JP7327342B2 - Hybrid vehicle control device - Google Patents
Hybrid vehicle control device Download PDFInfo
- Publication number
- JP7327342B2 JP7327342B2 JP2020170270A JP2020170270A JP7327342B2 JP 7327342 B2 JP7327342 B2 JP 7327342B2 JP 2020170270 A JP2020170270 A JP 2020170270A JP 2020170270 A JP2020170270 A JP 2020170270A JP 7327342 B2 JP7327342 B2 JP 7327342B2
- Authority
- JP
- Japan
- Prior art keywords
- torque
- engine
- motor
- value
- cylinder deactivation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
- B60W20/10—Controlling the power contribution of each of the prime movers to meet required power demand
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/008—Controlling each cylinder individually
- F02D41/0087—Selective cylinder activation, i.e. partial cylinder operation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/24—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the combustion engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/42—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
- B60K6/44—Series-parallel type
- B60K6/445—Differential gearing distribution type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/06—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/08—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
- B60W20/50—Control strategies for responding to system failures, e.g. for fault diagnosis, failsafe operation or limp mode
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/02—Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
- B60W50/0205—Diagnosing or detecting failures; Failure detection models
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/008—Mounting or arrangement of exhaust sensors in or on exhaust apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N9/00—Electrical control of exhaust gas treating apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/008—Controlling each cylinder individually
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/1454—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1497—With detection of the mechanical response of the engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/22—Safety or indicating devices for abnormal conditions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K6/00—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
- B60K6/20—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
- B60K6/22—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
- B60K6/26—Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W2050/0001—Details of the control system
- B60W2050/0019—Control system elements or transfer functions
- B60W2050/0028—Mathematical models, e.g. for simulation
- B60W2050/0037—Mathematical models of vehicle sub-units
- B60W2050/0039—Mathematical models of vehicle sub-units of the propulsion unit
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/06—Combustion engines, Gas turbines
- B60W2510/0614—Position of fuel or air injector
- B60W2510/0619—Air-fuel ratio
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/06—Combustion engines, Gas turbines
- B60W2510/0638—Engine speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/06—Combustion engines, Gas turbines
- B60W2510/0657—Engine torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/08—Electric propulsion units
- B60W2510/081—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/06—Combustion engines, Gas turbines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/06—Combustion engines, Gas turbines
- B60W2710/0616—Position of fuel or air injector
- B60W2710/0622—Air-fuel ratio
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/08—Electric propulsion units
- B60W2710/083—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2200/00—Type of vehicle
- B60Y2200/90—Vehicles comprising electric prime movers
- B60Y2200/92—Hybrid vehicles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2430/00—Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
- F01N2430/02—Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by cutting out a part of engine cylinders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2560/00—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
- F01N2560/02—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
- F01N2560/025—Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting O2, e.g. lambda sensors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2590/00—Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines
- F01N2590/11—Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines for hybrid vehicles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/06—Parameters used for exhaust control or diagnosing
- F01N2900/08—Parameters used for exhaust control or diagnosing said parameters being related to the engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/04—Engine intake system parameters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/10—Parameters related to the engine output, e.g. engine torque or engine speed
- F02D2200/1002—Output torque
- F02D2200/1004—Estimation of the output torque
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/10—Parameters related to the engine output, e.g. engine torque or engine speed
- F02D2200/101—Engine speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2250/00—Engine control related to specific problems or objectives
- F02D2250/18—Control of the engine output torque
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/22—Safety or indicating devices for abnormal conditions
- F02D41/221—Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- General Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Human Computer Interaction (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Hybrid Electric Vehicles (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
Description
本発明は、ハイブリッド車両の制御装置に関する。 The present invention relates to a hybrid vehicle control device.
特許文献1には、動力源として内燃機関及び走行モータを備えるハイブリッド車両の一例が記載されている。このハイブリッド車両にあっては、内燃機関が備える複数の気筒のうち、一部の気筒内での燃焼を停止させる一方で残りの気筒内では燃焼を停止させない運転を内燃機関に行わせる気筒休止制御が実施されることがある。気筒休止制御の実施期間にあっては、一部の気筒内での燃焼の停止に起因して機関トルクが低下する。 Patent Literature 1 describes an example of a hybrid vehicle that includes an internal combustion engine and a traction motor as power sources. In this hybrid vehicle, cylinder deactivation control causes the internal combustion engine to perform an operation in which combustion is stopped in some of the plurality of cylinders of the internal combustion engine while combustion is not stopped in the remaining cylinders. may be implemented. During the period in which cylinder deactivation control is performed, engine torque decreases due to the suspension of combustion in some cylinders.
そこで、特許文献1に記載のハイブリッド車両にあっては、気筒休止制御が実施されている場合には、一部の気筒内での燃焼の停止に起因する機関トルクの低下を走行モータの駆動によって補うようにしている。これにより、気筒休止制御の実施に伴うハイブリッド車両での振動及び騒音の発生を抑制できる。 Therefore, in the hybrid vehicle described in Patent Document 1, when cylinder deactivation control is being performed, the reduction in engine torque caused by the suspension of combustion in some of the cylinders is suppressed by driving the travel motor. I am trying to make up for it. As a result, it is possible to suppress the generation of vibration and noise in the hybrid vehicle due to the implementation of the cylinder deactivation control.
上記の気筒休止制御の実施によって複数の気筒のうちの一部の気筒内での燃焼が停止される場合では、気筒休止制御が正常に機能しているか否かを診断することが望まれている。 When the cylinder deactivation control described above stops combustion in some of the plurality of cylinders, it is desired to diagnose whether the cylinder deactivation control is functioning normally. .
当該診断の一例としては、気筒休止制御の実施中におけるクランク軸の回転速度の変動をモニタする手法を挙げることができる。しかしながら、一部の気筒内での燃焼の停止に起因する機関トルクの低下を走行モータの駆動によって補っている場合、一部の気筒内での燃焼の停止に起因するクランク軸の回転速度の変動が抑えられる。その結果、当該回転速度の変動をモニタしても、気筒休止制御が正常に機能しているか否かを診断できない。 As an example of the diagnosis, there is a method of monitoring fluctuations in the rotation speed of the crankshaft during execution of cylinder deactivation control. However, if the drive of the traction motor compensates for the decrease in engine torque caused by the stoppage of combustion in some cylinders, the fluctuation in the rotation speed of the crankshaft caused by the stoppage of combustion in some cylinders. is suppressed. As a result, it is not possible to diagnose whether the cylinder deactivation control is functioning normally even if the variation in the rotation speed is monitored.
上記課題を解決するためのハイブリッド車両の制御装置は、複数の気筒及びクランク軸を有する内燃機関と、クランク軸に連結されている電気モータと、を備えるハイブリッド車両に適用される。この制御装置は、複数の気筒のうち、一部の気筒内での燃焼を停止させる一方で、残りの気筒内では燃焼を停止させない運転を内燃機関に行わせる気筒休止制御を実施する機関制御部と、気筒休止制御が実施されている場合に、上記一部の気筒内での燃焼の停止に起因する内燃機関の出力トルクの低下を補うべく、電気モータのトルクであるモータトルクをクランク軸に入力させるモータ制御部と、クランク軸の回転速度である機関回転速度、電気モータの回転速度であるモータ回転速度及びモータトルクを基に、内燃機関の出力トルクの算出値である機関トルク算出値を算出する機関トルク算出部と、気筒休止制御の実施中において、機関トルク算出値がトルク判定値未満になる場合には気筒休止制御が正常に機能していると診断する一方、機関トルク算出値がトルク判定値未満にならない場合には気筒休止制御が正常に機能していると診断しない診断部と、を備えている。 A hybrid vehicle control apparatus for solving the above problem is applied to a hybrid vehicle including an internal combustion engine having a plurality of cylinders and a crankshaft, and an electric motor coupled to the crankshaft. This control device is an engine control unit that performs cylinder deactivation control that causes the internal combustion engine to operate such that combustion is stopped in some of the plurality of cylinders while combustion is not stopped in the remaining cylinders. Then, when the cylinder deactivation control is being performed, the motor torque, which is the torque of the electric motor, is applied to the crankshaft in order to compensate for the decrease in the output torque of the internal combustion engine due to the suspension of combustion in some of the cylinders. An engine torque calculation value, which is a calculation value of the output torque of the internal combustion engine, is calculated based on the input motor control unit, and the engine rotation speed, which is the rotation speed of the crankshaft, the motor rotation speed, which is the rotation speed of the electric motor, and the motor torque. An engine torque calculation unit that calculates and diagnoses that the cylinder deactivation control is functioning normally when the engine torque calculation value is less than the torque judgment value while the cylinder deactivation control is being performed. and a diagnosis unit that does not diagnose that the cylinder deactivation control is functioning normally when the torque does not fall below the judgment value.
内燃機関のクランク軸に電気モータが連結されている場合、内燃機関の出力トルクである機関トルクは、電気モータにも伝達される。そのため、計算によって機関トルクを求めるためには、機関回転速度及びモータ回転速度の双方が必要である。また、電気モータの駆動によってモータトルクがクランク軸に入力される場合、機関回転速度及びモータ回転速度は、機関トルクだけではなくモータトルクの影響も受ける。 When an electric motor is connected to the crankshaft of the internal combustion engine, the engine torque, which is the output torque of the internal combustion engine, is also transmitted to the electric motor. Therefore, both the engine rotation speed and the motor rotation speed are required to obtain the engine torque by calculation. Further, when the motor torque is input to the crankshaft by driving the electric motor, the engine rotation speed and the motor rotation speed are affected not only by the engine torque but also by the motor torque.
そこで、上記構成では、機関回転速度、モータ回転速度及びモータトルクを基に、機関トルク算出値を算出するようにしている。そして、気筒休止制御の実施中において、機関トルク算出値がトルク判定値未満にならない場合には、気筒休止制御を実施しても内燃機関の出力トルクが低下していない、若しくは出力トルクの低下量が少なすぎると判断できる。そのため、この場合には、気筒休止制御が正常に機能していると診断されない。一方、機関トルク算出値がトルク判定値未満になる場合には、気筒休止制御の実施によって内燃機関の出力トルクが十分に低下していると判断できる。そのため、この場合には、気筒休止制御が正常に機能していると診断される。 Therefore, in the above configuration, the engine torque calculation value is calculated based on the engine rotation speed, the motor rotation speed, and the motor torque. When the calculated engine torque value does not become less than the torque judgment value while the cylinder deactivation control is being performed, the output torque of the internal combustion engine does not decrease even if the cylinder deactivation control is performed, or the amount of decrease in the output torque. can be judged to be too small. Therefore, in this case, it is not diagnosed that the cylinder deactivation control is functioning normally. On the other hand, when the calculated engine torque value is less than the torque determination value, it can be determined that the output torque of the internal combustion engine has sufficiently decreased due to the execution of the cylinder deactivation control. Therefore, in this case, it is diagnosed that the cylinder deactivation control is functioning normally.
したがって、上記構成によれば、気筒休止制御の実施中に電気モータが駆動する場合であっても、気筒休止制御が正常に機能しているか否かを診断できるようになる。
気筒休止制御の実施中にクランク軸にモータトルクを入力させない場合、上記一部の気筒内での燃焼停止に起因して内燃機関の出力トルクが低下する。このときの出力トルクの低下量は、そのときの吸入空気量及び機関回転速度によって変わる。そこで、上記ハイブリッド車両の制御装置は、内燃機関の吸入空気量及び機関回転速度のうちの少なくとも一方に応じた値をトルク判定値として設定する判定値設定部を備えることが好ましい。
Therefore, according to the above configuration, even if the electric motor is driven while the cylinder deactivation control is being performed, it is possible to diagnose whether the cylinder deactivation control is functioning normally.
If no motor torque is input to the crankshaft during cylinder deactivation control, the output torque of the internal combustion engine decreases due to the stoppage of combustion in some of the cylinders. The amount of decrease in output torque at this time varies depending on the amount of intake air and the engine speed at that time. Therefore, the hybrid vehicle control device preferably includes a determination value setting unit that sets a value corresponding to at least one of the intake air amount and the engine speed of the internal combustion engine as the torque determination value.
上記構成によれば、トルク判定値を、そのときの吸入空気量及び機関回転速度のうちの少なくとも一方に応じた値とすることができる。こうしたトルク判定値を上記の診断に用いることにより、当該診断の精度を高くできる。 According to the above configuration, the torque determination value can be set to a value corresponding to at least one of the intake air amount and the engine speed at that time. By using such a torque determination value for the above diagnosis, the accuracy of the diagnosis can be increased.
上記ハイブリッド車両の制御装置が備える内燃機関の一態様は、排気通路に設けられている触媒と、排気通路における触媒よりも下流に配置されている空燃比センサと、を有している。空燃比センサによって空燃比が、理論空燃比よりもリッチ側の値である場合、触媒の酸素の吸蔵量が少なくなっていることが予測される。 One aspect of the internal combustion engine provided in the hybrid vehicle control device includes a catalyst provided in an exhaust passage, and an air-fuel ratio sensor disposed downstream of the catalyst in the exhaust passage. When the air-fuel ratio sensor indicates that the air-fuel ratio is richer than the stoichiometric air-fuel ratio, it is predicted that the amount of oxygen stored in the catalyst is small.
そこで、上記ハイブリッド車両の制御装置の一態様において、機関制御部は、空燃比センサによって検出される空燃比が、理論空燃比よりもリッチ側の値を示している場合に、気筒休止制御を実施する。この場合、気筒休止制御は、上記一部の気筒内への燃料供給を停止する制御であることが好ましい。これにより、上記一部の気筒内から排気通路に空気を流出させることができる。この場合、排気通路を流れる空気は触媒に供給される。その結果、触媒の酸素の吸蔵量を増大させることができ、ひいては空燃比センサによって検出される空燃比を、理論空燃比に近づけることができる。 Therefore, in one aspect of the hybrid vehicle control device, the engine control unit performs cylinder deactivation control when the air-fuel ratio detected by the air-fuel ratio sensor indicates a richer value than the stoichiometric air-fuel ratio. do. In this case, the cylinder deactivation control is preferably control for stopping the supply of fuel to the above-mentioned part of the cylinders. As a result, the air can flow out from inside the cylinders to the exhaust passage. In this case, the air flowing through the exhaust passage is supplied to the catalyst. As a result, the amount of oxygen stored in the catalyst can be increased, and the air-fuel ratio detected by the air-fuel ratio sensor can be brought closer to the stoichiometric air-fuel ratio.
以下、ハイブリッド車両の制御装置の一実施形態を図1~図5に従って説明する。
図1には、本実施形態の制御装置100を備えるハイブリッド車両500の一例が図示されている。本実施形態では、ハイブリッド車両500を、単に「車両500」と称す。
An embodiment of a control device for a hybrid vehicle will be described below with reference to FIGS. 1 to 5. FIG.
FIG. 1 shows an example of a hybrid vehicle 500 equipped with a control device 100 of this embodiment. In this embodiment, hybrid vehicle 500 is simply referred to as "vehicle 500".
車両500は、内燃機関10と、内燃機関10のクランク軸14が接続されている動力配分統合機構40と、動力配分統合機構40に接続されている第1モータジェネレータ71とを備えている。動力配分統合機構40には、リダクションギア50を介して第2モータジェネレータ72が連結されている。また、動力配分統合機構40には、減速機構60及びディファレンシャル61を介して駆動輪62が連結されている。 A vehicle 500 includes an internal combustion engine 10 , a power distribution integration mechanism 40 connected to a crankshaft 14 of the internal combustion engine 10 , and a first motor generator 71 connected to the power distribution integration mechanism 40 . A second motor generator 72 is connected to the power distribution integration mechanism 40 via a reduction gear 50 . Drive wheels 62 are connected to the power distribution integration mechanism 40 via a speed reduction mechanism 60 and a differential 61 .
動力配分統合機構40は、遊星歯車機構である。すなわち、動力配分統合機構40は、外歯歯車のサンギア41と、内歯歯車のリングギア42とを有している。サンギア41とリングギア42との間には、サンギア41とリングギア42との双方と噛み合う複数のピニオンギア43が配置されている。各ピニオンギア43は、自転可能且つサンギア41の周りを公転可能な状態でキャリア44に支持されている。サンギア41には、第1モータジェネレータ71が連結されている。キャリア44には、クランク軸14が連結されている。リングギア42にはリングギア軸45が接続されており、このリングギア軸45には、リダクションギア50及び減速機構60の双方が連結されている。 The power distribution integration mechanism 40 is a planetary gear mechanism. That is, the power distribution integration mechanism 40 has a sun gear 41 that is an external gear and a ring gear 42 that is an internal gear. A plurality of pinion gears 43 that mesh with both the sun gear 41 and the ring gear 42 are arranged between the sun gear 41 and the ring gear 42 . Each pinion gear 43 is supported by a carrier 44 so as to be able to rotate and revolve around the sun gear 41 . A first motor generator 71 is connected to the sun gear 41 . The crankshaft 14 is connected to the carrier 44 . A ring gear shaft 45 is connected to the ring gear 42 , and both the reduction gear 50 and the speed reduction mechanism 60 are connected to the ring gear shaft 45 .
リダクションギア50は、遊星歯車機構である。すなわち、リダクションギア50は、第2モータジェネレータ72が連結されている外歯歯車のサンギア51と、内歯歯車のリングギア52とを有している。リングギア52にリングギア軸45が接続されている。また、サンギア51とリングギア52との間には、サンギア51とリングギア52との双方と噛み合う複数のピニオンギア53が配置されている。各ピニオンギア53は、自転可能且つサンギア51の周りを公転不可能な状態で支持されている。 The reduction gear 50 is a planetary gear mechanism. That is, the reduction gear 50 has an externally toothed sun gear 51 to which the second motor generator 72 is connected, and an internally toothed ring gear 52 . A ring gear shaft 45 is connected to the ring gear 52 . A plurality of pinion gears 53 that mesh with both the sun gear 51 and the ring gear 52 are arranged between the sun gear 51 and the ring gear 52 . Each pinion gear 53 is supported so as to be able to rotate on its own axis and unable to revolve around the sun gear 51 .
第1モータジェネレータ71は、第1インバータ75を介してバッテリと電力の授受を行う。第2モータジェネレータ72は、第2インバータ76を介してバッテリと電力の授受を行う。 The first motor generator 71 exchanges electric power with the battery via the first inverter 75 . The second motor generator 72 exchanges electric power with the battery via the second inverter 76 .
内燃機関10の出力トルクである機関トルクTQeが動力配分統合機構40のキャリア44に入力される場合には、機関トルクTQeがサンギア41側とリングギア42側とに分配される。上述したように動力配分統合機構40を介して第1モータジェネレータ71はクランク軸14に連結されている。そのため、サンギア41側に分配された機関トルクTQeによって第1モータジェネレータ71を回転させることができる。この場合、第1モータジェネレータ71を発電機として機能させることができる。 When the engine torque TQe, which is the output torque of the internal combustion engine 10, is input to the carrier 44 of the power distribution integration mechanism 40, the engine torque TQe is distributed to the sun gear 41 side and the ring gear 42 side. The first motor generator 71 is connected to the crankshaft 14 via the power distribution integration mechanism 40 as described above. Therefore, the first motor generator 71 can be rotated by the engine torque TQe distributed to the sun gear 41 side. In this case, the first motor generator 71 can function as a generator.
一方、第1モータジェネレータ71を電動機として機能させた場合には、第1モータジェネレータ71の出力トルクである第1モータトルクTQmg1がサンギア41に入力される。サンギア41に入力された第1モータトルクTQmg1は、キャリア44側とリングギア42側とに分配される。そして、第1モータトルクTQmg1をキャリア44を介してクランク軸14に入力させることにより、クランク軸14を回転させることができる。 On the other hand, when first motor generator 71 is caused to function as an electric motor, first motor torque TQmg<b>1 that is the output torque of first motor generator 71 is input to sun gear 41 . The first motor torque TQmg1 input to the sun gear 41 is distributed to the carrier 44 side and the ring gear 42 side. By inputting the first motor torque TQmg1 to the crankshaft 14 via the carrier 44, the crankshaft 14 can be rotated.
リングギア42側に分配された内燃機関10の機関トルクTQe、及び、第1モータジェネレータ71の第1モータトルクTQmg1は、リングギア軸45、減速機構60及びディファレンシャル61を介して駆動輪62に入力される。 The engine torque TQe of the internal combustion engine 10 and the first motor torque TQmg1 of the first motor generator 71 distributed to the ring gear 42 side are input to the driving wheels 62 via the ring gear shaft 45, the speed reduction mechanism 60 and the differential 61. be done.
また、車両500が減速する際には第2モータジェネレータ72を発電機として機能させることにより、第2モータジェネレータ72の発電量に応じた回生制動力が車両500に発生する。一方、第2モータジェネレータ72を電動機として機能させた場合には、第2モータジェネレータ72の出力トルクである第2モータトルクTQmg2が、リダクションギア50、リングギア軸45、減速機構60及びディファレンシャル61を介して駆動輪62に入力される。 Further, when vehicle 500 decelerates, second motor generator 72 is caused to function as a generator, so that regenerative braking force corresponding to the amount of power generated by second motor generator 72 is generated in vehicle 500 . On the other hand, when the second motor generator 72 functions as an electric motor, the second motor torque TQmg2, which is the output torque of the second motor generator 72, causes the reduction gear 50, the ring gear shaft 45, the speed reduction mechanism 60, and the differential 61 to rotate. input to the drive wheels 62 via the
内燃機関10は、複数の気筒11を有している。各気筒11内では、ピストンが往復動するようになっている。各ピストンは、コネクティングロッドを介してクランク軸14に連結されている。 The internal combustion engine 10 has multiple cylinders 11 . A piston reciprocates in each cylinder 11 . Each piston is connected to the crankshaft 14 via a connecting rod.
内燃機関10の吸気通路15には、吸気通路15を流れる吸入空気の流量である吸入空気量を調整するスロットルバルブ16が設けられている。また、内燃機関10には、吸気ポート15aに燃料を噴射する燃料噴射弁17と、燃料と吸気とを含む混合気を火花放電により点火する点火装置19とが気筒別に設けられている。混合気の燃焼によって各気筒11内で生じた排気は排気通路21に排出される。排気通路21には、三元触媒22が設けられている。排気通路21における三元触媒22よりも下流側には、排気に含まれる粒子状物質を捕集するフィルタ23が設けられている。また、排気通路21におけるフィルタ23よりも下流側には下流触媒24が設けられている。なお、下流触媒24は三元触媒22と同様の触媒である。 An intake passage 15 of the internal combustion engine 10 is provided with a throttle valve 16 that adjusts the amount of intake air that flows through the intake passage 15 . In the internal combustion engine 10, a fuel injection valve 17 for injecting fuel into the intake port 15a and an ignition device 19 for igniting a mixture containing fuel and intake air by spark discharge are provided for each cylinder. Exhaust gas generated in each cylinder 11 by combustion of the air-fuel mixture is discharged to the exhaust passage 21 . A three-way catalyst 22 is provided in the exhaust passage 21 . A filter 23 that collects particulate matter contained in the exhaust gas is provided downstream of the three-way catalyst 22 in the exhaust passage 21 . A downstream catalyst 24 is provided downstream of the filter 23 in the exhaust passage 21 . Note that the downstream catalyst 24 is a catalyst similar to the three-way catalyst 22 .
制御装置100は、車両500を統括的に制御する統括制御装置110と、内燃機関10を制御する機関用制御装置120と、第1モータジェネレータ71及び第2モータジェネレータ72を制御するモータ用制御装置130とを有している。本実施形態では、モータ用制御装置130が、「モータ制御部」に対応する。 The control device 100 includes an integrated control device 110 that controls the vehicle 500 in an integrated manner, an engine control device 120 that controls the internal combustion engine 10, and a motor control device that controls the first motor generator 71 and the second motor generator 72. 130. In this embodiment, the motor controller 130 corresponds to the "motor controller".
統括制御装置110、機関用制御装置120及びモータ用制御装置130の各々は、以下(a)~(c)の何れかの構成であればよい。
(a)コンピュータプログラムに従って各種処理を実行する一つ以上のプロセッサを備えている。プロセッサは、CPU並びに、RAM及びROMなどのメモリを含んでいる。メモリは、処理をCPUに実行させるように構成されたプログラムコード又は指令を格納している。メモリ、すなわちコンピュータ可読媒体は、汎用又は専用のコンピュータでアクセスできるあらゆる利用可能な媒体を含んでいる。
(b)各種処理を実行する一つ以上の専用のハードウェア回路を備えている。専用のハードウェア回路としては、例えば、特定用途向け集積回路、すなわちASIC又はFPGAを挙げることができる。なお、ASICは、「Application Specific Integrated Circuit」の略記であり、FPGAは、「Field Programmable Gate Array」の略記である。
(c)各種処理の一部をコンピュータプログラムに従って実行するプロセッサと、各種処理のうちの残りの処理を実行する専用のハードウェア回路とを備えている。
Each of the general control device 110, the engine control device 120, and the motor control device 130 may have any one of the following configurations (a) to (c).
(a) It has one or more processors that execute various processes according to a computer program. The processor includes a CPU and memory such as RAM and ROM. The memory stores program code or instructions configured to cause the CPU to perform processes. Memory, or computer-readable media, includes any available media that can be accessed by a general purpose or special purpose computer.
(b) contain one or more dedicated hardware circuits for performing various processes; Dedicated hardware circuits may include, for example, application specific integrated circuits, ie ASICs or FPGAs. ASIC is an abbreviation for "Application Specific Integrated Circuit", and FPGA is an abbreviation for "Field Programmable Gate Array".
(c) A processor that executes a part of various processes according to a computer program, and a dedicated hardware circuit that executes the rest of the various processes.
統括制御装置110には、アクセルペダルセンサ201及び車速センサ202などの各種のセンサから検出信号が入力される。アクセルペダルセンサ201は、車両500の運転者によるアクセルペダルの操作量であるアクセル操作量ACPを検出し、その検出結果に応じた検出信号を出力する。車速センサ202は、車両500の走行速度である車速SPを検出し、その検出結果に応じた検出信号を出力する。 Detection signals are input to the integrated control device 110 from various sensors such as an accelerator pedal sensor 201 and a vehicle speed sensor 202 . Accelerator pedal sensor 201 detects accelerator operation amount ACP, which is the amount of operation of the accelerator pedal by the driver of vehicle 500, and outputs a detection signal according to the detection result. Vehicle speed sensor 202 detects vehicle speed SP, which is the running speed of vehicle 500, and outputs a detection signal according to the detection result.
統括制御装置110は、アクセル操作量ACP及び車速SPに基づいて車両500の駆動力の要求値である車両要求パワーを導出する。また、統括制御装置110は、車両要求パワーなどを基に、機関要求トルク、第1モータ要求トルク及び第2モータ要求トルクを導出する。機関要求トルクは、機関トルクTQeの要求値である。また、第1モータ要求トルクは、第1モータトルクTQmg1の要求値である。第2モータ要求トルクは、第2モータトルクTQmg2の要求値である。 The integrated control device 110 derives the required vehicle power, which is the required value of the driving force of the vehicle 500, based on the accelerator operation amount ACP and the vehicle speed SP. Also, the integrated control device 110 derives the engine required torque, the first motor required torque, and the second motor required torque based on the vehicle required power and the like. The engine demand torque is a demand value of the engine torque TQe. Also, the first motor request torque is a request value of the first motor torque TQmg1. The second motor requested torque is a requested value of the second motor torque TQmg2.
モータ用制御装置130には、第1モータ回転角センサ211及び第2モータ回転角センサ212から検出信号が入力される。第1モータ回転角センサ211は、第1モータジェネレータ71のロータの回転速度である第1モータ回転速度Nmg1に応じた検出信号を出力する。第2モータ回転角センサ212は、第2モータジェネレータ72のロータの回転速度である第2モータ回転速度Nmg2に応じた検出信号を出力する。 Detection signals are input to the motor controller 130 from the first motor rotation angle sensor 211 and the second motor rotation angle sensor 212 . First motor rotation angle sensor 211 outputs a detection signal corresponding to first motor rotation speed Nmg1, which is the rotation speed of the rotor of first motor generator 71 . Second motor rotation angle sensor 212 outputs a detection signal corresponding to second motor rotation speed Nmg2, which is the rotation speed of the rotor of second motor generator 72 .
モータ用制御装置130は、第1インバータ75を動作させることにより、第1モータジェネレータ71を制御する。すなわち、モータ用制御装置130は、第1モータ要求トルクに基づいて第1インバータ75を動作させる。これにより、第1モータトルクTQmg1を、第1モータ要求トルクとほぼ等しくできる。同様に、モータ用制御装置130は、第2インバータ76を動作させることにより、第2モータジェネレータ72を制御する。すなわち、モータ用制御装置130は、第2モータ要求トルクに基づいて第2インバータ76を動作させる。これにより、第2モータトルクTQmg2を、第2モータ要求トルクとほぼ等しくできる。 Motor control device 130 controls first motor generator 71 by operating first inverter 75 . That is, the motor controller 130 operates the first inverter 75 based on the first motor request torque. As a result, the first motor torque TQmg1 can be made substantially equal to the first motor request torque. Similarly, motor controller 130 controls second motor generator 72 by operating second inverter 76 . That is, the motor controller 130 operates the second inverter 76 based on the second motor request torque. As a result, the second motor torque TQmg2 can be made substantially equal to the second motor request torque.
機関用制御装置120には、内燃機関10に搭載される各種のセンサから検出信号が入力される。内燃機関10に搭載されるセンサとして、エアフロメータ221、クランク角センサ222、第1空燃比センサ223及び第2空燃比センサ224を挙げることができる。エアフロメータ221は、吸入空気量GAを検出し、その検出結果を検出信号として出力する。クランク角センサ222は、クランク軸14の回転速度である機関回転速度NEに応じた検出信号を出力する。第1空燃比センサ223は、排気通路21における三元触媒22よりも上流の部分を流れる排気の空燃比である第1空燃比Afuを検出し、その検出結果を検出信号として出力する。第2空燃比センサ224は、排気通路21における三元触媒22とフィルタ23との間の部分を流れる排気の空燃比である第2空燃比Afdを検出し、その検出結果を検出信号として出力する。本実施形態では、第2空燃比センサ224が、排気通路21における三元触媒22よりも下流に配置されている「空燃比センサ」に対応する。一方、第1空燃比センサ223は、排気通路21における三元触媒22よりも上流に配置されている空燃比センサであるといえる。 Detection signals are input to the engine control device 120 from various sensors mounted on the internal combustion engine 10 . As sensors mounted on the internal combustion engine 10, an airflow meter 221, a crank angle sensor 222, a first air-fuel ratio sensor 223, and a second air-fuel ratio sensor 224 can be cited. The airflow meter 221 detects the intake air amount GA and outputs the detection result as a detection signal. Crank angle sensor 222 outputs a detection signal corresponding to engine rotation speed NE, which is the rotation speed of crankshaft 14 . The first air-fuel ratio sensor 223 detects a first air-fuel ratio Afu, which is the air-fuel ratio of the exhaust flowing in the exhaust passage 21 upstream of the three-way catalyst 22, and outputs the detection result as a detection signal. The second air-fuel ratio sensor 224 detects a second air-fuel ratio Afd, which is the air-fuel ratio of the exhaust flowing through the portion of the exhaust passage 21 between the three-way catalyst 22 and the filter 23, and outputs the detection result as a detection signal. . In the present embodiment, the second air-fuel ratio sensor 224 corresponds to an “air-fuel ratio sensor” arranged downstream of the three-way catalyst 22 in the exhaust passage 21 . On the other hand, the first air-fuel ratio sensor 223 can be said to be an air-fuel ratio sensor arranged upstream of the three-way catalyst 22 in the exhaust passage 21 .
機関用制御装置120は、上記の各種のセンサ221~224からの検出信号及び機関要求トルクを基に、内燃機関10の運転を制御する。これにより、機関トルクTQeを、機関要求トルクとほぼ等しくできる。 The engine control device 120 controls the operation of the internal combustion engine 10 based on detection signals from the various sensors 221 to 224 and engine request torque. As a result, the engine torque TQe can be made substantially equal to the engine required torque.
機関用制御装置120は、内燃機関10の運転を制御するための機能部として、機関制御部121、機関トルク算出部122、診断部123及び判定値設定部124を有している。 The engine control device 120 has an engine control section 121 , an engine torque calculation section 122 , a diagnosis section 123 and a determination value setting section 124 as functional sections for controlling the operation of the internal combustion engine 10 .
機関制御部121は、内燃機関10が備える各種のアクチュエータを制御する。すなわち、機関制御部121は、スロットルバルブ16の開度であるスロットル開度SL、及び、各燃料噴射弁17の燃料噴射量Qfなどを制御する。 The engine control unit 121 controls various actuators provided in the internal combustion engine 10 . That is, the engine control unit 121 controls the throttle opening SL, which is the opening of the throttle valve 16, the fuel injection amount Qf of each fuel injection valve 17, and the like.
機関制御部121は、機関要求トルク、吸入空気量GA及び機関回転速度NEを基に、燃料噴射量Qfの基準値である燃料噴射量基準値を導出する。また、機関制御部121は、空燃比の目標値である空燃比目標値AfTrと第1空燃比Afuとの偏差を入力とするフィードバック制御によって燃料噴射量の補正量を導出する。例えば、理論空燃比が空燃比目標値AfTrとして設定されている。そして、機関制御部121は、燃料噴射量基準値と、燃料噴射量の補正量との和又は当該和に応じた値を要求燃料噴射量として設定し、当該要求燃料噴射量を基に各燃料噴射弁17を制御する。 The engine control unit 121 derives a fuel injection amount reference value, which is the reference value of the fuel injection amount Qf, based on the engine required torque, the intake air amount GA, and the engine rotation speed NE. Further, the engine control unit 121 derives the correction amount of the fuel injection amount by feedback control using the difference between the air-fuel ratio target value AfTr, which is the air-fuel ratio target value, and the first air-fuel ratio Afu as input. For example, the stoichiometric air-fuel ratio is set as the air-fuel ratio target value AfTr. Then, the engine control unit 121 sets the sum of the fuel injection amount reference value and the correction amount of the fuel injection amount or a value corresponding to the sum as the required fuel injection amount, and sets each fuel injection amount based on the required fuel injection amount. It controls the injection valve 17 .
上記のように空燃比をフィードバック制御している場合において、第2空燃比Afdが、理論空燃比よりもリッチ側の値になってしまうことがある。これは、三元触媒22における酸素の吸蔵量が低下していることが考えられる。 When the air-fuel ratio is feedback-controlled as described above, the second air-fuel ratio Afd may become richer than the stoichiometric air-fuel ratio. It is conceivable that this is because the amount of oxygen stored in the three-way catalyst 22 has decreased.
そこで、機関制御部121は、第2空燃比Afdが理論空燃比よりもリッチ側の値を示している場合に、気筒休止制御を実施する。機関制御部121は、気筒休止制御において、複数の気筒11のうち、一部の気筒11内での燃焼を停止させる一方で、残りの気筒11内では燃焼を停止させない運転を内燃機関10に行わせる。本実施形態で実施される気筒休止制御は、1つの気筒11内での燃焼を停止させる一方で、残りの気筒11内では燃焼を停止させない運転を内燃機関10に行わせる制御である。気筒休止制御において燃焼が停止される気筒を「休止気筒」とした場合、気筒休止制御では、休止気筒内への燃料供給が停止される。 Therefore, the engine control unit 121 performs cylinder deactivation control when the second air-fuel ratio Afd indicates a richer value than the stoichiometric air-fuel ratio. In cylinder deactivation control, the engine control unit 121 causes the internal combustion engine 10 to stop combustion in some of the plurality of cylinders 11 while not stopping combustion in the remaining cylinders 11. Let Cylinder deactivation control performed in the present embodiment is control that causes the internal combustion engine 10 to perform an operation that stops combustion in one cylinder 11 while not stopping combustion in the remaining cylinders 11 . When a cylinder whose combustion is stopped in the cylinder deactivation control is defined as a "deactivated cylinder", the fuel supply to the deactivated cylinder is terminated in the cylinder deactivation control.
ここで、図2には、機関要求トルクが一定である場合における機関トルクTQeの推移が図示されている。機関休止制御が実施されていない場合には、図2に破線で示すように、機関回転速度NEに応じた周期で機関トルクTQeが変動する。一方、機関休止制御が実施されている場合では、図2に実線で示すように機関トルクTQeが推移する。すなわち、休止気筒内で燃焼行程を向かえる時期に機関トルクTQeが大幅に低下する。 Here, FIG. 2 shows the transition of the engine torque TQe when the engine required torque is constant. When the engine stop control is not being executed, the engine torque TQe fluctuates in a period corresponding to the engine rotation speed NE, as indicated by the dashed line in FIG. On the other hand, when the engine stop control is being executed, the engine torque TQe changes as indicated by the solid line in FIG. That is, the engine torque TQe is greatly reduced at the timing when the combustion stroke is started in the resting cylinders.
機関トルク算出部122は、機関トルクTQeの算出値である機関トルク算出値TQeCを算出する。詳しくは後述するが、機関トルク算出部122は、機関回転速度NE、第1モータ回転速度Nmg1及び第1モータトルクTQmg1を基に、機関トルク算出値TQeCを算出する。 The engine torque calculator 122 calculates an engine torque calculated value TQeC, which is a calculated value of the engine torque TQe. Although details will be described later, the engine torque calculation unit 122 calculates an engine torque calculation value TQeC based on the engine rotation speed NE, the first motor rotation speed Nmg1, and the first motor torque TQmg1.
診断部123は、気筒休止制御の実施中において、気筒休止制御が正常に機能しているか否かを診断する。本実施形態では、診断部123は、気筒休止制御の実施中において、機関トルク算出値TQeCがトルク判定値TQeTh未満になる場合には気筒休止制御が正常に機能していると診断する。一方、診断部123は、気筒休止制御の実施中において、機関トルク算出値TQeCがトルク判定値TQeTh未満にならない場合には気筒休止制御が正常に機能していると診断しない。 Diagnosis unit 123 diagnoses whether or not cylinder deactivation control is functioning normally during execution of cylinder deactivation control. In this embodiment, the diagnosis unit 123 diagnoses that the cylinder deactivation control is functioning normally when the engine torque calculation value TQeC is less than the torque determination value TQeTh during cylinder deactivation control. On the other hand, the diagnosis unit 123 does not diagnose that the cylinder deactivation control is functioning normally if the calculated engine torque value TQeC does not become less than the torque determination value TQeTh while the cylinder deactivation control is being performed.
判定値設定部124は、トルク判定値TQeThを設定する。本実施形態では、判定値設定部124は、吸入空気量GA及び機関回転速度NEの双方に応じた値をトルク判定値TQeThとして設定する。トルク判定値TQeThの設定処理については後述する。 A determination value setting unit 124 sets a torque determination value TQeTh. In this embodiment, the determination value setting unit 124 sets a value corresponding to both the intake air amount GA and the engine speed NE as the torque determination value TQeTh. The processing for setting the torque determination value TQeTh will be described later.
次に、図2及び図3を参照し、気筒休止制御が実施されている場合にモータ用制御装置130が実行する処理ルーチンについて説明する。図3に示す処理ルーチンは、機関運転が行われている場合には繰り返し実行される。 Next, a processing routine executed by the motor control device 130 when cylinder deactivation control is being performed will be described with reference to FIGS. 2 and 3. FIG. The processing routine shown in FIG. 3 is repeatedly executed when the engine is running.
図3に示す処理ルーチンにおいて、はじめのステップS11では、モータ用制御装置130は、機関制御部121が気筒休止制御を実施しているか否かを判定する。機関制御部121が気筒休止制御を実施していない場合(S11:NO)、モータ用制御装置130は、機関制御部121が気筒休止制御の実施を開始するまでステップS11の判定を繰り返し実行する。一方、機関制御部121が気筒休止制御を実施している場合(S11:YES)、モータ用制御装置130は、処理をステップS12に移行する。 In the first step S11 of the processing routine shown in FIG. 3, the motor control device 130 determines whether or not the engine control section 121 is performing cylinder deactivation control. If the engine control unit 121 is not performing cylinder deactivation control (S11: NO), the motor control device 130 repeatedly executes the determination of step S11 until the engine control unit 121 starts performing cylinder deactivation control. On the other hand, when the engine control unit 121 is performing cylinder deactivation control (S11: YES), the motor control device 130 shifts the process to step S12.
ステップS12において、モータ用制御装置130は、トルク補償制御を開始する。トルク補償制御は、休止気筒内での燃焼の停止に起因する機関トルクTQeの低下を補うべく、第1モータトルクTQmg1をクランク軸14に入力させる制御である。 In step S12, the motor controller 130 starts torque compensation control. The torque compensation control is a control for inputting the first motor torque TQmg1 to the crankshaft 14 in order to compensate for the decrease in the engine torque TQe caused by the stoppage of combustion in the idle cylinders.
図2を参照し、トルク補償制御について詳述する。すなわち、モータ用制御装置130は、機関トルクTQeが大きく低下する期間である休止期間Tpにおいて、第1モータトルクTQmg1を増大させる。すなわち、休止期間Tp中においては、休止期間Tpではない場合と比較し、クランク軸14に入力される第1モータトルクTQmg1が大きくなる。その結果、クランク軸14に入力される機関トルクTQeと、クランク軸14に入力される第1モータトルクTQmg1との和をトルク合算値TQcrとした場合、トルク合算値TQcrは、図2に示すように推移することになる。すなわち、休止期間Tp中に機関トルクTQeが大幅に低下しても、休止期間Tp中にトルク合算値TQcrが低下することを抑制できる。 The torque compensation control will be described in detail with reference to FIG. That is, the motor control device 130 increases the first motor torque TQmg1 during the pause period Tp during which the engine torque TQe is significantly reduced. That is, the first motor torque TQmg1 input to the crankshaft 14 is greater during the rest period Tp than when it is not during the rest period Tp. As a result, when the sum of the engine torque TQe input to the crankshaft 14 and the first motor torque TQmg1 input to the crankshaft 14 is taken as the total torque value TQcr, the total torque value TQcr is as shown in FIG. will transition to That is, even if the engine torque TQe significantly decreases during the rest period Tp, it is possible to suppress the torque sum value TQcr from decreasing during the rest period Tp.
図3に戻り、ステップS12においてトルク補償制御を開始すると、モータ用制御装置130は、処理をステップS13に移行する。ステップS13において、モータ用制御装置130は、機関制御部121が気筒休止制御の実施を終了したか否かを判定する。機関制御部121が気筒休止制御の実施を終了していない場合(S13:NO)、モータ用制御装置130は、機関制御部121が気筒休止制御の実施を終了するまでステップS13の判定を繰り返し実行する。すなわち、モータ用制御装置130は、トルク補償制御の実施を継続する。一方、機関制御部121が気筒休止制御の実施を終了した場合(S13:YES)、モータ用制御装置130は、処理をステップS14に移行する。 Returning to FIG. 3, when the torque compensation control is started in step S12, the motor controller 130 shifts the process to step S13. In step S13, the motor control device 130 determines whether or not the engine control section 121 has finished executing the cylinder deactivation control. If the engine control unit 121 has not finished executing the cylinder deactivation control (S13: NO), the motor control device 130 repeats the determination of step S13 until the engine control unit 121 finishes performing the cylinder deactivation control. do. That is, the motor control device 130 continues the torque compensation control. On the other hand, when the engine control unit 121 ends the execution of the cylinder deactivation control (S13: YES), the motor control device 130 shifts the process to step S14.
ステップS14において、モータ用制御装置130は、トルク補償制御を終了する。そして、モータ用制御装置130は、本処理ルーチンを一旦終了する。
次に、図4を参照し、気筒休止制御を実施する際に機関用制御装置120が実行する処理ルーチンについて説明する。本処理ルーチンは、機関運転が行われている場合には繰り返し実行される。
In step S14, the motor controller 130 terminates the torque compensation control. Then, the motor control device 130 once terminates this processing routine.
Next, a processing routine executed by the engine control device 120 when executing cylinder deactivation control will be described with reference to FIG. This processing routine is repeatedly executed when the engine is running.
本処理ルーチンにおいて、はじめのステップS21では、機関用制御装置120は、機関制御部121が気筒休止制御を実施しているか否かを判定する。機関制御部121が気筒休止制御を実施していない場合(S21:NO)、機関用制御装置120は、本処理ルーチンを一旦終了する。一方、機関制御部121が気筒休止制御を実施している場合(S21:YES)、機関用制御装置120は、処理を次のステップS22に移行する。ステップS22において、機関用制御装置120は、係数Nを「1」インクリメントする。 In the first step S21 of this processing routine, the engine control device 120 determines whether or not the engine control section 121 is performing cylinder deactivation control. If the engine control unit 121 does not perform the cylinder deactivation control (S21: NO), the engine control device 120 once terminates this processing routine. On the other hand, if the engine control unit 121 is performing cylinder deactivation control (S21: YES), the engine control device 120 proceeds to the next step S22. In step S22, engine controller 120 increments coefficient N by "1".
続いて、ステップS23において、機関用制御装置120の機関トルク算出部122は、機関トルク算出値TQeC(N)を算出する。機関トルク算出部122は、機関回転速度NEの最新値、第1モータ回転速度Nmg1の最新値、及び、第1モータトルクTQmg1の最新値に基づいた機関トルク算出値TQeCを機関トルク算出値TQeC(N)として算出する。例えば、機関トルク算出部122は、以下の関係式に基づいて機関トルク算出値TQeCを算出できる。 Subsequently, in step S23, the engine torque calculator 122 of the engine control device 120 calculates an engine torque calculated value TQeC(N). Engine torque calculation unit 122 converts calculated engine torque value TQeC based on the latest value of engine rotation speed NE, the latest value of first motor rotation speed Nmg1, and the latest value of first motor torque TQmg1 to calculated engine torque value TQeC ( N). For example, the engine torque calculation unit 122 can calculate the engine torque calculation value TQeC based on the following relational expression.
上記の関係式を用いることにより、クランク軸14に入力されるトルクのうち、第1モータトルクTQmg1の成分を取り除いた値を、機関トルク算出値TQeCとして算出できる。 By using the above relational expression, a value obtained by removing the component of the first motor torque TQmg1 from the torque input to the crankshaft 14 can be calculated as the engine torque calculation value TQeC.
機関トルク算出値TQeC(N)が算出されると、機関用制御装置120は、処理をステップS24に移行する。ステップS24において、機関用制御装置120は、内燃機関10の所定サイクル分の機関トルク算出値TQeCの算出が完了したか否かを判定する。所定のサイクルとして、1サイクル以上のサイクル数が設定されている。所定サイクル分の機関トルク算出値TQeCの算出が未だ完了していない場合(S24:NO)、機関用制御装置120は、処理をステップS22に移行する。すなわち、機関トルク算出値TQeCの算出が継続される。一方、所定サイクル分の機関トルク算出値TQeCの算出が完了している場合(S24:YES)、機関用制御装置120は、処理をステップS25に移行する。 When engine torque calculated value TQeC(N) is calculated, engine control device 120 shifts the process to step S24. In step S24, the engine control device 120 determines whether or not the calculation of the engine torque calculated value TQeC for the predetermined cycles of the internal combustion engine 10 has been completed. A cycle number equal to or greater than one cycle is set as the predetermined cycle. If the calculation of the engine torque calculation value TQeC for the predetermined cycle has not been completed yet (S24: NO), the engine control device 120 shifts the process to step S22. That is, the calculation of the engine torque calculated value TQeC is continued. On the other hand, when the calculation of the engine torque calculation value TQeC for the predetermined cycles has been completed (S24: YES), the engine control device 120 shifts the process to step S25.
ステップS25において、機関用制御装置120の診断部123は、算出した複数の機関トルク算出値TQeC(1)、TQeC(2)、・・・、TQeC(N)の中に、トルク判定値TQeTh未満となる機関トルク算出値TQeCがあるか否かを判定する。複数の機関トルク算出値TQeC(1)、TQeC(2)、・・・、TQeC(N)の中に、トルク判定値TQeTh未満となる機関トルク算出値TQeCがある場合(S25:YES)、機関用制御装置120は、処理をステップS26に移行する。ステップS26において、機関用制御装置120の診断部123は、気筒休止制御が正常に機能していると診断する。そして、機関用制御装置120は、処理をステップS28に移行する。 In step S25, the diagnostic unit 123 of the engine control device 120 determines that among the plurality of calculated engine torque values TQeC(1), TQeC(2), . It is determined whether or not there is an engine torque calculation value TQeC that satisfies. If there is an engine torque calculation value TQeC that is less than the torque judgment value TQeTh among the plurality of engine torque calculation values TQeC(1), TQeC(2), . . . , TQeC(N) (S25: YES), the engine The controller 120 shifts the process to step S26. In step S26, the diagnosis unit 123 of the engine control device 120 diagnoses that cylinder deactivation control is functioning normally. Then, engine control device 120 shifts the process to step S28.
一方、ステップS25において、複数の機関トルク算出値TQeC(1)、TQeC(2)、・・・、TQeC(N)の中に、トルク判定値TQeTh未満となる機関トルク算出値TQeCがない場合(NO)、機関用制御装置120は、処理をステップS27に移行する。ステップS27において、機関用制御装置120の診断部123は、気筒休止制御が正常に機能していると診断しない。そして、機関用制御装置120は、処理をステップS28に移行する。 On the other hand, in step S25, if there is no calculated engine torque value TQeC that is less than the torque judgment value TQeTh among the plurality of calculated engine torque values TQeC(1), TQeC(2), . . . , TQeC(N) ( NO), the engine control device 120 shifts the process to step S27. In step S27, the diagnosis unit 123 of the engine control device 120 does not diagnose that cylinder deactivation control is functioning normally. Then, engine control device 120 shifts the process to step S28.
ステップS28において、機関用制御装置120は、係数Nを「0」にリセットする。そして、機関用制御装置120は、本処理ルーチンを一旦終了する。
次に、トルク判定値TQeThの設定処理について詳述する。
In step S28, engine control device 120 resets coefficient N to "0". Then, the engine control device 120 once terminates this processing routine.
Next, the processing for setting the torque determination value TQeTh will be described in detail.
気筒休止制御が正常に機能している場合における機関トルクTQeの低下量は、内燃機関10のフリクショントルクの影響を受ける。フリクショントルクは、クランク軸14の回転を妨げる方向に作用する。そのため、複数の気筒11のうち、休止気筒内での燃焼の停止に起因する機関トルクTQeの低下量は、フリクショントルクが大きいほど大きくなりやすい。休止気筒内での燃焼の停止に起因する機関トルクTQeの低下量とは、休止期間Tp中における機関トルクTQeの低下量に相当する。 The amount of decrease in engine torque TQe when cylinder deactivation control is functioning normally is affected by the friction torque of internal combustion engine 10 . Friction torque acts in a direction that hinders the rotation of the crankshaft 14 . Therefore, among the plurality of cylinders 11, the amount of decrease in engine torque TQe caused by the stoppage of combustion in the resting cylinder tends to increase as the friction torque increases. The amount of decrease in the engine torque TQe due to the stoppage of combustion in the idle cylinder corresponds to the amount of decrease in the engine torque TQe during the idle period Tp.
フリクショントルクは、機関回転速度NE及び吸入空気量GAに応じて変わる。そのため、本実施形態では、機関用制御装置120の判定値設定部124は、吸入空気量GA及び機関回転速度NEを基に、トルク判定値TQeThを設定する。すなわち、判定値設定部124は、吸入空気量GA及び機関回転速度NEを基に推測されるフリクショントルクが大きいときには、吸入空気量GA及び機関回転速度NEを基に推測されるフリクショントルクが小さいときよりも小さい値をトルク判定値TQeThとして設定する。 The friction torque changes according to the engine speed NE and the intake air amount GA. Therefore, in the present embodiment, the determination value setting unit 124 of the engine control device 120 sets the torque determination value TQeTh based on the intake air amount GA and the engine speed NE. That is, when the friction torque estimated based on the intake air amount GA and the engine speed NE is large, the determination value setting unit 124 sets the threshold value when the friction torque estimated based on the intake air amount GA and the engine speed NE is small. is set as the torque determination value TQeTh.
本実施形態の作用及び効果について説明する。
気筒休止制御が正常に機能している場合、図2に示したように機関トルクTQeが大幅に低下する期間が発生するはずである。本実施形態では、機関回転速度NE、第1モータ回転速度Nmg1及び第1モータトルクTQmg1を基に、機関トルク算出値TQeCが算出される。すなわち、クランク軸14に入力されるトルクのうち、第1モータトルクTQmg1の成分を取り除いた値を、機関トルク算出値TQeCとして導出できる。
The action and effect of this embodiment will be described.
If the cylinder deactivation control is functioning normally, there should be a period during which the engine torque TQe drops significantly as shown in FIG. In this embodiment, the engine torque calculation value TQeC is calculated based on the engine rotation speed NE, the first motor rotation speed Nmg1, and the first motor torque TQmg1. That is, a value obtained by removing the component of the first motor torque TQmg1 from the torque input to the crankshaft 14 can be derived as the engine torque calculation value TQeC.
そして、図5に二点鎖線で示すように、気筒休止制御の実施中において、機関トルク算出値TQeCがトルク判定値TQeTh未満にならない場合には、気筒休止制御を実施しても機関トルクTQeが低下していない、若しくは機関トルクTQeの低下量が少なすぎると判断できる。そのため、この場合には、気筒休止制御が正常に機能していると診断されない。一方、図5に実線で示すように、機関トルク算出値TQeCがトルク判定値TQeTh未満になる場合には、気筒休止制御の実施によって機関トルクTQeが十分に低下していると判断できる。そのため、この場合には、気筒休止制御が正常に機能していると診断される。 As indicated by the two-dot chain line in FIG. 5, when the engine torque calculation value TQeC does not become less than the torque determination value TQeTh during the execution of the cylinder deactivation control, the engine torque TQe remains unchanged even if the cylinder deactivation control is performed. It can be determined that the engine torque TQe has not decreased or that the amount of decrease in the engine torque TQe is too small. Therefore, in this case, it is not diagnosed that the cylinder deactivation control is functioning normally. On the other hand, as indicated by the solid line in FIG. 5, when the calculated engine torque value TQeC is less than the torque determination value TQeTh, it can be determined that the engine torque TQe has sufficiently decreased due to the implementation of the cylinder deactivation control. Therefore, in this case, it is diagnosed that the cylinder deactivation control is functioning normally.
したがって、本実施形態によれば、気筒休止制御の実施中に、トルク補償制御の実施によって第1モータジェネレータ71が駆動する場合であっても、気筒休止制御が正常に機能しているか否かを診断できる。 Therefore, according to the present embodiment, even if the first motor generator 71 is driven by executing the torque compensation control while the cylinder deactivation control is being performed, it is possible to determine whether the cylinder deactivation control is functioning normally. Diagnose.
本実施形態によれば、以下に示す効果をさらに得ることができる。
(1)本実施形態では、トルク判定値TQeThが、機関回転速度NE及び吸入空気量GAに基づいて設定される。これにより、トルク判定値TQeThを、そのときの内燃機関10のフリクショントルクに応じた値とすることができる。こうしたトルク判定値TQeThを上記の診断に用いることにより、当該診断の精度を高くできる。
According to this embodiment, the following effects can be further obtained.
(1) In this embodiment, the torque determination value TQeTh is set based on the engine speed NE and the intake air amount GA. As a result, the torque determination value TQeTh can be set to a value corresponding to the friction torque of the internal combustion engine 10 at that time. By using such a torque determination value TQeTh for the above diagnosis, the accuracy of the diagnosis can be improved.
(2)本実施形態では、第2空燃比Afdが理論空燃比よりもリッチ側の値である場合に、気筒休止制御が実施される。この場合、気筒休止制御が正常に機能していないと、三元触媒22に十分な量の酸素を供給できていない可能性がある。したがって、本実施形態によれば、気筒休止制御が正常に機能しているか否かを診断することにより、三元触媒22に十分な量の酸素を供給できているか否かを判断することもできる。 (2) In the present embodiment, cylinder deactivation control is performed when the second air-fuel ratio Afd is richer than the stoichiometric air-fuel ratio. In this case, if cylinder deactivation control does not function normally, there is a possibility that a sufficient amount of oxygen cannot be supplied to the three-way catalyst 22 . Therefore, according to the present embodiment, by diagnosing whether the cylinder deactivation control is functioning normally, it is also possible to determine whether a sufficient amount of oxygen is being supplied to the three-way catalyst 22. .
上記実施形態は、以下のように変更して実施することができる。上記実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
・気筒休止制御の実施によって燃焼を停止する気筒の数は、「2つ」以上であってもよい。
The above embodiment can be implemented with the following modifications. The above embodiments and the following modifications can be combined with each other within a technically consistent range.
- The number of cylinders for which combustion is stopped by executing cylinder deactivation control may be "two" or more.
・第2空燃比Afdが理論空燃比よりもリッチ側の値であると判定されていない場合に、気筒休止制御を実施してもよい。このような場合、気筒休止制御では、休止気筒内への燃料供給を停止しなくてもよい。これは、休止気筒に対応する点火装置19の動作を停止させておけば、休止気筒内での燃焼を停止させることができるためである。 - Cylinder deactivation control may be performed when the second air-fuel ratio Afd is not determined to be richer than the stoichiometric air-fuel ratio. In such a case, cylinder deactivation control may not stop the supply of fuel to the deactivated cylinders. This is because the combustion in the idle cylinder can be stopped by stopping the operation of the ignition device 19 corresponding to the idle cylinder.
・吸入空気量GAに応じてトルク判定値TQeThを可変させるのであれば、機関回転速度NEに応じてトルク判定値TQeThを可変させなくてもよい。
・機関回転速度NEに応じてトルク判定値TQeThを可変させるのであれば、吸入空気量GAに応じてトルク判定値TQeThを可変させなくてもよい。
If the torque determination value TQeTh is varied according to the intake air amount GA, it is not necessary to vary the torque determination value TQeTh according to the engine speed NE.
If the torque determination value TQeTh is varied according to the engine speed NE, it is not necessary to vary the torque determination value TQeTh according to the intake air amount GA.
・トルク判定値TQeThを、所定値で固定してもよい。
・制御装置100が適用される車両は、クランク軸14にトルクを入力することのできる電気モータを備えるハイブリッド車両であれば、上記車両500とは異なる構成のハイブリッド車両であってもよい。
- The torque determination value TQeTh may be fixed at a predetermined value.
The vehicle to which the control device 100 is applied may be a hybrid vehicle having a configuration different from that of the vehicle 500 as long as it is a hybrid vehicle including an electric motor capable of inputting torque to the crankshaft 14 .
10…内燃機関
11…気筒
14…クランク軸
21…排気通路
22…三元触媒
71…第1モータジェネレータ
100…制御装置
121…機関制御部
122…機関トルク算出部
123…診断部
124…判定値設定部
130…モータ用制御装置
224…第2空燃比センサ
500…ハイブリッド車両
DESCRIPTION OF SYMBOLS 10... Internal combustion engine 11... Cylinder 14... Crankshaft 21... Exhaust passage 22... Three-way catalyst 71... First motor generator 100... Control device 121... Engine control part 122... Engine torque calculation part 123... Diagnosis part 124... Judgment value setting Part 130... Motor control device 224... Second air-fuel ratio sensor 500... Hybrid vehicle
Claims (3)
複数の前記気筒のうち、一部の気筒内での燃焼を停止させる一方で、残りの気筒内では燃焼を停止させない運転を前記内燃機関に行わせる気筒休止制御を実施する機関制御部と、
前記気筒休止制御が実施されている場合に、前記一部の気筒内での燃焼の停止に起因する前記内燃機関の出力トルクの低下を補うべく、前記電気モータのトルクであるモータトルクを前記クランク軸に入力させるモータ制御部と、
前記クランク軸の回転速度である機関回転速度、前記電気モータの回転速度であるモータ回転速度及び前記モータトルクを基に、前記内燃機関の出力トルクの算出値である機関トルク算出値を算出する機関トルク算出部と、
前記気筒休止制御の実施中において、前記機関トルク算出値がトルク判定値未満になる場合には前記気筒休止制御が正常に機能していると診断する一方、前記機関トルク算出値が前記トルク判定値未満にならない場合には前記気筒休止制御が正常に機能していると診断しない診断部と、を備える
ハイブリッド車両の制御装置。 Applied to a hybrid vehicle comprising an internal combustion engine having a plurality of cylinders and a crankshaft, and an electric motor coupled to the crankshaft,
an engine control unit that performs cylinder deactivation control that causes the internal combustion engine to perform an operation that stops combustion in some of the plurality of cylinders while not stopping combustion in the remaining cylinders;
When the cylinder deactivation control is performed, the motor torque, which is the torque of the electric motor, is adjusted to the crank in order to compensate for the decrease in the output torque of the internal combustion engine caused by the suspension of combustion in the partial cylinders. a motor control unit for inputting to the shaft;
An engine for calculating an engine torque calculation value, which is a calculated output torque of the internal combustion engine, based on the engine rotation speed, which is the rotation speed of the crankshaft, the motor rotation speed, which is the rotation speed of the electric motor, and the motor torque. a torque calculator;
If the calculated engine torque value is less than the torque judgment value during the execution of the cylinder deactivation control, it is diagnosed that the cylinder deactivation control is functioning normally, and the calculated engine torque value is equal to the torque judgment value. and a diagnostic unit that does not diagnose that the cylinder deactivation control is functioning normally when the value does not become less than.
請求項1に記載のハイブリッド車両の制御装置。 2. The hybrid vehicle control device according to claim 1, further comprising a determination value setting unit that sets a value corresponding to at least one of an intake air amount of the internal combustion engine and the engine rotation speed as the torque determination value.
排気通路に設けられている触媒と、
前記排気通路における前記触媒よりも下流に配置されている空燃比センサと、を有しており、
前記機関制御部は、前記空燃比センサによって検出される空燃比が、理論空燃比よりもリッチ側の値を示している場合に、前記気筒休止制御を実施するようになっており、
前記気筒休止制御は、前記一部の気筒内への燃料供給を停止する制御である
請求項1又は請求項2に記載のハイブリッド車両の制御装置。 The internal combustion engine is
a catalyst provided in the exhaust passage;
an air-fuel ratio sensor arranged downstream of the catalyst in the exhaust passage,
The engine control unit performs the cylinder deactivation control when the air-fuel ratio detected by the air-fuel ratio sensor indicates a richer value than the stoichiometric air-fuel ratio,
3. The control device for a hybrid vehicle according to claim 1, wherein said cylinder deactivation control is control for stopping fuel supply to said part of cylinders.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020170270A JP7327342B2 (en) | 2020-10-08 | 2020-10-08 | Hybrid vehicle control device |
CN202111141294.6A CN114291070B (en) | 2020-10-08 | 2021-09-28 | Control device and control method for hybrid vehicle |
US17/490,022 US11554770B2 (en) | 2020-10-08 | 2021-09-30 | Controller and control method for hybrid vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020170270A JP7327342B2 (en) | 2020-10-08 | 2020-10-08 | Hybrid vehicle control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022062336A JP2022062336A (en) | 2022-04-20 |
JP7327342B2 true JP7327342B2 (en) | 2023-08-16 |
Family
ID=80963885
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020170270A Active JP7327342B2 (en) | 2020-10-08 | 2020-10-08 | Hybrid vehicle control device |
Country Status (3)
Country | Link |
---|---|
US (1) | US11554770B2 (en) |
JP (1) | JP7327342B2 (en) |
CN (1) | CN114291070B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7327342B2 (en) * | 2020-10-08 | 2023-08-16 | トヨタ自動車株式会社 | Hybrid vehicle control device |
JP7444103B2 (en) * | 2021-02-24 | 2024-03-06 | トヨタ自動車株式会社 | Hybrid vehicle control device |
GB2620757A (en) * | 2022-07-20 | 2024-01-24 | Mercedes Benz Group Ag | A method for operating a torque deficient drive system of a hybrid motor vehicle by an assistance system of the hybrid motor vehicle as well as a... |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001207886A (en) | 2000-01-24 | 2001-08-03 | Daihatsu Motor Co Ltd | Control device of hybrid automobile |
JP2004068759A (en) | 2002-08-08 | 2004-03-04 | Honda Motor Co Ltd | Controlling device for hybrid vehicle |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3010962B2 (en) * | 1993-03-10 | 2000-02-21 | 日産自動車株式会社 | Fuel cut control device for vehicles with automatic transmission |
JP3673201B2 (en) * | 2001-09-14 | 2005-07-20 | 本田技研工業株式会社 | Motor control device for deceleration cylinder-removed engine vehicle |
JP3607246B2 (en) * | 2001-11-30 | 2005-01-05 | 本田技研工業株式会社 | Control device for hybrid vehicle |
JP4814165B2 (en) * | 2007-07-23 | 2011-11-16 | 本田技研工業株式会社 | Control device for internal combustion engine with cylinder deactivation mechanism |
US8138703B2 (en) * | 2007-11-04 | 2012-03-20 | GM Global Technology Operations LLC | Method and apparatus for constraining output torque in a hybrid powertrain system |
KR20090126619A (en) * | 2008-06-04 | 2009-12-09 | 현대자동차주식회사 | System for diagnosis a cylinder de-activation actuator of vehicle and method thereof |
CN102770652B (en) * | 2010-02-23 | 2016-07-06 | 本田技研工业株式会社 | The control device of internal combustion engine |
EP2642107A4 (en) * | 2010-11-18 | 2015-02-18 | Toyota Motor Co Ltd | Control device of internal combustion engine |
US10094312B2 (en) * | 2016-11-18 | 2018-10-09 | GM Global Technology Operations LLC | Method to adjust an oil control valve actuation response time using cylinder valve diagnostics |
CN114645787A (en) * | 2017-05-02 | 2022-06-21 | 图拉技术公司 | Deceleration cylinder cutoff in hybrid vehicle |
US10648414B2 (en) * | 2018-05-22 | 2020-05-12 | Ford Global Technologies, Llc | Method and system for engine control |
JP6593560B1 (en) * | 2019-02-15 | 2019-10-23 | トヨタ自動車株式会社 | Internal combustion engine misfire detection device, internal combustion engine misfire detection system, data analysis device, and internal combustion engine control device |
US10823093B2 (en) * | 2019-03-26 | 2020-11-03 | Ford Global Technologies, Llc | Method and system for variable displacement engines |
JP7327342B2 (en) * | 2020-10-08 | 2023-08-16 | トヨタ自動車株式会社 | Hybrid vehicle control device |
-
2020
- 2020-10-08 JP JP2020170270A patent/JP7327342B2/en active Active
-
2021
- 2021-09-28 CN CN202111141294.6A patent/CN114291070B/en active Active
- 2021-09-30 US US17/490,022 patent/US11554770B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001207886A (en) | 2000-01-24 | 2001-08-03 | Daihatsu Motor Co Ltd | Control device of hybrid automobile |
JP2004068759A (en) | 2002-08-08 | 2004-03-04 | Honda Motor Co Ltd | Controlling device for hybrid vehicle |
Also Published As
Publication number | Publication date |
---|---|
CN114291070B (en) | 2023-07-07 |
US11554770B2 (en) | 2023-01-17 |
JP2022062336A (en) | 2022-04-20 |
US20220111827A1 (en) | 2022-04-14 |
CN114291070A (en) | 2022-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7327342B2 (en) | Hybrid vehicle control device | |
JP4345847B2 (en) | Internal combustion engine misfire determination apparatus, misfire determination method, and vehicle | |
JP5724963B2 (en) | Diagnostic device for internal combustion engine | |
US9279382B2 (en) | Vehicle and control method of vehicle | |
JP4766149B2 (en) | INTERNAL COMBUSTION ENGINE DEVICE, ITS CONTROL METHOD, AND VEHICLE | |
JP4483907B2 (en) | Vehicle control method and vehicle control apparatus | |
US11401907B2 (en) | Control apparatus for internal combustion engine | |
CN114834434A (en) | Control device for hybrid vehicle | |
US11143127B2 (en) | Vehicle controller and control method performing fuel feeding process while stopping combustion for filter regeneration | |
JP5615328B2 (en) | Control device for vehicle drive device | |
JP4664249B2 (en) | Engine rotation angle sensor diagnostic device | |
US9062620B2 (en) | Vehicle and control method for vehicle | |
CN112031898B (en) | Control device and control method for hybrid vehicle | |
US10899336B2 (en) | Control system for internal combustion engine | |
JP4650379B2 (en) | Internal combustion engine misfire determination apparatus, misfire determination method, and vehicle | |
JP2006161561A (en) | Fuel injection control device for internal combustion engine | |
JP7484648B2 (en) | Abnormality diagnosis device | |
JP6020276B2 (en) | Hybrid car | |
US20220242392A1 (en) | Control device of hybrid electric vehicle and control program of hybrid electric vehicle | |
JP2022162726A (en) | Control device of internal combustion engine | |
US20230264684A1 (en) | Controller and control method for hybrid electric vehicle | |
US20240295197A1 (en) | Removal determination device for exhaust gas control apparatus | |
JP2024111463A (en) | Control device for internal combustion engine | |
JP2023004043A (en) | Control device of hybrid vehicle | |
JP2024005914A (en) | Engine diagnosis method and engine diagnosis device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220920 |
|
TRDD | Decision of grant or rejection written | ||
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230630 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230704 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230717 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7327342 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |