JP7323230B2 - Method for generating combined chlorine - Google Patents

Method for generating combined chlorine Download PDF

Info

Publication number
JP7323230B2
JP7323230B2 JP2022147749A JP2022147749A JP7323230B2 JP 7323230 B2 JP7323230 B2 JP 7323230B2 JP 2022147749 A JP2022147749 A JP 2022147749A JP 2022147749 A JP2022147749 A JP 2022147749A JP 7323230 B2 JP7323230 B2 JP 7323230B2
Authority
JP
Japan
Prior art keywords
chlorine
combined chlorine
chlorite
ultraviolet rays
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022147749A
Other languages
Japanese (ja)
Other versions
JP2022186688A (en
Inventor
友則 藤田
Original Assignee
アムテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018088017A external-priority patent/JP7194413B2/en
Application filed by アムテック株式会社 filed Critical アムテック株式会社
Priority to JP2022147749A priority Critical patent/JP7323230B2/en
Publication of JP2022186688A publication Critical patent/JP2022186688A/en
Application granted granted Critical
Publication of JP7323230B2 publication Critical patent/JP7323230B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

本発明は、結合塩素化合物の生成方法に関するものである。 The present invention relates to a method for producing combined chlorine compounds.

冷却水系、循環式浴槽、紙パルプの製造工程用水などの水系では、細菌類、真菌類、藻類などから構成されるスライムが系内に発生し、伝熱効率の低下や配管の閉塞、金属材料の腐食など微生物障害を引き起こすことが多い。このような、スライムの発生を抑制し、また発生したものを軽減するために、遊離塩素や結合塩素剤が用いられていた。
遊離塩素を用いるものとしては、次亜塩素酸塩等を用いて遊離塩素を発生させる方法が多いが、次亜塩素酸塩は紫外線や配管材料等から溶出した銅や鉄イオンにより分解が促進されるため有効成分の低下が早く、効き目が一定しない。
In water systems such as cooling water systems, circulating baths, and water used in the pulp and paper manufacturing process, slime composed of bacteria, fungi, algae, etc., occurs in the system, reducing heat transfer efficiency, clogging pipes, and causing metal material damage. It often causes microbial disorders such as corrosion. Free chlorine and combined chlorine agents have been used to suppress the generation of such slime and to reduce the generated slime.
As a method using free chlorine, there are many methods that generate free chlorine using hypochlorite, etc., but the decomposition of hypochlorite is accelerated by ultraviolet rays and copper and iron ions eluted from piping materials. Because of this, the active ingredients decrease quickly, and the effect is not constant.

また、結合塩素剤を用いるタイプとしては、クロラミンや塩素化ヒダントインなどを利用する方法が提案されているが(特許文献1、2)、これらの結合塩素は、保存安定性が低いため、使用直前に結合塩素を生成しなければならない。このため、被処理水へ添加する前に溶解・混合させておくか、次亜塩素酸塩等を添加した水に含窒素化合物を添加し結合塩素を生成させる必要があり、使用方法が煩雑であるという問題がある。 As a type using a combined chlorine agent, a method using chloramine, chlorinated hydantoin, etc. has been proposed (Patent Documents 1 and 2). must produce combined chlorine in For this reason, it is necessary to dissolve and mix it before adding it to the water to be treated, or to add a nitrogen-containing compound to the water to which hypochlorite, etc. has been added to generate combined chlorine, making the method of use complicated. There is a problem that there is

また、特許文献3には、塩素系酸化剤とスルファミン酸又はその塩から生成するN-クロロスルファミン酸若しくはN,N-ジクロロスルファミン酸又はこの塩を含有する安定な液体製剤が示されているが、該液体製剤の安定化には、pH13以上の強アルカリ性にする必要があるため、金属腐食の問題や取り扱い上の危険性がある。 In addition, Patent Document 3 discloses a stable liquid preparation containing N-chlorosulfamic acid or N,N-dichlorosulfamic acid or a salt thereof produced from a chlorine-based oxidizing agent and sulfamic acid or a salt thereof. However, in order to stabilize the liquid formulation, it is necessary to make it strongly alkaline with a pH of 13 or more, which poses a problem of metal corrosion and a danger in handling.

特許文献4には、塩素系酸化剤とスルファモイル安息香酸およびその誘導体を含有する液体製剤について、pH9.5以上で安定化できることが示されているが、該液体製剤はクロロスルファミン酸に比べスライム除去効果が低い、TOC(全有機炭素)が増大するなどの問題があった。 Patent Document 4 indicates that a liquid preparation containing a chlorine-based oxidizing agent and sulfamoylbenzoic acid and its derivatives can be stabilized at pH 9.5 or higher, but the liquid preparation removes slime more effectively than chlorosulfamic acid. There were problems such as a low effect and an increase in TOC (total organic carbon).

特開平10-28981号公報JP-A-10-28981 特許第5551120号公報Japanese Patent No. 5551120 特許第3832399号公報Japanese Patent No. 3832399 特許第4966936号公報Japanese Patent No. 4966936

本発明の課題は、上記の問題を克服することにあり、具体的には、種々の結合塩素化合物を簡便に生成する方法を提供することにある。 An object of the present invention is to overcome the above problems, and more specifically, to provide a method for easily producing various combined chlorine compounds.

以上のような現状に鑑み、本発明者は鋭意研究の結果、本発明結合塩素化合物の生成方法を完成したものであり、その特徴とするところは、a 亜塩素酸塩、b 第一級及び第二級アミン、アンモニア及びアンモニウム塩から選択される1種以上の含窒素化合物、上記a及びbを含有する液体混合物に、紫外線を照射する点にある。 In view of the above situation, the present inventors have made intensive research and completed the method for producing the combined chlorine compound of the present invention, which is characterized by a chlorite, b primary and A liquid mixture containing one or more nitrogen-containing compounds selected from secondary amines, ammonia and ammonium salts and the above a and b is irradiated with ultraviolet rays.

本発明でいう結合塩素化合物は、1種でも複数種でもよい。また、ここでいう液体混合物は、上記a、bを混合した水溶液である。a及びbのすべての組成物が原則として水溶性である。全体としての濃度は特に限定しないが、溶ければ問題はない。ただし、濃度が高い場合には、後述する紫外線の強度に影響がある。 The combined chlorine compounds referred to in the present invention may be of one type or plural types. The liquid mixture referred to here is an aqueous solution obtained by mixing the above a and b. All compositions of a and b are in principle water-soluble. The concentration as a whole is not particularly limited, but there is no problem if it dissolves. However, when the concentration is high, it affects the intensity of ultraviolet rays, which will be described later.

本発明のポイントは、紫外線の照射にある。これによって、反応を開始、促進させるのである。まず、亜塩素酸塩と含窒素化合物を含む混合物に、紫外線を照射した際の結合塩素の生成機序について説明する。亜塩素酸塩(例えば、NaClO)は、紫外線を照射すると以下の光分解反応が起こり、次亜塩素酸イオン(ClO)、次亜塩素酸ラジカル(ClO)、原子状酸素(O)、原子状酸素アニオンラジカル(O)、及び二酸化塩素(ClO)を生じる。
ClO +hν→ClO+O
ClO +hν→ClO+O
ClO +hν→(ClOは励起状態)
(ClO +ClO →ClO+ClO+O
The point of the present invention lies in the irradiation of ultraviolet rays. This initiates and accelerates the reaction. First, the mechanism of generation of combined chlorine when a mixture containing chlorite and a nitrogen-containing compound is irradiated with ultraviolet rays will be described. When chlorite (eg, NaClO 2 ) is irradiated with ultraviolet rays, the following photodecomposition reactions occur, resulting in hypochlorite ions (ClO ), hypochlorous acid radicals (ClO), atomic oxygen (O), Atomic oxygen anion radicals (O ) and chlorine dioxide (ClO 2 ) are produced.
ClO 2 +hν→ClO +O
ClO 2 +hν→ClO+O
ClO 2 +hν→(ClO ) * ( * is an excited state)
(ClO 2 ) * +ClO 2 →ClO 2 +ClO +O

光分解によって生じた次亜塩素酸イオンは、アミンやアンモニアと直ちに反応し結合塩素を生成する。
ClO+R-NH(第1級アミン)→R-NHCl
2ClO+R-NHCl→R-NCl
※次亜塩素酸ラジカル、原子状酸素、原子状酸素アニオンラジカル(O)等の分解生成物は、種々の反応経路を経て、亜塩素酸イオンや二酸化塩素、その他の副生成物を生成する。
Hypochlorite ions produced by photolysis immediately react with amines and ammonia to produce combined chlorine.
ClO +R—NH 2 (primary amine)→R—NHCl
2ClO +R-NHCl→R-NCl 2
* Decomposition products such as hypochlorous acid radicals, atomic oxygen, and atomic oxygen anion radicals (O ) generate chlorite ions, chlorine dioxide, and other byproducts through various reaction pathways. .

また、特許文献3にも、塩素系酸化剤とスルファミン酸又はその塩から結合塩素が生成することが示されており、この塩素系酸化剤の1 つとして亜塩素酸またはその塩が挙げられている。しかし、結合塩素の生成は一般に塩素化反応で進行することが知られており、亜塩素酸またはその塩とスルファミン酸又はその塩を共存させるだけでは、通常、結合塩素が生成することはない。このことは、本発明者の実験結果からも明らかである。さらに、該殺菌殺藻組成物の構成要件として、紫外線の照射処理については何ら記載されていない。 Further, Patent Document 3 also shows that combined chlorine is generated from a chlorine-based oxidant and sulfamic acid or a salt thereof, and one of the chlorine-based oxidants is chlorous acid or a salt thereof. there is However, it is known that the generation of combined chlorine generally proceeds in a chlorination reaction, and combined chlorine is not normally generated simply by coexisting chlorous acid or a salt thereof and sulfamic acid or a salt thereof. This is also clear from the results of experiments conducted by the inventors. Further, there is no mention of ultraviolet irradiation treatment as a constituent of the fungicidal and algicidal composition.

さらに、亜塩素酸又はその塩は、酸性条件下において不均化反応を起こすことが知られており、これにより僅かに遊離塩素を生成する場合があるが、該殺菌殺藻組成物は、結合塩素を安定化するためpH13以上が必要となるため、実質的に遊離塩素は生成しないものと考えられる。 Furthermore, chlorous acid or its salts are known to undergo a disproportionation reaction under acidic conditions, which may generate a small amount of free chlorine, but the bactericidal and algicidal composition binds Since a pH of 13 or more is required to stabilize chlorine, free chlorine is considered to be substantially not generated.

また、特公平06-49562号公報には、亜塩素酸塩に緩衝剤を添加してpHを酸性にした溶液に、紫外線を照射して二酸化塩素を発生させる方法が示されているが、結合塩素の生成法については何ら触れられていない。 Japanese Patent Publication No. 06-49562 discloses a method of generating chlorine dioxide by irradiating ultraviolet rays to a solution acidified by adding a buffering agent to chlorite. No mention is made of how chlorine is produced.

本発明の亜塩素酸塩としては、例えば亜塩素酸アルカリ金属塩や亜塩素酸アルカリ土類金属塩が挙げられる。亜塩素酸アルカリ金属塩としては、例えば亜塩素酸ナトリウム、亜塩素酸カリウム、亜塩素酸リチウムが挙げられ、亜塩素酸アルカリ土類金属塩としては、亜塩素酸カルシウム、亜塩素酸マグネシウム、亜塩素酸バリウムが挙げられる。該亜塩素酸塩としては、水溶性、経済性などの観点からナトリウム塩やカリウム塩などのアルカリ金属塩が好適である。これらの亜塩素酸塩は 1 種を単独で用いても、2 種以上を併用しても構わない。 The chlorite of the present invention includes, for example, alkali metal chlorites and alkaline earth metal chlorites. Examples of alkali metal chlorites include sodium chlorite, potassium chlorite, and lithium chlorite. Examples of alkaline earth metal chlorites include calcium chlorite, magnesium chlorite, and sodium chlorite. Barium chlorate is mentioned. As the chlorite, alkali metal salts such as sodium salts and potassium salts are suitable from the viewpoints of water solubility and economy. These chlorites may be used singly or in combination of two or more.

本発明では、第一級及び第二級アミンとしては、限定はしないが、以下のものが好適である。スルファミン酸、N-メチルスルファミン酸、N,N―ジメチルスルファミン酸、N-メチルスルファミン酸、N-メチルスルファミド、有機スルホンアミド、タウリン、N-メチルタウリン、ジメチルタウリン、N,N-ジヒドロキシエチルタウリン、グリシン、N-メチルグリシン、尿素、アルカノールアミン、エチレンジアミン、スクシンイミド、シアヌル酸、アルキルヒダントイン、サッカリン、ベンゼンスルホンアミド、パラトルエンスルホンアミド、メラミンである。 In the present invention, primary and secondary amines are preferably, but not limited to, the following. Sulfamic acid, N-methylsulfamic acid, N,N-dimethylsulfamic acid, N-methylsulfamic acid, N-methylsulfamide, organic sulfonamides, taurine, N-methyltaurine, dimethyltaurine, N,N-dihydroxyethyl taurine, glycine, N-methylglycine, urea, alkanolamine, ethylenediamine, succinimide, cyanuric acid, alkylhydantoin, saccharin, benzenesulfonamide, p-toluenesulfonamide, melamine.

アンモニアとしては、特に制限はなく、市販されているものであれば、試薬・医薬品・工業・食添グレード何れも使用することができる。 Ammonia is not particularly limited, and reagent, pharmaceutical, industrial, and food additive grades can be used as long as they are commercially available.

アンモニウム塩としては、特に制限はないが、例えば無機酸のアンモニウム塩として、リン酸アンモニウム、硫酸アンモニウム、硝酸アンモニウム、塩化アンモニウム、炭酸アンモニウムが、有機酸のアンモニウム塩として、クエン酸アンモニウム、酢酸アンモニウム、乳酸アンモニウム、酒石酸アンモニウム、シュウ酸アンモニウムが挙げられる。これらの中で、副生成物が少ない点で無機酸のアンモニウム塩が好ましい。 The ammonium salt is not particularly limited, but examples include inorganic acid ammonium salts such as ammonium phosphate, ammonium sulfate, ammonium nitrate, ammonium chloride and ammonium carbonate, and organic acid ammonium salts such as ammonium citrate, ammonium acetate and ammonium lactate. , ammonium tartrate and ammonium oxalate. Among these, ammonium salts of inorganic acids are preferred because they produce less by-products.

亜塩素酸塩と含窒素化合物の配合比率は、亜塩素酸イオン(ClO )/Nモル比で7~0.5が好ましく5~1がより好ましい。(ClO )/Nモル比がこの範囲を外れた場合、結合塩素生成量が不足したり、結合塩素生成量に対する含窒素化合物の配合量が過剰となる場合がある。 The mixing ratio of the chlorite and the nitrogen-containing compound is preferably 7 to 0.5, more preferably 5 to 1, in terms of chlorite ion (ClO 2 )/N molar ratio. If the (ClO 2 )/N molar ratio is out of this range, the amount of combined chlorine produced may be insufficient, or the amount of the nitrogen-containing compound may be excessive relative to the amount of combined chlorine produced.

本発明の液体混合物は、pH6~13の範囲にあることが好ましい。この範囲以外では、液体製剤の安定性が低下したり、取り扱い上の危険性が増すためである。 The liquid mixture of the present invention preferably has a pH in the range of 6-13. This is because the stability of the liquid formulation is lowered and the handling risk is increased outside this range.

本発明で使用する紫外線発光源は、紫外線を単独に、あるいは紫外線を含めて放つものであれば従来公知の光源を使用することができる。従って、光源の波長は紫外線波長(200~380nmの近紫外線、10~200nmの遠紫外線、1~10nmの極紫外線)に限定されず、波長380~720nmの可視光線を含んだ紫外線であっても構わない。紫外線発光体としては、安価で取り扱いしやすい、水銀ランプ、LEDランプが好ましいが、キセノンランプ、重水素ランプなどが挙げられる。なお、紫外線の波長は、結合塩素の生成効率の観点から100~365nmが好ましい。 As the ultraviolet light source used in the present invention, conventionally known light sources can be used as long as they emit ultraviolet rays alone or include ultraviolet rays. Therefore, the wavelength of the light source is not limited to ultraviolet wavelengths (near ultraviolet rays of 200 to 380 nm, far ultraviolet rays of 10 to 200 nm, extreme ultraviolet rays of 1 to 10 nm). I do not care. As the ultraviolet light emitter, a mercury lamp and an LED lamp are preferable because they are inexpensive and easy to handle, but xenon lamps and deuterium lamps can also be used. It should be noted that the wavelength of the ultraviolet rays is preferably 100 to 365 nm from the viewpoint of efficiency in generating combined chlorine.

上記紫外線の照射強度は、結合塩素生成速度の点から、前記液体混合物の表面において、1mW/cm以上が好ましく、10mW/cm以上がより好ましい。しかし、高すぎると無駄であるし、他に影響がある可能性があるため、1000mW/cm以下が好ましい。 The irradiation intensity of the ultraviolet rays is preferably 1 mW/cm 2 or more, more preferably 10 mW/cm 2 or more, on the surface of the liquid mixture from the viewpoint of the combined chlorine generation rate. However, if it is too high, it is useless and may affect other things, so 1000 mW/cm 2 or less is preferable.

液体組成物への紫外線の照射時間は、紫外線波長や強度などによって変動するため、一概に設定することは出来ないが、光分解反応が進行し、亜塩素酸イオンの濃度が低下すると、生成した結合塩素が紫外線により分解する場合があるため、長時間の照射は好ましくない。よって、紫外線の照射時間は、亜塩素酸イオン残存率が初期濃度に対して5~50%、好ましくは、10~40%となるよう設定するのが好ましい。 The irradiation time of the ultraviolet rays to the liquid composition varies depending on the wavelength and intensity of the ultraviolet rays, so it cannot be set unconditionally. Long-term irradiation is not preferable because combined chlorine may be decomposed by ultraviolet rays. Therefore, it is preferable to set the ultraviolet irradiation time so that the chlorite ion residual rate is 5 to 50%, preferably 10 to 40%, of the initial concentration.

本発明の混合物(紫外線照射前)は、組成物の安定性や結合塩素等の生成を阻害することのない範囲で、亜塩素酸塩と含窒素化合物以外の成分を加えてもよい。他の成分としては、臭素化合物、pH調整剤、緩衝剤、界面活性剤、分散剤、キレート剤、腐食防止剤、香料などが挙げられる。 Components other than chlorite and nitrogen-containing compounds may be added to the mixture of the present invention (before UV irradiation) within a range that does not inhibit the stability of the composition or the generation of combined chlorine and the like. Other ingredients include bromine compounds, pH adjusters, buffers, surfactants, dispersants, chelating agents, corrosion inhibitors, perfumes, and the like.

本発明の混合物は、予め高濃度の水溶液を調製し使用時に適宜希釈しても良いし、亜塩素酸塩と含窒素化合物を含む粉体をそのまま若しくは錠剤等に成型し、使用時に水に溶解させても良い。 The mixture of the present invention may be prepared in advance as a high-concentration aqueous solution and diluted appropriately at the time of use, or the powder containing chlorite and nitrogen-containing compound may be formed as it is or molded into tablets, etc., and dissolved in water at the time of use. You can let me.

本発明では、亜塩素酸塩の光分解反応によって生じる二酸化塩素が、最終的に得られる組成物に含まれる場合がある。この二酸化塩素は、殺菌効果・スライム除去効果に優れ、また低毒性である。よって、本発明方法で生成された結合塩素化合物が、被処理水系に使用される場合には、この二酸化塩素も除去せず、混合物のまま使用することができる。よって、非常に便利である。 In the present invention, chlorine dioxide produced by the photodecomposition reaction of chlorite may be contained in the finally obtained composition. This chlorine dioxide has excellent bactericidal and slime-removing effects and is low in toxicity. Therefore, when the combined chlorine compound produced by the method of the present invention is used in the water system to be treated, this chlorine dioxide is not removed and the mixture can be used as it is. Therefore, it is very convenient.

また、二酸化塩素は上記のようにそのまま放置せず、順次系外に取り出してもよい。なぜならば、照射している紫外線によって二酸化塩素が分解されるため、それを防止又は軽減するためである。また二酸化塩素の生成量増加のため、即ち反応促進のために、生成する二酸化塩素を系外に取り出してもよい。系外への取り出しは、連続的でも間歇的でもよい。
二酸化塩素を系外に取り出す方法としては、エアレーション、加熱、超音波、減圧脱気、気体分離膜法などが挙げられ、これらの中で、操作性・経済性の観点からエアレーションが好ましい。エアレーションの気体は、特に制限されないが、空気や窒素ガス、アルゴンガス、ヘリウムガスなどの不活性ガスが利用できる。
即ち、溶液中に発生した二酸化塩素を添加した気体と共に液体の中から取り出すのである。エアレーションは、紫外線照射中、全期間行ってもよいが、一部期間でも、間歇的でもよい。
In addition, the chlorine dioxide may not be left as it is as described above, but may be sequentially taken out of the system. This is because chlorine dioxide is decomposed by the irradiated ultraviolet rays, and this is to be prevented or reduced. In order to increase the amount of chlorine dioxide produced, that is, to promote the reaction, the produced chlorine dioxide may be taken out of the system. Taking out of the system may be continuous or intermittent.
Methods for removing chlorine dioxide from the system include aeration, heating, ultrasonic waves, decompression degassing, gas separation membrane method, etc. Among them, aeration is preferred from the viewpoint of operability and economy. Gases for aeration are not particularly limited, but air, inert gases such as nitrogen gas, argon gas, and helium gas can be used.
That is, it is taken out of the liquid together with the chlorine dioxide-added gas generated in the solution. Aeration may be performed for the entire period of UV irradiation, but may be performed for a partial period or intermittently.

結合塩素単体での適用が好ましい、即ち二酸化塩素ガスが不要な環境においては、上記同様に二酸化塩素を予め系外に除去し、又は波長365nm付近の紫外線を連続照射して、二酸化塩素を分解除去してもよい。 It is preferable to apply combined chlorine alone, that is, in an environment where chlorine dioxide gas is unnecessary, chlorine dioxide is removed from the system in advance in the same manner as above, or ultraviolet rays with a wavelength of around 365 nm are continuously irradiated to decompose and remove chlorine dioxide. You may

本発明で得られる結合塩素化合物は、冷却塔、循環式浴槽、ボイラ、製紙プロセル、分離膜、バラスト水、スイミングプールなど、微生物汚染やスライム障害が問題となる各種水系の殺菌洗浄用途において、好適に使用することができる。 The combined chlorine compound obtained in the present invention is suitable for sterilization and cleaning of various water systems such as cooling towers, circulating baths, boilers, paper manufacturing processes, separation membranes, ballast water, swimming pools, etc., where microbial contamination and slime damage are a problem. can be used for

以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例及び比較例において、亜塩素酸イオン濃度、遊離塩素濃度、結合塩素濃度、二酸化塩素濃度の分析は、以下の方法に従って実施した。 EXAMPLES The present invention will be specifically described below with reference to Examples, but the present invention is not limited to these. In the examples and comparative examples, the chlorite ion concentration, free chlorine concentration, combined chlorine concentration, and chlorine dioxide concentration were analyzed according to the following methods.

〔亜塩素酸イオン濃度の分析〕
イオンクロマトグラフ(サプレッサ方式)による分析を実施した。分析条件は下記の通り。
カラム:Shim-pack IC-SA3
検出器:電気伝導度
溶離液:3.6mM 炭酸ナトリウム水溶液
流量:0.8mL/min
カラム温度:40℃
[Analysis of chlorite ion concentration]
Analysis was performed by ion chromatography (suppressor method). Analysis conditions are as follows.
Column: Shim-pack IC-SA3
Detector: electrical conductivity Eluent: 3.6 mM sodium carbonate aqueous solution Flow rate: 0.8 mL/min
Column temperature: 40°C

〔遊離塩素、結合塩素、二酸化塩素濃度の分析〕
AQUALYTIC社の簡易型水質計AL-100を用い、DPD(N,N-ジエチルーp-フェニレンジアミン)吸光光度法による濃度測定を実施した。各測定手順は、下記の方法に従った。
[Analysis of Free Chlorine, Combined Chlorine, and Chlorine Dioxide Concentration]
Concentration was measured by DPD (N,N-diethyl-p-phenylenediamine) absorptiometry using a simplified water quality meter AL-100 manufactured by AQUALYTIC. Each measurement procedure followed the following method.

〔遊離塩素、結合塩素及び二酸化塩素濃度の測定〕
適宜希釈した試料を10mL採取し、DPD試薬を添加し、溶解後、残留塩素測定モードにて直ちに濃度を測定(A:遊離塩素+二酸化塩素)。次いで、KI試薬を加え、2分間反応させた後、再度濃度を測定(B:遊離塩素+結合塩素+二酸化塩素)。
・二酸化塩素濃度の測定
適宜希釈した試料を10mL採取し、10%グリシン水溶液を10マイクロL添加。DPD試薬を添加し、溶解後、二酸化塩素測定モードにて直ちに濃度を測定(C:二酸化塩素)。
上記の測定結果から、下記式により各成分濃度を算出した。
・結合塩素濃度=(B-A)×希釈倍率
・遊離塩素濃度=(A-C×0.53)×希釈倍率
・二酸化塩素濃度=C×希釈倍率
*AL-100測定モード間における二酸化塩素濃度測定値の比
残留塩素測定モード/二酸化塩素測定モード=0.53
[Measurement of free chlorine, combined chlorine and chlorine dioxide concentration]
10 mL of an appropriately diluted sample was collected, the DPD reagent was added, and after dissolution, the concentration was immediately measured in the residual chlorine measurement mode (A: free chlorine + chlorine dioxide). Next, the KI reagent was added, reacted for 2 minutes, and then the concentration was measured again (B: free chlorine + bound chlorine + chlorine dioxide).
・Measurement of chlorine dioxide concentration 10 mL of an appropriately diluted sample was taken, and 10 µL of 10% glycine aqueous solution was added. After adding the DPD reagent and dissolving, the concentration was immediately measured in the chlorine dioxide measurement mode (C: chlorine dioxide).
From the above measurement results, the concentration of each component was calculated by the following formula.
・Bound chlorine concentration = (B - A) x dilution ratio ・Free chlorine concentration = (A - C x 0.53 * ) x dilution ratio ・Chlorine dioxide concentration = C x dilution ratio *Chlorine dioxide between AL-100 measurement modes Ratio of concentration measurement values Residual chlorine measurement mode/Chlorine dioxide measurement mode = 0.53

<試験1:亜塩素酸/含窒素化合物の光反応特性>
純水に亜塩素酸ナトリウム及び含窒素化合物として、5,5-ジメチルヒダントイン又は塩化アンモニウムを配合し、リン酸緩衝剤、水酸化ナトリウムを加え、所定のpHに調整した水溶液を得た(実施例1~7)。同様に亜塩素酸ナトリウムのみを配合した水溶液を調整した(比較例1~4)。各試料は、遮光条件下、室温で1日間保管した後、各成分濃度を測定した。また、角型石英セル(10mm×10mm×40mm)に試料2.5gを採取し、セル側面の距離から紫外線を照射し、所定時間経過後の濃度測定を行った。紫外線光源はUV-LEDを用い、照射光波長および強度(液面)は、λ265nm(15mW/cm)、λ300nm(25mW/cm)、λ365nm(140mW/cm)とした。
<Test 1: Photoreaction characteristics of chlorous acid/nitrogen-containing compound>
Sodium chlorite and 5,5-dimethylhydantoin or ammonium chloride as a nitrogen-containing compound were added to pure water, and a phosphate buffer and sodium hydroxide were added to obtain an aqueous solution adjusted to a predetermined pH (Example 1-7). Similarly, aqueous solutions containing only sodium chlorite were prepared (Comparative Examples 1 to 4). Each sample was stored at room temperature for one day under light-shielding conditions, and then the concentration of each component was measured. Also, a 2.5 g sample was placed in a rectangular quartz cell (10 mm×10 mm×40 mm), irradiated with ultraviolet rays from the side of the cell, and the concentration was measured after a predetermined time had passed. A UV-LED was used as the ultraviolet light source, and the irradiation light wavelength and intensity (liquid level) were λ265 nm (15 mW/cm 2 ), λ300 nm (25 mW/cm 2 ), and λ365 nm (140 mW/cm 2 ).

実施例と比較例の成分を表1及び表2に、結果を表3及び表4に示す。

Figure 0007323230000001
Figure 0007323230000002
The components of Examples and Comparative Examples are shown in Tables 1 and 2, and the results are shown in Tables 3 and 4.
Figure 0007323230000001
Figure 0007323230000002

Figure 0007323230000003
Figure 0007323230000003
Figure 0007323230000004
Figure 0007323230000004

実施例1~7の亜塩素酸ナトリウムと含窒素化合物を含有する組成物では、いずれも紫外線照射前において結合塩素、遊離塩素、二酸化塩素は検出されなかったが、紫外線照射後、結合塩素及び二酸化塩素濃度の顕著な増加が認められた、また実施例1及び実施例2では、若干ではあるが遊離塩素の生成も認められた。一方、比較例1~4では、紫外線照射後の生成物は、二酸化塩素と遊離塩素のみであった。上記結果から、本発明では、液体組成物中の含窒素化合物を変えることで、種々の結合塩素を生成することが確認された。 In the compositions containing sodium chlorite and nitrogen-containing compounds of Examples 1 to 7, combined chlorine, free chlorine, and chlorine dioxide were not detected before UV irradiation, but after UV irradiation, combined chlorine and dioxide were detected. A significant increase in the chlorine concentration was observed, and in Examples 1 and 2, a small amount of free chlorine was also produced. On the other hand, in Comparative Examples 1 to 4, the products after ultraviolet irradiation were only chlorine dioxide and free chlorine. From the above results, it was confirmed that various types of combined chlorine can be produced in the present invention by changing the nitrogen-containing compound in the liquid composition.

試験2
<エアレーションの併用効果>
実施例1の組成物20gを、エアレーション用ガラスフィルターを取り付けた石英瓶にとり、テフロン(登録商標)チューブを用いて純水100mL入りのガラス瓶を3ヶ(二酸化塩素回収用)と直列に接続した。0.3L/分で空気を送りながら組成物に紫外線を照射し、所定時間経過後、各成分濃度の測定及び二酸化塩素生成量を算出した。その結果を表5に示す。これにより、エアレーションを行うと、二酸化塩素生成量が増加することが分かる。

Figure 0007323230000005
test 2
<Combination effect of aeration>
20 g of the composition of Example 1 was placed in a quartz bottle equipped with an aeration glass filter, and a Teflon (registered trademark) tube was used to connect three glass bottles containing 100 mL of pure water (for recovering chlorine dioxide) in series. The composition was irradiated with ultraviolet rays while air was supplied at a rate of 0.3 L/min. Table 5 shows the results. From this, it can be seen that the amount of chlorine dioxide produced increases when aeration is performed.
Figure 0007323230000005

実施例3のエアレーションを加えた場合、エアレーションなしの場合と比べ、二酸化塩素生成量が10倍程度増加することが確認された。 It was confirmed that when the aeration of Example 3 was added, the amount of chlorine dioxide generated was increased by about 10 times compared to when there was no aeration.

試験3
<液体組成物の保存安定性>
純水に25%亜塩素酸ナトリウム、5,5-ジメチルヒダントイン、水酸化ナトリウムを配合し、pH9.5の組成物を得た(実施例9)。また、純水に12%次亜塩素酸ナトリウム、5,5-ジメチルヒダントイン、水酸化ナトリウムを配合し、結合塩素を含む組成物を得た(比較例5)。各水溶液を50℃で7日間経時させた後、有効成分濃度を測定した。
なお、亜塩素酸イオン及び有効塩素濃度はヨウ素滴定法により、また5,5-ジメチルヒダントイン濃度(DMH)は、紫外可視吸光光度計による吸光度(λ212nm)により測定した。
test 3
<Storage stability of liquid composition>
Pure water was blended with 25% sodium chlorite, 5,5-dimethylhydantoin and sodium hydroxide to obtain a composition with a pH of 9.5 (Example 9). Also, pure water was mixed with 12% sodium hypochlorite, 5,5-dimethylhydantoin and sodium hydroxide to obtain a composition containing combined chlorine (Comparative Example 5). After aging each aqueous solution at 50° C. for 7 days, the active ingredient concentration was measured.
The chlorite ion and available chlorine concentrations were measured by iodometric titration, and the 5,5-dimethylhydantoin concentration (DMH) was measured by absorbance (λ212 nm) with an ultraviolet-visible spectrophotometer.

結果を表6に示す。

Figure 0007323230000006
Table 6 shows the results.
Figure 0007323230000006

実施例9の亜塩素酸ナトリウムと5,5-ジメチルヒダントインを含有する組成物では、50℃×7日間経時後において、亜塩素酸イオン及びジメチルヒダントイン濃度の低下は僅少であった。一方、比較例5の結合塩素を含む組成物では、経時後において有効塩素は検出されなかった。

In the composition containing sodium chlorite and 5,5-dimethylhydantoin of Example 9, the concentration of chlorite ions and dimethylhydantoin decreased slightly after aging at 50°C for 7 days. On the other hand, in the composition containing combined chlorine of Comparative Example 5, no available chlorine was detected after the passage of time.

Claims (5)

a 亜塩素酸塩、
b 5,5-ジメチルヒダントイン、スルファミン酸、塩化アンモニウムから選択される1種以上の含窒素化合物、
上記a及びbを含有する液体混合物に、紫外線を照射することを特徴とする結合塩素の生成方法。
a chlorite,
b one or more nitrogen-containing compounds selected from 5,5-dimethylhydantoin, sulfamic acid, ammonium chloride,
A method for producing combined chlorine, which comprises irradiating a liquid mixture containing the above a and b with ultraviolet rays.
前記紫外線の強度が、前記液体混合物の表面において、1mW/cm以上である請求項1に記載の結合塩素の生成方法。 2. The method for generating combined chlorine according to claim 1, wherein the intensity of said ultraviolet rays is 1 mW/cm <2> or more on the surface of said liquid mixture. 前記紫外線波長が100nm~365nmである請求項1又は2に記載の結合塩素の生成方法。 3. The method for producing combined chlorine according to claim 1, wherein the ultraviolet wavelength is 100 nm to 365 nm. 前記液体混合物のpHが6~13である請求項1~3のいずれか1項に記載の結合塩素の生成方法。 The method for producing combined chlorine according to any one of claims 1 to 3, wherein the liquid mixture has a pH of 6 to 13. 前記紫外線の照射中に前記液体混合物のエアレーションを行い、生成した二酸化塩素を連続的に外部に取り出す工程を加えた請求項1~4のいずれか1項に記載の結合塩素の生成方法。

5. The method for producing combined chlorine according to any one of claims 1 to 4, further comprising a step of aerating the liquid mixture during irradiation with the ultraviolet rays and continuously extracting the produced chlorine dioxide to the outside.

JP2022147749A 2018-05-01 2022-09-16 Method for generating combined chlorine Active JP7323230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022147749A JP7323230B2 (en) 2018-05-01 2022-09-16 Method for generating combined chlorine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018088017A JP7194413B2 (en) 2018-05-01 2018-05-01 Method for producing combined chlorine compound
JP2022147749A JP7323230B2 (en) 2018-05-01 2022-09-16 Method for generating combined chlorine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018088017A Division JP7194413B2 (en) 2018-05-01 2018-05-01 Method for producing combined chlorine compound

Publications (2)

Publication Number Publication Date
JP2022186688A JP2022186688A (en) 2022-12-15
JP7323230B2 true JP7323230B2 (en) 2023-08-08

Family

ID=87519474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022147749A Active JP7323230B2 (en) 2018-05-01 2022-09-16 Method for generating combined chlorine

Country Status (1)

Country Link
JP (1) JP7323230B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002543977A (en) 1999-05-18 2002-12-24 サウスウエスト・リサーチ・インスティチュート Energy activated compositions for controlled gas sustained release
JP2005125220A (en) 2003-10-23 2005-05-19 Yoshiaki Hatano Method for producing chlorine dioxide-containing water and water circulating mechanism based on the method
JP2006512197A (en) 2002-12-20 2006-04-13 ロンザ インコーポレイテッド Method for biofilm removal
WO2009041267A1 (en) 2007-09-27 2009-04-02 Kurita Water Industries Ltd. Bactericidal/algicidal method
JP2009195823A (en) 2008-02-21 2009-09-03 Kurita Water Ind Ltd Method of controlling concentration of aqueous treating agent
WO2009143511A1 (en) 2008-05-23 2009-11-26 Kemira Oyj Chemistry for effective microbe control with reduced gas phase corrosiveness in pulp & paper processing systems
WO2016088387A1 (en) 2014-12-02 2016-06-09 株式会社Fmi Activated sodium chlorite composition and bactericidal/deodorizing agent
JP2017053054A (en) 2015-09-08 2017-03-16 株式会社片山化学工業研究所 Method for producing old paper pulp
WO2017104797A1 (en) 2015-12-18 2017-06-22 株式会社エースネット Radical generating catalyst, method for producing radical, method for producing oxidation reaction product, drug, and drug for agriculture and livestock
JP7194413B2 (en) 2018-05-01 2022-12-22 アムテック株式会社 Method for producing combined chlorine compound

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6171558B1 (en) * 1999-06-24 2001-01-09 Gregory D. Simpson Chlorine dioxide generator

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002543977A (en) 1999-05-18 2002-12-24 サウスウエスト・リサーチ・インスティチュート Energy activated compositions for controlled gas sustained release
JP2006512197A (en) 2002-12-20 2006-04-13 ロンザ インコーポレイテッド Method for biofilm removal
JP2005125220A (en) 2003-10-23 2005-05-19 Yoshiaki Hatano Method for producing chlorine dioxide-containing water and water circulating mechanism based on the method
WO2009041267A1 (en) 2007-09-27 2009-04-02 Kurita Water Industries Ltd. Bactericidal/algicidal method
JP2009195823A (en) 2008-02-21 2009-09-03 Kurita Water Ind Ltd Method of controlling concentration of aqueous treating agent
WO2009143511A1 (en) 2008-05-23 2009-11-26 Kemira Oyj Chemistry for effective microbe control with reduced gas phase corrosiveness in pulp & paper processing systems
WO2016088387A1 (en) 2014-12-02 2016-06-09 株式会社Fmi Activated sodium chlorite composition and bactericidal/deodorizing agent
JP2017053054A (en) 2015-09-08 2017-03-16 株式会社片山化学工業研究所 Method for producing old paper pulp
WO2017104797A1 (en) 2015-12-18 2017-06-22 株式会社エースネット Radical generating catalyst, method for producing radical, method for producing oxidation reaction product, drug, and drug for agriculture and livestock
JP7194413B2 (en) 2018-05-01 2022-12-22 アムテック株式会社 Method for producing combined chlorine compound

Also Published As

Publication number Publication date
JP2022186688A (en) 2022-12-15

Similar Documents

Publication Publication Date Title
JP3565860B2 (en) Method for producing disinfectant containing chlorine dioxide for water treatment
US6156229A (en) Stable oxidizing bromine formulations, method of manufacture and uses thereof for biofouling control
JP7194413B2 (en) Method for producing combined chlorine compound
JP4986366B2 (en) Production of concentrated microbial solution
ES2331094T3 (en) METHOD AND APPLIANCE TO PRODUCE A SYNERGIC BIOCIDE.
TWI400198B (en) Biocides and apparatus
US7678388B2 (en) Method of treating with chlorine dioxide
JP2002512885A (en) Stable oxidizing bromine formulations, methods for their preparation and methods used for controlling microbial fouling
TWI439423B (en) Method for sterilizing and killing algae
FI126250B (en) Method for the production of chlorine dioxide
JP2010189390A (en) Stable oxidizing bromine formulation, method of manufacture and use thereof for biofouling control
US9446952B2 (en) Batch methods for producing chlorine dioxide solutions
JP2022121439A (en) Method for producing chlorous acid water using material obtained by salt electrolysis as raw material
JP4986855B2 (en) Concentrated bromine aqueous solutions and their preparation
JP7323230B2 (en) Method for generating combined chlorine
JP2007031374A (en) Method for producing germicidal disinfectant solution
WO2022186013A1 (en) Water treatment method and water treatment agent composition
US20100025226A1 (en) Configurations for Chlorine Dioxide Production
ES2611458T3 (en) Aqueous solutions of reactive chlorine compounds
JP2002086155A (en) Sterilization method of water system
JP2021080140A (en) Chlorine dioxide aqueous solution composition retaining concentration for long terms at ordinary temperature and method for producing the same
US20110024367A1 (en) Cyclic process for in-situ generation of chlorine dioxide in biguanide treated aquatic facilities
JP3851932B2 (en) Chlorine dioxide water production method
JP2019100781A (en) Concentration measurement method of hypobromous acid or salts thereof and stabilized hypobromous acid compositions
JPH09268002A (en) Method for generating chlorine dioxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220920

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230720

R150 Certificate of patent or registration of utility model

Ref document number: 7323230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150