JP7326858B2 - Triboelectric charging unit, and triboelectric power generation device and dust collection device provided with the triboelectric charging unit - Google Patents

Triboelectric charging unit, and triboelectric power generation device and dust collection device provided with the triboelectric charging unit Download PDF

Info

Publication number
JP7326858B2
JP7326858B2 JP2019091107A JP2019091107A JP7326858B2 JP 7326858 B2 JP7326858 B2 JP 7326858B2 JP 2019091107 A JP2019091107 A JP 2019091107A JP 2019091107 A JP2019091107 A JP 2019091107A JP 7326858 B2 JP7326858 B2 JP 7326858B2
Authority
JP
Japan
Prior art keywords
charging member
triboelectric
charging unit
film
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019091107A
Other languages
Japanese (ja)
Other versions
JP2020188566A (en
Inventor
一毅 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2019091107A priority Critical patent/JP7326858B2/en
Publication of JP2020188566A publication Critical patent/JP2020188566A/en
Application granted granted Critical
Publication of JP7326858B2 publication Critical patent/JP7326858B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrostatic Separation (AREA)

Description

本発明は、摩擦により発生した電荷を帯電し得る摩擦帯電ユニットに関する。 TECHNICAL FIELD The present invention relates to a triboelectric charging unit capable of charging electric charges generated by friction.

従来より、部材を摩擦により帯電させ、これにより空気中の微細な埃を集めたり、あるいは部材の汚れを取り除いたりすることが行われている。例えば特許文献1には、摩擦して帯電させた集塵板を用いて、静電的に集塵を行う集塵デバイスが開示されている。 2. Description of the Related Art Conventionally, a member is electrically charged by friction to collect fine dust in the air or to remove dirt from the member. For example, Patent Literature 1 discloses a dust collecting device that collects dust electrostatically using a dust collecting plate charged by friction.

特許文献1では、集塵デバイスで用いる集塵板及び摩擦板として、アクリルとナイロン、及びポリエステルとナイロンの組み合わせが例示されており、帯電列の位置関係が遠いと帯電力が大きくなり好ましいとされている。そのため、摩擦により帯電させる集塵部材としては、帯電序列として最も負帯電が起こりやすいという理由から、負帯電材としてPTFE(ポリテトラフルオロエチレン)樹脂が用いられることがほとんどであった。負帯電の起こりやすさの観点からは、ポリテトラフルオロエチレン樹脂の次にはシリコーン樹脂、ビニル樹脂、ポリエチレン樹脂の順番になっている(非特許文献1参照)。 Patent Document 1 exemplifies combinations of acrylic and nylon, and polyester and nylon, as dust collection plates and friction plates used in a dust collection device. ing. For this reason, PTFE (polytetrafluoroethylene) resin is mostly used as a negative charging material for dust collecting members that are electrically charged by friction because negative charging is most likely to occur in the charging order. From the viewpoint of the likelihood of negative charging, polytetrafluoroethylene resin is followed by silicone resin, vinyl resin, and polyethylene resin in this order (see Non-Patent Document 1).

したがって、どのような正帯電材と組み合わせて摩擦帯電させる場合でも、PTFE樹脂を負帯電部材として用いることが、最も帯電量を大きくできるため好ましいと理解されている。一方、正帯電部材としては典型的にはナイロンが使用される。 Therefore, it is understood that the use of PTFE resin as the negative charging member is preferable because the charge amount can be maximized regardless of the combination with any positive charging material for triboelectrification. On the other hand, nylon is typically used as the positive charging member.

特開2002-336733号公報Japanese Patent Application Laid-Open No. 2002-336733

静電気ドクター“帯電列”、[online]、株式会社キーエンス、[2019年4月22日検索]、インターネット<URL:https://www.keyence.co.jp/ss/products/static/static-electricity/basic/nature.jspStatic Electricity Doctor "Electric Line", [online], Keyence Corporation, [Searched on April 22, 2019], Internet <URL: https://www.keyence.co.jp/ss/products/static/static-electricity /basic/nature.jsp

しかしながら、PTFE等のフッ素含有樹脂は、摩擦帯電性は優れているが、耐久性が十分とは言えなかった。本発明は、摩擦帯電性と耐久性とを両立できる、摩擦帯電ユニットを提供することを課題とする。 However, although fluorine-containing resins such as PTFE are excellent in triboelectrification properties, they cannot be said to have sufficient durability. An object of the present invention is to provide a triboelectrification unit that can achieve both triboelectrification property and durability.

本発明者らは、PTFEを負帯電部材として用いた場合と同程度の摩擦帯電性を有すると同時に、PTFE以上の耐久性を持つ材料を検討したところ、驚くべきことに帯電序列から見ると、正帯電部材からの距離がPTFEと比較して小さくなり、摩擦帯電性が大きく劣ると考えられているポリエステル樹脂を負帯電部材として用いることで、上記課題が解決されることを見出し、本発明に到達した。 The inventors of the present invention have investigated a material that has the same level of triboelectrification properties as when PTFE is used as a negatively charged member and at the same time has durability greater than that of PTFE. The inventors have found that the above problems can be solved by using a polyester resin as a negative charging member, which is considered to have a smaller distance from the positive charging member than PTFE and is significantly inferior in triboelectrification properties. reached.

本発明は、以下のものを含む。
[1]正帯電部材と、該正帯電部材に接触し得るよう配置された負帯電部材と、を有し、該正帯電部材と該負帯電部材との摩擦により帯電し得る摩擦帯電ユニットであって、
前記負帯電部材がポリエステル樹脂の延伸成形体である、摩擦帯電ユニット。
[2]前記ポリエステル樹脂は、ポリエチレンテレフタレート樹脂及びポリエチレンナフタレート樹脂から選択される、[1]に記載の摩擦帯電ユニット。
[3]正帯電部材と、該正帯電部材に接触し得るよう配置された負帯電部材と、を有し、該正帯電部材と該負帯電部材との摩擦により帯電し得る摩擦帯電ユニットであって、
前記負帯電部材がポリエステル樹脂であり、ポリエチレンテレフタレート樹脂及びポリエチレンナフタレート樹脂から選択される、摩擦帯電ユニット。
[4]前記ポリエステル樹脂は、延伸度が少なくとも一方向において2.5倍以上7倍以下である、[1]~[3]のいずれかに記載の摩擦帯電ユニット。
[5]前記負帯電部材は、厚さが10μm以上2mm以下である、[1]~[4]のいずれかに記載の摩擦帯電ユニット。
[6][1]~[5]のいずれかに記載の摩擦帯電ユニットを備えた、集塵デバイス。
[7][1]~[5]のいずれかに記載の摩擦帯電ユニットを備えた、発電デバイス。
The present invention includes the following.
[1] A triboelectric charging unit having a positive charging member and a negative charging member disposed so as to be in contact with the positive charging member, and capable of being charged by friction between the positive charging member and the negative charging member. hand,
A triboelectrification unit, wherein the negatively charged member is a stretch molded body of polyester resin.
[2] The triboelectric charging unit according to [1], wherein the polyester resin is selected from polyethylene terephthalate resin and polyethylene naphthalate resin.
[3] A triboelectric charging unit having a positive charging member and a negative charging member disposed so as to be in contact with the positive charging member, and capable of being charged by friction between the positive charging member and the negative charging member. hand,
A triboelectric charging unit, wherein the negative charging member is polyester resin and is selected from polyethylene terephthalate resin and polyethylene naphthalate resin.
[4] The triboelectric charging unit according to any one of [1] to [3], wherein the polyester resin has a stretching degree of 2.5 times or more and 7 times or less in at least one direction.
[5] The frictional charging unit according to any one of [1] to [4], wherein the negative charging member has a thickness of 10 μm or more and 2 mm or less.
[6] A dust collection device comprising the triboelectrification unit according to any one of [1] to [5].
[7] A power generation device comprising the triboelectrification unit according to any one of [1] to [5].

本発明により、摩擦帯電性と耐久性とを両立できる、負帯電部材を提供できる。そして、当該負帯電部材と正帯電部材とを有する摩擦帯電ユニットを提供できる。更に当該摩擦帯電ユニットを用いた、集塵デバイスや発電デバイスを提供できる。 According to the present invention, it is possible to provide a negative charging member that can achieve both triboelectrification property and durability. Further, it is possible to provide a triboelectric charging unit having the negative charging member and the positive charging member. Further, it is possible to provide a dust collection device and a power generation device using the triboelectrification unit.

摩擦帯電ユニットを備えた発電デバイスの一実施形態を示す模式図である。1 is a schematic diagram showing an embodiment of a power generation device provided with a triboelectrification unit; FIG. 実施例で使用した実験装置の概要を示す模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows the outline|summary of the experimental apparatus used in the Example.

以下、本発明について詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施形態の一例(代表例)であり、本発明はこれらの内容に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。 Hereinafter, the present invention will be described in detail, but the description of the constituent elements described below is an example (representative example) of the embodiments of the present invention, and the present invention is not limited to these contents. Various modifications can be made within the scope of the gist.

本発明の一実施形態は、正帯電部材と、該正帯電部材に接触し得るよう配置された負帯電部材と、を有し、該正帯電部材と該負帯電部材との摩擦により帯電し得る摩擦帯電ユニットである。そして、負帯電部材としてポリエステル樹脂を用いるものである。
正帯電部材と負帯電部材とは、互いが摺動することで、及び/又は互いが接触と離反を繰り返すことで、電荷を発生させて帯電する。本実施形態では、摩擦により発生した負の電荷を帯電させる負帯電部材にポリエステル樹脂を用いる。なお、該摺動及び該接触・離反により電荷を発生させることを「摩擦」と称する。
One embodiment of the present invention has a positive charging member and a negative charging member disposed in contact with the positive charging member and can be charged by friction between the positive charging member and the negative charging member. It is a triboelectrification unit. A polyester resin is used as the negative charging member.
The positive charging member and the negative charging member slide against each other and/or repeatedly contact and separate from each other to generate charges and charge. In this embodiment, a polyester resin is used for the negative charging member that charges negative charges generated by friction. It should be noted that the generation of electric charge by the sliding and the contact/separation is referred to as "friction".

正帯電部材としては、負帯電部材として用いるポリエステル樹脂を負帯電できる部材であれば特段限定されず、PTFE樹脂、シリコーン樹脂、ビニル樹脂のような、ポリエステル樹脂との組み合わせにおいて自らが負帯電する可能性が高い材料を避ければよい。典型的にはナイロンが用いられるが、これに限られない。 The positively charging member is not particularly limited as long as it can negatively charge the polyester resin used as the negatively charging member, and can itself be negatively charged in combination with the polyester resin, such as PTFE resin, silicone resin, and vinyl resin. Avoid materials that are highly resistant. Nylon is typically used, but is not limited to this.

以下、図に示す具体的な実施形態により、本発明を説明する。図1は、本実施形態の摩擦帯電ユニットを摩擦発電デバイスに適用した形態である。
摩擦発電デバイス10は、正帯電部材用の基材1に正帯電部材3が支持され、負帯電部材用の基材2に負帯電部材4が支持されている。正帯電用部材3と負帯電用部材4とは固定されておらず、正帯電用部材3と負帯電用部材4とが摺動することで、及び/又は正帯電用部材3と負帯電用部材4とが接触・離反を繰り返すことで、正帯電用部材3には正の電荷が、負帯電用部材4には負の電荷がそれぞれ発生する。正帯電用部材3と負帯電用部材4との摩擦は、既知の駆動方法を用いて正帯電用部材3と負帯電用部材4とを動かし、摩擦すればよい。
The present invention will be described below with reference to specific embodiments shown in the drawings. FIG. 1 shows a form in which the triboelectric charging unit of this embodiment is applied to a triboelectric power generation device.
In the triboelectric power generation device 10, a positive charging member 3 is supported by a base material 1 for positive charging members, and a negative charging member 4 is supported by a base material 2 for negative charging members. The positive charging member 3 and the negative charging member 4 are not fixed. By repeating contact and separation with the member 4, a positive charge is generated on the positive charging member 3 and a negative charge is generated on the negative charging member 4, respectively. Friction between the positive charging member 3 and the negative charging member 4 can be achieved by moving the positive charging member 3 and the negative charging member 4 using a known driving method.

帯電部材を支持する基材1及び2は導電性を有する部材であり、基材1及び基材2と電気的に接続された配線5から発生した電気を取り出すことができる。なお、摩擦帯電ユニットを集塵デバイスとして用いる場合には、基材と電気的に接続した配線の一端をアースしてもよい。
基材1及び基材2は、必ずしも必要なものではないが、取り扱い性等の点で有することが好ましい。また、帯電部材を支持できる十分な強度を有していれば、特に限定されない。また、基材と帯電部材との間に接着層を設けてもよい。この場合の接着層は、基材との密着性を向上させる等の目的で設けることができる。
The substrates 1 and 2 supporting the charging member are conductive members, and electricity generated from the wiring 5 electrically connected to the substrates 1 and 2 can be taken out. When the triboelectrification unit is used as a dust collecting device, one end of the wiring electrically connected to the substrate may be grounded.
Although the base material 1 and the base material 2 are not necessarily required, it is preferable to have them in terms of handleability and the like. Also, the material is not particularly limited as long as it has sufficient strength to support the charging member. Also, an adhesive layer may be provided between the substrate and the charging member. The adhesive layer in this case can be provided for the purpose of improving adhesion to the substrate.

負帯電部材4はポリエステル樹脂であり、少なくとも正帯電部材3と接触する最外層がポリエステル樹脂であれば、他の部材との積層体であってもよい。ポリエステル樹脂としては、特に限定されないが、繰り返し使用による表面の傷ができにくいことから、ポリエチレンテレフタレート樹脂、及びポリエチレンナフタレート樹脂が好ましい。また、延伸成形体であることが好ましい。
正帯電部材3は、負帯電部材4として用いるポリエステル樹脂を負帯電できる部材であれば特段限定されず、典型的にはナイロンである。正帯電部材3はシート状であってもよく、また静電気の発生量を増加させるために、ブラシ状であってもよい。
The negative charging member 4 is made of polyester resin, and if at least the outermost layer in contact with the positive charging member 3 is made of polyester resin, it may be a laminate with other members. The polyester resin is not particularly limited, but polyethylene terephthalate resin and polyethylene naphthalate resin are preferable because the surface is less likely to be damaged by repeated use. Moreover, it is preferable that it is a stretch molded article.
The positive charging member 3 is not particularly limited as long as it can negatively charge the polyester resin used as the negative charging member 4, and is typically nylon. The positive charging member 3 may be sheet-shaped, or may be brush-shaped in order to increase the amount of static electricity generated.

次に、負帯電部材であるポリエステルフィルムの製造例を説明する。
本実施形態において負帯電部材として用いるポリエステルの形状については特に限定されないが、一般に厚さ2mm以下のフィルム状で用いられるが特に限定されず、500μm以下であってよい。また下限も限定されず通常5μm以上であり、10μm以上であってよい。
Next, an example of manufacturing a polyester film, which is a negative charging member, will be described.
Although the shape of the polyester used as the negative charging member in this embodiment is not particularly limited, it is generally used in the form of a film having a thickness of 2 mm or less, but is not particularly limited, and may have a thickness of 500 μm or less. The lower limit is also not limited, and is usually 5 μm or more, and may be 10 μm or more.

ポリエステルフィルムの製造方法としては、通常知られている製造方法を採用でき、特に制限はない。
例えば、二軸延伸ポリエステルフィルムを製造する場合、ポリエステル原料を押出機でダイから溶融押し出しし、溶融シートを冷却ロールで冷却固化して未延伸シートを得る。この場合、シートの平面性を向上させるためシートと冷却ロールとの密着性を高めることが好ましく、静電印加密着法や液体塗布密着法が好ましく採用される。
As a method for producing the polyester film, a generally known production method can be employed, and there is no particular limitation.
For example, when producing a biaxially oriented polyester film, a polyester raw material is melt-extruded through a die with an extruder, and the melted sheet is cooled and solidified with a cooling roll to obtain an unstretched sheet. In this case, it is preferable to increase the adhesion between the sheet and the cooling roll in order to improve the flatness of the sheet, and an electrostatic application adhesion method or a liquid application adhesion method is preferably employed.

次に得られた未延伸シートを一方向にロールまたはテンター方式の延伸機により延伸する。延伸温度は、通常70~120℃、好ましくは80~110℃であり、延伸倍率は通常2.5~7倍、好ましくは3.0~6倍である。
次いで、一段目の延伸方向と直交する方向に、通常70~170℃で、延伸倍率は通常2.5~7倍、好ましくは3.0~6倍で延伸する。引き続き180~270℃の温度で緊張下または30%以内の弛緩下で熱処理を行い、二軸配向フィルムを得る方法が挙げられる。
上記の延伸においては、一方向の延伸を2段階以上で行う方法を採用することもできる。その場合、最終的に二方向の延伸倍率がそれぞれ上記範囲となるように行うことが好ましい。
Next, the obtained unstretched sheet is unidirectionally stretched by a roll or tenter type stretching machine. The stretching temperature is usually 70 to 120° C., preferably 80 to 110° C., and the stretching ratio is usually 2.5 to 7 times, preferably 3.0 to 6 times.
Next, the film is drawn in a direction perpendicular to the drawing direction of the first stage at a temperature of usually 70 to 170° C. at a draw ratio of usually 2.5 to 7 times, preferably 3.0 to 6 times. Subsequently, heat treatment is performed at a temperature of 180 to 270° C. under tension or under relaxation of 30% or less to obtain a biaxially oriented film.
In the above stretching, a method of stretching in one direction in two or more stages can also be employed. In that case, it is preferable that the stretching ratios in the two directions finally fall within the above ranges.

ポリエステルフィルムの製造方法として、同時二軸延伸法を採用することもできる。
同時二軸延伸法は、上記の未延伸シートを通常70~120℃、好ましくは80~110℃で温度コントロールされた状態で長さ方向および幅方向に同時に延伸し配向させる方法である。延伸倍率は、通常面積倍率で4~50倍、好ましくは7~35倍、さらに好ましくは10~25倍である。そして、引き続き、170~270℃の温度で緊張下または30%以内の弛緩下で熱処理を行い、延伸配向フィルムを得る。上述の延伸方式を採用する同時二軸延伸装置に関しては、スクリュー方式、パンタグラフ方式、リニアー駆動方式等、従来公知の延伸方式を採用することができる。
なお、延伸成形体であるか否かは、既知の方法により確認することができ、例えばThe TRC News,201604-04(April 2016)(東レリサーチセンターニュースの2016年4月号)に掲載された「結晶性ポリマーのフィルムの延伸に伴う高次構造変化の解析」に記載されているように、貯蔵弾性率-温度曲線での非晶部のガラス転移による下向きのピークが、延伸により未延伸に対して小さくなっていくこと、DSCによるガラス転移と冷結晶化の温度差が、延伸により未延伸に対して小さくなっていくこと、X線回折による回折像の変化、ラマン分光などから、サンプルの状況に合わせ、適用しやすい方法で分析すればよい。
A simultaneous biaxial stretching method can also be employed as a method for producing a polyester film.
The simultaneous biaxial stretching method is a method of simultaneously stretching and orienting the unstretched sheet in the length direction and the width direction while the temperature is controlled at usually 70 to 120°C, preferably 80 to 110°C. The draw ratio is usually 4 to 50 times, preferably 7 to 35 times, more preferably 10 to 25 times in terms of area ratio. Subsequently, heat treatment is performed at a temperature of 170 to 270° C. under tension or under relaxation of 30% or less to obtain a stretched and oriented film. Conventionally known stretching methods such as a screw method, a pantograph method, a linear drive method, and the like can be used for the simultaneous biaxial stretching apparatus that employs the above-described stretching method.
Whether or not it is a stretched molded product can be confirmed by a known method. As described in "Analysis of higher-order structure change accompanying stretching of crystalline polymer film", the downward peak due to the glass transition of the amorphous part in the storage modulus-temperature curve is changed to unstretched by stretching. The temperature difference between the glass transition and cold crystallization by DSC is reduced by stretching compared to the unstretched, the change in diffraction pattern by X-ray diffraction, Raman spectroscopy It should be analyzed in a way that is easy to apply according to the situation.

ポリエステルフィルムは、帯電性を大きく損ねない範囲で、複数の層からなる多層ポリエステルフィルムであってよく、表面にコートを設けたフィルムであってもよい。表面コートに関しては、ポリエステルフィルムの製造工程中にフィルム表面をコートする、インラインコーティングにより設けられてもよく、一旦製造したフィルム上に系外でコートする、オフラインコーティングを採用してもよい。インラインコーティングにより形成されることが好ましい。 The polyester film may be a multi-layer polyester film composed of a plurality of layers, or may be a film having a coating on its surface, as long as the chargeability is not greatly impaired. The surface coating may be provided by in-line coating, in which the film surface is coated during the production process of the polyester film, or offline coating, in which the film once produced is coated outside the system. It is preferably formed by in-line coating.

インラインコーティングは、ポリエステルフィルム製造の工程内でコーティングを行う方法であり、具体的には、ポリエステルを溶融押出ししてから延伸後熱固定して巻き上げるまでの任意の段階でコーティングを行う方法である。通常は、溶融、急冷して得られる未延伸シート、延伸された一軸延伸フィルム、熱固定前の二軸延伸フィルム、熱固定後で巻上前のフィルムの何れかにコーティングする。
以下に限定するものではないが、例えば逐次二軸延伸においては、特に長手方向(縦方向)に延伸された一軸延伸フィルムにコーティングした後に横方向に延伸する方法が優れている。かかる方法によれば、製膜と塗布層形成を同時に行うことができるため製造コスト上のメリットがあり、また、コーティング後に延伸を行うために、塗布層の厚みを延伸倍率により変化させることもでき、オフラインコーティングに比べ、薄膜コーティングをより容易に行うことができる。
In-line coating is a method of coating in the process of polyester film production, specifically, a method of coating at any stage from melt extrusion of polyester to stretching, heat setting and winding. Usually, it is coated on an unstretched sheet obtained by melting and quenching, a stretched uniaxially stretched film, a biaxially stretched film before heat setting, or a film after heat setting and before winding.
Although not limited to the following, for example, in sequential biaxial stretching, a method of coating a uniaxially stretched film stretched in the longitudinal direction (machine direction) and then stretching in the transverse direction is excellent. According to such a method, film formation and coating layer formation can be performed at the same time, which is advantageous in terms of manufacturing cost. In addition, since stretching is performed after coating, the thickness of the coating layer can be changed by the stretching ratio. , thin film coating can be performed more easily than offline coating.

また、延伸前にフィルム上に塗布層を設けることにより、塗布層を基材フィルムと共に延伸することができ、それにより塗布層を基材フィルムに強固に密着させることができる。さらに、二軸延伸ポリエステルフィルムの製造において、クリップ等によりフィルム端部を把持しつつ延伸することで、フィルムを縦および横方向に拘束することができ、熱固定工程において、しわ等が入らず平面性を維持したまま高温をかけることができる。それゆえ、塗布後に施される熱処理が他の方法では達成されない高温とすることができるために、塗布層の造膜性が向上し、塗布層と基材フィルムをより強固に密着させることができ、さらには、強固な塗布層とすることができ、塗布層上に形成され得る各種の機能層との密着性や耐湿熱性等の性能を向上させることができる。 Further, by providing the coating layer on the film before stretching, the coating layer can be stretched together with the base film, thereby firmly adhering the coating layer to the base film. Furthermore, in the production of biaxially stretched polyester film, the film can be restrained in the vertical and horizontal directions by holding the ends of the film with a clip or the like while the film is stretched. High temperature can be applied while maintaining the properties. Therefore, since the heat treatment applied after coating can be performed at a high temperature that cannot be achieved by other methods, the film-forming property of the coating layer is improved, and the coating layer and the base film can be adhered more firmly. Furthermore, a strong coating layer can be formed, and performances such as adhesion with various functional layers that can be formed on the coating layer and resistance to moist heat can be improved.

本発明の一実施形態である摩擦帯電ユニットは、摩擦発電デバイスの発電源、センサー、集塵デバイスの集塵シートなどの用途に活用することが可能である。以下説明する。 The triboelectrification unit, which is one embodiment of the present invention, can be used for applications such as a power generation source for a triboelectric power generation device, a sensor, and a dust collection sheet for a dust collection device. It is explained below.

摩擦による帯電を利用した摩擦発電機は、電極と帯電部材とを有する一対の電極部材が対向した構造を有する。対向する帯電部材同士の表面が接触と離反を繰り返す際に、その表面層が互いに反対の極性に帯電する。帯電部材同士が接触している時には正負の電荷が外部に形成する電場が打ち消し合うために、電極間の電位差は等しい。帯電部材同士が離れると、両電極間に電位差が生じる。負荷抵抗を介して、両電極を電気的に接続すると、この接続部を通って電荷が流れる。電荷は電極間の電位差がゼロになるまで流れ、この流れがすなわち電流となる。 A triboelectric power generator utilizing charging by friction has a structure in which a pair of electrode members having an electrode and a charging member face each other. When the surfaces of the opposing charging members repeatedly contact and separate, the surface layers are charged to opposite polarities. When the charging members are in contact with each other, the electric fields created by the positive and negative charges cancel each other out, so that the potential difference between the electrodes is equal. When the charging members are separated from each other, a potential difference is generated between both electrodes. When both electrodes are electrically connected via a load resistor, charge flows through this connection. Charge flows until the potential difference between the electrodes becomes zero, and this flow is current.

センサーの発電源となる場合であっても摩擦発電機の発電源と同様、電極と帯電部材を
有する一対の電極部材が対向した構造を有する。電極部材の帯電部材の表面が接触と離反を繰り返す際に流れる電荷を信号として検出することでセンサーとして利用することができる。
Even when it is used as a power source for a sensor, it has a structure in which a pair of electrode members having an electrode and a charging member face each other, similar to the power source for a friction generator. It can be used as a sensor by detecting, as a signal, electric charges that flow when the surface of the charging member of the electrode member repeatedly contacts and separates.

摩擦による帯電を利用した集塵に利用する場合、帯電部材とそれを帯電させる摩擦体とを少なくとも有する。帯電部材の表面と摩擦体とが摩擦することにより帯電部材の摺動面が帯電し、この帯電表面を利用して空気中の帯電粒子を捕集することができる。
本実施形態の摩擦帯電ユニットが用いられた上述のようなデバイスは、従来のPTFEを用いた負帯電部材を用いたものより、耐久性に優れるため、帯電部材の交換等の頻度を減らすことができ、好ましい。
When used for dust collection using frictional electrification, it has at least a charging member and a friction member for electrifying it. Friction between the surface of the charging member and the friction member causes the sliding surface of the charging member to become charged, and the charged surface can be used to collect charged particles in the air.
The above-described device using the frictional charging unit of the present embodiment is more durable than the device using the conventional negative charging member using PTFE, so the frequency of replacement of the charging member can be reduced. It is possible and preferable.

以下、実施例を示し、本発明をより詳細に説明するが、実施例の具体的な説明により本発明が限定されることはない。
<実施例1>
負帯電部材として、厚み100μmのPETフィルムの片面に、電子ビーム蒸着法によりアルミニウムを100nmの厚みで蒸着した。アルミニウムを蒸着したPETフィルムを80mmφのアルミ筒に、アルミニウムを蒸着した面が筒に接するように貼り付けた。貼り付けたPETフィルムは純水で湿らせた布で丁寧に拭いて風乾し、表面電位計により帯電していないことを確認した。
EXAMPLES Hereinafter, the present invention will be described in more detail by showing examples, but the present invention is not limited by the specific description of the examples.
<Example 1>
As a negative charging member, aluminum was vapor-deposited to a thickness of 100 nm on one side of a PET film having a thickness of 100 μm by an electron beam vapor deposition method. A PET film on which aluminum was vapor-deposited was attached to an aluminum cylinder of 80 mmφ so that the surface on which aluminum was vapor-deposited was in contact with the cylinder. The adhered PET film was carefully wiped with a cloth moistened with pure water, air-dried, and confirmed by a surface potential meter that it was not charged.

次に、図2に示す実験装置を準備した。実験装置は、半径5mmの半円柱状の支持部材21に正帯電材としてナイロン布23を巻き付け、PETフィルム24を貼り付けたアルミ筒22に押し当てた。アルミ筒22を毎分12回転で回転させ、ナイロン布23とPETフィルム24を摩擦させた。30回転後のPETフィルム24の表面電位のピーク値を、モンローエレクトロニクス社製244型表面電位計(図中25)を用いて読み取ったところ、-613Vであった。読み取った表面電位の値から、次の式(1)を用いてPETフィルムの帯電密度σを計算した。算出した値を表1に示す。
σ=2×V×ε×ε/d ・・・(1)
ここで、Vは表面電位、εは真空中の誘電率、εは比誘電率、dはフィルムの厚みを表す。
Next, an experimental apparatus shown in FIG. 2 was prepared. In the experimental device, a semi-cylindrical supporting member 21 with a radius of 5 mm was wrapped with a nylon cloth 23 as a positively charged material and pressed against an aluminum cylinder 22 with a PET film 24 attached. The aluminum cylinder 22 was rotated at 12 revolutions per minute, and the nylon cloth 23 and the PET film 24 were rubbed. The peak value of the surface potential of the PET film 24 after 30 rotations was read using a 244-type surface potential meter (25 in the figure) manufactured by Monroe Electronics Co., Ltd., and found to be -613V. From the read surface potential value, the charge density σ of the PET film was calculated using the following formula (1). Table 1 shows the calculated values.
σ=2×V× ε0 × εr /d (1)
Here, V is the surface potential, ε0 is the permittivity in vacuum, εr is the relative permittivity, and d is the thickness of the film.

<比較例1>
負帯電材として、PETフィルムの代わりに片面にアルミニウムを100nm蒸着した100μm厚のPTFEフィルムを用いた他は、実施例1と同様にして測定を行った。表面電位のピーク値は-397Vであった。実施例1と同様にして算出したPTFEフィルムの帯電密度σの値を表1に示す。
<Comparative Example 1>
Measurement was carried out in the same manner as in Example 1, except that a 100 μm thick PTFE film having 100 nm of aluminum vapor-deposited on one side was used as the negatively charged material instead of the PET film. The peak value of the surface potential was -397V. Table 1 shows the charge density σ of the PTFE film calculated in the same manner as in Example 1.

Figure 0007326858000001
Figure 0007326858000001

表1から明らかなとおり、PETフィルムは、従来品用いられている帯電順位がより負電位側にあるとされているPTFEフィルムより、同じ膜厚、同じ摺動条件で、より高い帯電密度を実現できていることがわかる。
またフィルム強度の点では、実験するまでもなく、PTFEよりPETの方が傷やすり減りに対し強いので、ポリエステル樹脂を負帯電材として用いることで、例えば集塵用途であれば、より多くの塵を集め、かつ寿命も長くなることが期待できる。
As is clear from Table 1, the PET film achieves a higher charge density at the same film thickness and under the same sliding conditions than the PTFE film used in conventional products, which is said to have a more negative charge level. I know it's done.
In terms of film strength, PET is more resistant to scratches and abrasion than PTFE, so if polyester resin is used as a negatively charged material, for example, for dust collection, it can be used to collect more dust. can be expected to collect and have a longer life.

10 発電デバイス
1、2 基材
3 正帯電部材
4 負帯電部材
5 配線
21 支持部材
22 アルミ筒
23 ナイロン布
24 PETフィルム
25 表面電位計
10 power generation devices 1 and 2 base material 3 positive charging member 4 negative charging member 5 wiring 21 support member 22 aluminum cylinder 23 nylon cloth 24 PET film 25 surface potential meter

Claims (7)

正帯電部材と、該正帯電部材に接触し得るよう配置された負帯電部材と、を有し、該正帯電部材と該負帯電部材との摩擦により帯電し得る摩擦帯電ユニットであって、
前記負帯電部材がポリエステル樹脂の延伸成形体である、摩擦帯電ユニット。
A triboelectric charging unit having a positive charging member and a negative charging member disposed so as to be in contact with the positive charging member, and capable of being charged by friction between the positive charging member and the negative charging member,
A triboelectrification unit, wherein the negatively charged member is a stretch molded body of polyester resin.
前記ポリエステル樹脂は、ポリエチレンテレフタレート樹脂及びポリエチレンナフタレート樹脂から選択される、請求項1に記載の摩擦帯電ユニット。 2. The triboelectric charging unit according to claim 1, wherein said polyester resin is selected from polyethylene terephthalate resin and polyethylene naphthalate resin. 正帯電部材と、該正帯電部材に接触し得るよう配置された負帯電部材と、を有し、該正帯電部材と該負帯電部材との摩擦により帯電し得る摩擦帯電ユニットであって、
前記負帯電部材がポリエステル樹脂であり、ポリエチレンテレフタレート樹脂及びポリエチレンナフタレート樹脂から選択される、摩擦帯電ユニット。
A triboelectric charging unit having a positive charging member and a negative charging member disposed so as to be in contact with the positive charging member, and capable of being charged by friction between the positive charging member and the negative charging member,
A triboelectric charging unit, wherein the negative charging member is polyester resin and is selected from polyethylene terephthalate resin and polyethylene naphthalate resin.
前記ポリエステル樹脂は、延伸度が少なくとも一方向において2.5倍以上7倍以下である、請求項1~3のいずれか1項に記載の摩擦帯電ユニット。 The triboelectric charging unit according to any one of claims 1 to 3, wherein the polyester resin has a stretching degree of 2.5 times or more and 7 times or less in at least one direction. 前記負帯電部材は、厚さが10μm以上2mm以下である、請求項1~4のいずれか1項に記載の摩擦帯電ユニット。 5. The frictional charging unit according to claim 1, wherein the negative charging member has a thickness of 10 μm or more and 2 mm or less. 請求項1~5のいずれか1項に記載の摩擦帯電ユニットを備えた、集塵デバイス。 A dust collection device comprising the triboelectrification unit according to any one of claims 1 to 5. 請求項1~5のいずれか1項に記載の摩擦帯電ユニットを備えた、発電デバイス。 A power generation device comprising the triboelectrification unit according to any one of claims 1 to 5.
JP2019091107A 2019-05-14 2019-05-14 Triboelectric charging unit, and triboelectric power generation device and dust collection device provided with the triboelectric charging unit Active JP7326858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019091107A JP7326858B2 (en) 2019-05-14 2019-05-14 Triboelectric charging unit, and triboelectric power generation device and dust collection device provided with the triboelectric charging unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019091107A JP7326858B2 (en) 2019-05-14 2019-05-14 Triboelectric charging unit, and triboelectric power generation device and dust collection device provided with the triboelectric charging unit

Publications (2)

Publication Number Publication Date
JP2020188566A JP2020188566A (en) 2020-11-19
JP7326858B2 true JP7326858B2 (en) 2023-08-16

Family

ID=73222140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019091107A Active JP7326858B2 (en) 2019-05-14 2019-05-14 Triboelectric charging unit, and triboelectric power generation device and dust collection device provided with the triboelectric charging unit

Country Status (1)

Country Link
JP (1) JP7326858B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002336733A (en) 2001-05-21 2002-11-26 Matsushita Electric Ind Co Ltd Dust collector and air conditioner having the dust collector mounted thereon
JP2016226276A (en) 2015-06-02 2016-12-28 三星電子株式会社Samsung Electronics Co.,Ltd. Triboelectric generator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63130114A (en) * 1986-11-21 1988-06-02 Showa Denko Kk Electret filter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002336733A (en) 2001-05-21 2002-11-26 Matsushita Electric Ind Co Ltd Dust collector and air conditioner having the dust collector mounted thereon
JP2016226276A (en) 2015-06-02 2016-12-28 三星電子株式会社Samsung Electronics Co.,Ltd. Triboelectric generator

Also Published As

Publication number Publication date
JP2020188566A (en) 2020-11-19

Similar Documents

Publication Publication Date Title
JP6953306B2 (en) Energy storage device and its manufacturing method
ES2529251T3 (en) Piezoelectric polymeric element and method and apparatus for its production
JP7435449B2 (en) Transparent conductive polyester film and its uses
JP6884997B2 (en) Polyester film and polarizing plate protective film
JP2011181748A (en) Method of manufacturing polarized resin film
JP5021109B2 (en) Nanofiber manufacturing system and nanofiber manufacturing method
JPS606220B2 (en) Stretched thin film production method of polyvinylidene fluoride or vinylidene fluoride copolymer
TW201915034A (en) Piezoelectric film and method of manufacturing film
Zhang et al. Facile fabrication of micro-nano structured triboelectric nanogenerator with high electric output
JP6365300B2 (en) Laminated film and polarizing plate
JP2005288996A (en) Laminated film
JP7326858B2 (en) Triboelectric charging unit, and triboelectric power generation device and dust collection device provided with the triboelectric charging unit
CN115362059A (en) Laminated film, method for producing same, and use thereof
JP2016141058A (en) Biaxially oriented polyester film and method for producing the same
JP2017030319A (en) Method for producing heat-shrinkable film
US4365283A (en) Corona discharge poling process
TW201908379A (en) film
Venugopalan et al. Facile Fabrication of Ultra-Stretchable Metallic Nanocluster Films for Wearable Electronics
JP2021049515A (en) Frictional electrification unit, frictional power generation device including the frictional electrification unit and dust collection device
JP2018163950A (en) Substrate film and manufacturing method thereof
TW202311015A (en) Organic piezoelectric film, laminate, and method for producing organic piezoelectric film
CN107791606B (en) Organic EL use film, organic EL display and organic EL lighting
TW202218199A (en) Piezoelectric film, touch panel, and piezoelectric film manufacturing method
JP2021041312A (en) Frictional electrification unit, and frictional power generation device and duct collection device provided with frictional electrification unit
CN115428177A (en) Fluoropolymer membranes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230717

R151 Written notification of patent or utility model registration

Ref document number: 7326858

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151