回復させる。 When cold treating each solution treated slice, the temperature is −70° C., the incubation time is 4.5, and each slice is allowed to return to room temperature after incubation.

低温処理されたそれぞれのスライスを焼戻し処理する際に、温度が250℃であり、保温時間が3時間であり、保温後のそれぞれのスライスを室温に空冷する。 When tempering each low-temperature treated slice, the temperature is 250° C., the incubation time is 3 hours, and each slice is air-cooled to room temperature after the incubation.

本実施例では、レーザ付加・除去の方法を用いて挟層直溝環状部材を製造し、三次元モデルにより挟層直溝環状部材のニアネットシェイプ成形を実現でき、そのまま使用できるため、材料の利用率が大幅に向上し、鍛造加工に比べて周期が半分以上減少され、1台のレーザ付加・除去設備だけで成形プロセス全体を完成できるため、コストが大幅に削減される。また、本実施例のレーザ溶融積層成形により作製された挟層直溝環状部材は、内部にマクロ偏析がなく、異なる部位の組織構造に明らかな違いがなく、内部組織の結晶粒が微細であり、機械的特性に優れ、鍛造基準の要求を完全に満たすことができる。レーザ付加・除去加工により挟層直溝環状部材を製造することにより、レーザ溶融積層成形技術の応用範囲が大きく広がる。 In this embodiment, the narrow layer straight groove annular member is manufactured by using the laser addition/removal method, and the near net shape molding of the narrow layer straight groove annular member can be realized by the three-dimensional model, and it can be used as it is. The utilization rate is greatly improved, the cycle is reduced by more than half compared to forging, and the entire forming process can be completed with only one laser addition/removal equipment, which greatly reduces the cost. In addition, the narrow layer straight groove annular member produced by laser fusion lamination molding of this example has no macro segregation inside, no obvious difference in the structure of different parts, and the crystal grains of the internal structure are fine. , has excellent mechanical properties and can fully meet the requirements of forging standards. By manufacturing narrow-layer straight-groove annular members by laser addition/removal processing, the application range of laser fusion lamination molding technology will be greatly expanded.

以上の実施例は、本発明の好ましい実施形態に過ぎず、当業者は本発明の技術案の範囲内において行った通常変化及び置換は全て本発明の保護範囲に含まれるべきである。 The above examples are merely preferred embodiments of the present invention, and all ordinary changes and substitutions made by persons skilled in the art within the scope of the technical scheme of the present invention should be included in the protection scope of the present invention.

Claims (10)

環状部材の製造方法であって、
前記環状部材の形状は中空円柱状であり、前記環状部材の材料はステンレス鋼であり、前記環状部材の高さは600mm以上であり、前記環状部材の外径は600mm以上であり、前記環状部材の壁厚さは15~30mmであり、前記環状部材の内側壁には周方向に沿って複数の第1通孔が均等に分布し、前記第1通孔は前記環状部材の軸方向に沿って延在し、
基板を提供し、前記基板の形状は中空円柱であり、前記基板の底端にはノッチが形成され、前記ノッチの数は前記環状部材の前記第1通孔の数に一致し、前記ノッチの位置は前記環状部材の前記第1通孔の位置に対応し、前記基板の内外径は成形される前記環状部材の内外径に一致し、
前記方法は、以下のステップを含み、
(1)成形される前記環状部材の三次元モデルを構築し、そして、前記環状部材の三次元モデルの法線方向に沿って前記環状部材の三次元モデルの外面の厚みを2~4mm増加させ、前記環状部材の三次元モデルの底部の長さを6~15mm増加させ、これによって前記基板を作製し、
(2)ステップ(1)で構築された前記環状部材の三次元モデルを前記環状部材の三次元モデルの軸方向に沿ってスライスし、N枚のスライスを取得し、Nが1より大きい正整数であり、1枚目の前記スライスは成形される前記環状部材の最底端であり、N枚目の前記スライスは成形される前記環状部材の最頂端であり、前記スライスはそれぞれ第2通孔を有し、
(3)ステップ(1)で作製された前記基板上に1枚目の前記スライスのレーザ溶融積層成形を行い、1枚目の前記スライスが成形された後、1枚目の前記スライス上に2枚目の前記スライスのレーザ溶融積層成形を行い、2枚目の前記スライスが成形された後、2枚目の前記スライス上に3枚目の前記スライスのレーザ溶融積層成形を行い、i枚の前記スライスの成形が完成するまで繰り返し、ここで、i=1,2,3...N-2であり、iが1以上の正整数であり、前記基板上に成形されたi枚の前記スライスの厚みの合計は1mm以上かつ3mm以下であり、
(4)ステップ(3)で得られたi枚の前記スライスの前記第2通孔が成形される前記環状部材の前記第1通孔のサイズと一致するように、ステップ(3)で得られたi枚の前記スライスの前記第2通孔に対してレーザ切断除去成形を行い、
(5)ステップ(4)で得られた前記スライス上にi+1枚目の前記スライスのレーザ溶融積層成形を行い、
(6)ステップ(5)で得られたi+1枚目の前記スライスの前記第2通孔が成形される前記環状部材の前記第1通孔のサイズと一致するように、ステップ(5)で得られたi+1枚目の前記スライスの前記第2通孔に対してレーザ切断除去成形を行い、
(7)ステップ(6)で得られたi+1枚目の前記スライス上にi+2枚目の前記スライスのレーザ溶融積層成形を行い、
(8)ステップ(7)で得られたi+2枚目の前記スライスの前記第2通孔が成形される前記環状部材の前記第1通孔のサイズと一致するように、ステップ(7)で得られたi+2枚目の前記スライスの前記第2通孔に対してレーザ切断除去成形を行い、
上記のように繰り返し、
(9)ステップ(8)で得られたi+2枚目の前記スライス上にN枚目の前記スライスのレーザ溶融積層成形を行い、
(10)N枚目の前記スライスの前記第2通孔が成形される前記環状部材の前記第1通孔のサイズと一致するように、ステップ(9)で得られたN枚目の前記スライスの前記第2通孔に対してレーザ切断除去成形を行い、
(11)ステップ(10)で得られたN枚の前記スライス及び前記基板をアニール処理し、アニール処理後に、前記基板及び前記スライスを分離し、N枚の前記スライスと前記基板との分離を完成し、
(12)ステップ(11)で分離されたN枚の前記スライスを熱処理し、成形される前記環状部材全体の製造を完成し、前記環状部材を得ることを特徴とする、製造方法。
A method for manufacturing an annular member ,
The shape of the annular member is a hollow cylinder, the material of the annular member is stainless steel, the height of the annular member is 600 mm or more, the outer diameter of the annular member is 600 mm or more, and the annular member has a wall thickness of 15 to 30 mm, a plurality of first through holes are evenly distributed in the inner wall of the annular member along the circumferential direction, and the first through holes are along the axial direction of the annular member. extended by
providing a substrate, the shape of the substrate is a hollow cylinder, the bottom end of the substrate is formed with notches, the number of the notches is equal to the number of the first through holes of the ring member , and the number of the notches is The position corresponds to the position of the first through hole of the annular member , the inner and outer diameters of the substrate match the inner and outer diameters of the annular member to be molded,
The method includes the steps of:
(1) Build a three-dimensional model of the annular member to be molded, and increase the thickness of the outer surface of the three-dimensional model of the annular member by 2 to 4 mm along the normal direction of the three-dimensional model of the annular member. , increasing the length of the bottom of the three-dimensional model of the annular member by 6 to 15 mm, thereby fabricating the substrate;
(2) slicing the three-dimensional model of the annular member constructed in step (1) along the axial direction of the three-dimensional model of the annular member to obtain N slices, where N is a positive integer greater than 1; , the first slice being the bottommost edge of the annular member to be molded, the Nth slice being the topmost edge of the annular member being molded, and each of the slices being the second pass. having holes,
(3) performing laser fusion lamination molding of the first slice on the substrate produced in step (1), and after the first slice is molded, two layers are formed on the first slice; After the second slice is molded by laser fusion lamination molding of the second slice, the third slice is laser fusion lamination molded on the second slice, and i slices are formed. Repeat until the molding of the slice is completed, where i = 1, 2, 3 ... N-2, i is a positive integer equal to or greater than 1, and the i slices molded on the substrate The total thickness of the slices is 1 mm or more and 3 mm or less,
(4) the size of the second through hole of the i slices obtained in step (3) is equal to the size of the first through hole of the annular member to be formed; performing laser cutting removal molding on the second through holes of the i slices ;
(5) performing laser fusion lamination molding of the i+1 slice on the slice obtained in step (4);
(6) obtaining in step (5) such that the second through hole of the i+1 slice obtained in step (5) matches the size of the first through hole of the annular member to be formed; performing laser cutting removal molding on the second through-hole of the i+1 slice thus obtained;
(7) performing laser fusion lamination molding of the i+2 slice on the i+1 slice obtained in step (6);
(8) The size of the second through hole of the (i+2)th slice obtained in step (7) is adjusted to match the size of the first through hole of the annular member to be formed. performing laser cutting removal molding on the second through-hole of the i+2 slice obtained;
Repeat as above,
(9) performing laser fusion lamination molding of the N-th slice on the i+2-th slice obtained in step (8);
(10) the Nth slice obtained in step (9) such that the second through hole of the Nth slice matches the size of the first through hole of the annular member to be formed; Laser cutting removal molding is performed on the second through hole of
(11) annealing the N slices obtained in step (10) and the substrate; separating the substrate and the slices after annealing; completing the separation of the N slices and the substrate; death,
(12) A manufacturing method, characterized in that the N slices separated in step (11) are heat-treated to complete the manufacture of the entire shaped annular member to obtain the annular member .
前記環状部材の内側壁における前記第1通孔の断面は、前記環状部材の断面の一部であり、前記環状部材の前記第1通孔の径方向サイズが4~8mmであり、周方向角度が6-30°であり、前記環状部材の前記第1通孔の数が6~30であることを特徴とする、請求項1に記載の製造方法。 The cross section of the first through hole in the inner wall of the annular member is a part of the cross section of the annular member , the radial size of the first through hole of the annular member is 4 to 8 mm, and the circumferential angle is 6-30°, and the number of said first through holes of said annular member is 6-30. 前記スライスの厚みは0.5~1mmであることを特徴とする、請求項1に記載の製造方法。 2. The manufacturing method according to claim 1, wherein the slice has a thickness of 0.5 to 1 mm. ステップ(11)において、アニール処理の温度は450℃~560℃であり前記スライス及び前記基板を4~6時間保温し、そして保温後の前記スライス及び前記基板を空冷することを特徴とする、請求項1に記載の製造方法。 In step (11), the annealing temperature is 450° C. to 560° C. , the slice and the substrate are kept warm for 4 to 6 hours, and the slice and the substrate are air-cooled after keeping warm. , the manufacturing method according to claim 1. ワイヤカットにより前記基板及び前記スライスを分離することを特徴とする、請求項1に記載の製造方法。 A method according to claim 1, characterized in that the substrate and the slice are separated by wire cutting. 前記ワイヤカットのパラメータは、前記ワイヤカットを行う装置のパルス波形:矩形、パルス幅:25μs~50μs、パルス間隔:15μs~250μs、電流:3A~6Aであることを特徴とする、請求項5に記載の製造方法。 According to claim 5, the wire cutting parameters are pulse waveform of the wire cutting device: rectangular, pulse width: 25 μs to 50 μs, pulse interval: 15 μs to 250 μs, current: 3 A to 6 A. Method of manufacture as described. ステップ(12)において、分離された前記スライスを熱処理することは、分離された前記スライスに対して順に固溶化処理、低温処理及び焼戻し処理を行うことを含むことを特徴とする、請求項1に記載の製造方法。 The claim, wherein in step (12), heat-treating the separated slices comprises subjecting the separated slices to solution treatment, low-temperature treatment and tempering treatment in sequence. 1. The manufacturing method according to 1. 分離された前記スライスを固溶化処理する際に、圧力が10-3Pa以下であり、温度が1050℃~1130℃であり、保温時間が2~4時間であり、不活性ガスを補充して保温後の前記スライスを冷却することを特徴とする、請求項7に記載の製造方法。 When the separated slice is solution treated, the pressure is 10 −3 Pa or less, the temperature is 1050° C. to 1130° C., the heat retention time is 2 to 4 hours, and inert gas is replenished. 8. A method according to claim 7, characterized in that the slices after being kept warm are cooled. 固溶化処理された前記スライスを低温処理する際に、温度が-70℃~-80℃であり、保温時間が3.5-4.5時間であり、保温後の前記スライスを室温に回復させることを特徴とする、請求項7に記載の製造方法。 When the solution- treated slice is subjected to low-temperature treatment, the temperature is -70°C to -80°C, the incubation time is 3.5-4.5 hours, and the slice is cooled to room temperature after incubation. 8. The manufacturing method according to claim 7, characterized in that it is allowed to recover. 低温処理された前記スライスを焼戻し処理する際に、温度が250℃~320℃であり、保温時間が3-6時間であり、保温後の前記スライスを室温に空冷することを特徴とする、請求項7に記載の製造方法。 The temperature is 250° C. to 320° C., the heat retention time is 3 to 6 hours, and the slice is air-cooled to room temperature when the low temperature processed slice is tempered. , the manufacturing method according to claim 7.
JP2021209842A 2021-01-04 2021-12-23 Annular member manufacturing method Active JP7330257B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110003700.6 2021-01-04
CN202110003700.6A CN112846229B (en) 2021-01-04 2021-01-04 Laser material increase and decrease manufacturing method for large-size interlayer straight-groove annular component

Publications (2)

Publication Number Publication Date
JP2022105482A JP2022105482A (en) 2022-07-14
JP7330257B2 true JP7330257B2 (en) 2023-08-21

Family

ID=76001318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021209842A Active JP7330257B2 (en) 2021-01-04 2021-12-23 Annular member manufacturing method

Country Status (2)

Country Link
JP (1) JP7330257B2 (en)
CN (1) CN112846229B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113560598B (en) * 2021-06-30 2023-09-29 西安航天发动机有限公司 Selective laser melting forming method for large-size part
CN114131042A (en) * 2021-11-02 2022-03-04 西安航天发动机有限公司 Method and device for preparing sandwich runner structural member
CN114570940B (en) * 2022-01-25 2024-04-02 广东增减材科技有限公司 Valve core material increasing and decreasing method and valve core structure
CN116984837A (en) * 2023-08-16 2023-11-03 中国航发贵州黎阳航空动力有限公司 Processing method of high-precision thin-wall elastic ring

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013237930A (en) 2013-07-04 2013-11-28 Panasonic Corp Method of manufacturing three-dimensionally shaped article, and the three-dimensionally shaped article obtained thereby
JP2019507040A (en) 2016-03-04 2019-03-14 レニショウ パブリック リミテッド カンパニーRenishaw Public Limited Company Additive manufacturing method and system
JP2020505251A (en) 2017-01-22 2020-02-20 清華大学Tsinghua University Additive manufacturing equipment combining electron beam selective melting and electron beam cutting
JP2020514525A (en) 2016-11-18 2020-05-21 ▲華▼中科技大学Huazhong University Of Science And Technology Hybrid additive manufacturing method applied to parts and molds

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016517470A (en) * 2013-03-05 2016-06-16 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Platform construction for additive manufacturing
US10710161B2 (en) * 2013-03-11 2020-07-14 Raytheon Technologies Corporation Turbine disk fabrication with in situ material property variation
JP5823069B1 (en) * 2015-01-23 2015-11-25 三菱重工業株式会社 Method for manufacturing rocket engine combustor, rocket engine combustor, and rocket engine
WO2017065751A1 (en) * 2015-10-13 2017-04-20 The Curators Of The University Of Missouri Foil-based additive manufacturing system and method
EP3251787A1 (en) * 2016-05-31 2017-12-06 Sulzer Management AG Method for producing a component of a rotary machine and component produced according to such a method
US20180221958A1 (en) * 2017-02-07 2018-08-09 General Electric Company Parts and methods for producing parts using hybrid additive manufacturing techniques
CN108247050B (en) * 2017-12-25 2020-08-28 西安航天发动机有限公司 Integral manufacturing method of large-size force-bearing gimbal ring
CN108315667B (en) * 2017-12-27 2019-11-29 西安航天发动机有限公司 A kind of 03Cr13Ni5Co9Mo5 stainless steel material and its Laser Melting Deposition manufacturing process
CN108889945A (en) * 2018-07-25 2018-11-27 哈尔滨工业大学 A kind of inner wall laser increasing material manufacturing method of hollow structure
CN110369725A (en) * 2019-08-02 2019-10-25 上海工程技术大学 Near-net-shape method and device based on laser increase and decrease material composite manufacturing delicate workpieces
CN111014668B (en) * 2019-12-12 2021-08-06 西安航天发动机有限公司 Integral manufacturing method of large-size and thin-wall annular oxygen reinforcing frame
CN111974997B (en) * 2020-07-03 2023-12-15 华南理工大学 Composite manufacturing device and method for increasing and decreasing materials based on in-situ multi-laser regulation and control

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013237930A (en) 2013-07-04 2013-11-28 Panasonic Corp Method of manufacturing three-dimensionally shaped article, and the three-dimensionally shaped article obtained thereby
JP2019507040A (en) 2016-03-04 2019-03-14 レニショウ パブリック リミテッド カンパニーRenishaw Public Limited Company Additive manufacturing method and system
JP2020514525A (en) 2016-11-18 2020-05-21 ▲華▼中科技大学Huazhong University Of Science And Technology Hybrid additive manufacturing method applied to parts and molds
JP2020505251A (en) 2017-01-22 2020-02-20 清華大学Tsinghua University Additive manufacturing equipment combining electron beam selective melting and electron beam cutting

Also Published As

Publication number Publication date
CN112846229A (en) 2021-05-28
CN112846229B (en) 2023-02-17
JP2022105482A (en) 2022-07-14

Similar Documents

Publication Publication Date Title
JP7330257B2 (en) Annular member manufacturing method
US11872625B2 (en) Method for eliminating cracks in rené 104 nickel-based superalloy prepared by laser additive manufacturing
CN111618298B (en) Efficient collaborative additive manufacturing method for multi-material and variable-rigidity structure
US20180221958A1 (en) Parts and methods for producing parts using hybrid additive manufacturing techniques
CN108247050B (en) Integral manufacturing method of large-size force-bearing gimbal ring
US20140255198A1 (en) Turbine disk fabrication with in situ material property variation
RU2014138802A (en) METHOD FOR PRODUCING METAL COMPONENT BY ADDITIVE LASER PRODUCTION
KR20180103981A (en) METHOD OF LAMINATING THREE-DIMENSIONAL PRODUCTS WITH METAL GLASS
TW201736028A (en) Fabrication of metallic parts by additive manufacturing
JP2014169500A (en) Method for manufacturing hybrid component
KR20150082607A (en) Method for manufacturing rotary article by cold metal transfer welding deposition and rotary article as manufactured
CN109277675B (en) Preparation method of high-strength TA18 titanium alloy component based on plasma fuse material increase
CN110434338B (en) Laser selective melting preparation method of brittle alloy with layered size effect
US20170087669A1 (en) Apparatus and method for producing and/or repairing in particular rotationally symmetrical components
EP2688708A1 (en) Method for repairing an aluminium alloy component
JP2008229680A (en) PROCESS FOR PRODUCING MOLDED PRODUCT OF TiAl-BASED ALLOY
CN108480927A (en) A kind of preparation method with metallurgical binding abrasion resistant layer nuclear power hook
EP3492617A1 (en) Methods and compositions for making a near net shape article
CN115106540A (en) Tantalum-tungsten alloy product and preparation method thereof
JP2015174146A (en) Method for producing component
CN115488342B (en) Short-process preparation method of dissimilar metal integral She Panzeng and other materials
CN115055696B (en) Composite manufacturing method for titanium alloy blisk of aircraft engine
EP3427869A1 (en) Additive manufacturing methods and related components
TWI532852B (en) Alloy powder and laser additive manufacturing process applying the same
WO2022074443A1 (en) A method of manufacturing a metallic component by additive manufacturing process and a system thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230808

R150 Certificate of patent or registration of utility model

Ref document number: 7330257

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150