JP7328693B2 - Methods and compositions for treating phospholipase A2 to modulate T cell death - Google Patents

Methods and compositions for treating phospholipase A2 to modulate T cell death Download PDF

Info

Publication number
JP7328693B2
JP7328693B2 JP2019226752A JP2019226752A JP7328693B2 JP 7328693 B2 JP7328693 B2 JP 7328693B2 JP 2019226752 A JP2019226752 A JP 2019226752A JP 2019226752 A JP2019226752 A JP 2019226752A JP 7328693 B2 JP7328693 B2 JP 7328693B2
Authority
JP
Japan
Prior art keywords
cells
cell death
phospholipase
pla2
bvpla2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019226752A
Other languages
Japanese (ja)
Other versions
JP2021010360A (en
Inventor
ベ,ヒョン-ス
キム,ユン-ソブ
ク,ス-ジョン
Original Assignee
ジーエムピー バイオ カンパニー,リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジーエムピー バイオ カンパニー,リミテッド filed Critical ジーエムピー バイオ カンパニー,リミテッド
Publication of JP2021010360A publication Critical patent/JP2021010360A/en
Application granted granted Critical
Publication of JP7328693B2 publication Critical patent/JP7328693B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • C12N2501/73Hydrolases (EC 3.)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Cell Biology (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Epidemiology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

特許法第30条第2項適用 蜂毒(bvPLA2)にApoptosisを抑制して調節T細胞に及ぼす影響 1Application of Article 30, Paragraph 2 of the Patent Law Effect on regulatory T cells by suppressing apoptosis with bee venom (bvPLA2) 1

本発明は、ホスホリパーゼA2(phospholipase A2;PLA2)によるT細胞の細胞死調節メカニズムとして、ガン、退行性疾患、脳疾患及び免疫関連疾患などの人間の殆ど全ての疾患に関与するT細胞の細胞死抑制効果に関する。 The present invention uses phospholipase A2 (PLA2) as a mechanism for regulating T cell cell death, which is involved in almost all human diseases such as cancer, degenerative diseases, brain diseases, and immune-related diseases. Regarding the inhibitory effect.

人間を構成している細胞の数を正確に測定することは難しいが、約数十兆個と推算する。そして、一日に500億から700億個の細胞は、細胞死(apoptosis)という細胞死機序を通じて死ぬと知られており、その分の細胞が新たに生成されるといえる。意図した細胞死(programmed cell death、apoptosis)は、多細胞生物の個体発生と組職の恒常性を維持するために必須であると同時に、病原体の感染に対する先天性免疫(innate immunity)の防御戦略でもある。この細胞死機序は、大きく二つに区分することができるが、一つは紫外線やガンマ線、化学物質、ウイルス感染、栄養欠乏、酸素欠乏、ガン誘発遺伝子の発現などのストレスにより発生するintrinsic apoptosisとTNF-α、FAS、TRAILなどのサイトカインが誘導するextrinsic apoptosisに区分することができる。二つの機序とも究極的にはcaspaseという細胞内タンパク質分解酵素の活性化を通じて細胞死を誘導するようになる。 Although it is difficult to accurately measure the number of cells that make up a human being, it is estimated to be about tens of trillions. It is known that 50 billion to 70 billion cells per day die through a cell death mechanism called apoptosis, and it can be said that that many cells are newly generated. Programmed cell death (apoptosis) is essential for maintaining the ontogeny and tissue homeostasis of multicellular organisms, as well as a defense strategy of innate immunity against pathogen infection. But also. This cell death mechanism can be roughly divided into two, one is intrinsic apoptosis which occurs due to stress such as ultraviolet rays, gamma rays, chemical substances, viral infection, nutritional deficiency, oxygen deficiency, and expression of cancer-inducing genes. It can be classified into extrinsic apoptosis induced by cytokines such as TNF-α, FAS and TRAIL. Both mechanisms ultimately induce cell death through the activation of intracellular proteolytic enzymes called caspases.

一方、細胞死機序は、ガン及び退行性疾患、脳疾患、免疫疾患などの人間の殆ど全ての疾患に関与しており、結果としてこれらの疾病の主要ターゲットとして研究されている。しかし、細胞死の場合、殆ど全ての細胞で共通して起こる現象であるため、p53、TNF-αなどの一般的な細胞死因子をターゲットとする場合、予期せぬ副作用が発生するなど、これらをターゲットとするには限界点となって来た。細胞死はその機能が喪失されれば、ガン細胞の場合、DNA損傷、シグナル伝逹系の不均衡、anoxia、loss of anchorageなどの刺激下でも生存できるようになる。ガン細胞は生存と繁栄のために細胞死機序を無力化することができる多様な方法を考案した。腫瘍細胞がさらに悪性形質を有するように進化する過程は、細胞死過程を回避して生存するように広範囲な遺伝子変化が生じることである。もし細胞死に抵抗性を持つと、ガン発生だけでなく坑がん治療にも耐性を表す。 On the other hand, cell death mechanisms are involved in almost all human diseases such as cancer, degenerative diseases, brain diseases, and immune diseases, and as a result are being studied as major targets for these diseases. However, since cell death is a phenomenon that occurs commonly in almost all cells, targeting general cell death factors such as p53 and TNF-α may cause unexpected side effects. It has become a limit point to target. If the function of cell death is lost, cancer cells can survive under stimuli such as DNA damage, signal transduction system imbalance, anoxia, loss of anchorage, and the like. Cancer cells have devised a variety of ways in which cell death machinery can be disabled in order to survive and thrive. The process by which tumor cells evolve to have more malignant traits is the occurrence of widespread genetic alterations that allow them to evade the cell death process and survive. If they are resistant to cell death, they are resistant not only to cancer development but also to anticancer treatments.

蜂毒は、密蜂(Apis cerana Fabricius)のしっぽ部の毒嚢から排出される毒汁として、副腎皮質ホルモン類似作用、中枢神経系統に作用、循環系統に影響、消化系統に作用、陣痛作用、神経痛に作用、抗菌作用などがあると知られている。メリチン(melittin)と蜂毒由来のホスホリパーゼA2(以下、bvPLA2)が蜂毒の主要構成成分として知られているが、メリチンは26個のアミノ酸で構成された細胞分解性タンパク質であり、bvPLA2は細胞膜の燐脂質を加水分解する酵素である。 Bee venom is a venom secreted from the venom sac in the tail of Apis cerana Fabricius. It is known to have an effect on neuralgia and an antibacterial effect. Melittin and bee venom-derived phospholipase A2 (hereinafter referred to as bvPLA2) are known to be the main constituents of bee venom. is an enzyme that hydrolyzes the phospholipids of

現在まで知られた密蜂の蜂毒成分は40余類で、多様な生理活性を示すメリチン(melittin)、アパミン(apamin)、MCD-ペプチド(MCD-peptide)のような活性ペプチド、ヒアルロニダーゼ(hyaluronidase)、ホスホリパーゼA2(phospholipase A2)のような酵素とドパミン、ヒスタミン等のようなアミン類がある。 There are more than 40 kinds of bee venom components of honeybees known so far, and active peptides such as melittin, apamin, MCD-peptide, and hyaluronidase exhibiting various physiological activities. ), enzymes such as phospholipase A2, and amines such as dopamine and histamine.

蜂毒は、昆虫の自己防御物質として、人体や動物に一時的または永久的に害を与えるために持っている化学的物質である。多様な成分で構成された蜂毒は、縫針療法で古くから民間療法の一つとして関節炎、通風などの疾患に使用されている。また、蜂毒は強い抗菌効果だけでなく、坑がん、坑痴呆、肌再生効果などが報告されている。特に、蜂毒由来PLA2は、調節T細胞を活性化させて免疫恒常性の調節、自己免疫疾患の抑制、アレルギーの抑制などの多様な免疫関連疾患でその効能が報告された。 Bee venom is a chemical substance that insects possess as a self-defense agent to cause temporary or permanent harm to humans and animals. Bee venom, which is composed of various components, has been used as a folk remedy for needle therapy for diseases such as arthritis and gout since ancient times. In addition, bee venom has been reported to have not only strong antibacterial effects, but also anticancer, antidementia, and skin regeneration effects. In particular, bee venom-derived PLA2 has been reported to be efficacious in various immune-related diseases such as regulation of immune homeostasis, suppression of autoimmune diseases, and suppression of allergy by activating regulatory T cells.

蜂毒治療法は、治療用蜂を直接患部に刺されるようにするか、精製された蜂毒抽出物を経穴点などに注射する方法であり、蜂毒治療法が抗炎症(anti-inflammation)、抵細胞死(anti-apoptosis)、抗線維症(anti-fibrosis)効果があるという研究結果も多数発表され、臨床では局所的炎症やリウマチ、パーキンソン病などの多様な疾患に使われて来た。 The bee venom treatment is a method of directly stinging the affected area with a therapeutic bee or injecting a purified bee venom extract into an acupuncture point. , Anti-apoptosis, and anti-fibrosis effects have been published, and it has been clinically used for various diseases such as local inflammation, rheumatism, and Parkinson's disease. .

蜂毒由来のPLA2(bvPLA2)は、細胞膜燐脂質のsn-2エステル結合を加水分解して、アラキドン酸とリソリン脂質が遊離するように触媒する酵素である。多くの研究において、bvPLA2がアレルギー性喘息、アルツハイマー疾患、シスプラチン(cisplatin)による臓器炎症だけでなく、多様な疾患に保護効果があると報告されている。また最近の研究では、PGE2の分泌を調節して免疫抑制作用を媒介するbvPLA2の新しい効能が明かされた。bvPLA2がdendritic cells(DC)表面のCD206受容器(receptor)に直接結合してPGE2の発現を誘導し、PGE2は未接触T細胞(naiveT cells)のEP2受容器(receptor)に結合してCD4CD25Foxp3調節T細胞(Treg cells)への分化を誘導する。 PLA2 from bee venom (bvPLA2) is an enzyme that catalyzes the hydrolysis of the sn-2 ester bond of cell membrane phospholipids to liberate arachidonic acid and lysophospholipids. Many studies have reported that bvPLA2 has a protective effect on various diseases, including allergic asthma, Alzheimer's disease, and cisplatin-induced organ inflammation. Recent studies have also revealed novel potencies of bvPLA2 in modulating PGE2 secretion to mediate immunosuppressive effects. bvPLA2 directly binds to the CD206 receptor on the surface of dendritic cells (DC) and induces the expression of PGE2, which binds to the EP2 receptor on naive T cells to generate CD4 + Induces differentiation into CD25 + Foxp3 + regulatory T cells (Treg cells).

一方、T細胞は、まだ抗原に会わなかった未接触T細胞と、抗原に会って成熟した効果T細胞(補助T細胞、細胞毒性T細胞、自然殺傷T細胞)、そして記憶T細胞に分類される。未接触T細胞(Naive T cell)は、分化と成熟を経たが、未だ末梢で抗原に会わなかったT細胞である。抗原伝達細胞に提示された未だ認知されていないMHC:抗原複合体に会えばT細胞抗原受容体シグナル伝達過程(T-Cell Receptor signaling pathway)を通じて抗原を認識し、効果T細胞として活性化されて適応免疫が始まる。表面には細胞接着分子(cell adhesion molecule)であるL-セレクチン(CD62L)が存在する一方、効果T細胞の特徴であるCD25、CD44、CD69と記憶T細胞の特徴であるCD45などは殆ど存在しない。ヘルパーT細胞(Helper T cell、またはTh cell)は、効果T細胞の中で他の白血球の分化及び活性化を調節することで体液性免疫を促進する細胞をいう。細胞表面にCD4タンパク質を持っているという特徴のため、CD4T細胞ともいう。補助T細胞は、細部機能によって再びTh1、Th2、Th17、Tregなどに分類される。Th1細胞は、インターフェロンガンマ(interferon-gamma、IFN-γ)と腫瘍怪死因子ベータ(Tumor Necrosis Factor beta、TNF-β)を分泌することで、大食細胞の内部でエンドソームとリソソームが融合してエンドリソソームを形成するように誘導する。 On the other hand, T cells are classified into uncontacted T cells that have not yet met antigen, effector T cells that have matured after meeting antigen (auxiliary T cells, cytotoxic T cells, and killing T cells), and memory T cells. be. Naive T cells are T cells that have undergone differentiation and maturation but have not yet encountered antigen in the periphery. Presented to the antigen-transmitting cell, when it meets an unrecognized MHC:antigen complex, it recognizes the antigen through the T-Cell Receptor signaling pathway and is activated as an effector T cell. Adaptive immunity begins. While L-selectin (CD62L), a cell adhesion molecule, is present on the surface, CD25, CD44, and CD69, which are characteristic of effector T cells, and CD45, which is characteristic of memory T cells, are almost absent. . Helper T cells (Helper T cells, or Th cells) refer to cells that promote humoral immunity by regulating the differentiation and activation of other leukocytes among effector T cells. They are also called CD4 T cells because they have the CD4 protein on their cell surface. Auxiliary T cells are again classified into Th1, Th2, Th17, Treg, etc. according to their detailed functions. By secreting interferon-gamma (IFN-γ) and tumor necrosis factor beta (TNF-β), Th1 cells fuse endosomes and lysosomes inside macrophages to form endosomes. Induce to form lysosomes.

一方、Th2細胞は、様々な種類のインターロイキン(interleukin、IL)を分泌してB細胞が形質細胞に分化するようにする。Th17細胞は、インターロイキン-17(IL-17)を分泌して好中性白血球を集まらせる。調節T細胞ともいうTreg細胞は、免疫反応を促進するのではなくむしろ抑制することで免疫の恒常性を維持し、自己免疫反応などを遮断する。調節T細胞(Treg cells)は、免疫反応が最大に発生した後に再び普段状態に回復するimmune homeostasisと自己由来組織には免疫反応をしない自己寛容(self-tolerance)を核心機能とする特殊なT細胞である。生体外で増殖されたCD4CD25Treg cellsが体内に移植された時、多様な病理的変化を予防し、特に移植片対宿主病(Graft versus Host Disease、GvHD)は、調節T細胞の臨床適用に非常に適合な疾患として知られている。細胞毒性T細胞は、グランザイム(granzyme)やパーフォリン(perforin)のような細胞毒性物質を分泌してウイルスに感染された細胞や腫瘍細胞などを殺す細胞である。細胞表面にCD8タンパク質を持っているため、CD8 T細胞ともいう。補助T細胞とは反対に細胞性免疫を媒介してウイルス及びガン細胞を除去する。自然殺傷T細胞は、補助T細胞及び細胞毒性T細胞に比べて少ない割合で分布する効果T細胞の一つであり、表面にT細胞のようなT細胞抗原受容体(T Cell Receptor、TCR)を持っているが、NK1.1のような自然殺細胞の特異的分子も持っている。自然殺傷T細胞は、ガンマインターフェロン、インターロイキン-4(IL-4)、インターロイキン-10(IL-10)などを分泌して免疫反応を調節する役割をする。記憶T細胞は、抗原を認知したT細胞が分化及び選別過程を経た後、長期間生存して、後で抗原が再び侵入した時に速く活性化して効果T細胞の機能ができる潜在的能力を持った細胞をいう。未接触T細胞が抗原に会って活性化された状態の細胞、または効果T細胞がインターロイキン-7(IL-7)とインターロイキン-15(IL-15)の影響を受けて長期生存可能な記憶T細胞に分化する。 Th2 cells, on the other hand, secrete various types of interleukins (ILs) to induce B cells to differentiate into plasma cells. Th17 cells secrete interleukin-17 (IL-17) to recruit neutrophil leukocytes. Treg cells, also called regulatory T cells, maintain immune homeostasis by suppressing rather than promoting immune responses, blocking autoimmune reactions and the like. Regulatory T cells (Treg cells) are special T cells whose core functions are immune homeostasis, which restores the normal state after the maximum immune reaction occurs, and self-tolerance, which does not react to autologous tissues. are cells. When CD4 + CD25 + Treg cells expanded in vitro are transplanted into the body, they prevent various pathological changes. It is known as a disease that is very suitable for application. Cytotoxic T cells are cells that secrete cytotoxic substances such as granzyme and perforin to kill virus-infected cells and tumor cells. They are also called CD8 T cells because they have the CD8 protein on their cell surface. It mediates cell-mediated immunity as opposed to auxiliary T cells to eliminate viruses and cancer cells. Spontaneous killing T cells are one of the effector T cells that are distributed in a smaller proportion compared to accessory T cells and cytotoxic T cells, and have a T cell antigen receptor (T Cell Receptor, TCR) like T cells on their surface. but also have specific molecules of natural killing cells such as NK1.1. Natural killing T cells secrete gamma interferon, interleukin-4 (IL-4), interleukin-10 (IL-10), etc., and play a role in regulating immune responses. Memory T cells have the potential to survive for a long period of time after antigen-recognizing T cells undergo differentiation and selection processes, and to be activated quickly when antigens invade again later to perform effective T cell functions. cells. Uncontacted T cells in an activated state upon antigen encounter, or effector T cells capable of long-term survival under the influence of interleukin-7 (IL-7) and interleukin-15 (IL-15) Differentiate into memory T cells.

免疫システムで抗原に対する免疫反応で増殖されたリンパ球は、免疫反応が終結した後は、細胞死(apoptosis)を通じて恒常性(homeostasis)を回復する。活性化されたリンパ球では、死滅受容体(death receptor)の発現が高く表れるので、リンパ球は細胞死(apoptosis)に非常に敏感に作用する。調節T細胞も細胞死シグナル(apoptosis signal)に敏感に反応し、細胞死シグナルの変化は調節T細胞の生存可否と高い関連性がある。 Lymphocytes proliferated by an immune response against an antigen in the immune system restore homeostasis through apoptosis after the termination of the immune response. Activated lymphocytes are highly sensitive to apoptosis, since death receptors are highly expressed. Regulatory T cells also respond sensitively to cell death signals (apoptosis signals), and changes in cell death signals are highly related to survival of regulatory T cells.

本研究では、ホスホリパーゼA2(PLA2)を処理した免疫細胞で、細胞死シグナル(apoptotic signaling)の変化を調べるために蜂毒由来のPLA2(bvPLA2)を処理した後、caspase-3とAnnexin Vの両方に陽性である初期死滅細胞(early apoptotic cell)を流動細胞分析法(flow cytometry)で分析した。また、細胞死(apoptosis)の初期過程を開始させるcaspase-3の活性化程度をウエスタンブロット(western blot)で分析した。さらに、細胞死(apoptosis)を抑制するCTLA-4とPD-1の発現程度を流動細胞分析法(flow cytometry)で分析した結果、有意性のある結果を導出した。 In this study, immune cells treated with phospholipase A2 (PLA2) were treated with bee venom-derived PLA2 (bvPLA2) to examine changes in apoptotic signaling, followed by both caspase-3 and Annexin V. Early apoptotic cells that were positive for B. were analyzed by flow cytometry. In addition, the degree of activation of caspase-3, which initiates the initial process of cell death (apoptosis), was analyzed by western blot. Furthermore, the expression levels of CTLA-4 and PD-1, which suppress cell death (apoptosis), were analyzed by flow cytometry, and significant results were obtained.

即ち、本発明は、ホスホリパーゼA2(PLA2)によるT細胞の調節メカニズムとして、ガン、退行性疾患、脳疾患及び免疫関連疾患などの人間の殆ど全ての疾患に関与するT細胞の細胞死抑制効果に関する。 That is, the present invention relates to the cell death inhibitory effect of T cells involved in almost all human diseases such as cancer, degenerative diseases, brain diseases and immune-related diseases, as a regulatory mechanism of T cells by phospholipase A2 (PLA2). .

本研究では、ホスホリパーゼA2(PLA2)がT細胞の細胞死を調節するのかを確認し、特に、PLA2がT細胞を増加させることが細胞死(apoptosis)と関連があるかを調べた。また、細胞死初期段階(early apoptosis)にPLA2が及ぼす影響を確認するために、流動細胞分析(flow cytometry)を行い、マウス膵膓細胞にPBSとPLA2の処理後にanti-CD3/anti-CD28抗体のように72時間培養した。その後、Tリンパ球の中で細胞死した細胞の数及び初期状態の細胞死した細胞数を測定した。細胞死(apoptosis)の初期過程を開始させるcaspase-3の活性化に対する影響を確認するために、ウエスタンブロット(western blot)を行い、さらに、細胞死(apoptosis)を抑制するCTLA-4とPD-1の発現程度を流動細胞分析(flow cytometry)した。 In this study, it was determined whether phospholipase A2 (PLA2) regulates T cell death, and in particular, it was investigated whether the increase of T cells by PLA2 is associated with apoptosis. In addition, in order to confirm the effect of PLA2 on the early apoptosis of cell death, flow cytometry was performed. was cultured for 72 hours as After that, the number of dead cells among the T lymphocytes and the number of dead cells in the initial state were measured. To confirm the effect on the activation of caspase-3, which initiates the early process of cell death (apoptosis), we performed western blots and further examined CTLA-4 and PD-3, which suppress apoptosis. The expression level of 1 was analyzed by flow cytometry.

その結果、本発明のPLA2を処理した実験群で細胞死初期段階のT細胞が顕著に減少し、PLA2を処理した実験群でcaspase-3の活性化が劇的に減少し、細胞死(apoptosis)を抑制するタンパク質であるCTLA-4とPD-1が相当増加した。また、細胞死のマーカーであるFoxp3、Heliosの発現が増加することから、結果としてPLA2が細胞死(apoptosis)を抑制してT細胞を増加させることで、ガン、退行性疾患、脳疾患及び免疫関連疾患に保護効果があることを確認した。 As a result, in the experimental group treated with PLA2 of the present invention, the number of T cells in the early stage of cell death was significantly reduced, and in the experimental group treated with PLA2, the activation of caspase-3 was dramatically reduced, resulting in cell death (apoptosis). CTLA-4 and PD-1, proteins that suppress ) were significantly increased. In addition, since the expression of Foxp3 and Helios, which are cell death markers, increases, as a result, PLA2 suppresses cell death (apoptosis) and increases T cells, resulting in cancer, degenerative diseases, brain diseases and immunity. It was confirmed to have a protective effect on related diseases.

上記の課題を解決するために、本発明は、In vitro上において、ホスホリパーゼA2(phospholipase A2、PLA2)を処理して、T細胞の細胞死(apoptosis)を調節する方法を提供する。 In order to solve the above problems, the present invention provides a method of regulating T cell apoptosis by treating phospholipase A2 (PLA2) in vitro.

また、本発明は、In vitro上において、ホスホリパーゼA2(phospholipase A2、PLA2)を処理して、T細胞の細胞死(apoptosis)を抑制する方法を提供する。 The present invention also provides a method for suppressing apoptosis of T cells by treating with phospholipase A2 (PLA2) in vitro.

本発明の一実施例において、前記T細胞はCD4CD25調節T細胞であることを特徴とすることができるが、これに限定されるものではない。 In one embodiment of the present invention, said T cells can be characterized as CD4 + CD25 + regulatory T cells, but are not limited thereto.

本発明の一実施例において、前記T細胞は、CD4CD25作用T細胞であることを特徴とすることができるが、これに限定されるものではない。 In one embodiment of the present invention, the T cells can be characterized as CD4 + CD25 - acting T cells, but are not limited thereto.

本発明の一実施例において、前記T細胞は、CD8細胞毒性T細胞であることを特徴とすることができるが、これに限定されるものではない。 In one embodiment of the present invention, the T cells can be characterized as CD8 + cytotoxic T cells, but are not limited thereto.

本発明の一実施例において、前記細胞死は、細胞死初期段階であることを特徴とすることができるが、これに限定されるものではない。 In one embodiment of the present invention, the cell death may be characterized as an early stage of cell death, but is not limited thereto.

本発明の一実施例において、前記方法は、caspase-3またはcytochrome Cの活性化を減少させることを特徴とすることができるが、これに限定されるものではない。 In one embodiment of the present invention, the method can be characterized by decreasing activation of caspase-3 or cytochrome C, but is not limited thereto.

本発明の一実施例において、前記方法は、細胞死マーカーであるFoxp3、PD-1、CTLA-4及びHeliosのいずれか一つ以上の発現を増加させることを特徴とすることができるが、これに限定されるものではない。 In one embodiment of the present invention, the method may be characterized by increasing the expression of any one or more of the cell death markers Foxp3, PD-1, CTLA-4 and Helios. is not limited to

また、本発明は、ホスホリパーゼA2(phospholipase A2、PLA2)を含む、T細胞の細胞死抑制用培地組成物を提供する。 The present invention also provides a medium composition for suppressing cell death of T cells containing phospholipase A2 (PLA2).

また、本発明は、ホスホリパーゼA2(phospholipase A2、PLA2)を個体に処理して、T細胞の細胞死(apoptosis)を抑制する方法を提供する。 The present invention also provides a method for suppressing T cell apoptosis by treating an individual with phospholipase A2 (PLA2).

最後に、本発明は、上記の方法によってホスホリパーゼA2(phospholipase A2、PLA2)が細胞死を抑制してT細胞を増加させることで、免疫恒常性の調節、自己免疫疾患の抑制、アレルギーの抑制などの多様な免疫関連疾患及びガン、退行性疾患、脳疾患の予防または治療に効果があることが期待される。 Finally, the present invention provides that phospholipase A2 (phospholipase A2, PLA2) suppresses cell death and increases T cells by the above method, thereby regulating immune homeostasis, suppressing autoimmune diseases, suppressing allergies, etc. It is expected to be effective in preventing or treating various immune-related diseases, cancer, degenerative diseases, and brain diseases.

本発明は、ホスホリパーゼA2(phospholipase A2、PLA2)によるT細胞の調節メカニズムとして免疫反応に重要な役割をするTリンパ球の細胞死(apoptosis)の抑制効果に関するもので、In vitro上において、ホスホリパーゼA2(phospholipase A2、PLA2)を処理してT細胞の細胞死(apoptosis)を抑制することでT細胞を増加させる効果があるため、多様な免疫疾患またはガン、退行性疾患、脳疾患の治療及び予防に効果的であり、その関連産業に有用に使用されることができる。 The present invention relates to the effect of suppressing apoptosis of T lymphocytes, which plays an important role in immune response as a T cell regulatory mechanism by phospholipase A2 (PLA2). Treating (phospholipase A2, PLA2) to suppress apoptosis of T cells, thereby increasing T cells, thus treating and preventing various immune diseases, cancer, degenerative diseases, and brain diseases and can be usefully used in related industries.

ホスホリパーゼA2(phospholipase A2、PLA2)が作用T細胞(Teff)及び調節T細胞(Treg)の細胞死数を示す図面である。Fig. 2 shows cell death numbers of phospholipase A2 (PLA2)-activated T cells (Teff) and regulatory T cells (Treg). ホスホリパーゼA2(phospholipase A2、PLA2)が調節T細胞(Treg)の増加に及ぼす影響を示す図面である。FIG. 1 shows the effect of phospholipase A2 (PLA2) on the expansion of regulatory T cells (Treg). ホスホリパーゼA2(phospholipase A2、PLA2)が調節T細胞(Treg)の表現型に及ぼす影響を示す図面である。FIG. 1 shows the effect of phospholipase A2 (PLA2) on the phenotype of regulatory T cells (Treg). ホスホリパーゼA2(phospholipase A2、PLA2)が細胞死(apoptosis)に及ぼす影響を示す図面である。1 is a drawing showing the effect of phospholipase A2 (PLA2) on cell death (apoptosis). ホスホリパーゼA2(phospholipase A2、PLA2)を処理した後、anti-CD3/anti-CD28抗体と培養して細胞死した細胞数を示す図面である。FIG. 3 is a drawing showing the number of dead cells after treatment with phospholipase A2 (PLA2) and culture with anti-CD3/anti-CD28 antibodies. ホスホリパーゼA2(phospholipase A2、PLA2)によるCD4T細胞の細胞死抑制機序がIL-2依存的な現象であるかを確認した結果を示す図面である。FIG. 1 shows the results of confirming whether the mechanism of suppression of cell death of CD4 + T cells by phospholipase A2 (PLA2) is an IL-2-dependent phenomenon. ホスホリパーゼA2(phospholipase A2、PLA2)が細胞死初期段階(early apoptosis)に及ぼす影響を示す図面である。Fig. 2 shows the effect of phospholipase A2 (PLA2) on early apoptosis. ホスホリパーゼA2(phospholipase A2、PLA2)を処理した後、anti-CD3/anti-CD28抗体と培養してT細胞の中で初期段階の細胞死した細胞の数を示す図面である。Fig. 2 is a diagram showing the number of early-stage dead T cells after treatment with phospholipase A2 (PLA2) and culture with anti-CD3/anti-CD28 antibodies. ホスホリパーゼA2(phospholipase A2、PLA2)がcaspase-3の活性化に及ぼす影響を示す図面である。Fig. 2 shows the effect of phospholipase A2 (PLA2) on the activation of caspase-3. 細胞死によって増加するcleaved caspase-3がホスホリパーゼA2(phospholipase A2、PLA2)処理で減少することをウエスタンブロットを通じて確認した図面である。FIG. 2 is a Western blot confirming that cleaved caspase-3, which is increased by cell death, is decreased by treatment with phospholipase A2 (PLA2). ホスホリパーゼA2(phospholipase A2、PLA2)がPD-1タンパク質の発現に及ぼす影響を示す図面である。1 is a diagram showing the effect of phospholipase A2 (PLA2) on PD-1 protein expression. ホスホリパーゼA2(phospholipase A2、PLA2)がCTLA-4タンパク質の発現に及ぼす影響を示す図面である。1 is a diagram showing the effect of phospholipase A2 (PLA2) on the expression of CTLA-4 protein. 調節T細胞関連の細胞死のマーカーであるFoxp3、PD-1、CTLA-4、Heliosの発現程度を確認した図面である。FIG. 4 is a drawing confirming the expression levels of regulatory T cell-related cell death markers Foxp3, PD-1, CTLA-4, and Helios.

本発明は、In vitro上において、ホスホリパーゼA2(phospholipase A2、PLA2)を処理して、T細胞の細胞死(apoptosis)を調節する方法を提供することを目的とする。 An object of the present invention is to provide a method for regulating T cell apoptosis by treating phospholipase A2 (PLA2) in vitro.

また、本発明は、In vitro上において、ホスホリパーゼA2(phospholipase A2、PLA2)を処理して、T細胞の細胞死(apoptosis)を抑制する方法を提供する。 The present invention also provides a method for suppressing apoptosis of T cells by treating with phospholipase A2 (PLA2) in vitro.

本発明の一実施例において、前記T細胞は、CD4CD25調節T細胞であることを特徴とすることができるが、これに限定されるものではない。 In one embodiment of the present invention, said T cells can be characterized as CD4 + CD25 + regulatory T cells, but are not limited thereto.

本発明の一実施例において、前記T細胞は、CD4CD25作用T細胞であることを特徴とすることができるが、これに限定されるものではない。 In one embodiment of the present invention, the T cells can be characterized as CD4 + CD25 - acting T cells, but are not limited thereto.

本発明の一実施例において、前記T細胞は、CD8細胞毒性T細胞であることを特徴とすることができるが、これに限定されるものではない。 In one embodiment of the present invention, the T cells can be characterized as CD8 + cytotoxic T cells, but are not limited thereto.

本発明の一実施例において、前記細胞死は、細胞死初期段階であることを特徴とすることができるが、これに限定されるものではない。 In one embodiment of the present invention, the cell death may be characterized as an early stage of cell death, but is not limited thereto.

本発明の一実施例において、前記方法は、caspase-3またはcytochrome Cの活性化を減少させることを特徴とすることができるが、これに限定されるものではない。 In one embodiment of the present invention, the method can be characterized by decreasing activation of caspase-3 or cytochrome C, but is not limited thereto.

本発明の一実施例において、前記方法は、細胞死マーカーであるFoxp3、PD-1、CTLA-4及びHeliosのいずれか一つ以上の発現を増加させることを特徴とすることができるが、これに限定されるものではない。 In one embodiment of the present invention, the method may be characterized by increasing the expression of any one or more of the cell death markers Foxp3, PD-1, CTLA-4 and Helios. is not limited to

また、本発明は、ホスホリパーゼA2(phospholipase A2、PLA2)を含む、T細胞の細胞死抑制用培地組成物を提供する。 The present invention also provides a medium composition for suppressing cell death of T cells containing phospholipase A2 (PLA2).

また、本発明は、ホスホリパーゼA2(phospholipase A2、PLA2)を個体に処理して、T細胞の細胞死(apoptosis)を抑制する方法を提供する。 The present invention also provides a method for suppressing T cell apoptosis by treating an individual with phospholipase A2 (PLA2).

従って、本発明は、上記の方法によってホスホリパーゼA2(phospholipase A2、PLA2)が細胞死を抑制してT細胞を増加させることで、免疫恒常性の調節、自己免疫疾患の抑制、アレルギーの抑制などの多様な免疫関連疾患及び、ガン、退行性疾患、脳疾患の予防または治療に効果があることが期待される。 Therefore, the present invention, by suppressing cell death by phospholipase A2 (PLA2) by the above method and increasing T cells, regulates immune homeostasis, suppresses autoimmune diseases, suppresses allergies, etc. It is expected to be effective in preventing or treating various immune-related diseases, cancer, degenerative diseases, and brain diseases.

以下、添付の図面を参照して本発明の実施形態で本発明を詳しく説明する。但し、下記の実施形態は、本発明に対する例示として提示されるもので、当業者に周知著名な技術または構成に対する具体的な説明が本発明の要旨を不要に曖昧にし得ると判断される場合は、その詳細な説明を省略することができ、これによって本発明が制限されるものではない。本発明は、後述する特許請求の範囲の記載及びこれから解釈される均等範疇内で多様な変形及び応用が可能である。 Hereinafter, the present invention will be described in detail in embodiments of the present invention with reference to the accompanying drawings. However, the following embodiments are presented as examples of the present invention, and if it is determined that the detailed description of well-known technologies or configurations to those skilled in the art may unnecessarily obscure the gist of the present invention. , the detailed description thereof can be omitted, and the present invention is not limited thereby. The present invention is capable of various modifications and applications within the scope of the claims described below and equivalents interpreted therefrom.

また、本明細書で使用される用語(terminology)は、本発明の好ましい実施例を適切に表現するために使用された用語であり、これは、使用者、運用者の意図または本発明が属する分野の慣例などによって変わることができる。従って、本用語に対する定義は、本明細書全般にわたった内容に基づいて出されるべきである。明細書全体において、ある部分がある構成要素を「含む」とすると、これは特に反対の記載がない限り、他の構成要素を除外するものではなく他の構成要素をさらに含むことができることを意味する。 Also, the terminology used herein is a term used to adequately describe the preferred embodiment of the invention, regardless of the intent of the user, operator, or to which the invention belongs. It can be changed according to the practice of the field. Therefore, any definition for this term should be provided on the basis of the context throughout this specification. Throughout the specification, when a part "includes" an element, it means that it can include other elements, not to the exclusion of other elements, unless specifically stated to the contrary. do.

本明細書全体にわたって、特定物質の濃度を表すために使用される「%」は、別途の言及がない場合、固体/固体は(w/w)%、固体/液体は(w/v)%、そして液体/液体は(v/v)%である。 Throughout this specification, "%" used to denote the concentration of a particular substance is (w/w) % solids/solids and (w/v) % solids/liquids unless otherwise stated. , and liquid/liquid is (v/v) %.

以下で、実施例を通じて本発明をさらに詳しく説明する。但し、上記実施例及び実験例は、本発明に対する例示として提示されるもので、当業者に周知著名な技術または構成に対する具体的な説明が本発明の要旨を不要に曖昧にし得ると判断される場合は、その詳細な説明を省略することができ、これにより本発明が制限されるものではない。本発明は、後述する特許請求の範囲の記載及びこれから解釈される均等範疇内で多様な変形及び応用が可能である。 Hereinafter, the present invention will be described in more detail through examples. However, the above examples and experimental examples are presented as examples of the present invention, and it is judged that the detailed description of well-known technologies or configurations to those skilled in the art may unnecessarily obscure the gist of the present invention. In some cases, the detailed description can be omitted, and the present invention is not limited thereby. The present invention is capable of various modifications and applications within the scope of the claims described below and equivalents interpreted therefrom.

実施例1.実験の準備及び実験方法
1.1.実験用マウスの準備及び細胞培養
生後6~7週の雄Foxp3EGFPC57BL/7マウスをThe Jackson Lab.(Bar Harbor,ME,USA)から購買した。全ての実験用マウスに空調され、病原体(pathogen)のない環境で12時間ずつ昼/夜を交互に維持させた。また、実験期間中は、飼料と水を自由に摂取させた。全ての過程は<Rules for Animal care>、<Guiding Principles for Experiment Using Animals>を遵守して行われた。
Example 1. Experimental preparation and experimental method 1.1. Experimental mouse preparation and cell culture 6-7 week old male Foxp3 EGFP C57BL/7 mice were obtained from The Jackson Lab. (Bar Harbor, ME, USA). All experimental mice were maintained in an air-conditioned, pathogen-free environment with 12 hours of alternating day/night. During the experimental period, the rats were given free access to food and water. All procedures were performed in compliance with <Rules for Animal care> and <Guiding Principles for Experiment Using Animals>.

実験用マウスを吸入麻酔剤(isoflurane)で麻酔させた後、脾臓を摘出して40μm細胞濾過器(Corning,NY,USA)に通過させた。赤血球が溶解された後に脾臓細胞をリン酸緩衝生理食塩水(PBS)で洗い出し、RPMI-1640(WelGENE INC.,大邱,韓国)で再浮遊させた。培養液には、10%のFBS、50IU/mlのペニシリン、50μg/mlのストレプトマイシン(Hyclone,Logan,UT,USA)が添加された。脾臓細胞には、plate-bound CD3(5μg/ml)とsoluble CD28(2μg/ml)の単一クローン抗体(BD Biosciences,San Jose,CA,USA)と共に0.4μg/mlのPLA2(Sigma-Aldrich,ST.Louis,MO,USA)を処理した。100nMのラパマイシン(rapamycin)のみを単独で処理した細胞群が実験対照群として備えられた。脾臓細胞を37℃で72時間培養させた。 After anesthetizing experimental mice with an inhaled anesthetic (isoflurane), the spleens were removed and passed through a 40 μm cell strainer (Corning, NY, USA). After erythrocytes were lysed, splenocytes were washed out with phosphate-buffered saline (PBS) and resuspended in RPMI-1640 (WelGENE INC., Daegu, Korea). The culture medium was supplemented with 10% FBS, 50 IU/ml penicillin, 50 μg/ml streptomycin (Hyclone, Logan, UT, USA). Spleen cells received 0.4 μg/ml PLA2 (Sigma-Aldrich , ST. Louis, MO, USA). A group of cells treated with 100 nM rapamycin alone served as an experimental control group. Splenocytes were cultured at 37° C. for 72 hours.

1.2.流動細胞分析(Flow Cytometry)方法
培養された細胞をチューブに分液した後、stain buffer(BD Biosciences)で洗い出し、蛍光標識された抗体と共に4℃で30分間培養させた。anti-CD4-PE-Cy7、anti-CD25-APC-Cy7、anti-CD127-PE、anti-CD62L-APC、anti-CTLA-4-PE、及びanti-PD-1-PE抗体が流動細胞分析(flow cytometry)に使用された。細胞死(apoptosis)有無を確認するために、Annexin V-APC、PI、anti-activated caspase-3/7-FITC 抗体(BD Biosciences)を標識者として使用した。機器はBD FACS Calibur flow cytometer(BD Biosciences)を使用し、統計分析はFLOWJO software(Tree star,Ashland,OR,USA)を利用して施された。
1.2. Flow Cytometry Method Cultured cells were separated into tubes, washed with stain buffer (BD Biosciences), and incubated with fluorescently labeled antibodies at 4° C. for 30 minutes. anti-CD4-PE-Cy7, anti-CD25-APC-Cy7, anti-CD127-PE, anti-CD62L-APC, anti-CTLA-4-PE, and anti-PD-1-PE antibodies were tested in flow cytometry ( flow cytometry). Annexin V-APC, PI, and anti-activated caspase-3/7-FITC antibody (BD Biosciences) were used as markers to confirm the presence or absence of cell death (apoptosis). The instrument used was a BD FACS Calibur flow cytometer (BD Biosciences) and statistical analysis was performed using FLOWJO software (Tree star, Ashland, Oreg., USA).

1.3.ウエスタンブロット(western blot)方法
細胞をPro-PREP Protein Extraction Solution(iNtRON Biotechnology,ソウル,韓国)で溶解させ、4℃で30分間維持した。タンパク質濃度は小血清アルブミン(BSA)を基準値として、Bradford方式を利用して測定した。抽出されたタンパク質の中で同一の量をSDS-PAGE電気泳動で分離して、ニトロセルロースメンブレン(nitrocellulose membrane)(Bio-Rad,Hercules,CA,USA)に移動させた。その後、メンブレン(membrane)全体に3%の無脂肪牛乳を塗布し、0.05%のTween-20が含有されたPBSで室温で1時間維持した。
1.3. Western blot method Cells were lysed with Pro-PREP Protein Extraction Solution (iNtRON Biotechnology, Seoul, Korea) and kept at 4°C for 30 minutes. Protein concentration was measured using the Bradford method with small serum albumin (BSA) as the reference value. Identical amounts of the extracted proteins were separated by SDS-PAGE electrophoresis and transferred to a nitrocellulose membrane (Bio-Rad, Hercules, Calif., USA). After that, 3% non-fat milk was applied to the entire membrane and maintained in PBS containing 0.05% Tween-20 at room temperature for 1 hour.

また、caspase-3抗血清(Cell Signaling,Boston,MA,USA)とβ-actin(Santa Cruz Biotechnology,Santa Cruz,CA,USA)をそれぞれ1:1000で希釈して室温で2時間培養した。メンブレン(membrane)を一度洗浄した後、1:5000で希釈された2次抗体(horseradish peroxidase付着)と1時間培養した。また、実験対照群として同一のメンブレン(membrane)をβ-actin特異抗体を利用して再測定した。化学発光試薬(ECL,Amersham Pharmacia Biotech、Piscataway,NJ,USA)を使って特定バンドが表れるようにした。 In addition, caspase-3 antiserum (Cell Signaling, Boston, MA, USA) and β-actin (Santa Cruz Biotechnology, Santa Cruz, CA, USA) were each diluted 1:1000 and incubated at room temperature for 2 hours. After washing the membrane once, it was incubated with a secondary antibody (horseradish peroxidase attached) diluted at 1:5000 for 1 hour. Also, as an experimental control group, the same membrane was measured again using a β-actin specific antibody. A chemiluminescent reagent (ECL, Amersham Pharmacia Biotech, Piscataway, NJ, USA) was used to reveal specific bands.

1.4.調節T細胞の準備
脾臓細胞の中でCD4CD25Treg細胞は、CD4+CD25+ Regulatory T Cell Isolation Kit(Miltenyi Biotec,USA)を利用してmagnetic-activated cell sorting(MACS)方法で分離された。biotinylated antibody混合液とanti-biotin magnetic beadsを利用してCD4T細胞を先ず選別した後、PE-labeled anti-CD25 antibodyとanti-PE magnetic beadsを利用してCD4CD25T細胞を選別した。流動細胞分析法(flow cytometry)で分析した結果、Treg細胞の純度は78%以上と確認された。
1.4. Preparation of Regulatory T Cells CD4 + CD25 + Treg cells in spleen cells were isolated by magnetic-activated cell sorting (MACS) method using CD4 + CD25 + Regulatory T Cell Isolation Kit (Miltenyi Biotec, USA). CD4 + T cells were first selected using a biotinylated antibody mixture and anti-biotin magnetic beads, and then CD4 + CD25 + T cells were selected using a PE-labeled anti-CD25 antibody and anti-PE magnetic beads. . As a result of analysis by flow cytometry, the purity of Treg cells was confirmed to be 78% or more.

1.5.統計処理方法
二つまたは二つ以上の実験群から出た非正規分布データにはone-way Analysis of Variance(ANOVA)分析とTukey’s Multiple Comparison Testを利用するか、Prism 5.01 software(GraphPad Software Inc.,San Diego,CA,USA)を利用してStudent’s t-testで有意性検証をした。P<0.05の場合,統計的に有意であるみて、実験結果は平均±平均の標準偏差(Standard error of mean,SEM)で表した。
1.5. Statistical Processing Methods For non-normally distributed data from two or more experimental groups, one-way Analysis of Variance (ANOVA) analysis and Tukey's Multiple Comparison Test were used, or Prism 5.01 software (GraphPad Software Inc., San Diego, Calif., USA) was used to verify significance with Student's t-test. Experimental results were expressed as mean±standard error of mean (SEM) when P<0.05 was considered statistically significant.

実施例2.ホスホリパーゼA2が調節T細胞(Treg)に及ぼす影響の確認
2.1.ホスホリパーゼA2を処理していない状態におけるT細胞の細胞死
実験に使用されたホスホリパーゼA2(phospholipase A2)は、蜂毒由来のホスホリパーゼA2(bvPLA2)を使って以下の実験を進行した。
Example 2. Confirmation of the effect of phospholipase A2 on regulatory T cells (Treg) 2.1. Phospholipase A2 (bvPLA2) derived from bee venom was used for the cell death experiment of T cells without treatment with phospholipase A2, and the following experiments were carried out.

実験に先立ち、bvPLA2を処理していない状態におけるT細胞の細胞死の数を染色を通じて測定してみた。図1に示すように、(A)作用T細胞(Teff;CD4CD25)と(B)調節T細胞(Treg;CD4CD25)の染色を通じて7-AADとAnnexin Vのいずれも陽性である細胞死数が調節T細胞で2倍以上存在することを確認し、(C)作用T細胞(Teff;CD4CD25)と(D)調節T細胞(Treg;CD4CD25)の染色を通じてcaspase-3とAnnexin Vのいずれも陽性である初期細胞死数が調節T細胞で顕著に増加することを確認した。 Prior to the experiment, the number of T-cell deaths in the non-bvPLA2-treated state was measured through staining. As shown in FIG. 1, both 7-AAD and Annexin V were positive through staining of (A) agonistic T cells (Teff; CD4 + CD25 ) and (B) regulatory T cells (Treg; CD4 + CD25 + ). Staining of (C) agonistic T cells (Teff; CD4 + CD25 ) and (D) regulatory T cells (Treg; CD4 + CD25 + ), confirming that a certain cell death number is more than twice present in regulatory T cells. It was confirmed that the number of initial cell death positive for both caspase-3 and Annexin V was significantly increased in regulatory T cells.

2.2.ホスホリパーゼA2がCD4CD25Foxp3Tregの増加に及ぼす影響
bvPLA2が調節T細胞(Treg)の増殖を誘導する効果を確認するために、脾臓細胞にPBS、bvPLA2、ラパマイシン(rapamycin)をそれぞれ処理した後、72時間後にanti-CD4-PE-Cy7とanti-CD25-APC-Cy7と標識した後、流動細胞分析法(Flow Cytometry)で分析した。調節T細胞(Treg)を識別するために、先ず全体リンパ球細胞の中でCD4細胞をプログラムで選択し、その中でCD25細胞とFoxp3細胞を選別して結果を導出した。
2.2. Effect of Phospholipase A2 on the Increase of CD4 + CD25 + Foxp3 + Treg To confirm the effect of bvPLA2 on inducing proliferation of regulatory T cells (Treg), spleen cells were treated with PBS, bvPLA2 and rapamycin, respectively. After 72 hours, the cells were labeled with anti-CD4-PE-Cy7 and anti-CD25-APC-Cy7 and analyzed by Flow Cytometry. To identify regulatory T cells (Treg), CD4 + cells were first programmatically selected among total lymphoid cells, among which CD25 + and Foxp3 + cells were sorted to derive results.

また、ラパマイシン(rapamycin)が実験室環境でmurine(ネズミ科の動物)と人間のFoxp3 Treg cells増殖を促進するという研究結果に基づいて、実験群の正常な発現を確認するためにラパマイシン(rapamycin)を処理した実験対照群を準備した。 We also added rapamycin to confirm normal expression in experimental groups, based on the findings that rapamycin promotes the expansion of murine and human Foxp3 + Treg cells in a laboratory setting. ) was prepared as an experimental control group.

その結果、図2のように、CD4CD25Foxp3 Treg cellsは、PBS処理群(A)で2.99%、ラパマイシン(rapamycin)処理群(B)で6.03%、bvPLA2を処理群(C)で5.79%、bvPLA2とラパマイシンを処理した実験群でPBS処理群より有意に高いことが表れ(p<0.05)、bvPLA2処理群とラパマイシン処理群の間には大きな差異点がなかった。 As a result, as shown in FIG. 2, CD4 + CD25 + Foxp3 + Treg cells were 2.99% in the PBS-treated group (A), 6.03% in the rapamycin-treated group (B), and 6.03% in the bvPLA2-treated group. In (C), 5.79%, the experimental group treated with bvPLA2 and rapamycin was significantly higher than the PBS-treated group (p<0.05), showing a large difference between the bvPLA2-treated group and the rapamycin-treated group. there was no

実施例3.ホスホリパーゼA2がCD4CD25Foxp3 Tregの表現型に及ぼす影響の確認
CD4CD25Foxp3 Treg cellは、CD62L(L-Selectin)とCD127の発現程度によってresting Treg(CD62LhiCD127low)、activated effectorTreg(CD62LlowCD127low)、memory Treg(CD62LlowCD127hi)に区分することができる。
Example 3. Confirmation of the effect of phospholipase A2 on the phenotype of CD4 + CD25 + Foxp3 + Treg CD4 + CD25 + Foxp3 + Treg cells are activated by resting Treg (CD62L hi CD127 low ) depending on the expression levels of CD62L (L-Selectin) and CD127. It can be divided into effector Treg (CD62L low CD127 low ) and memory Treg (CD62L low CD127 hi ).

脾臓細胞をTreg cell表現型マーカー(CD4、CD25、Foxp3、CD62L、CD127)で染色した後、流動細胞分析法(flow cytometry)で分析した。 Splenocytes were stained with Treg cell phenotypic markers (CD4, CD25, Foxp3, CD62L, CD127) and analyzed by flow cytometry.

実験の結果、図3(A)に示すように、resting Tregの割合は、bvPLA2(p<0.01)とラパマイシン(rapamycin)(p<0.001)処理群でPBS処理群に比べて有意に増加し、一方、図3(B)及び図3(C)を参照すると、effector Treg(p<0.05)とmemory Treg(p<0.01)の割合は、bvPLA2処理群でPBS処理群に比べて有意に減少した。 As a result of the experiment, as shown in FIG. 3(A), the percentage of resting Tregs was significantly higher in the bvPLA2 (p<0.01) and rapamycin (p<0.001)-treated groups than in the PBS-treated group. , while referring to FIGS. 3(B) and 3(C), the proportion of effector Tregs (p<0.05) and memory Tregs (p<0.01) increased in the bvPLA2-treated group with PBS treatment. It decreased significantly compared to the group.

実施例4.ホスホリパーゼA2が細胞死(apoptosis)に及ぼす影響の確認
bvPLA2がT細胞の細胞死に如何なる影響を及ぼすかを確認するために、Annexin V-APCとpropidium iodide(PI)染色を利用した。Annexin Vは、死滅細胞(apoptotic cell)の細胞膜phosphatidic serin(PS)と結合し、PI染色はlate-stage apoptotic cellとnecrotic cellで細胞核と結合するため、Annexin VとPIを同時に利用して初期段階(early-stage)と末期段階(late-stage)の死滅細胞(apoptotic cell)を判別することができる。
Example 4. Confirmation of Effect of Phospholipase A2 on Apoptosis Annexin V-APC and propidium iodide (PI) staining were used to confirm the effect of bvPLA2 on T cell apoptosis. Annexin V binds to the plasma membrane phosphotidic serin (PS) of apoptotic cells, and PI staining binds to cell nuclei in late-stage apoptotic cells and necrotic cells. (early-stage) and late-stage apoptotic cells can be discriminated.

(1)実験の結果、図4に示すように、Annexin VとPIの両方に陽性を表したTreg cellの割合は、PBS処理群(A)で6.55%、ラパマイシン(rapamycin)処理群(B)で6.59%、bvPLA2処理群(C)で3.66%と表れた。Annexin VとPIの両方に陽性を表したTreg cellの数字はPBS処理群とラパマイシン処理群よりbvPLA2処理群で非常に有意に少なかった(p<0.01)。即ち、bvPLA2を処理した群でapoptotic Treg cellの絶対的な数字と割合のいずれもが減少することを確認した。 (1) As a result of the experiment, as shown in FIG. 4, the percentage of Treg cells positive for both Annexin V and PI was 6.55% in the PBS-treated group (A), and 6.55% in the rapamycin-treated group ( 6.59% in B) and 3.66% in the bvPLA2-treated group (C). The number of Treg cells positive for both Annexin V and PI was significantly lower in the bvPLA2-treated group than in the PBS- and rapamycin-treated groups (p<0.01). That is, it was confirmed that both the absolute number and the ratio of apoptotic Treg cells decreased in the group treated with bvPLA2.

(2)また、図5に示すように、マウス膵膓細胞をPBSとbvPLA2処理した後、anti-CD3/anti-CD28抗体のように72時間培養した後、CD4Tリンパ球中で細胞死した細胞の数を測定した結果、PIとAnnexin Vのいずれも陽性である細胞死がbvPLA2を処理した細胞では1.5倍ほど減少することを確認した。 (2) In addition, as shown in FIG. 5, after treating mouse pancreatic cells with PBS and bvPLA2 and culturing them for 72 hours as with anti-CD3/anti-CD28 antibodies, cell death occurred in CD4 + T lymphocytes. As a result of measuring the number of cells treated with BvPLA2, it was confirmed that cell death positive for both PI and Annexin V was reduced by about 1.5 times in cells treated with bvPLA2.

(3)bvPLA2によるCD4T細胞の細胞死抑制機序がIL-2依存的な現象であるかを確認した結果、図6に示すように、IL-2の添加に非依存的にbvPLA2処理群で細胞死の減少が表れることを確認することができた。 (3) As a result of confirming whether the mechanism of suppression of CD4 + T cell death by bvPLA2 is an IL-2-dependent phenomenon, as shown in FIG. It could be confirmed that the group exhibited a decrease in cell death.

実施例5.ホスホリパーゼA2が細胞死初期段階(early apoptosis)に及ぼす影響の確認
カスパーゼ(Caspase)の活性化は、細胞死(apoptosis)の初期段階に必須な過程である。細胞死の初期過程にbvPLA2が関与するかを確認するために、fluorogenic capase-3 substrateとAnnexin V-APC、7-AAD(DNA bindig dye)で蛍光標識して流動細胞分析法(flow cytometry)で分析した。7-AADに陰性である細胞を選別した後、caspase-3とAnnexin Vの両方に陽性である初期死滅細胞(early apoptotic cell)を測定した。
Example 5. Confirmation of the Effect of Phospholipase A2 on Early Apoptosis Caspase activation is an essential process for early apoptosis. In order to confirm whether bvPLA2 is involved in the initial process of cell death, fluorogenic capase-3 substrate, Annexin V-APC, and 7-AAD (DNA binding dye) were fluorescently labeled with flow cytometry. analyzed. After sorting cells negative for 7-AAD, early apoptotic cells positive for both caspase-3 and Annexin V were measured.

(1)測定の結果、図7に示すように、PBS処理群(A)では10.9%、ラパマイシン(rapamycin)処理群(B)では5.88%、bvPLA2処理群(C)では0.15%と観察された。bvPLA2処理群で初期死滅細胞(early apoptotic cell)がPBS処理群に比べて統計的に非常に有意に減少した(p<0.01)。ラパマイシン処理群でも初期死滅細胞(early apoptotic cell)の減少が確認されるが、統計的に優位な程度ではなかった。 (1) As a result of the measurement, as shown in Fig. 7, 10.9% in the PBS-treated group (A), 5.88% in the rapamycin-treated group (B), and 0.88% in the bvPLA2-treated group (C). 15% was observed. The number of early apoptotic cells in the bvPLA2-treated group was statistically very significantly reduced compared to the PBS-treated group (p<0.01). A reduction in early apoptotic cells was also observed in the rapamycin-treated group, but not to a statistically significant extent.

(2)図8に示すように、マウス膵膓細胞をPBSとbvPLA2処理した後、anti-CD3/anti-CD28抗体のように72時間培養した後、CD4+ T細胞の中で初期状態の細胞死した細胞の数を測定した結果、active caspase-3とAnnexin Vのいずれも陽性である初期細胞死がbvPLA2を処理した細胞では顕著に減少した。 (2) As shown in Fig. 8, after treating mouse pancreatic cells with PBS and bvPLA2 and culturing them for 72 hours as with anti-CD3/anti-CD28 antibody, early stage cell death among CD4+ T cells. As a result of measuring the number of cells treated with bvPLA2, the initial cell death, which is positive for both active caspase-3 and Annexin V, was significantly reduced in the bvPLA2-treated cells.

実施例6.ホスホリパーゼA2がcaspase-3の活性化に及ぼす影響の確認
(1)細胞死(apoptosis)の過程の中でcaspase-3の活性化は核心的なメカニズムである。caspase-3は、32kDaのタンパク質加水分解性の全酵素として、12kDaと17kDaのサブユニット(subunit)に分割されながら活性化される。実施例4と実施例5で bvPLA2が死滅細胞(apoptotic cell)を減少させることを確認した後、bvPLA2がcaspase-3の活性化にも影響を及ぼすかを確認するために、脾臓細胞にbvPLA2を処理して37℃の室温で0、1、3、6、24、72時間、それぞれ培養してウエスタンブロット(western blot)方式でタンパク質バンドを測定した。
Example 6. Confirmation of the effect of phospholipase A2 on caspase-3 activation (1) Caspase-3 activation is a key mechanism in the process of cell death (apoptosis). Caspase-3 is activated as a 32 kDa proteolytic full enzyme, splitting into 12 kDa and 17 kDa subunits. After confirming that bvPLA2 reduces apoptotic cells in Examples 4 and 5, bvPLA2 was added to splenocytes to confirm whether bvPLA2 also affects the activation of caspase-3. The cells were treated and cultured at room temperature of 37° C. for 0, 1, 3, 6, 24 and 72 hours, respectively, and protein bands were measured by western blot.

その結果、図9(A)に示すように、bvPLA2処理群でcaspase-3の分割が非常に顕著に減少したことを確認した。PBS処理群では、caspase-3の分割が1時間(1h)以後に明確に観察されるが、bvPLA2処理群では、24時間(24h)以後の結果からcaspase-3の分割が観察された。また、図9(B)は、マウス膵膓細胞のウエスタンブロットの結果でPBS処理した正常群の場合、培養72時間目にProcaspase-3がbvPLA2を処理した群よりさらに活性化されることを確認することができた。 As a result, as shown in FIG. 9(A), it was confirmed that caspase-3 cleavage was significantly reduced in the bvPLA2-treated group. Caspase-3 cleavage was clearly observed after 1 hour (1 h) in the PBS-treated group, whereas caspase-3 cleavage was observed after 24 hours (24 h) in the bvPLA2-treated group. In addition, FIG. 9(B) shows the result of western blotting of mouse pancreatic cells, which confirms that in the normal group treated with PBS, Procaspase-3 is more activated than in the group treated with bvPLA2 after 72 hours of culture. We were able to.

(2)また、細胞死によって増加するcleaved caspase-3が蜂毒由来のPLA2処理で減少することをウエスタンブロット(western blot)を通じて確認した。Magnetic-beadで分離した作用T細胞(Teff;CD4CD25)と調節T細胞(Treg;CD4CD25)をanti-CD3/anti-CD28抗体のように72時間培養した後、細胞死が増加することを細胞死マーカーであるcleaved caspase-3とcytochrome Cを通じて観察した。その結果、図10に示すように、蜂毒由来のPLA2を処理した時にcleaved caspase-3とcytochrome Cの発現が減少することを確認することができた。 (2) In addition, it was confirmed through western blotting that cleaved caspase-3, which increases due to cell death, is decreased by bee venom-derived PLA2 treatment. After culturing working T cells (Teff; CD4 + CD25 ) and regulatory T cells (Treg; CD4 + CD25 + ) separated with magnetic-beads for 72 hours as with anti-CD3/anti-CD28 antibodies, cell death was observed. The increase was observed through cleaved caspase-3 and cytochrome C, which are cell death markers. As a result, as shown in FIG. 10, it was confirmed that the expression of cleaved caspase-3 and cytochrome C decreased when treated with bee venom-derived PLA2.

実施例7.ホスホリパーゼA2が細胞死マーカーの発現に及ぼす影響の確認
T細胞のCTLA-4とPD-1タンパク質は、T細胞の活性を抑制する抑制受容器(inhibitory receptor)である。bvPLA2がこれらの抑制性タンパク質の発現に及ぼす影響を確認するために、anti-CD4 antibody、anti-CD25 antibody、anti-CTLA-4 antibody、anti-PD-1 antibody染色を利用して流動細胞分析(flow cytometry)をした。
Example 7. Confirmation of Effect of Phospholipase A2 on Expression of Cell Death Markers CTLA-4 and PD-1 proteins of T cells are inhibitory receptors that suppress the activity of T cells. To confirm the effect of bvPLA2 on the expression of these inhibitory proteins, we performed flow cell analysis using anti-CD4 antibody, anti-CD25 antibody, anti-CTLA-4 antibody, and anti-PD-1 antibody staining ( flow cytometry).

実験の結果、図11及び図12に示すように、PBS処理群のPD-1が9.07%、CTLA-4が1.59%であり、bvPLA2処理群のPD-1が20.4%、CTLA-4が3.81%と確認された。即ち、bvPLA2処理群でCD4CD25 Treg cellにおけるPD-1(p<0.05)とCTLA-4(p<0.05)発現が有意に増加した。図13は、調節T細胞関連の細胞死のマーカーであるFoxp3、PD-1、CTLA-4、Heliosの発現程度を確認した結果であり、調節T細胞関連の細胞死マーカーのいずれもがbvPLA2を処理した時に正常より増加する傾向を表すことを確認した。 As a result of the experiment, as shown in FIGS. 11 and 12, PD-1 in the PBS-treated group was 9.07%, CTLA-4 was 1.59%, and PD-1 in the bvPLA2-treated group was 20.4%. , CTLA-4 was identified at 3.81%. That is, there was a significant increase in PD-1 (p<0.05) and CTLA-4 (p<0.05) expression in CD4 + CD25 + Treg cells in the bvPLA2-treated group. FIG. 13 shows the results of confirming the expression levels of regulatory T cell-related cell death markers Foxp3, PD-1, CTLA-4, and Helios. It was confirmed that there was a tendency to increase from normal when treated.

従って、本発明を通じて蜂毒(bee venom)由来の有効物質ホスホリパーゼA2(PLA2)によるT細胞の調節メカニズムとして免疫反応に重要な役割をするTリンパ球の細胞死(apoptosis)を抑制することで、T細胞を増加させる方法を確認した。 Therefore, through the present invention, by suppressing apoptosis of T lymphocytes, which plays an important role in immune response, as a regulation mechanism of T cells by the effective substance phospholipase A2 (PLA2) derived from bee venom, A method for increasing T cells was identified.

これまで本発明についてその好ましい実施例を中心として説明した。 So far, the invention has been described with an emphasis on its preferred embodiments.

本発明が属する技術分野で通常の知識を持った者は本発明が本発明の本質的な特性から逸脱しない範囲で変形された形態に具現可能なことが理解できるであろう。従って、開示された実施例は限定的な観点ではなく説明的な観点で考慮されるべきである。本発明の範囲は前述した説明ではなく、特許請求の範囲に表れており、それと同等な範囲内にある全ての差異点は、本発明に含まれると解釈されるべきである。 Those skilled in the art to which the present invention pertains will appreciate that the present invention can be embodied in various forms without departing from the essential characteristics of the invention. Accordingly, the disclosed embodiments should be considered in an illustrative rather than a restrictive perspective. The scope of the invention is defined in the appended claims rather than in the foregoing description, and all differences within the scope of equivalents thereof are to be construed as being included in the present invention.

Claims (2)

In vitro上において、
蜂毒から分離されたホスホリパーゼA2(phospholipase A2、PLA2)でCD4陽性作用T細胞又は調節T細胞を処理して、CD4陽性作用T細胞又は調節T細胞のカスパーゼ-3の活性化を減少させ、シトクロムCの活性化を減少させ、PD-1およびCTLA-4の発現を増加させる方法。
In vitro,
Treating CD4 positive agonist T cells or regulatory T cells with phospholipase A2 (PLA2) isolated from bee venom to reduce caspase-3 activation of CD4 positive agonist T cells or regulatory T cells and A method for decreasing activation of C and increasing expression of PD-1 and CTLA-4.
蜂毒から分離されたホスホリパーゼA2(phospholipase A2、PLA2)を含むCD4陽性作用T細胞又は調節T細胞のカスパーゼ-3の活性化を減少させ、シトクロムCの活性化を減少させ、PD-1及びCTLA-4の発現を増加させるための培地組成物。 including phospholipase A2 (PLA2) isolated from bee venom. Media compositions for increasing expression of CTLA-4.
JP2019226752A 2019-07-09 2019-12-16 Methods and compositions for treating phospholipase A2 to modulate T cell death Active JP7328693B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190082571A KR102261588B1 (en) 2019-07-09 2019-07-09 Method of controlling the apoptosis of T cells, by the phospholipase A2
KR10-2019-0082571 2019-07-09

Publications (2)

Publication Number Publication Date
JP2021010360A JP2021010360A (en) 2021-02-04
JP7328693B2 true JP7328693B2 (en) 2023-08-17

Family

ID=74114050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019226752A Active JP7328693B2 (en) 2019-07-09 2019-12-16 Methods and compositions for treating phospholipase A2 to modulate T cell death

Country Status (3)

Country Link
JP (1) JP7328693B2 (en)
KR (1) KR102261588B1 (en)
WO (1) WO2021006420A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150150951A1 (en) 2012-02-27 2015-06-04 Hyun Su Bae Pharmaceutical composition comprising bee venom-phospholipase a2 (bv-pla2) for treating or preventing diseases related to degradation of abnormal regulatory t cell activity

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140019064A (en) * 2012-07-19 2014-02-14 서울시립대학교 산학협력단 Pharmaceutical composition for enhancing immune response comprising nicotinamide as an active ingredient
KR101802251B1 (en) * 2016-05-11 2017-11-28 경희대학교 산학협력단 Vaccine composition for preventing or treating alzheimer disease or dementia comprising amyloid beta peptide and bee venom phospholipase A2 as active ingredient

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150150951A1 (en) 2012-02-27 2015-06-04 Hyun Su Bae Pharmaceutical composition comprising bee venom-phospholipase a2 (bv-pla2) for treating or preventing diseases related to degradation of abnormal regulatory t cell activity

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Cheroutre H. et al.,The light and dark sides of intestinal intraepithelial lymphocytes,Nat Rev Immunol,2011年,Vol. 11(7),pp. 445-456
Chung ES. et al.,Bee Venom Phospholipase A2, a Novel Foxp3+ Regulatory T Cell Inducer, Protects Dopaminergic Neurons by Modulating Neuroinflammatory Responses in a Mouse Model of Parkinson's Disease,J Immunol,2015年,Vol. 195(10),pp. 4853-4860
Costa-Junior HM. et al.,Apoptosis-inducing factor of a cytotoxic T cell line: involvement of a secretory phospholipase A2,Cell Tissue Res,2006年,Vol. 324(2),pp. 255-266
村上 誠,ホスホリパーゼA2ファミリーの多様性と生命応答における役割,生化学,2018年,Vol. 90(3),pp. 348-360

Also Published As

Publication number Publication date
WO2021006420A1 (en) 2021-01-14
JP2021010360A (en) 2021-02-04
KR102261588B1 (en) 2021-06-07
KR20210006673A (en) 2021-01-19

Similar Documents

Publication Publication Date Title
Reynolds et al. Neuroprotective activities of CD4+ CD25+ regulatory T cells in an animal model of Parkinson’s disease
Steinfelder et al. The major component in schistosome eggs responsible for conditioning dendritic cells for Th2 polarization is a T2 ribonuclease (omega-1)
Hao et al. Central nervous system (CNS)–resident natural killer cells suppress Th17 responses and CNS autoimmune pathology
Jadidi-Niaragh et al. Regulatory T-cell as orchestra leader in immunosuppression process of multiple sclerosis
Leger et al. Glatiramer acetate attenuates neuropathic allodynia through modulation of adaptive immune cells
Kautz-Neu et al. Dendritic cells in Leishmania major infections: mechanisms of parasite uptake, cell activation and evidence for physiological relevance
Uyangaa et al. Dual TLR2/9 recognition of herpes simplex virus infection is required for recruitment and activation of monocytes and NK cells and restriction of viral dissemination to the central nervous system
Ellis et al. Induced CD8+ FoxP3+ Treg cells in rheumatoid arthritis are modulated by p38 phosphorylation and monocytes expressing membrane tumor necrosis factor α and CD86
Wu et al. Activation and regulation of blood Vδ2 T cells are amplified by TREM-1+ during active pulmonary tuberculosis
US11096967B2 (en) Pharmaceutical composition for preventing or treating regulatory T cell-mediated diseases
JP7119076B2 (en) NK cell culture composition and method for culturing NK cells using the same
Hamed et al. Phospholipase B is critical for Cryptococcus neoformans survival in the central nervous system
Chen et al. Differential Hrd1 expression and B-cell accumulation in eosinophilic and non-eosinophilic chronic rhinosinusitis with nasal polyps
JP7328693B2 (en) Methods and compositions for treating phospholipase A2 to modulate T cell death
Kim et al. Lipoteichoic acid of Streptococcus gordonii as a negative regulator of human dendritic cell activation
Lu et al. Inhibition of endoplasmic reticulum stress and the downstream pathways protects CD4+ T cells against apoptosis and immune dysregulation in sepsis
Kim et al. Solubilized curcuminoid complex prevents extensive immunosuppression through immune restoration and antioxidant activity: Therapeutic potential against SARS-CoV-2 (COVID-19)
Lima et al. Tn P Peptide Suppresses Experimental Autoimmune Encephalomyelitis (EAE) in a Preclinical Mouse Model
KR101273747B1 (en) Composition for preventing and treating cancer or autoimmune diseases comprising STA-21
Fernandez et al. Murine Skin-resident γδT Cells Impair the Immune Response to HSV in Skin
Dasgupta et al. NLGP regulates RGS5‐TGFβ axis to promote pericyte‐dependent vascular normalization during restricted tumor growth
CHO et al. Allium hookeri root extract regulates asthmatic changes through immunological modulation of Th1/Th2‑related factors in an ovalbumin‑induced asthma mouse model
김홍민 Dissection of roles of dendritic cells in the pathogenesis of Mycobacterium tuberculosis and their implications in novel strategies for improved control of tuberculosis
Midavaine et al. Sexually dimorphic regulatory T cell-derived enkephalin imparts pregnancy-induced analgesia
Iranzad et al. The effectiveness of ruxolitinib and cyclophosphamide combination on T helper 17 and regulatory T cells in rat experimental membranous glomerulonephritis

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20200110

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220722

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220927

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221216

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230728

R150 Certificate of patent or registration of utility model

Ref document number: 7328693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150