JP7328165B2 - Photocatalyst dispersion, photocatalyst coated member, photocatalyst filter, and method for forming photocatalyst layer - Google Patents

Photocatalyst dispersion, photocatalyst coated member, photocatalyst filter, and method for forming photocatalyst layer Download PDF

Info

Publication number
JP7328165B2
JP7328165B2 JP2020042243A JP2020042243A JP7328165B2 JP 7328165 B2 JP7328165 B2 JP 7328165B2 JP 2020042243 A JP2020042243 A JP 2020042243A JP 2020042243 A JP2020042243 A JP 2020042243A JP 7328165 B2 JP7328165 B2 JP 7328165B2
Authority
JP
Japan
Prior art keywords
photocatalyst
dispersion
surfactant
fine particles
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020042243A
Other languages
Japanese (ja)
Other versions
JP2021142473A (en
Inventor
朋也 堤之
徳隆 川瀬
武史 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2020042243A priority Critical patent/JP7328165B2/en
Priority to CN202110209529.4A priority patent/CN113384967B/en
Publication of JP2021142473A publication Critical patent/JP2021142473A/en
Application granted granted Critical
Publication of JP7328165B2 publication Critical patent/JP7328165B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/10Particle separators, e.g. dust precipitators, using filter plates, sheets or pads having plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0027Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0027Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions
    • B01D46/0036Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions by adsorption or absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6527Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/232Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0219Coating the coating containing organic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Catalysts (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Paints Or Removers (AREA)

Description

本発明は、光触媒分散液、光触媒被覆部材、光触媒フィルタ及び光触媒層の形成方法に関する。 The present invention relates to a photocatalyst dispersion, a photocatalyst coated member, a photocatalyst filter, and a method for forming a photocatalyst layer.

光触媒性能を有する酸化タングステン粒子を水に分散させた光触媒分散液が知られている(例えば、特許文献1参照)。この光触媒分散液をフィルタ基材に塗布し、塗布層を乾燥させることにより表面に光触媒層を有する光触媒フィルタを形成することができる。この光触媒フィルタに揮発性有機化合物(VOC)や悪臭物質などを含む空気を通過させ、光触媒フィルタに可視光を照射すると、酸化タングステン粒子の光触媒性能で空気中のVOCや悪臭物質などの有機化合物を分解し空気を清浄化することができる。 A photocatalyst dispersion is known in which tungsten oxide particles having photocatalytic performance are dispersed in water (see, for example, Patent Document 1). A photocatalyst filter having a photocatalyst layer on the surface can be formed by applying this photocatalyst dispersion to a filter substrate and drying the coating layer. Air containing volatile organic compounds (VOCs) and malodorous substances is passed through this photocatalytic filter, and visible light is irradiated onto the photocatalytic filter. It can be decomposed to purify the air.

特開2016-106025号公報JP 2016-106025 A

しかし、光触媒塗布前のフィルタ基材に油汚れがあったり、フィルタ基材が撥水性のものであったりすると、フィルタ基材に光触媒分散液が均一に付着せず、塗りムラが発生してしまう。ムラが発生すると光触媒層が薄い又は形成されていないところのフィルタ開口率が高くなり、流体がその部分を選択的に流れやすくなってしまう。そうすると、十分に光触媒による、消臭やVOC除去の性能が十分に発揮されないという問題が発生する。また、光触媒層が厚いところは、ちょっとした衝撃で光触媒層が剥がれ落ちる問題が発生する。
本発明は、このような事情に鑑みてなされたものであり、光触媒活性の高く厚さが均一な光触媒層を形成することができる光触媒分散液を提供する。
However, if the filter base material before the photocatalyst coating is oily or water-repellent, the photocatalyst dispersion will not adhere uniformly to the filter base material, resulting in uneven coating. . When unevenness occurs, the filter aperture ratio increases where the photocatalyst layer is thin or where it is not formed, making it easier for the fluid to selectively flow through that portion. As a result, there arises a problem that the deodorant and VOC removal performances of the photocatalyst are not sufficiently exhibited. In addition, where the photocatalyst layer is thick, there is a problem that the photocatalyst layer peels off with a slight impact.
The present invention has been made in view of such circumstances, and provides a photocatalyst dispersion liquid capable of forming a photocatalyst layer having a high photocatalytic activity and a uniform thickness.

本発明は、水を含む分散媒と、界面活性剤と、可視光応答型光触媒微粒子と、吸着剤とを含み、前記界面活性剤は、不揮発性を有し、かつ、0℃以下の凝固点を有することを特徴とする光触媒分散液を提供する。 The present invention includes a dispersion medium containing water, a surfactant, visible-light-responsive photocatalyst fine particles, and an adsorbent, wherein the surfactant is nonvolatile and has a freezing point of 0° C. or less. Provided is a photocatalyst dispersion, characterized by comprising:

本発明の光触媒分散液は、水を含む分散媒と、可視光応答型光触媒微粒子と、吸着剤とを含む。この光触媒分散液をフィルタなどの基材に塗布し塗布層を乾燥させることにより基材上に光触媒微粒子と吸着剤とを含む光触媒層を形成することができる。光触媒層が吸着剤を含むことにより、空気中のVOCや悪臭物質などが光触媒層に吸着しやすくなり、VOCや悪臭物質などの捕集率を向上させることができる。また、光触媒層が可視光応答型光触媒微粒子を含むことにより、光触媒活性でVOCや悪臭物質などを分解することができ、空気を清浄化することができる。
本発明の光触媒分散液は、界面活性剤を含む。このことにより、基材に油汚れがある場合や基材が撥水性を有する場合であっても、光触媒分散液が基材表面ではじかれることを抑制することができ、基材上に光触媒分散液の塗布層をむらなく均一に形成することができる。そして、この塗布層を乾燥させることによりむらなく均一な光触媒層を基材上に形成することができる。このため、光触媒活性が低い部分が生じることや光触媒層が厚く基材から剥がれやすい部分が生じることを抑制することができる。
The photocatalyst dispersion of the present invention includes a water-containing dispersion medium, visible-light-responsive photocatalyst fine particles, and an adsorbent. By applying this photocatalyst dispersion to a base material such as a filter and drying the applied layer, a photocatalyst layer containing photocatalyst fine particles and an adsorbent can be formed on the base material. Since the photocatalyst layer contains an adsorbent, VOCs and malodorous substances in the air are easily adsorbed to the photocatalyst layer, and the collection rate of VOCs and malodorous substances can be improved. In addition, since the photocatalyst layer contains visible light-responsive photocatalyst fine particles, VOCs and malodorous substances can be decomposed by photocatalytic activity, and the air can be purified.
The photocatalyst dispersion of the present invention contains a surfactant. As a result, even when the base material is oily or water-repellent, the photocatalyst dispersion can be prevented from being repelled on the base material surface, and the photocatalyst dispersion on the base material can be suppressed. A liquid coating layer can be formed evenly and uniformly. By drying this coating layer, an even and uniform photocatalyst layer can be formed on the substrate. Therefore, it is possible to suppress the occurrence of portions with low photocatalytic activity and the occurrence of portions where the photocatalyst layer is thick and easily peeled off from the substrate.

界面活性剤は不揮発性を有する。このため、光触媒分散液の品質を安定化することができる。
界面活性剤は0℃以下の凝固点を有する。このため、光触媒分散液の塗布層を乾燥させることにより形成した光触媒層において界面活性剤は液体状態であり、固体状態として析出しない。従って、析出した界面活性剤が光を遮り光触媒微粒子が影になることがない。この結果、光触媒層に光触媒活性が低下する部分が生じることを抑制することができ、効率よく空気を清浄化することができる。
また、界面活性剤が光触媒微粒子の表面を覆っていたとしても、界面活性剤が液体状態であるため、光触媒活性により光触媒微粒子の表面を覆う界面活性剤を分解除去することができる。
Surfactants have non-volatility. Therefore, the quality of the photocatalyst dispersion can be stabilized.
Surfactants have freezing points below 0°C. Therefore, in the photocatalyst layer formed by drying the coating layer of the photocatalyst dispersion, the surfactant is in a liquid state and does not precipitate as a solid state. Therefore, the precipitated surfactant blocks the light, and the photocatalyst fine particles are not shaded. As a result, it is possible to suppress the occurrence of a portion of the photocatalyst layer in which the photocatalytic activity is lowered, and it is possible to purify the air efficiently.
Further, even if the surface of the photocatalyst fine particles is covered with the surfactant, the surfactant is in a liquid state, so that the surfactant covering the surface of the photocatalyst fine particles can be decomposed and removed by the photocatalytic activity.

本発明の一実施形態の光触媒分散液を用いて光触媒層を形成する方法の説明図である。It is explanatory drawing of the method of forming a photocatalyst layer using the photocatalyst dispersion liquid of one Embodiment of this invention. 本発明の一実施形態の光触媒フィルタの概略平面図である。1 is a schematic plan view of a photocatalyst filter according to one embodiment of the present invention; FIG. 図2の破線A-Aにおける光触媒フィルタの概略断面図である。FIG. 3 is a schematic cross-sectional view of the photocatalyst filter taken along dashed line AA in FIG. 2; 本発明の一実施形態の空気清浄装置の概略断面図である。1 is a schematic cross-sectional view of an air cleaning device according to one embodiment of the present invention; FIG.

本発明の光触媒分散液は、水を含む分散媒と、界面活性剤と、可視光応答型光触媒微粒子と、吸着剤とを含み、前記界面活性剤は、不揮発性を有し、かつ、0℃以下の凝固点を有することを特徴とする。 The photocatalyst dispersion of the present invention comprises a water-containing dispersion medium, a surfactant, visible-light-responsive photocatalyst fine particles, and an adsorbent, the surfactant being nonvolatile and having a temperature of 0°C. It is characterized by having the following freezing point.

前記界面活性剤はアミノ基含有化合物であることが好ましい。また、前記界面活性剤は脂肪族化合物であることが好ましい。このことにより、光触媒分散液を用いて形成した光触媒層において、光触媒微粒子の表面を覆う界面活性剤を光触媒活性により分解することができる。
前記光触媒微粒子は酸化タングステンを含むことが好ましい。このことにより、光触媒分散液を用いて形成した光触媒層が可視光を受光することにより光触媒活性を有することができる。
前記吸着剤は多孔質微粒子であることが好ましい。このことにより、光触媒分散液を用いて形成した光触媒層のガス吸着特性を向上させることができる。
The surfactant is preferably an amino group-containing compound. Also, the surfactant is preferably an aliphatic compound. As a result, in the photocatalyst layer formed using the photocatalyst dispersion, the surfactant covering the surface of the photocatalyst fine particles can be decomposed by photocatalytic activity.
The photocatalyst fine particles preferably contain tungsten oxide. As a result, the photocatalyst layer formed using the photocatalyst dispersion can have photocatalytic activity by receiving visible light.
The adsorbent is preferably porous microparticles. This makes it possible to improve the gas adsorption properties of the photocatalyst layer formed using the photocatalyst dispersion.

本発明の光触媒分散液中の界面活性剤の含有量は0.1wt%以上1.0wt%以下であることが好ましく、前記分散液中の吸着剤の含有量は0.1wt%以上1.0wt%以下であることが好ましく、前記分散液中の光触媒微粒子の含有量は、0.1wt%以上1.0wt%以下であることが好ましい。このことにより、光触媒分散液を用いて形成した光触媒層のガス除去性能、付着性及び均一性を向上させることができる。
本発明の光触媒分散液中の光触媒微粒子の質量パーセント濃度は、前記分散液中の界面活性剤の質量パーセント濃度の0.5倍以上であることが好ましく、前記分散液中の光触媒微粒子と吸着剤の合計質量パーセント濃度は、前記分散液中の界面活性剤の質量パーセント濃度の5倍以下であることが好ましい。このことにより、光触媒分散液を用いて形成した光触媒層のガス除去性能、付着性及び均一性を向上させることができる。
前記吸着剤は、10nm以上1000nm以下の平均粒径を有することが好ましい。吸着剤の平均粒径が10nm以上であると、吸着剤の表面上に光触媒微粒子を付着させることができ、光触媒層の光触媒活性を向上させることができる。吸着剤の平均粒径が1000nm以下であると、光触媒層の基材の表面への付着強度を強くすることができ、光触媒層が基材の表面から剥がれ落ちることを抑制することができる。
The content of the surfactant in the photocatalyst dispersion of the present invention is preferably 0.1 wt% or more and 1.0 wt% or less, and the content of the adsorbent in the dispersion is 0.1 wt% or more and 1.0 wt%. %, and the content of the photocatalyst fine particles in the dispersion liquid is preferably 0.1 wt % or more and 1.0 wt % or less. As a result, the gas removal performance, adhesion and uniformity of the photocatalyst layer formed using the photocatalyst dispersion can be improved.
The mass percent concentration of the photocatalyst fine particles in the photocatalyst dispersion of the present invention is preferably at least 0.5 times the mass percent concentration of the surfactant in the dispersion, and the photocatalyst fine particles and the adsorbent in the dispersion is preferably not more than 5 times the weight percent concentration of the surfactant in the dispersion. As a result, the gas removal performance, adhesion and uniformity of the photocatalyst layer formed using the photocatalyst dispersion can be improved.
The adsorbent preferably has an average particle size of 10 nm or more and 1000 nm or less. When the average particle size of the adsorbent is 10 nm or more, the photocatalyst fine particles can be adhered to the surface of the adsorbent, and the photocatalytic activity of the photocatalyst layer can be improved. When the average particle size of the adsorbent is 1000 nm or less, the adhesion strength of the photocatalyst layer to the surface of the base material can be increased, and the peeling off of the photocatalyst layer from the surface of the base material can be suppressed.

本発明は、基材と、基材上に設けられた光触媒層とを備える光触媒被覆部材も提供する。この光触媒層は、本発明の光触媒分散液の塗布層を乾燥させた層である。
本発明は、フィルタ基材と、フィルタ基材上に設けられた光触媒層とを備える光触媒フィルタも提供する。この光触媒層は、本発明の光触媒分散液の塗布層を乾燥させた層である。
本発明は、本発明の光触媒フィルタと、光触媒フィルタに光を照射するように設けられた発光部と、空気が光触媒フィルタを通過するように設けられた送風部とを備える空気清浄装置も提供する。
本発明は、本発明の光触媒分散液を基材上に塗布することにより形成した塗布層を乾燥させる工程を含む光触媒層の形成方法も提供する。
The present invention also provides a photocatalyst-coated member comprising a substrate and a photocatalyst layer provided on the substrate. This photocatalyst layer is a layer obtained by drying the coating layer of the photocatalyst dispersion of the present invention.
The present invention also provides a photocatalytic filter comprising a filter substrate and a photocatalytic layer provided on the filter substrate. This photocatalyst layer is a layer obtained by drying the coating layer of the photocatalyst dispersion of the present invention.
The present invention also provides an air cleaning device comprising the photocatalyst filter of the present invention, a light-emitting part provided to irradiate the photocatalyst filter with light, and a blower provided to allow air to pass through the photocatalyst filter. .
The present invention also provides a method for forming a photocatalyst layer, which includes the step of drying a coating layer formed by applying the photocatalyst dispersion of the present invention onto a substrate.

以下、複数の実施形態を参照して本発明をより詳細に説明する。図面や以下の記述中で示す構成は、例示であって、本発明の範囲は、図面や以下の記述中で示すものに限定されない。 The invention will now be described in more detail with reference to a number of embodiments. The configurations shown in the drawings and the following description are examples, and the scope of the present invention is not limited to those shown in the drawings and the following description.

第1実施形態
図1は本実施形態の光触媒分散液を用いて光触媒層を形成する方法の説明図である。
本実施形態の光触媒分散液7は、水を含む分散媒2と、界面活性剤と、可視光応答型光触媒微粒子3と、吸着剤4とを含み、前記界面活性剤は、不揮発性を有し、かつ、0℃以下の凝固点を有することを特徴とする。
図1に示したように、基材5の表面上に光触媒分散液7を塗布し、形成された塗布層を乾燥させることにより基材5の表面上に光触媒層6が形成された光触媒被覆部材10を形成することができる。
基材5への光触媒分散液7の塗布方法は、特に限定されないが、例えば、浸漬塗布法、スプレーコーティング、スクリーン印刷法、スピンコート法等である。
First Embodiment FIG. 1 is an explanatory view of a method of forming a photocatalyst layer using a photocatalyst dispersion liquid of this embodiment.
The photocatalyst dispersion liquid 7 of the present embodiment includes a dispersion medium 2 containing water, a surfactant, visible light responsive photocatalyst fine particles 3, and an adsorbent 4, and the surfactant is nonvolatile. and having a freezing point of 0° C. or lower.
As shown in FIG. 1, a photocatalyst-coated member having a photocatalyst layer 6 formed on the surface of a substrate 5 by applying a photocatalyst dispersion 7 on the surface of the substrate 5 and drying the formed coating layer. 10 can be formed.
The method of applying the photocatalyst dispersion liquid 7 to the base material 5 is not particularly limited, but examples thereof include dip coating, spray coating, screen printing, and spin coating.

分散媒2は、光触媒分散液7の分散媒であり、主成分として水を含む。分散媒2は水であってもよく、水-エタノール混合液であってもよい。また、分散媒2には、界面活性剤が溶解している。また、分散媒2にバインダーが溶解していてもよい。分散媒2に含まれる水は塗布層を乾燥させる際に蒸発する。 The dispersion medium 2 is a dispersion medium for the photocatalyst dispersion liquid 7 and contains water as a main component. The dispersion medium 2 may be water or a water-ethanol mixture. A surfactant is dissolved in the dispersion medium 2 . Moreover, a binder may be dissolved in the dispersion medium 2 . The water contained in the dispersion medium 2 evaporates when the coating layer is dried.

光触媒微粒子3は、可視光応答型の光触媒の微粒子であり、具体的には酸化タングステン微粒子である。また、光触媒微粒子3は分散媒2中に分散している。光触媒分散液7が光触媒微粒子3を含むため、光触媒分散液7から形成した光触媒層6が光触媒活性を有することができる。
また、光触媒微粒子3はその表面に助触媒を有してもよい。助触媒は、例えば、Pt、Pd、Rh、Ru、Os、Irのような白金族金属を含む。助触媒は、金属微粒子として酸化タングステン微粒子の表面に付着していてもよく、酸化物又は水酸化物として酸化タングステン微粒子の表面に付着していてもよい。光触媒微粒子3が助触媒を有することにより、酸化タングステン(WO3)のエネルギーギャップを小さくして可視光領域での触媒活性を上げることができる。
The photocatalyst fine particles 3 are visible light responsive photocatalyst fine particles, specifically tungsten oxide fine particles. Also, the photocatalyst fine particles 3 are dispersed in the dispersion medium 2 . Since the photocatalyst dispersion liquid 7 contains the photocatalyst fine particles 3, the photocatalyst layer 6 formed from the photocatalyst dispersion liquid 7 can have photocatalytic activity.
Moreover, the photocatalyst fine particles 3 may have a co-catalyst on the surface thereof. Promoters include, for example, platinum group metals such as Pt, Pd, Rh, Ru, Os, Ir. The co-catalyst may adhere to the surface of the tungsten oxide fine particles as metal fine particles, or may adhere to the surfaces of the tungsten oxide fine particles as an oxide or hydroxide. Since the photocatalyst fine particles 3 have a co-catalyst, the energy gap of tungsten oxide (WO 3 ) can be reduced and the catalytic activity in the visible light region can be increased.

光触媒微粒子3の50%粒子径(メディアン径D50、累積分布50vol%の時の粒子径)は、1nm以上500nm以下であることが好ましく、さらに5nm以上200nm以下であることが好ましい。光触媒微粒子3の50%粒子径が5nm以上であると、凝集が少なく、再分散が容易である。光触媒微粒子3の50%粒子径が200nm以下であると、製造工程で他の成分と均一に混合しすく、離脱することも少なく良好である。
粒子径測定は、BET比表面積計やレーザ回折式粒度分布計や動的光散乱式粒度分布計等によって測定することができる。
The 50% particle diameter (median diameter D50, particle diameter at cumulative distribution of 50 vol%) of the photocatalyst fine particles 3 is preferably 1 nm or more and 500 nm or less, more preferably 5 nm or more and 200 nm or less. When the 50% particle diameter of the photocatalyst fine particles 3 is 5 nm or more, there is little aggregation and re-dispersion is easy. When the 50% particle size of the photocatalyst fine particles 3 is 200 nm or less, it is easy to uniformly mix with other components in the manufacturing process, and less separation is favorable.
The particle size can be measured by a BET specific surface area meter, a laser diffraction particle size distribution meter, a dynamic light scattering particle size distribution meter, or the like.

吸着剤4は、多孔質微粒子であり、分散媒2中に分散している。光触媒分散液7が吸着剤4を含むことにより、光触媒分散液7から形成した光触媒層6の吸着捕集機能を向上させることができる。
光触媒微粒子3の表面に界面活性剤が付着している場合、光触媒微粒子3の光触媒活性により界面活性剤が分解されるまで光触媒層6のガス分解性能が低下する。光触媒層6が吸着剤4を含むことにより、このガス分解性能が低下した期間内に吸着剤がガスを吸着することができ、光触媒層6のガス除去性能が低下することを抑制することができる。
吸着剤4は、例えば、炭酸カルシウム微粒子、活性炭微粒子、アパタイト微粒子、ゼオライト微粒子、アルミナ微粒子、シリカ微粒子などである。
The adsorbent 4 is porous microparticles and dispersed in the dispersion medium 2 . By including the adsorbent 4 in the photocatalyst dispersion 7, the adsorption collection function of the photocatalyst layer 6 formed from the photocatalyst dispersion 7 can be improved.
When a surfactant adheres to the surface of the photocatalyst fine particles 3 , the gas decomposition performance of the photocatalyst layer 6 is lowered until the surfactant is decomposed by the photocatalytic activity of the photocatalyst fine particles 3 . Since the photocatalyst layer 6 contains the adsorbent 4, the adsorbent can adsorb the gas within the period in which the gas decomposition performance is degraded, and the deterioration of the gas removal performance of the photocatalyst layer 6 can be suppressed. .
The adsorbent 4 is, for example, calcium carbonate fine particles, activated carbon fine particles, apatite fine particles, zeolite fine particles, alumina fine particles, silica fine particles, or the like.

吸着剤4の50%粒子径(メディアン径D50、累積分布50vol%の時の粒子径)は、10nm以上1000nm以下であることが好ましい。吸着剤4の50%粒子径が10nm以上であると、吸着剤4の表面上に光触媒微粒子3を付着させることができ、光触媒層6の光触媒活性を向上させることができる。吸着剤4の50%粒子径が1000nm以下であると、光触媒層6の基材5の表面への付着強度を強くすることができ、光触媒層6が基材5の表面から剥がれ落ちることを抑制することができる。
吸着剤4の50%粒子径は、光触媒微粒子3の50%粒子径以上であることが好ましい。このことにより、吸着剤4の表面上に光触媒微粒子3を付着させることができ、光触媒層6の光触媒活性を向上させることができる。
The 50% particle diameter (median diameter D50, particle diameter at cumulative distribution of 50 vol%) of the adsorbent 4 is preferably 10 nm or more and 1000 nm or less. When the 50% particle diameter of the adsorbent 4 is 10 nm or more, the photocatalyst fine particles 3 can adhere to the surface of the adsorbent 4, and the photocatalytic activity of the photocatalyst layer 6 can be improved. When the 50% particle diameter of the adsorbent 4 is 1000 nm or less, the adhesion strength of the photocatalyst layer 6 to the surface of the substrate 5 can be increased, and the photocatalyst layer 6 is prevented from peeling off from the surface of the substrate 5. can do.
The 50% particle size of the adsorbent 4 is preferably equal to or greater than the 50% particle size of the photocatalyst fine particles 3 . As a result, the photocatalyst fine particles 3 can be adhered to the surface of the adsorbent 4, and the photocatalytic activity of the photocatalyst layer 6 can be improved.

界面活性剤は、高い界面活性を示す物質である。また、界面活性剤は、親水基と親油基(疎水基)を有する有機化合物であってもよい。光触媒分散液7が界面活性剤を含むことにより、分散媒2中において光触媒微粒子3及び吸着剤4を安定的に分散させることができる。このことにより、均質な光触媒層6を形成することができる。また、基材5の表面の一部が疎水性であったり、基材5の表面全体が疎水性である場合でも、基材5と光触媒分散液7(塗布層)との間の界面において界面活性剤が界面活性を示すため、光触媒分散液7が基材5の表面からはじかれることを抑制することができる。このため、基材5の表面にむらなく(少ない部分や多すぎる部分がない)光触媒分散液7の塗布層を形成することができる。この塗布層を乾燥させることにより、基材5の表面にむらのない均質な光触媒層6を形成することができる。 Surfactants are substances that exhibit high surface activity. Further, the surfactant may be an organic compound having a hydrophilic group and a lipophilic group (hydrophobic group). Since the photocatalyst dispersion liquid 7 contains a surfactant, the photocatalyst fine particles 3 and the adsorbent 4 can be stably dispersed in the dispersion medium 2 . Thereby, a homogeneous photocatalyst layer 6 can be formed. Further, even if part of the surface of the substrate 5 is hydrophobic or the entire surface of the substrate 5 is hydrophobic, the interface between the substrate 5 and the photocatalyst dispersion 7 (coating layer) Since the activator exhibits surface activity, it is possible to prevent the photocatalyst dispersion liquid 7 from being repelled from the surface of the substrate 5 . Therefore, the coating layer of the photocatalyst dispersion liquid 7 can be formed evenly on the surface of the base material 5 (there are no areas with too little or too much). By drying this coating layer, a uniform photocatalyst layer 6 can be formed on the surface of the substrate 5 .

界面活性剤は、不揮発性を有することができる。このことにより、光触媒分散液7の品質を安定化することができる。
界面活性剤は0℃以下の凝固点を有する。このため、光触媒分散液7の塗布層を乾燥させることにより形成した光触媒層6において界面活性剤は液体状態であり、固体状態として析出しない。従って、析出した界面活性剤が光を遮り光触媒微粒子3が影になることがない。この結果、光触媒層6に光触媒活性が低下する部分が生じることを抑制することができ、効率よく空気を清浄化することができる。また、界面活性剤と共に光触媒微粒子3や吸着剤4が光触媒層6又は基材5から剥がれ落ちることを抑制することができる。
Surfactants can be non-volatile. As a result, the quality of the photocatalyst dispersion liquid 7 can be stabilized.
Surfactants have freezing points below 0°C. Therefore, in the photocatalyst layer 6 formed by drying the coating layer of the photocatalyst dispersion liquid 7, the surfactant is in a liquid state and does not precipitate as a solid state. Therefore, the precipitated surfactant blocks the light and the photocatalyst fine particles 3 are not shaded. As a result, the photocatalyst layer 6 can be prevented from having a portion where the photocatalytic activity is lowered, and the air can be purified efficiently. In addition, it is possible to prevent the photocatalyst fine particles 3 and the adsorbent 4 from peeling off from the photocatalyst layer 6 or the substrate 5 together with the surfactant.

界面活性剤は、アミノ基含有化合物であることが好ましい。このアミノ基は、第一級アミノ基(第一級アミン)であってもよく、第二級アミノ基(第二級アミン)であってもよく、第三級アミノ基(第三級アミン)であってもよい。また、界面活性剤は、脂肪族化合物であることが好ましい。脂肪族化合物は、芳香族化合物以外の有機化合物であり、鎖式構造の炭素骨格を有する化合物である。このことのより、光触媒層6において界面活性剤が光触媒微粒子3の表面を覆っていたとしても、光触媒活性により光触媒微粒子3の表面を覆う界面活性剤を分解除去することが可能になる。また、界面活性剤が液体状態であり流動性を有するため、光触媒微粒子3の表面を覆う界面活性剤のほとんどを分解除去することが可能になる。
界面活性剤の分子量(相対分子質量)は、200以上10000以下であることが好ましい。
The surfactant is preferably an amino group-containing compound. The amino group may be a primary amino group (primary amine), may be a secondary amino group (secondary amine), or may be a tertiary amino group (tertiary amine). may be Also, the surfactant is preferably an aliphatic compound. Aliphatic compounds are organic compounds other than aromatic compounds, and are compounds having a carbon skeleton of a chain structure. As a result, even if the surface of the photocatalyst fine particles 3 is covered with the surfactant in the photocatalyst layer 6, the surfactant covering the surface of the photocatalyst fine particles 3 can be decomposed and removed by the photocatalytic activity. Moreover, since the surfactant is in a liquid state and has fluidity, most of the surfactant covering the surface of the photocatalyst fine particles 3 can be decomposed and removed.
The molecular weight (relative molecular mass) of the surfactant is preferably 200 or more and 10,000 or less.

界面活性剤として、例えば、脂肪族ポリエーテル誘導体や脂肪族アミン誘導体が挙げられる。
ポリエーテルは、主鎖中にエーテル結合(-O-)を有する高分子化合物である。ポリエーテル誘導体は、例えば、ポリエーテル中の水素原子又は特定の原子団が他の原子又は他の原子団によって置換された化合物である。
界面活性剤として使用する脂肪族ポリエーテル誘導体は、エチレンオキサイド(又はエチレンオキサイド誘導体)及び/又はプロピレンオキサイド(又はプロピレンオキサイド誘導体)が重合した化合物(又はその誘導体)であることが好ましい。具体的には、脂肪族ポリエーテル誘導体は、ポリエチレングリコール誘導体、ポリプロピレングリコール誘導体、ポリ(エチレン/プロピレン)グリコール誘導体等が挙げられる。また、脂肪族ポリエーテル誘導体は低重合度のものが好ましく、脂肪族ポリエーテル誘導体の分子量(相対分子質量)は、200以上10000以下であることが好ましい。
Examples of surfactants include aliphatic polyether derivatives and aliphatic amine derivatives.
A polyether is a polymer compound having an ether bond (--O--) in its main chain. Polyether derivatives are compounds in which, for example, hydrogen atoms or certain atomic groups in the polyether have been replaced by other atoms or other atomic groups.
The aliphatic polyether derivative used as the surfactant is preferably a compound (or derivative thereof) obtained by polymerizing ethylene oxide (or ethylene oxide derivative) and/or propylene oxide (or propylene oxide derivative). Specifically, aliphatic polyether derivatives include polyethylene glycol derivatives, polypropylene glycol derivatives, poly(ethylene/propylene) glycol derivatives and the like. Moreover, the aliphatic polyether derivative preferably has a low degree of polymerization, and the molecular weight (relative molecular mass) of the aliphatic polyether derivative is preferably 200 or more and 10,000 or less.

脂肪族アミンは、アンモニアの水素原子の1個又はそれ以上が炭化水素残基Rで置換された化合物である。脂肪族アミン誘導体は、例えば、脂肪族アミン中の水素原子又は特定の原子団が他の原子又は他の原子団によって置換された化合物である。脂肪族アミン誘導体は、第一級アミンであってもよく、第二級アミンであってもよく、第三級アミンであってもよい。
界面活性剤として使用する脂肪族アミン誘導体としてはポリオキシエチレンアルキルアミン、アルキルアミンが好ましく、具体的にはポリオキシエチレンラウリルアミン(ポリオキシエチレンヤシアルキルアミン)、ポリオキシエチレンココナットアルキルアミン、ポリオキシエチレン(2)硬化牛脂アミン、ポリオキシエチレン(20)硬化牛脂アミンやモノエタノールアミン、ジエタノールアミン、トリエタノールアミン等が挙げられる。
Aliphatic amines are compounds in which one or more of the hydrogen atoms of ammonia are replaced by hydrocarbon residues R. Aliphatic amine derivatives are, for example, compounds in which hydrogen atoms or specific atomic groups in aliphatic amines are replaced by other atoms or other atomic groups. A fatty amine derivative may be a primary amine, a secondary amine, or a tertiary amine.
Aliphatic amine derivatives used as surfactants are preferably polyoxyethylene alkylamines and alkylamines, specifically polyoxyethylene laurylamine (polyoxyethylene palm alkylamine), polyoxyethylene coconut alkylamine, poly Oxyethylene (2) hardened beef tallow amine, polyoxyethylene (20) hardened beef tallow amine, monoethanolamine, diethanolamine, triethanolamine and the like.

光触媒分散液7中の界面活性剤の含有量は、0.1wt%以上1.0wt%以下であることが好ましく、光触媒分散液7中の吸着剤4の含有量は、0.1wt%以上1.0wt%以下であることが好ましく、光触媒分散液7中の光触媒微粒子3の含有量は、0.1wt%以上1.0wt%以下であることが好ましい。このことにより、光触媒分散液7を用いて形成した光触媒層6のガス除去性能、付着性及び均一性を向上させることができる。 The content of the surfactant in the photocatalyst dispersion liquid 7 is preferably 0.1 wt% or more and 1.0 wt% or less, and the content of the adsorbent 4 in the photocatalyst dispersion liquid 7 is preferably 0.1 wt% or more and 1.0 wt% or less. 0 wt % or less, and the content of the photocatalyst fine particles 3 in the photocatalyst dispersion liquid 7 is preferably 0.1 wt % or more and 1.0 wt % or less. As a result, the gas removal performance, adhesion and uniformity of the photocatalyst layer 6 formed using the photocatalyst dispersion liquid 7 can be improved.

光触媒分散液7中の光触媒微粒子3の質量パーセント濃度は、光触媒分散液7中の界面活性剤の質量パーセント濃度の0.5倍以上であることが好ましく、0.6倍以上であることがさらに好ましい。光触媒分散液7中の光触媒微粒子3と吸着剤4の合計質量パーセント濃度は、光触媒分散液7中の界面活性剤の質量パーセント濃度の5倍以下であることが好ましく、4倍以下であることがさらに好ましい。
このような成分濃度を有する光触媒分散液7を用いると、基材上に光触媒層6をむらなく均一に形成することができる。さらに、形成した光触媒層6は、優れたガス除去性能を有し、基材5への付着性が優れている。
The mass percent concentration of the photocatalyst fine particles 3 in the photocatalyst dispersion 7 is preferably 0.5 times or more, more preferably 0.6 times or more, that of the surfactant in the photocatalyst dispersion 7. preferable. The total mass percent concentration of the photocatalyst fine particles 3 and the adsorbent 4 in the photocatalyst dispersion liquid 7 is preferably 5 times or less the mass percent concentration of the surfactant in the photocatalyst dispersion liquid 7, and is preferably 4 times or less. More preferred.
By using the photocatalyst dispersion liquid 7 having such component concentrations, the photocatalyst layer 6 can be uniformly formed on the base material. Furthermore, the formed photocatalyst layer 6 has excellent gas removal performance and excellent adhesion to the substrate 5 .

第2実施形態
図2は本実施形態の光触媒フィルタの概略平面図であり、図3は図2の破線A-Aにおける光触媒フィルタの概略断面図である。
本実施形態の光触媒フィルタ12は、フィルタ基材8と、フィルタ基材8上に設けられた光触媒層6とを備える。光触媒層6は、第1実施形態で説明した光触媒分散液7の塗布層を乾燥させた層である。
フィルタ基材8は、例えば、金網、パンチングメタル、エキスパンドメタル、不織布、布、樹脂成形体、ペーパーハニカムシートなどである。また、フィルタ基体8の材料は、光触媒層6の光触媒作用により劣化しない材料を用いることができる。
フィルタ基材8への光触媒分散液7の塗布方法は、特に限定されないが、例えば、浸漬塗布法、スプレーコーティング、スクリーン印刷法等である。
Second Embodiment FIG. 2 is a schematic plan view of the photocatalytic filter of this embodiment, and FIG. 3 is a schematic cross-sectional view of the photocatalytic filter taken along the dashed line AA in FIG.
The photocatalytic filter 12 of this embodiment includes a filter base material 8 and a photocatalyst layer 6 provided on the filter base material 8 . The photocatalyst layer 6 is a layer obtained by drying the coated layer of the photocatalyst dispersion liquid 7 described in the first embodiment.
The filter base material 8 is, for example, wire mesh, punching metal, expanded metal, nonwoven fabric, cloth, resin molding, paper honeycomb sheet, or the like. As the material of the filter base 8, a material that does not deteriorate due to the photocatalytic action of the photocatalyst layer 6 can be used.
A method for applying the photocatalyst dispersion liquid 7 to the filter base material 8 is not particularly limited, but includes, for example, a dip coating method, a spray coating method, a screen printing method, and the like.

第3実施形態
図4は本実施形態の空気清浄装置20の概略断面図である。
本実施形態の空気清浄装置20は、第2実施形態で説明した光触媒フィルタ12と、光触媒フィルタ12に光を照射するように設けられた発光部15と、空気が光触媒フィルタ12を通過するように設けられた送風部13とを備える。
空気清浄装置20は、室内から吸い込んだ空気を光触媒フィルタ12を用いて浄化する空気清浄機であってもよく、機器の排気口に設けられ機器から排出される空気を光触媒フィルタ12を用いて浄化する装置であってもよい。
発光部15は、例えばLEDであってもよく、蛍光灯であってもよい。
空気清浄装置20は、積層された複数の光触媒フィルタ12を有してもよい。
Third Embodiment FIG. 4 is a schematic sectional view of an air cleaner 20 of this embodiment.
The air purifier 20 of this embodiment includes the photocatalyst filter 12 described in the second embodiment, the light emitting unit 15 provided to irradiate the photocatalyst filter 12 with light, and the air passing through the photocatalyst filter 12. and a blower unit 13 provided.
The air purifier 20 may be an air purifier that purifies the air sucked from the room using the photocatalytic filter 12, and is provided at the exhaust port of the device and purifies the air discharged from the device using the photocatalytic filter 12. It may be a device that
The light emitting unit 15 may be, for example, an LED or a fluorescent lamp.
The air cleaner 20 may have a plurality of photocatalyst filters 12 stacked.

光触媒分散液の調製
実施例1~7及び比較例1~4の光触媒分散液を調製した。なお、比較例1の分散液は光触媒を含んでいない。
<実施例1>
市販の酸化タングステン粉末(WO3、株式会社高純度化学研究所製)5gを水50mLに分散し、ビーズミル(日本コークス社製、MSC50-ZZ)を用いて、酸化タングステン粉末を90分間粉砕した。遠心分離機(H-201F、コクサン製)を用いて粉砕後の分散液を3000rpmの回転速度で5分間遠心分離を行い、粒径が大きい粒子を沈降分離し除去した。得られた酸化タングステン粒子(粒子径30nm)5gを水50mLに分散し、そこにPtが酸化タングステン粒子100重量部に対して0.5重量部となるようにヘキサクロロ白金酸水溶液(H2PtCl6)を分散液に入れて、攪拌し、その後濾過、水洗浄、乾燥することにより、粉末状のPt担持酸化タングステン光触媒を得た。
前記Pt担持酸化タングステン光触媒を前記ビーズミルで純水中に分散させ、光触媒濃度20wt%の光触媒スラリーを調製した。
Preparation of Photocatalyst Dispersions Photocatalyst dispersions of Examples 1 to 7 and Comparative Examples 1 to 4 were prepared. The dispersion liquid of Comparative Example 1 does not contain a photocatalyst.
<Example 1>
5 g of commercially available tungsten oxide powder (WO 3 , manufactured by Kojundo Chemical Laboratory Co., Ltd.) was dispersed in 50 mL of water, and the tungsten oxide powder was pulverized for 90 minutes using a bead mill (MSC50-ZZ, manufactured by Nippon Coke Co., Ltd.). Using a centrifugal separator (H-201F, manufactured by Kokusan Co., Ltd.), the dispersion liquid after pulverization was centrifuged at a rotational speed of 3000 rpm for 5 minutes to sediment and separate particles having a large particle size. 5 g of the obtained tungsten oxide particles (particle diameter: 30 nm) were dispersed in 50 mL of water, and an aqueous hexachloroplatinic acid solution (H 2 PtCl 6 ) was added to the dispersion liquid, stirred, filtered, washed with water, and dried to obtain a powdery Pt-supported tungsten oxide photocatalyst.
The Pt-supported tungsten oxide photocatalyst was dispersed in pure water by the bead mill to prepare a photocatalyst slurry having a photocatalyst concentration of 20 wt %.

市販の炭酸カルシウム粉末(キシダ化学社製)5gを水50mLに分散し、ビーズミル(日本コークス社製、MSC50-ZZ)を用いて、炭酸カルシウム粉末を90分間粉砕した。遠心分離機(H-201F、コクサン製)を用いて粉砕後の分散液を3000rpmの回転速度で5分間遠心分離を行い、粒径が大きい粒子を沈降分離し除去した。得られた炭酸カルシウム粉末(粒子径30nm)5gを水50mLに分散し、炭酸カルシウムスラリーを調製した。 5 g of commercially available calcium carbonate powder (manufactured by Kishida Chemical Co., Ltd.) was dispersed in 50 mL of water, and the calcium carbonate powder was pulverized for 90 minutes using a bead mill (MSC50-ZZ, manufactured by Nippon Coke Co., Ltd.). Using a centrifugal separator (H-201F, manufactured by Kokusan Co., Ltd.), the dispersion liquid after pulverization was centrifuged at a rotational speed of 3000 rpm for 5 minutes to sediment and separate particles having a large particle size. 5 g of the obtained calcium carbonate powder (particle size: 30 nm) was dispersed in 50 mL of water to prepare a calcium carbonate slurry.

前記光触媒スラリーに水と、界面活性剤としてエスリーム(登録商標)AD-3172M(日油社製)と、吸着剤として前記炭酸カルシウムスラリーとを加え、混合することで、光触媒濃度0.5wt%、界面活性剤濃度0.5wt%、吸着剤濃度0.5wt%の光触媒分散液を調製した。エスリームAD-3172Mは不揮発性液体であり、凝固点が0℃より低い。 Water, Esleem (registered trademark) AD-3172M (manufactured by NOF Corporation) as a surfactant, and the calcium carbonate slurry as an adsorbent are added to the photocatalyst slurry and mixed to obtain a photocatalyst concentration of 0.5 wt%, A photocatalyst dispersion having a surfactant concentration of 0.5 wt % and an adsorbent concentration of 0.5 wt % was prepared. Eslime AD-3172M is a non-volatile liquid with a freezing point below 0°C.

<実施例2>
前記光触媒スラリーに水と、界面活性剤としてエスリームAD-3172M(日油社製)と、吸着剤として前記炭酸カルシウムスラリーとを加え、混合することで、光触媒濃度1.0wt%、界面活性剤濃度0.4wt%、吸着剤濃度を1.0wt%の光触媒分散液を調製した。混合比を変えたこと以外は実施例1と同様に光触媒分散液を調製した。
<Example 2>
Water, Esleem AD-3172M (manufactured by NOF Corporation) as a surfactant, and the calcium carbonate slurry as an adsorbent were added to the photocatalyst slurry and mixed to obtain a photocatalyst concentration of 1.0 wt% and a surfactant concentration of A photocatalyst dispersion was prepared with a concentration of 0.4 wt % and an adsorbent concentration of 1.0 wt %. A photocatalyst dispersion was prepared in the same manner as in Example 1, except that the mixing ratio was changed.

<実施例3>
前記光触媒スラリーに水と、界面活性剤としてエスリームAD-3172M(日油社製)と、吸着剤として前記炭酸カルシウムスラリーとを加え、混合することで、光触媒濃度0.1wt%、界面活性剤濃度0.2wt%、吸着剤濃度0.1wt%の光触媒分散液を調製した。混合比を変えたこと以外は実施例1と同様に光触媒分散液を調製した。
<Example 3>
Water, Esleem AD-3172M (manufactured by NOF Corporation) as a surfactant, and the calcium carbonate slurry as an adsorbent were added to the photocatalyst slurry and mixed to obtain a photocatalyst concentration of 0.1 wt% and a surfactant concentration of A photocatalyst dispersion of 0.2 wt % and an adsorbent concentration of 0.1 wt % was prepared. A photocatalyst dispersion was prepared in the same manner as in Example 1, except that the mixing ratio was changed.

<実施例4>
前記光触媒スラリーに水と、界面活性剤としてエスリームAD-3172M(日油社製)と、吸着剤として前記炭酸カルシウムスラリーとを加え、混合することで、光触媒濃度0.7wt%、界面活性剤濃度1.0wt%、吸着剤濃度0.7wt%の光触媒分散液を調製した。混合比を変えたこと以外は実施例1と同様に光触媒分散液を調製した。
<Example 4>
Water, Esleem AD-3172M (manufactured by NOF Corporation) as a surfactant, and the calcium carbonate slurry as an adsorbent were added to the photocatalyst slurry and mixed to obtain a photocatalyst concentration of 0.7 wt% and a surfactant concentration of A photocatalyst dispersion with a concentration of 1.0 wt % and an adsorbent concentration of 0.7 wt % was prepared. A photocatalyst dispersion was prepared in the same manner as in Example 1, except that the mixing ratio was changed.

<実施例5>
前記光触媒スラリーに水と、界面活性剤としてエスリームAD-3172M(日油社製)と、吸着剤として前記炭酸カルシウムスラリーとを加え、混合することで、光触媒濃度0.3wt%、界面活性剤濃度0.4wt%、吸着剤濃度0.8wt%の光触媒分散液を調製した。混合比を変えたこと以外は実施例1と同様に光触媒分散液を調製した。
<Example 5>
Water, Esleem AD-3172M (manufactured by NOF Corporation) as a surfactant, and the calcium carbonate slurry as an adsorbent were added to the photocatalyst slurry and mixed to obtain a photocatalyst concentration of 0.3 wt% and a surfactant concentration of A photocatalyst dispersion having a concentration of 0.4 wt % and an adsorbent concentration of 0.8 wt % was prepared. A photocatalyst dispersion was prepared in the same manner as in Example 1, except that the mixing ratio was changed.

<実施例6>
前記光触媒スラリーに水と、界面活性剤としてエスリームAD-3172M(日油社製)と、吸着剤として前記炭酸カルシウムスラリーとを加え、混合することで、光触媒濃度2.0wt%、界面活性剤濃度0.5wt%、吸着剤濃度1.5wt%の光触媒分散液を調製した。混合比を変えたこと以外は実施例1と同様に光触媒分散液を調製した。
<Example 6>
Water, Esleem AD-3172M (manufactured by NOF Corporation) as a surfactant, and the calcium carbonate slurry as an adsorbent were added to the photocatalyst slurry and mixed to obtain a photocatalyst concentration of 2.0 wt% and a surfactant concentration of A photocatalyst dispersion having a concentration of 0.5 wt % and an adsorbent concentration of 1.5 wt % was prepared. A photocatalyst dispersion was prepared in the same manner as in Example 1, except that the mixing ratio was changed.

<実施例7>
前記光触媒スラリーに水と、界面活性剤としてエスリームAD-3172M(日油社製)と、吸着剤として前記炭酸カルシウムスラリーとを加え、混合することで、光触媒濃度0.1wt%、界面活性剤濃度0.4wt%、吸着剤濃度0.1wt%の光触媒分散液を調製した。混合比を変えたこと以外は実施例1と同様に光触媒分散液を調製した。
<Example 7>
Water, Esleem AD-3172M (manufactured by NOF Corporation) as a surfactant, and the calcium carbonate slurry as an adsorbent were added to the photocatalyst slurry and mixed to obtain a photocatalyst concentration of 0.1 wt% and a surfactant concentration of A photocatalyst dispersion of 0.4 wt % and an adsorbent concentration of 0.1 wt % was prepared. A photocatalyst dispersion was prepared in the same manner as in Example 1, except that the mixing ratio was changed.

<比較例1>
水に、界面活性剤としてエスリームAD-3172M(日油社製)と、吸着剤として前記炭酸カルシウムスラリーとを加え、混合することで、界面活性剤濃度0.5wt%、吸着剤濃度0.5wt%の吸着剤分散液を調製した。比較例1では、分散液に光触媒を添加していない。その他については、実施例1と同様に分散液を調製した。
<Comparative Example 1>
Eslime AD-3172M (manufactured by NOF Corporation) as a surfactant and the calcium carbonate slurry as an adsorbent were added to water and mixed to obtain a surfactant concentration of 0.5 wt% and an adsorbent concentration of 0.5 wt%. % adsorbent dispersion was prepared. In Comparative Example 1, no photocatalyst was added to the dispersion. Otherwise, a dispersion was prepared in the same manner as in Example 1.

<比較例2>
前記光触媒スラリーに水と、吸着剤として前記炭酸カルシウムスラリーとを加え、混合することで、光触媒濃度0.5wt%、吸着剤濃度0.5wt%の光触媒分散液を調製した。比較例2では分散液に界面活性剤を添加していない。その他については、実施例1と同様に分散液を調製した。
<Comparative Example 2>
Water and the calcium carbonate slurry as an adsorbent were added to the photocatalyst slurry and mixed to prepare a photocatalyst dispersion having a photocatalyst concentration of 0.5 wt % and an adsorbent concentration of 0.5 wt %. In Comparative Example 2, no surfactant was added to the dispersion. Otherwise, a dispersion was prepared in the same manner as in Example 1.

<比較例3>
前記光触媒スラリーに水と、界面活性剤としてエスリームAD-3172M(日油社製)とを加え、混合することで、光触媒濃度0.5wt%、界面活性剤濃度0.5wt%の光触媒分散液を調製した。比較例3では分散液に吸着剤を添加していない。その他については、実施例1と同様に分散液を調製した。
<Comparative Example 3>
Water and ESLIM AD-3172M (manufactured by NOF Corporation) as a surfactant are added to the photocatalyst slurry and mixed to obtain a photocatalyst dispersion having a photocatalyst concentration of 0.5 wt% and a surfactant concentration of 0.5 wt%. prepared. In Comparative Example 3, no adsorbent was added to the dispersion. Otherwise, a dispersion was prepared in the same manner as in Example 1.

<比較例4>
前記光触媒スラリーに水と、粉末状界面活性剤として食洗器用パウダー洗剤フィニッシュ(登録商標)(レキットベンキーザー・ジャパン株式会社製)と、吸着剤として前記炭酸カルシウムスラリーとを加え、混合することで、光触媒濃度0.5wt%、界面活性剤濃度0.5wt%、吸着剤濃度0.5wt%の光触媒分散液を調製した。比較例4では、界面活性剤として食洗器用パウダー洗剤フィニッシュを用いた。この洗剤は室温において固体である。その他については、実施例1と同様に分散液を調製した。
また、表1に実施例1~7及び比較例1~4の光触媒分散液の光触媒濃度、界面活性剤濃度、吸着剤濃度、(光触媒濃度)/(界面活性剤濃度)及び(光触媒濃度+吸着剤濃度)/(界面活性剤濃度)をまとめて示している。
<Comparative Example 4>
To the photocatalyst slurry, water, powder detergent for dishwasher Finish (registered trademark) (manufactured by Reckitt Benckiser Japan Co., Ltd.) as a powdery surfactant, and the calcium carbonate slurry as an adsorbent are added and mixed. Thus, a photocatalyst dispersion having a photocatalyst concentration of 0.5 wt %, a surfactant concentration of 0.5 wt %, and an adsorbent concentration of 0.5 wt % was prepared. In Comparative Example 4, a dishwasher powder detergent finish was used as the surfactant. This detergent is solid at room temperature. Otherwise, a dispersion was prepared in the same manner as in Example 1.
In addition, Table 1 shows the photocatalyst concentration, surfactant concentration, adsorbent concentration, (photocatalyst concentration) / (surfactant concentration) and (photocatalyst concentration + adsorption) of the photocatalyst dispersions of Examples 1 to 7 and Comparative Examples 1 to 4. agent concentration)/(surfactant concentration) are collectively shown.

光触媒層のガス除去性能の評価
実施例1~7、比較例1~4の光触媒分散液を用いて形成した光触媒層のそれぞれについてガス除去性能及び繰り返しガス除去性能を以下のようにして評価した。
セルロース生地(125mm×125mm)に光触媒分散液を5gスポイドを使用してまんべんなく滴下し、セルロース生地上に塗布層を形成した。この塗布層を40℃の送風乾燥機で乾燥させ、セルロース生地上に光触媒層が形成された実施例1~7及び比較例1~4の11個の試験用サンプルを作製した。
Evaluation of gas removal performance of photocatalyst layer Each of the photocatalyst layers formed using the photocatalyst dispersions of Examples 1 to 7 and Comparative Examples 1 to 4 was evaluated for gas removal performance and repeated gas removal performance as follows.
5 g of the photocatalyst dispersion liquid was evenly dropped onto the cellulose fabric (125 mm×125 mm) using a dropper to form a coating layer on the cellulose fabric. This coating layer was dried with a blower dryer at 40° C. to prepare 11 test samples of Examples 1 to 7 and Comparative Examples 1 to 4 in which a photocatalyst layer was formed on a cellulose fabric.

次に1Lのガスバック内に上記試験用サンプルを入れ、さらに100ppmのアセトアルデヒドガスを入れた。このガスバッグ内の試験用サンプルを青色LEDを用いて4500luxで5時間照射した後、ガスバッグ内のアセトアルデヒドガス濃度を検知管にて測定した(アセトアルデヒド分解実験)。(ガス残存率)=(測定されたガス濃度)/(初期ガス濃度100ppm)として、ガス残存率を計算した。そして、ガス残存率が20%未満であった試験用サンプルのガス除去性能の評価を○(good)とし、ガス残存率が20%以上50%未満であった試験用サンプルのガス除去性能の評価を△(average)とし、ガス残存率が50%以上であった試験用サンプルのガス除去性能の評価を×(bad)とした。
さらに、このようなアセトアルデヒド分解実験を10回繰り返し、10回目のガス残存率が20%未満であった試験用サンプルの繰り返しガス除去性能の評価を○(good)とし、10回目のガス残存率が20%以上50%未満であった試験用サンプルの繰り返しガス除去性能の評価を△(average)とし、10回目のガス残存率が50%以上であった試験用サンプルの繰り返しガス除去性能の評価を×(bad)とした。評価結果を表2に示す。
Next, the test sample was placed in a 1 L gas bag, and 100 ppm of acetaldehyde gas was added. After irradiating the test sample in the gas bag with a blue LED at 4500 lux for 5 hours, the acetaldehyde gas concentration in the gas bag was measured with a detector tube (acetaldehyde decomposition experiment). The gas residual ratio was calculated as (gas residual ratio)=(measured gas concentration)/(initial gas concentration 100 ppm). Then, the evaluation of the gas removal performance of the test sample with a gas residual rate of less than 20% was given as ◯ (good), and the gas removal performance of the test sample with a gas residual rate of 20% or more and less than 50% was evaluated. was defined as Δ (average), and the evaluation of the gas removal performance of the test samples with a gas residual rate of 50% or more was defined as × (bad).
Furthermore, such an acetaldehyde decomposition experiment was repeated 10 times, and the evaluation of the repeated gas removal performance of the test sample whose gas residual rate at the 10th time was less than 20% was given as ◯ (good), and the gas residual rate at the 10th time was The evaluation of the repeated gas removal performance of the test sample that was 20% or more and less than 50% was regarded as △ (average), and the evaluation of the repeated gas removal performance of the test sample that the gas residual rate of the 10th time was 50% or more. x (bad). Table 2 shows the evaluation results.

光触媒層の付着性の評価
実施例1~7、比較例1~4の光触媒分散液を用いて形成した光触媒層のそれぞれについて付着性を以下のようにして評価した。
セルロース生地(125mm×125mm)を光触媒分散液に浸して、セルロース生地上に塗布層を形成した。この塗布層が形成されたセルロース生地をガラス板の上で自然乾燥させ、光触媒層を形成した。光触媒層を形成した後、セルロース生地を4つ折りして折り目を付け、開くことにより試験用サンプルを作製した。この試験用サンプルに向けて0.5MPaのエアブローガンを45度の角度で10cm離した位置から5秒間噴射した。この噴射により光触媒層の付着性に応じて試験用サンプルから粉(酸化タングステン粉末又は炭酸カルシウム粉末)が剥がれ落ちる。この粉落ちの量で光触媒層の付着性について評価した。具体的には、エアーを吹きかけることによる試験用サンプルの重量変化量を測定した。そして、重量変化量が1mg未満であった試験用サンプルの付着性の評価を○(good)とし、重量変化量が1mg以上3mg未満であった試験用サンプルの付着性の評価を△(average)とし、重量変化量が3mg以上であった試験用サンプルの付着性の評価を×(bad)とした。評価結果を表2に示す。
Evaluation of adhesion of photocatalyst layer The adhesion of each of the photocatalyst layers formed using the photocatalyst dispersions of Examples 1 to 7 and Comparative Examples 1 to 4 was evaluated as follows.
A cellulose fabric (125 mm×125 mm) was immersed in the photocatalyst dispersion to form a coating layer on the cellulose fabric. The cellulose fabric with the coating layer formed thereon was air-dried on a glass plate to form a photocatalyst layer. After forming the photocatalyst layer, the cellulose fabric was folded in four, creased, and opened to prepare a test sample. A 0.5 MPa air blow gun was blown toward the test sample from a position separated by 10 cm at an angle of 45 degrees for 5 seconds. Due to this injection, powder (tungsten oxide powder or calcium carbonate powder) is peeled off from the test sample depending on the adhesion of the photocatalyst layer. The adhesion of the photocatalyst layer was evaluated based on the amount of powder falling off. Specifically, the weight change amount of the test sample was measured by blowing air. Then, the adhesion evaluation of the test sample whose weight change amount was less than 1 mg was evaluated as ◯ (good), and the adhesion evaluation of the test sample whose weight change amount was 1 mg or more and less than 3 mg was evaluated as △ (average). The adhesion evaluation of the test samples with a weight change of 3 mg or more was given as x (bad). Table 2 shows the evaluation results.

光触媒層の均一性の評価
実施例1~7、比較例1~4の光触媒分散液を用いて形成した光触媒層のそれぞれについて均一性を以下のようにして評価した。
セルロース生地(125mm×125mm)にサラダ油を1滴たらし、このサラダ油をペーパータオルで叩いて拭き取り、油汚れセルロース生地を作製した。この油汚れセルロース生地を光触媒分散液に浸して、油汚れセルロース生地上に塗布層を形成した。この塗布層が形成された油汚れセルロース生地をガラス板の上で自然乾燥させ、光触媒層を形成し試験用サンプルを作製した。そして、作製した試験用サンプルを目視することにより光触媒層が均一に形成されているかを確認した。そして、油汚れのため光触媒層が薄い又は形成されていない部分が直径5mm未満であった試験用サンプルの均一性の評価を○(good)とし、光触媒層が薄い又は形成されていない部分が直径5mm以上10mm未満であった試験用サンプルの均一性の評価を△(average)とし、光触媒層が薄い又は形成されていない部分が直径10mm以上であった試験用サンプルの均一性の評価を×(bad)とした。評価結果を表2に示す。
Evaluation of Uniformity of Photocatalyst Layer The uniformity of each of the photocatalyst layers formed using the photocatalyst dispersions of Examples 1 to 7 and Comparative Examples 1 to 4 was evaluated as follows.
A drop of salad oil was dropped on a cellulose fabric (125 mm×125 mm), and the salad oil was wiped off by beating it with a paper towel to prepare an oil-stained cellulose fabric. This oil-stained cellulose fabric was immersed in the photocatalyst dispersion to form a coating layer on the oil-stained cellulose fabric. The oil-stained cellulose fabric having the coating layer formed thereon was air-dried on a glass plate to form a photocatalyst layer to prepare a test sample. Then, it was confirmed whether the photocatalyst layer was formed uniformly by visually observing the prepared test samples. Then, the uniformity evaluation of the test sample in which the portion where the photocatalyst layer was thin or not formed due to oil stains was less than 5 mm in diameter was given as ○ (good), and the portion where the photocatalyst layer was thin or not formed was diameter The evaluation of the uniformity of the test sample that was 5 mm or more and less than 10 mm was △ (average), and the uniformity of the test sample that the portion where the photocatalyst layer was thin or not formed had a diameter of 10 mm or more was × ( bad). Table 2 shows the evaluation results.

総合評価
表2には、実施例1~7、比較例1~4の光触媒分散液の総合評価も示している。上記の各評価結果が、それぞれ「○」や「△」であり、「×」が含まれていない光触媒分散液の総合評価を○とした。上記の評価結果において「×」が含まれている光触媒分散液の総合評価を×とした。
Comprehensive Evaluation Table 2 also shows the comprehensive evaluation of the photocatalyst dispersions of Examples 1-7 and Comparative Examples 1-4. Each of the above evaluation results was "○" or "Δ", respectively, and the comprehensive evaluation of the photocatalyst dispersion containing no "×" was given as ○. The overall evaluation of the photocatalyst dispersion containing "x" in the above evaluation results was given as "x".

実施例1~7の光触媒分散液の総合評価はいずれも○であった。
比較例1の分散液は光触媒を含まないため、繰り返しガス除去性能の評価が×になった。また、比較例1のガス除去性能の評価が○になっているが、これはアセトアルデヒドが吸着剤に吸着することにより除去されたためと考えられる。
比較例2の光触媒分散液は界面活性剤を含まないため、付着性及び均一性の評価が×となった。この結果から、実施例1~7において界面活性剤が光触媒層の付着性及び均一性を向上させていることが確認された。
The overall evaluation of the photocatalyst dispersion liquids of Examples 1 to 7 was ◯.
Since the dispersion liquid of Comparative Example 1 did not contain a photocatalyst, the repeated gas removal performance was evaluated as x. In addition, the gas removal performance of Comparative Example 1 was evaluated as ◯, but this is considered to be because acetaldehyde was removed by being adsorbed by the adsorbent.
Since the photocatalyst dispersion of Comparative Example 2 did not contain a surfactant, the adhesion and uniformity were evaluated as x. From these results, it was confirmed that the surfactant improved the adhesion and uniformity of the photocatalyst layer in Examples 1-7.

比較例3の光触媒分散液は、吸着剤を含まないため、ガス除去性能の評価が×となった。これは、光触媒層形成直後は酸化タングステン微粒子の表面が界面活性剤で覆われ、光触媒層の光触媒活性が低下しているためと考えられる。
比較例4の光触媒分散液は、室温において固体である界面活性剤を含むため、繰り返しガス除去性能が×となった。これは、光触媒層中において析出した界面活性剤が、酸化タングステン微粒子の受光を阻害し、光触媒層の光触媒活性が低下したためと考えられる。また、比較例4の光触媒分散液は、付着性が×となった。これは、析出した界面活性剤が酸化タングステン微粒子又は炭酸カルシウム微粒子の付着性を低下させているためと考えられる。
Since the photocatalyst dispersion liquid of Comparative Example 3 did not contain an adsorbent, the gas removal performance was evaluated as x. This is probably because the surface of the tungsten oxide fine particles is covered with a surfactant immediately after the formation of the photocatalyst layer, and the photocatalytic activity of the photocatalyst layer is lowered.
Since the photocatalyst dispersion liquid of Comparative Example 4 contains a surfactant that is solid at room temperature, the repeated gas removal performance was x. This is probably because the surfactant deposited in the photocatalyst layer inhibited the tungsten oxide fine particles from receiving light, resulting in a decrease in the photocatalytic activity of the photocatalyst layer. In addition, the photocatalyst dispersion liquid of Comparative Example 4 was evaluated as x in adhesion. This is probably because the precipitated surfactant reduces the adhesion of the tungsten oxide fine particles or calcium carbonate fine particles.

2:分散媒 3:光触媒微粒子 4:吸着剤 5:基材 6:光触媒層 7:光触媒分散液 8:フィルタ基材 9:容器 10:光触媒被覆部材 11:開口 12:光触媒フィルタ 13:送風部 15:発光部 16:筐体 20:空気清浄装置 2: Dispersion medium 3: Photocatalyst fine particles 4: Adsorbent 5: Substrate 6: Photocatalyst layer 7: Photocatalyst dispersion 8: Filter substrate 9: Container 10: Photocatalyst coating member 11: Opening 12: Photocatalyst filter 13: Blower unit 15 : Light-emitting part 16: Housing 20: Air cleaner

Claims (13)

水を含む分散媒と、界面活性剤と、可視光応答型光触媒微粒子と、吸着剤とを含み、
前記界面活性剤は、不揮発性を有し、かつ、0℃以下の凝固点を有し、
前記界面活性剤は、アミノ基含有化合物であることを特徴とする光触媒分散液。
A dispersion medium containing water, a surfactant, visible light responsive photocatalyst fine particles, and an adsorbent,
The surfactant is nonvolatile and has a freezing point of 0° C. or less,
The photocatalyst dispersion liquid, wherein the surfactant is an amino group-containing compound .
前記界面活性剤は、脂肪族化合物である請求項に記載の分散液。 2. The dispersion according to claim 1 , wherein said surfactant is an aliphatic compound. 前記光触媒微粒子は、酸化タングステンを含む請求項1又は2に記載の分散液。 3. The dispersion liquid according to claim 1 , wherein the photocatalyst fine particles contain tungsten oxide. 前記吸着剤は、多孔質微粒子である請求項1~のいずれか1つに記載の分散液。 4. The dispersion according to any one of claims 1 to 3 , wherein the adsorbent is porous fine particles. 前記分散液中の前記界面活性剤の含有量は、0.1wt%以上1.0wt%以下であり、
前記分散液中の前記吸着剤の含有量は、0.1wt%以上1.0wt%以下であり、
前記分散液中の前記光触媒微粒子の含有量は、0.1wt%以上1.0wt%以下である請求項1~のいずれか1つに記載の分散液。
The content of the surfactant in the dispersion is 0.1 wt% or more and 1.0 wt% or less,
The content of the adsorbent in the dispersion is 0.1 wt% or more and 1.0 wt% or less,
The dispersion according to any one of claims 1 to 4 , wherein the content of the photocatalyst fine particles in the dispersion is 0.1 wt% or more and 1.0 wt% or less.
前記分散液中の前記光触媒微粒子の質量パーセント濃度は、前記分散液中の前記界面活性剤の質量パーセント濃度の0.5倍以上であり、
前記分散液中の前記光触媒微粒子と前記吸着剤の合計質量パーセント濃度は、前記分散液中の前記界面活性剤の質量パーセント濃度の5倍以下である請求項1~のいずれか1つに記載の分散液。
The mass percent concentration of the photocatalyst fine particles in the dispersion is 0.5 times or more the mass percent concentration of the surfactant in the dispersion,
The total mass percent concentration of the photocatalyst fine particles and the adsorbent in the dispersion is 5 times or less the mass percent concentration of the surfactant in the dispersion according to any one of claims 1 to 5 . dispersion.
前記吸着剤は、10nm以上1000nm以下の平均粒径を有する請求項1~のいずれか1つに記載の分散液。 7. The dispersion according to any one of claims 1 to 6 , wherein the adsorbent has an average particle size of 10 nm or more and 1000 nm or less. 基材と、前記基材上に設けられた光触媒層とを備え、
前記光触媒層は、請求項1~のいずれか1つに記載の分散液の塗布層を乾燥させた層である光触媒被覆部材。
A substrate and a photocatalyst layer provided on the substrate,
A photocatalyst-coated member, wherein the photocatalyst layer is a layer obtained by drying a coating layer of the dispersion liquid according to any one of claims 1 to 7 .
フィルタ基材と、前記フィルタ基材上に設けられた光触媒層とを備え、
前記光触媒層は、請求項1~のいずれか1つに記載の分散液の塗布層を乾燥させた層である光触媒フィルタ。
A filter substrate and a photocatalyst layer provided on the filter substrate,
A photocatalyst filter, wherein the photocatalyst layer is a layer obtained by drying a coating layer of the dispersion liquid according to any one of claims 1 to 7 .
請求項に記載の光触媒フィルタと、前記光触媒フィルタに光を照射するように設けられた発光部と、空気が前記光触媒フィルタを通過するように設けられた送風部とを備える空気清浄装置。 10. An air cleaning device comprising: the photocatalyst filter according to claim 9 ; a light emitting part provided to irradiate the photocatalyst filter with light; and a blowing part provided to allow air to pass through the photocatalyst filter. 請求項1~のいずれか1つに記載の分散液を基材上に塗布することにより形成した塗布層を乾燥させる工程を含む光触媒層の形成方法。 A method for forming a photocatalyst layer, comprising the step of drying a coating layer formed by applying the dispersion according to any one of claims 1 to 7 onto a substrate. 水を含む分散媒と、界面活性剤と、可視光応答型光触媒微粒子と、吸着剤とを含む光触媒分散液であって、 A photocatalyst dispersion containing a dispersion medium containing water, a surfactant, visible-light-responsive photocatalyst fine particles, and an adsorbent,
前記界面活性剤は、不揮発性を有し、かつ、0℃以下の凝固点を有し、The surfactant is nonvolatile and has a freezing point of 0° C. or less,
前記分散液中の前記界面活性剤の含有量は、0.1wt%以上1.0wt%以下であり、The content of the surfactant in the dispersion is 0.1 wt% or more and 1.0 wt% or less,
前記分散液中の前記吸着剤の含有量は、0.1wt%以上1.0wt%以下であり、The content of the adsorbent in the dispersion is 0.1 wt% or more and 1.0 wt% or less,
前記分散液中の前記光触媒微粒子の含有量は、0.1wt%以上1.0wt%以下である光触媒分散液。A photocatalyst dispersion in which the content of the photocatalyst fine particles in the dispersion is 0.1 wt % or more and 1.0 wt % or less.
水を含む分散媒と、界面活性剤と、可視光応答型光触媒微粒子と、吸着剤とを含む光触媒分散液であって、 A photocatalyst dispersion containing a dispersion medium containing water, a surfactant, visible-light-responsive photocatalyst fine particles, and an adsorbent,
前記界面活性剤は、不揮発性を有し、かつ、0℃以下の凝固点を有し、The surfactant is nonvolatile and has a freezing point of 0° C. or less,
前記分散液中の前記光触媒微粒子の質量パーセント濃度は、前記分散液中の前記界面活性剤の質量パーセント濃度の0.5倍以上であり、The mass percent concentration of the photocatalyst fine particles in the dispersion is 0.5 times or more the mass percent concentration of the surfactant in the dispersion,
前記分散液中の前記光触媒微粒子と前記吸着剤の合計質量パーセント濃度は、前記分散液中の前記界面活性剤の質量パーセント濃度の5倍以下である光触媒分散液。A photocatalyst dispersion in which a total mass percent concentration of the photocatalyst fine particles and the adsorbent in the dispersion is 5 times or less the mass percent concentration of the surfactant in the dispersion.
JP2020042243A 2020-03-11 2020-03-11 Photocatalyst dispersion, photocatalyst coated member, photocatalyst filter, and method for forming photocatalyst layer Active JP7328165B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020042243A JP7328165B2 (en) 2020-03-11 2020-03-11 Photocatalyst dispersion, photocatalyst coated member, photocatalyst filter, and method for forming photocatalyst layer
CN202110209529.4A CN113384967B (en) 2020-03-11 2021-02-24 Photocatalyst dispersion liquid and method for forming photocatalyst layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020042243A JP7328165B2 (en) 2020-03-11 2020-03-11 Photocatalyst dispersion, photocatalyst coated member, photocatalyst filter, and method for forming photocatalyst layer

Publications (2)

Publication Number Publication Date
JP2021142473A JP2021142473A (en) 2021-09-24
JP7328165B2 true JP7328165B2 (en) 2023-08-16

Family

ID=77617286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020042243A Active JP7328165B2 (en) 2020-03-11 2020-03-11 Photocatalyst dispersion, photocatalyst coated member, photocatalyst filter, and method for forming photocatalyst layer

Country Status (2)

Country Link
JP (1) JP7328165B2 (en)
CN (1) CN113384967B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113786702B (en) * 2021-09-23 2022-06-07 西安电子科技大学 Circulating reactor, system and method for flue gas desulfurization, denitrification and haze reduction

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000317269A (en) 1999-05-10 2000-11-21 Sharp Corp Deodorizing device
JP2001070800A (en) 1999-09-07 2001-03-21 Sharp Corp Photocatalyst film composition and photocatalyst body using the same
JP2010222427A (en) 2009-03-23 2010-10-07 Nippon Paint Co Ltd Aqueous coating agent
JP2016106025A (en) 2012-06-01 2016-06-16 株式会社東芝 Aqueous dispersion liquid, coating material using the same, and method for producing photocatalyst film
JP2019520203A (en) 2016-06-13 2019-07-18 エルジー・ハウシス・リミテッドLg Hausys,Ltd. Photocatalytic functional filter

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11342310A (en) * 1998-03-31 1999-12-14 Mitsubishi Paper Mills Ltd Functional electret filter and its production and air purifier
JP2007260603A (en) * 2006-03-29 2007-10-11 Suminoe Textile Co Ltd Filter unit for air cleaner
JP2011178930A (en) * 2010-03-02 2011-09-15 Sumitomo Chemical Co Ltd Photocatalytic coating liquid and article having photocatalytic layer coated with the coating liquid
JP5655827B2 (en) * 2011-11-14 2015-01-21 信越化学工業株式会社 Visible light responsive titanium oxide fine particle dispersion, method for producing the same, and member having a photocatalytic thin film formed on the surface using the dispersion
JP6356661B2 (en) * 2013-03-12 2018-07-11 株式会社東芝 Photocatalyst body and photocatalyst dispersion liquid, photocatalyst paint, photocatalyst film and product using the same
JP2015044142A (en) * 2013-08-27 2015-03-12 国立大学法人信州大学 Composite particle and manufacturing method thereof, and adsorbent for organic substance and decomposition method of organic substance
KR102170489B1 (en) * 2013-10-16 2020-10-28 신에쓰 가가꾸 고교 가부시끼가이샤 Dispersion liquid of titanium oxide-tungsten oxide composite photocatalytic fine particles, production method for same, and member having photocatalytic thin film on surface thereof
JP7106268B2 (en) * 2017-12-14 2022-07-26 株式会社東芝 SUBSTRATE WITH PHOTOCATALYST, MANUFACTURING METHOD THEREOF, AND PHOTOCATALYST DEVICE

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000317269A (en) 1999-05-10 2000-11-21 Sharp Corp Deodorizing device
JP2001070800A (en) 1999-09-07 2001-03-21 Sharp Corp Photocatalyst film composition and photocatalyst body using the same
JP2010222427A (en) 2009-03-23 2010-10-07 Nippon Paint Co Ltd Aqueous coating agent
JP2016106025A (en) 2012-06-01 2016-06-16 株式会社東芝 Aqueous dispersion liquid, coating material using the same, and method for producing photocatalyst film
JP2019520203A (en) 2016-06-13 2019-07-18 エルジー・ハウシス・リミテッドLg Hausys,Ltd. Photocatalytic functional filter

Also Published As

Publication number Publication date
JP2021142473A (en) 2021-09-24
CN113384967B (en) 2023-01-10
CN113384967A (en) 2021-09-14

Similar Documents

Publication Publication Date Title
CN101198403B (en) Heterogeneous, composite, carbonaceous catalyst system and methods that use catalytically active gold
JP5676260B2 (en) Catalyst production method
CN100528331C (en) Bifunctional layered photocatalyst/thermocatalyst for improving indoor air quality
US6627166B1 (en) Gas filtering device
US20120301363A1 (en) Mix-type catalyst filter and manufacturing method thereof
CN107185535B (en) Matt aldehyde-removing catalyst, aldehyde-removing system containing catalyst and application of aldehyde-removing system
JP7328165B2 (en) Photocatalyst dispersion, photocatalyst coated member, photocatalyst filter, and method for forming photocatalyst layer
JP2007167495A (en) Aldehyde-containing air purifying agent and its manufacturing method
CN106714964B (en) Visible light active photocatalysis ceramic tile
CN109248672B (en) Composite material and preparation method and application thereof
KR101930709B1 (en) Photo catalyst functional filter
JP6737435B2 (en) Method for producing fine particles carrying a noble metal solid solution
Zhang et al. Mitigating the relative humidity effects on the simultaneous removal of VOCs and PM2. 5 of a metal–organic framework coated electret filter
CN1162211C (en) Photocatalytic air-purifying net in multilayer structure and is making process
JP7115900B2 (en) Photocatalyst layer, photocatalyst, and method for producing photocatalyst
Sheraz et al. Electrospinning synthesis of CuBTC/TiO2/PS composite nanofiber on HEPA filter with self-cleaning property for indoor air purification
JP6910955B2 (en) Composite gas adsorbent, adsorption filter using it, and method for manufacturing composite gas adsorbent
JP5801121B2 (en) Porous ceramic, photocatalyst carrier and purification device
KR20210046110A (en) Apparatus for scrubbing fine dust
JP2006007156A (en) Functional coating film and producing method thereof
JP2016159225A (en) Aldehydes remover using ruthenium (fcc) carrier
JP3503262B2 (en) Deodorizing filter and method for producing deodorizing filter
JP2011025603A (en) Fiber, fiber processing product and method of manufacturing the fiber
CN109772260A (en) Gallic oxide-adsorbent composite material and its preparation method and application
JPH09294919A (en) Space cleaning material and space cleaning method using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230609

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20230609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230803

R150 Certificate of patent or registration of utility model

Ref document number: 7328165

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150