JP2009195823A - Method of controlling concentration of aqueous treating agent - Google Patents

Method of controlling concentration of aqueous treating agent Download PDF

Info

Publication number
JP2009195823A
JP2009195823A JP2008039924A JP2008039924A JP2009195823A JP 2009195823 A JP2009195823 A JP 2009195823A JP 2008039924 A JP2008039924 A JP 2008039924A JP 2008039924 A JP2008039924 A JP 2008039924A JP 2009195823 A JP2009195823 A JP 2009195823A
Authority
JP
Japan
Prior art keywords
chlorine
concentration
combined
agent
aqueous system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008039924A
Other languages
Japanese (ja)
Other versions
JP5806793B2 (en
Inventor
Kazuhiko Tsunoda
和彦 角田
Naohiro Nagai
直宏 永井
Akira Iimura
晶 飯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41139960&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2009195823(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2008039924A priority Critical patent/JP5806793B2/en
Priority to BRPI0817976 priority patent/BRPI0817976A2/en
Priority to EP08832826.5A priority patent/EP2196092B1/en
Priority to US12/733,746 priority patent/US10421676B2/en
Priority to KR1020107005483A priority patent/KR101706548B1/en
Priority to MYPI2010001310A priority patent/MY173605A/en
Priority to PCT/JP2008/066338 priority patent/WO2009041267A1/en
Priority to CN200880106419A priority patent/CN101801199A/en
Priority to TW97136528A priority patent/TWI439423B/en
Publication of JP2009195823A publication Critical patent/JP2009195823A/en
Publication of JP5806793B2 publication Critical patent/JP5806793B2/en
Application granted granted Critical
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of controlling the concentration of an aqueous treating agent by which a combined chlorine agent used as an aqueous treating agent can effectively be used. <P>SOLUTION: In the method of controlling the concentration of the aqueous treating agent, the amount of the combined chloride of a water system is controlled by producing free chloride in the water system. The free chloride is produced in the water system and, thereby, can react again with a chlorine stabilizing agent remaining in the water system by itself to form the combined chlorine agent. As the result, the combined chlorine agent can be effectively utilized as the aqueous treating agent. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、水系処理剤の濃度制御方法に関する。より詳しくは、水系の殺菌を行うための水系処理剤の濃度を制御する技術に関する。   The present invention relates to a method for controlling the concentration of an aqueous treatment agent. More specifically, the present invention relates to a technique for controlling the concentration of an aqueous treatment agent for performing aqueous sterilization.

各種工場のプラント冷却水系、排水処理水系、鉄鋼水系、紙パルプ水系、切削油水系等では、細菌や糸状菌や藻類等が原因となりスライム等が水系内に発生する。このスライム等は、熱効率の低下、通水配管等の閉塞、配管金属材質の腐食等の障害を引き起こす。   In plant cooling water systems, wastewater treatment water systems, steel water systems, paper pulp water systems, cutting oil water systems, etc. in various factories, slime and the like are generated in the water systems due to bacteria, filamentous fungi, algae, and the like. This slime or the like causes troubles such as a decrease in thermal efficiency, blockage of water passage pipes, corrosion of pipe metal materials, and the like.

このような障害を防ぐために、冷却水系等ではスライムコントロール剤等として結合塩素剤(安定化塩素剤)が用いられている。結合塩素剤は水系内で消耗されると塩素安定化剤として残留する。しかし、結合塩素剤は、冷却水負荷や周囲の環境等によって水系内での消耗速度が変化する。そのため、バッチタイマーや補給水比例等によって結合塩素剤の注入量を制御しようとしても、安定した濃度を維持することが難しいといったことがある。   In order to prevent such an obstacle, a combined chlorine agent (stabilized chlorine agent) is used as a slime control agent or the like in a cooling water system or the like. The bound chlorine agent remains as a chlorine stabilizer when consumed in the aqueous system. However, the consumption rate of the combined chlorine agent in the water system varies depending on the cooling water load and the surrounding environment. For this reason, it may be difficult to maintain a stable concentration even if the injection amount of the combined chlorinating agent is controlled by a batch timer or the proportion of makeup water.

例えば、特許文献1には、冷却水系のスライム剥離処理に関するものとして、前段でヒドラジンを冷却水に含有させ、後段で(ア)次亜塩素酸やその塩、(イ)次亜臭素酸やその塩等を冷却水に含有させる技術が開示されている。   For example, in Patent Document 1, hydrazine is contained in cooling water in the first stage, and (a) hypochlorous acid or a salt thereof, (b) hypobromite or the like, as related to a cooling water-based slime peeling treatment. A technique for containing a salt or the like in cooling water is disclosed.

また、スケール防止剤や防食剤やスライムコントロール剤等を併用した、いわゆるマルチ薬剤も水処理剤として用いられている。スライムコントロール剤成分の濃度を維持させるべく制御すると、他の成分の過剰注入になりやすい等といったことがある。   In addition, so-called multi-drugs that are used in combination with scale inhibitors, anticorrosives, slime control agents, and the like are also used as water treatment agents. If control is performed to maintain the concentration of the slime control agent component, excessive injection of other components may occur.

特開2004−012042号公報。JP2004-012042A.

このように、結合塩素の消耗量が多い系等では、実際の添加量に対して水系内での検出濃度が低下する傾向にある。そこで、有効な検出濃度を確保するために、薬剤の添加量を増やしたりするが、これによってコストがかかったり、水系内で消耗された結合塩素剤は塩素安定化剤として多量に残留してしまう。   As described above, in a system where the consumption amount of bound chlorine is large, the detected concentration in the aqueous system tends to be lower than the actual addition amount. Therefore, in order to ensure an effective detection concentration, the amount of the drug added is increased. However, this increases costs, and the bound chlorine agent consumed in the aqueous system remains in a large amount as a chlorine stabilizer. .

そこで、本発明は、結合塩素剤を効果的に用いることができる水系処理剤の濃度制御方法を提供することを主な目的とする。   Therefore, the main object of the present invention is to provide a method for controlling the concentration of an aqueous treatment agent that can effectively use a combined chlorine agent.

まず、本発明は、遊離塩素を水系に発生させて、該水系の結合塩素の量を制御する水系処理剤の濃度制御方法を提供する。水系内に遊離塩素を発生させることで、水系内に残留している塩素安定化剤と結合させて結合塩素とすることができる。その結果、結合塩素剤を効果的に利用することができる。
そして、結合塩素濃度の制御は、水系内の遊離塩素濃度を制御することで行うことが望ましい。水系内の遊離塩素濃度を一定範囲に制御することで、結合塩素濃度をより正確に制御できる。この水系内の遊離塩素濃度は、0.05mg−Cl/L以上であることが望ましい。
また、遊離塩素は、次亜塩素酸と亜塩素酸と二酸化塩素と塩素ガスの少なくともいずれか一つを水系に添加することによって生成させることができる。
First, the present invention provides a method for controlling the concentration of an aqueous treatment agent that generates free chlorine in an aqueous system and controls the amount of bound chlorine in the aqueous system. By generating free chlorine in the aqueous system, it can be combined with a chlorine stabilizer remaining in the aqueous system to form combined chlorine. As a result, the combined chlorine agent can be effectively used.
And it is desirable to control the combined chlorine concentration by controlling the free chlorine concentration in the aqueous system. By controlling the free chlorine concentration in the aqueous system within a certain range, the combined chlorine concentration can be controlled more accurately. The free chlorine concentration in the aqueous system is desirably 0.05 mg-Cl / L or more.
Free chlorine can be generated by adding at least one of hypochlorous acid, chlorous acid, chlorine dioxide, and chlorine gas to the aqueous system.

本発明に係る水系処理剤の濃度制御方法によれば、結合塩素剤を効果的に用いることができる。   According to the method for controlling the concentration of an aqueous treatment agent according to the present invention, a combined chlorine agent can be used effectively.

以下、本発明について説明する。なお、以下の説明は、本発明に係わる代表例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。   The present invention will be described below. In addition, the following description shows the representative example concerning this invention, and the range of this invention is not interpreted narrowly by this.

本発明に係る水系処理剤の濃度制御方法は、遊離塩素を水系に発生させることで、この水系の結合塩素の量を制御することを少なくとも行うものである。遊離塩素を水系に発生させることで、水系内に残留する塩素安定化剤と結合させることができる。これにより、結合塩素を再生させることができる。本発明においては、処理対象とする被処理水中に遊離塩素を生成させればよく、少なくとも遊離塩素を所定濃度以上で水系内に残留させることで、効率よく結合塩素として再生させることができる。以下、これらについてより詳細に説明する。   The method for controlling the concentration of an aqueous treatment agent according to the present invention at least performs the control of the amount of combined chlorine in the aqueous system by generating free chlorine in the aqueous system. By generating free chlorine in the aqueous system, it can be combined with the chlorine stabilizer remaining in the aqueous system. Thereby, combined chlorine can be regenerated. In the present invention, it is only necessary to generate free chlorine in the water to be treated, and at least free chlorine remains in the aqueous system at a predetermined concentration or more, so that it can be efficiently regenerated as bound chlorine. Hereinafter, these will be described in more detail.

まず、結合塩素について説明する。
本発明において用いることができる結合塩素の種類は限定されないが、例えば、クロラミン−T(N−クロロ−4−メチルベンゼンスルホンアミドのナトリウム塩)、クロラミン−B(N−クロロ−ベンゼンスルホンアミドのナトリウム塩)、N−クロロ−パラニトロベンゼンスルホンアミドのナトリウム塩、トリクロロメラミン、モノ−若しくはジ−クロロメラミンのナトリウム塩又はカリウム塩、トリクロロ−イソシアヌレート、モノ−若しくはジ−クロロイソシアヌール酸のナトリウム塩又はカリウム塩、モノ−若しくはジ−クロロスルファミン酸のナトリウム塩又はカリウム塩、モノクロロヒダントイン若しくは1,3−ジクロロヒダントイン又はその5,5−アルキル誘導体等が挙げられる。
First, bound chlorine will be described.
Although the kind of combined chlorine which can be used in the present invention is not limited, for example, chloramine-T (a sodium salt of N-chloro-4-methylbenzenesulfonamide), chloramine-B (sodium of N-chloro-benzenesulfonamide) Salt), sodium salt of N-chloro-paranitrobenzenesulfonamide, trichloromelamine, sodium salt or potassium salt of mono- or di-chloromelamine, sodium salt of trichloro-isocyanurate, mono- or di-chloroisocyanuric acid or Examples include potassium salt, sodium salt or potassium salt of mono- or di-chlorosulfamic acid, monochlorohydantoin, 1,3-dichlorohydantoin, or a 5,5-alkyl derivative thereof.

結合塩素は、塩素安定化剤と遊離塩素が結合することで生成させることができる。この塩素安定化剤は塩素安定化効果のある剤であればよく、その種類は限定されない。例えば、スルファミン酸、ヒダントイン等が挙げられる。特に、スルファミン酸化合物は、ヒドラジン等のように有毒ではないため安全性が高い。   Bound chlorine can be generated by combining a chlorine stabilizer and free chlorine. The chlorine stabilizer is not particularly limited as long as it has an effect of stabilizing the chlorine. Examples thereof include sulfamic acid and hydantoin. In particular, sulfamic acid compounds are highly safe because they are not toxic like hydrazine.

このようなスルファミン酸化合物としては、例えば、N−メチルスルファミン酸、N,N−ジメチルスルファミン酸、N−フェニルスルファミン酸等を挙げることができる。本発明に用いるスルファミン酸化合物のうち、この化合物の塩としては、例えば、ナトリウム塩、カリウム塩等のアルカリ金属塩、カルシウム塩、ストロンチウム塩、バリウム塩等のアルカリ土類金属塩、マンガン塩、銅塩、亜鉛塩、鉄塩、コバルト塩、ニッケル塩等の他の金属塩、アンモニウム塩及びグアニジン塩等を挙げることができ、具体的には、スルファミン酸ナトリウム、スルファミン酸カリウム、スルファミン酸カルシウム、スルファミン酸ストロンチウム、スルファミン酸バリウム、スルファミン酸鉄、スルファミン酸亜鉛等を挙げることができる。スルファミン酸及びこれらのスルファミン酸塩は、1種を単独で用いることもでき、2種以上を組み合わせて用いることもできる。   Examples of such a sulfamic acid compound include N-methylsulfamic acid, N, N-dimethylsulfamic acid, N-phenylsulfamic acid and the like. Among the sulfamic acid compounds used in the present invention, examples of the salt of the compound include alkali metal salts such as sodium salt and potassium salt, alkaline earth metal salts such as calcium salt, strontium salt and barium salt, manganese salt and copper Other metal salts such as salts, zinc salts, iron salts, cobalt salts, nickel salts, ammonium salts, guanidine salts, etc., specifically, sodium sulfamate, potassium sulfamate, calcium sulfamate, sulfamine Examples include strontium acid, barium sulfamate, iron sulfamate, and zinc sulfamate. The sulfamic acid and these sulfamic acid salts can be used alone or in combination of two or more.

例えば、遊離塩素とスルファミン酸を水系に共存させると、水系内で結合してクロロスルファミン酸化合物となり結合塩素として再生させることができる。例えば、塩素系酸化剤とスルファミン酸化合物、あるいは塩素系酸化剤とスルファミン酸化合物からなるクロロスルファミン酸系結合塩素剤等を被処理水に共存せしめた場合、酸性域からアルカリ性域にわたる広範なpH範囲であっても、被処理水中における遊離塩素濃度が大きく変化しないという特徴がある。   For example, when free chlorine and sulfamic acid coexist in an aqueous system, they can be combined in the aqueous system to become a chlorosulfamic acid compound and regenerated as bound chlorine. For example, when a chlorinated oxidant and a sulfamic acid compound, or a chlorosulfamic acid-based combined chlorinating agent composed of a chlorinated oxidant and a sulfamic acid compound is coexisted in the water to be treated, a wide pH range covering an acidic range to an alkaline range. Even so, there is a feature that the free chlorine concentration in the water to be treated does not change greatly.

遊離塩素を水系に生成させる方法としては限定されず、遊離塩素を水系に生成し得るものであればよい。例えば、薬剤を水系に薬注する方法や、食塩水や塩化カリウム水溶液等の電解反応を利用して次亜塩素酸イオンを発生させる方法等が挙げられる。   It does not limit as a method of producing | generating free chlorine in an aqueous system, What is necessary is just to be able to produce | generate free chlorine in an aqueous system. For example, a method of injecting a drug into an aqueous system, a method of generating hypochlorite ions using an electrolytic reaction such as a saline solution or an aqueous potassium chloride solution, and the like can be mentioned.

薬注によって遊離塩素を生成させる際に用いることができる薬剤等としては、次亜塩素酸又はその塩、亜塩素酸又はその塩、塩素酸又はその塩、過塩素酸又はその塩、塩素化イソシアヌル酸又はその塩、塩素ガス、二酸化塩素等が挙げられる。より具体的な塩としては、次亜塩素酸ナトリウム、次亜塩素酸カリウム等の次亜塩素酸アルカリ金属塩、次亜塩素酸カルシウム、次亜塩素酸バリウム等の次亜塩素酸アルカリ土類金属塩、亜塩素酸ナトリウム、亜塩素酸カリウム等の亜塩素酸アルカリ金属塩、亜塩素酸カルシウム、亜塩素酸バリウム等の亜塩素酸アルカリ土類金属塩、亜塩素酸ニッケル等の他の亜塩素酸金属塩、塩素酸アンモニウム、塩素酸ナトリウム、塩素酸カリウム等の塩素酸アルカリ金属塩、塩素酸カルシウム、塩素酸バリウム等の塩素酸アルカリ土類金属塩等を挙げることができる。   Examples of drugs that can be used when generating free chlorine by chemical injection include hypochlorous acid or its salt, chlorous acid or its salt, chloric acid or its salt, perchloric acid or its salt, chlorinated isocyanuric An acid or its salt, chlorine gas, chlorine dioxide, etc. are mentioned. More specific salts include alkali metal hypochlorites such as sodium hypochlorite and potassium hypochlorite, and alkaline earth metal hypochlorites such as calcium hypochlorite and barium hypochlorite. Salts, alkali metal chlorites such as sodium chlorite and potassium chlorite, alkaline earth metal chlorites such as calcium chlorite and barium chlorite, and other chlorites such as nickel chlorite Examples include acid metal salts, alkali metal chlorates such as ammonium chlorate, sodium chlorate and potassium chlorate, and alkaline earth metal chlorates such as calcium chlorate and barium chlorate.

これらの塩素系酸化剤は、1種を単独で用いてもよいし、2種以上を組み合わせて使用してもよい。これらの中で次亜塩素酸塩は取り扱いが容易であるので好適に用いることができる。   These chlorine-based oxidizing agents may be used alone or in combination of two or more. Of these, hypochlorite can be preferably used because it is easy to handle.

遊離塩素を生成させる際には、水系内に残留する塩素安定化剤の濃度に応じて生成させることが望ましい。残留している塩素安定化剤と遊離塩素とが結合することで結合塩素となるが、余剰分は遊離塩素として検出することができる。この遊離塩素の濃度を一定範囲内にコントロールすることで結合塩素の再生を効率よく実現することができる。   When producing free chlorine, it is desirable to produce it according to the concentration of the chlorine stabilizer remaining in the aqueous system. The remaining chlorine stabilizer and free chlorine are combined to form combined chlorine, but the surplus can be detected as free chlorine. By controlling the concentration of this free chlorine within a certain range, it is possible to efficiently realize regeneration of bound chlorine.

好ましくは、結合塩素量の制御は、水系内の遊離塩素濃度に基づいて行うことが望ましい。塩素安定化剤が残留し得る水系内に、外部から遊離塩素を生成せしめ、更にこの遊離塩素濃度を継続的にモニタリングすることで、余剰分の遊離塩素をリアルタイムで検出できる。これによりリアルタイムで結合塩素量を制御でき、結合塩素の過剰注入を効果的に防止できる。   Preferably, the amount of bound chlorine is controlled based on the free chlorine concentration in the aqueous system. Excess free chlorine can be detected in real time by generating free chlorine from the outside in an aqueous system in which the chlorine stabilizer can remain, and by continuously monitoring the free chlorine concentration. Thereby, the amount of combined chlorine can be controlled in real time, and excessive injection of combined chlorine can be effectively prevented.

更に、必要に応じて、水系の遊離塩素濃度を測定し、この測定値に基づいて水系内の遊離塩素量を調節する制御手段を別途設けてもよい。これにより、継続的に水系の水質管理を行うことができる。この制御手段については特に限定されず、例えば、測定した塩素濃度に基づいて薬注を行うこと等によって遊離塩素量を制御することができる。   Further, if necessary, a control means for measuring the concentration of free chlorine in the aqueous system and adjusting the amount of free chlorine in the aqueous system based on this measured value may be additionally provided. Thereby, water quality management of a water system can be performed continuously. The control means is not particularly limited, and the amount of free chlorine can be controlled by, for example, performing chemical injection based on the measured chlorine concentration.

この場合、水系内の遊離塩素の濃度を測定する方法としては限定されず、例えば、ポーラログラフィーや、吸光光度法や、DPD(N,N-diethylphenylenediamine)法により塩素濃度を測定する方法や、水系内の酸化還元電位(Oxidation-reduction Potential;ORP)測定し、この酸化還元電位に基づいて遊離塩素濃度を推定する方法等が挙げられる。このようにして得られた遊離塩素濃度値に基づいて、目標とする遊離塩素の濃度値となるように遊離塩素量を調節することができる。   In this case, the method for measuring the concentration of free chlorine in the aqueous system is not limited. For example, a method for measuring the chlorine concentration by polarography, absorptiometry, DPD (N, N-diethylphenylenediamine) method, Examples include a method of measuring an oxidation-reduction potential (ORP) in an aqueous system and estimating a free chlorine concentration based on this oxidation-reduction potential. Based on the free chlorine concentration value thus obtained, the amount of free chlorine can be adjusted so as to obtain a target free chlorine concentration value.

好適な水系内の遊離塩素濃度の下限値は、ORP法によれば0.05mg−Cl/L以上、より好ましくは0.1mg−Cl/L以上、更に好ましくは0.4mg−Cl/L以上であることが望ましい。かかる遊離塩素濃度とすることで、水系内に残留する塩素安定化剤と更に効率よく結合させることができる。その結果、結合塩素を更に効率よく再生させることができる。一方、遊離塩素濃度の上限値は、水系内の金属の腐食を防止する観点等から、1mg−Cl/L以下であることが好ましい。   A preferable lower limit of the free chlorine concentration in the aqueous system is 0.05 mg-Cl / L or more, more preferably 0.1 mg-Cl / L or more, still more preferably 0.4 mg-Cl / L or more according to the ORP method. It is desirable that By setting it as this free chlorine density | concentration, it can be combined more efficiently with the chlorine stabilizer remaining in the aqueous system. As a result, bound chlorine can be regenerated more efficiently. On the other hand, the upper limit of the free chlorine concentration is preferably 1 mg-Cl / L or less from the viewpoint of preventing corrosion of metals in the aqueous system.

更に、前述した水系の結合塩素濃度についても制御したい場合には、水系の結合塩素濃度も測定し、測定した遊離塩素濃度と結合塩素濃度の両方に基づいて水系内の結合塩素量を調節してもよい。遊離塩素濃度のみならず結合塩素濃度についてもモニタリングすることで、再生される結合塩素量をより正確に把握することができ、高精度かつ継続的に水質管理を行うことができる。   Furthermore, when it is desired to control the above-mentioned combined chlorine concentration in the aqueous system, the combined chlorine concentration in the aqueous system is also measured, and the amount of combined chlorine in the aqueous system is adjusted based on both the measured free chlorine concentration and the combined chlorine concentration. Also good. By monitoring not only the free chlorine concentration but also the combined chlorine concentration, the amount of combined chlorine to be regenerated can be grasped more accurately, and the water quality can be managed with high accuracy and continuously.

好適な水系内の結合塩素濃度としては、下限値が0.1mg−Cl/L以上であることが好ましく、上限値が50mg−Cl/L以下であることが好ましい。この場合の結合塩素濃度はDPD法によって測定する。   As a suitable bound chlorine concentration in the aqueous system, the lower limit value is preferably 0.1 mg-Cl / L or more, and the upper limit value is preferably 50 mg-Cl / L or less. The bound chlorine concentration in this case is measured by the DPD method.

水系内で結合塩素が消耗されることによって塩素安定化剤が生じ得るが、本発明では遊離塩素を塩素安定化剤と反応させることで結合塩素として再生させることができる。これによって塩素安定化剤を有効利用でき、塩素安定化剤等が水系内に蓄積すること等が防止できる。
また、塩素安定化剤から結合塩素を再生させることができるため、水系内における結合塩素の消耗速度の影響を受けなくてすむ。そのため結合塩素の検出濃度の安定化や検出濃度を向上させることができる。これによって安定した水処理効果を得ることができる。
そして、結合塩素の検出濃度を向上させることができるため、薬注の添加量を低減することもできる。特に、水系処理剤としてマルチ薬剤を用いる場合には、薬剤の添加量が増加することによる他の成分の過剰注入や過剰残留等も防止できる。
A chlorine stabilizer can be generated by depleting bound chlorine in an aqueous system, but in the present invention, free chlorine can be regenerated as bound chlorine by reacting with a chlorine stabilizer. This makes it possible to effectively use the chlorine stabilizer and prevent the chlorine stabilizer and the like from accumulating in the aqueous system.
Further, since the combined chlorine can be regenerated from the chlorine stabilizer, it is not necessary to be affected by the consumption rate of the combined chlorine in the aqueous system. For this reason, the detection concentration of the combined chlorine can be stabilized and the detection concentration can be improved. As a result, a stable water treatment effect can be obtained.
And since the detection density | concentration of a combined chlorine can be improved, the addition amount of a chemical injection can also be reduced. In particular, when a multi-drug is used as an aqueous treatment agent, it is possible to prevent excessive injection or excessive residual of other components due to an increase in the amount of drug added.

本発明に係る水系処理剤の濃度制御方法が適用し得る処理対象としては特に限定されず、例えば、各種工場のプラント冷却水系、スクラバー、廃水処理水系、排水処理水系、鉄鋼水系、切削油水系等が挙げられ、これらの装置、通水配管等に付着したスライム構成物等を剥離できる。   The treatment target to which the concentration control method of the water-based treatment agent according to the present invention can be applied is not particularly limited. For example, plant cooling water systems, scrubbers, waste water treatment water systems, waste water treatment water systems, steel water systems, cutting oil water systems, etc. The slime composition adhering to these devices, water pipes and the like can be peeled off.

水系としては循環水系に好適に用いることができる。循環水系を長期運転させると、塩素安定化剤が水系内に多量に残留してしまいやすいが、本発明によれば塩素安定化剤から結合塩素を再生することができるので好適である。更には、開放循環冷却水系等が好適である。例えば、レジオネラ菌等の細菌は、開放式循環冷却塔等の水温、特に冷却塔内に発生する藻類に囲まれた環境を好み、かかる条件の水系において発生しやすい。本発明は、とりわけ開放循環冷却水系等に対して効果的かつ長期にわたり水系殺菌剤の濃度を効果的に制御することができる。   As an aqueous system, it can use suitably for a circulating water system. When the circulating water system is operated for a long period of time, a large amount of chlorine stabilizer tends to remain in the water system. However, according to the present invention, it is preferable because combined chlorine can be regenerated from the chlorine stabilizer. Furthermore, an open circulating cooling water system or the like is suitable. For example, bacteria such as Legionella bacteria are liable to be generated in an aqueous system under such conditions because the water temperature of an open circulation cooling tower or the like, particularly an environment surrounded by algae generated in the cooling tower, is preferred. The present invention can effectively control the concentration of the water-based disinfectant particularly for an open circulation cooling water system and the like over a long period of time.

以下に実施例を挙げて本発明をより具体的に説明するとともに、本発明の効果を検証する。   Hereinafter, the present invention will be described more specifically with reference to examples, and effects of the present invention will be verified.

[実施例]
図1に示す装置を用いて検証を行った。図1は、本発明の水系処理剤の濃度制御方法の説明に供する開放循環冷却水系の系統図の一例である。この開放循環冷却水系では、冷却塔1から冷却水配管往路2とポンプPを経て熱交換器3に供給され、戻り水は冷却水配管復路4を経て冷却塔1に戻される。冷却塔1の冷凍規模は400RT、保有水量30m、濃縮倍率5倍で運転した。冷却塔1はファンFを備え、空調用冷却水Wが蓄水されている。空調用冷却水Wの遊離塩素濃度はセンサーSによって測定され、遊離塩素剤制御部5と結合塩素剤制御部6によって制御される。遊離塩素剤制御部5は、薬注タンク51と、薬注口52を備えている。結合塩素剤制御部6は、薬注タンク61と、薬注口62を備えている。センサーSによって測定された遊離塩素濃度に基づいて、遊離塩素剤や結合塩素剤の薬注を制御する。
[Example]
Verification was performed using the apparatus shown in FIG. FIG. 1 is an example of a system diagram of an open circulating cooling water system used for explaining the concentration control method for an aqueous treatment agent of the present invention. In this open circulation cooling water system, the cooling tower 1 is supplied to the heat exchanger 3 via the cooling water pipe forward path 2 and the pump P, and the return water is returned to the cooling tower 1 via the cooling water pipe return path 4. The cooling tower 1 was operated at a refrigeration scale of 400 RT, a retained water amount of 30 m 3 , and a concentration factor of 5 times. The cooling tower 1 includes a fan F, and air-conditioning cooling water W is stored. The free chlorine concentration of the cooling water W for air conditioning is measured by the sensor S and controlled by the free chlorine agent control unit 5 and the combined chlorine agent control unit 6. The free chlorine agent control unit 5 includes a chemical injection tank 51 and a chemical injection port 52. The combined chlorine agent control unit 6 includes a chemical injection tank 61 and a chemical injection port 62. Based on the free chlorine concentration measured by the sensor S, the chemical injection of the free chlorine agent and the combined chlorine agent is controlled.

遊離塩素のコントロールは次亜塩素酸塩を薬注することで行った。結合塩素剤(安定化塩素剤)としてクロロスルファミン酸を用いて行った。
水系内の結合塩素剤(クロロスルファミン酸)は冷却水ブロー水量に対して15mg−Cl/Lの割合となるように添加した。水系内の遊離塩素は、常時0.5mg−Cl/LとなるようにORP電極を用いて薬注量の管理を行った。なお、結合塩素剤の濃度はDPD法によって測定した。
剥離したスライムは濃縮に依存したブローによって自然排出させ、清掃等の特別な除去は実施しなかった。このようにして連続運転させ、水系内の結合塩素剤濃度と遊離塩素濃度の経時変化を測定した。その結果を表1に示す。
Control of free chlorine was performed by injecting hypochlorite. This was performed using chlorosulfamic acid as a combined chlorine agent (stabilized chlorine agent).
The combined chlorine agent (chlorosulfamic acid) in the aqueous system was added so as to have a ratio of 15 mg-Cl / L with respect to the cooling water blow water amount. The amount of chemical administration was controlled using an ORP electrode so that free chlorine in the aqueous system was always 0.5 mg-Cl / L. In addition, the density | concentration of the combined chlorine agent was measured by DPD method.
The exfoliated slime was naturally discharged by blowing depending on concentration, and no special removal such as cleaning was performed. Thus, it was made to operate continuously and the change over time of the combined chlorine agent concentration and free chlorine concentration in the aqueous system was measured. The results are shown in Table 1.

[比較例]
水系内の結合塩素剤(クロロスルファミン酸)は冷却水ブロー水量に対して15mg−Cl/Lの割合となるように添加したのみで、遊離塩素濃度については制御しなかった。それ以外の点は、実施例と同様の条件で連続運転させた。その結果を表1に示す。
[Comparative example]
The combined chlorine agent (chlorosulfamic acid) in the aqueous system was only added so as to have a ratio of 15 mg-Cl / L with respect to the cooling water blow water amount, and the free chlorine concentration was not controlled. The other points were continuously operated under the same conditions as in the example. The results are shown in Table 1.

[考察]
実施例は比較例に比して高い結合塩素濃度を維持できた。特に、運転日数が長くなるにつれて結合塩素濃度が上昇しており、結合塩素濃度の推移から結合塩素が水系内で再生されていることが示唆された。その結果、実施例では結合塩素剤の添加濃度に近い検出濃度を維持し得ることが示された。
一方、比較例は、運転期間を通じて低い結合塩素濃度であった。比較例では遊離塩素を水系内に生成させなかったために、結合塩素が再生されなかったものと思われる。
以上より、本発明によれば、結合塩素剤の濃度管理や消耗した結合塩素の再生が可能となり、安定した水処理効果を発揮し得ることが示された。
[Discussion]
The example was able to maintain a higher combined chlorine concentration than the comparative example. In particular, the combined chlorine concentration increased as the operating days increased, and the transition of the combined chlorine concentration suggested that the combined chlorine was regenerated in the water system. As a result, it was shown that the detected concentration close to the added concentration of the combined chlorine agent can be maintained in the examples.
On the other hand, the comparative example had a low combined chlorine concentration throughout the operation period. In the comparative example, free chlorine was not generated in the aqueous system, so it seems that the combined chlorine was not regenerated.
From the above, according to the present invention, it has been shown that the concentration control of the combined chlorine agent and the regeneration of the exhausted combined chlorine are possible, and a stable water treatment effect can be exhibited.

本発明の水系処理剤の濃度制御方法の説明に供する開放循環冷却水系の系統図の一例である。It is an example of the systematic diagram of the open circulation cooling water system with which it uses for description of the density | concentration control method of the aqueous processing agent of this invention.

符号の説明Explanation of symbols

1 冷却塔
2 冷却水配管往路
3 熱交換器
4 冷却水配管復路
5 遊離塩素剤制御部
6 結合塩素剤制御部
P ポンプ
F ファン
1 Cooling Tower 2 Cooling Water Pipe Outbound 3 Heat Exchanger 4 Cooling Water Pipe Return 5 Free Chlorine Control Unit 6 Combined Chlorine Control Unit P Pump F Fan

Claims (4)

遊離塩素を水系に発生させて、該水系の結合塩素の量を制御する水系処理剤の濃度制御方法。   A method for controlling the concentration of an aqueous treatment agent that generates free chlorine in an aqueous system and controls the amount of bound chlorine in the aqueous system. 前記結合塩素の量の制御は、前記水系内の遊離塩素濃度を制御することにより行うことを特徴とする請求項1記載の水系処理剤の濃度制御方法。   The method for controlling the concentration of an aqueous treatment agent according to claim 1, wherein the amount of the combined chlorine is controlled by controlling the concentration of free chlorine in the aqueous system. 前記水系内の遊離塩素濃度を、0.05mg−Cl/L以上とすること特徴とする請求項1又は2記載の水系処理剤の濃度制御方法。   The method for controlling the concentration of an aqueous treatment agent according to claim 1 or 2, wherein the free chlorine concentration in the aqueous system is 0.05 mg-Cl / L or more. 前記遊離塩素は、次亜塩素酸と亜塩素酸と二酸化塩素と塩素ガスの少なくともいずれか一つを前記水系に添加することによって生成させることを特徴とする請求項1〜3のいずれか一項に記載の水系処理剤の濃度制御方法。   The said free chlorine is produced | generated by adding at least any one of hypochlorous acid, chlorous acid, chlorine dioxide, and chlorine gas to the said water system. 4. A method for controlling the concentration of the aqueous treatment agent according to 1.
JP2008039924A 2007-09-27 2008-02-21 Concentration control method for aqueous processing agents Active JP5806793B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2008039924A JP5806793B2 (en) 2008-02-21 2008-02-21 Concentration control method for aqueous processing agents
PCT/JP2008/066338 WO2009041267A1 (en) 2007-09-27 2008-09-10 Bactericidal/algicidal method
EP08832826.5A EP2196092B1 (en) 2007-09-27 2008-09-10 Bactericidal/algicidal method
US12/733,746 US10421676B2 (en) 2007-09-27 2008-09-10 Bactericidal/algicidal method
KR1020107005483A KR101706548B1 (en) 2007-09-27 2008-09-10 Bactericidal/algicidal method
MYPI2010001310A MY173605A (en) 2007-09-27 2008-09-10 Bactericidal/algicidal method
BRPI0817976 BRPI0817976A2 (en) 2007-09-27 2008-09-10 BACTERICIDE / ALGICIDE METHOD
CN200880106419A CN101801199A (en) 2007-09-27 2008-09-10 Bactericidal/algicidal method
TW97136528A TWI439423B (en) 2007-09-27 2008-09-23 Method for sterilizing and killing algae

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008039924A JP5806793B2 (en) 2008-02-21 2008-02-21 Concentration control method for aqueous processing agents

Publications (2)

Publication Number Publication Date
JP2009195823A true JP2009195823A (en) 2009-09-03
JP5806793B2 JP5806793B2 (en) 2015-11-10

Family

ID=41139960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008039924A Active JP5806793B2 (en) 2007-09-27 2008-02-21 Concentration control method for aqueous processing agents

Country Status (1)

Country Link
JP (1) JP5806793B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011133143A (en) * 2009-12-22 2011-07-07 Miura Co Ltd Water treatment system
JP2012130852A (en) * 2010-12-21 2012-07-12 Hakuto Co Ltd Water system treating method suppressing microbial damage in water system
JP2013123680A (en) * 2011-12-14 2013-06-24 Jfe Steel Corp Method for treating cooling water
JP2014198283A (en) * 2013-03-29 2014-10-23 栗田工業株式会社 Method for processing water system with chlorine-based agent
US9700847B2 (en) 2010-03-31 2017-07-11 Kurita Water Industries, Ltd. Combined chlorine agent and production and use thereof
WO2018168641A1 (en) * 2017-03-15 2018-09-20 栗田工業株式会社 Cleaning fluid, detergent, and cleaning method for water-contact member
JP7323230B2 (en) 2018-05-01 2023-08-08 アムテック株式会社 Method for generating combined chlorine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5518259A (en) * 1978-07-28 1980-02-08 Kurita Water Ind Ltd Available chlorine activity maintainer in water
JPS5626587A (en) * 1979-08-10 1981-03-14 Nitto Chem Ind Co Ltd Stabilizing method for residual chlorine
JP2006263510A (en) * 2005-03-22 2006-10-05 Kurita Water Ind Ltd Slime preventing agent for membrane separation and membrane separation method
JP2007205591A (en) * 2006-01-31 2007-08-16 Miura Co Ltd Operating method of cooling tower

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5518259A (en) * 1978-07-28 1980-02-08 Kurita Water Ind Ltd Available chlorine activity maintainer in water
JPS5626587A (en) * 1979-08-10 1981-03-14 Nitto Chem Ind Co Ltd Stabilizing method for residual chlorine
JP2006263510A (en) * 2005-03-22 2006-10-05 Kurita Water Ind Ltd Slime preventing agent for membrane separation and membrane separation method
JP2007205591A (en) * 2006-01-31 2007-08-16 Miura Co Ltd Operating method of cooling tower

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011133143A (en) * 2009-12-22 2011-07-07 Miura Co Ltd Water treatment system
US9700847B2 (en) 2010-03-31 2017-07-11 Kurita Water Industries, Ltd. Combined chlorine agent and production and use thereof
JP2012130852A (en) * 2010-12-21 2012-07-12 Hakuto Co Ltd Water system treating method suppressing microbial damage in water system
JP2013123680A (en) * 2011-12-14 2013-06-24 Jfe Steel Corp Method for treating cooling water
JP2014198283A (en) * 2013-03-29 2014-10-23 栗田工業株式会社 Method for processing water system with chlorine-based agent
WO2018168641A1 (en) * 2017-03-15 2018-09-20 栗田工業株式会社 Cleaning fluid, detergent, and cleaning method for water-contact member
JPWO2018168641A1 (en) * 2017-03-15 2019-03-28 栗田工業株式会社 Cleaning liquid, cleaning agent and cleaning method for wetted parts
JP7323230B2 (en) 2018-05-01 2023-08-08 アムテック株式会社 Method for generating combined chlorine

Also Published As

Publication number Publication date
JP5806793B2 (en) 2015-11-10

Similar Documents

Publication Publication Date Title
JP5806793B2 (en) Concentration control method for aqueous processing agents
JP4867930B2 (en) Disinfection method of aqueous Legionella bacteria
JP4317762B2 (en) Method for the preparation of biocides containing stabilized hypochlorite and bromide ion sources, and methods for controlling microbial fouling using the same
TWI439423B (en) Method for sterilizing and killing algae
US3170883A (en) Stabilization of chlorine in aqueous solutions
CN108291318B (en) Electrolytic production of halogen-based disinfectant solutions from water containing halides and ammonia
NO340906B1 (en) Composition and method of antimicrobial effect in water systems
JP5141163B2 (en) Bactericidal and algae killing method
WO2001090001A1 (en) Cooling tower maintenance
JP2016120457A (en) Filtration treatment system and filtration treatment method
JP2009154113A (en) Sterilization treatment method for water system water
JP5480464B2 (en) How to add slime control agent
JP2006314914A (en) Apparatus for treating by-product gas and system for supplying electrolytic water
JP7266224B2 (en) Method for preventing adherence of marine organisms
JP2000140858A (en) Method for inhibiting slime from being caused, inhibitor for the same and cooling water circulation system using the same
EP1866253A1 (en) Electrochemical method for preparing microbiocidal solutions
JP5458551B2 (en) Concentration control method for aqueous treatment agent and aqueous sterilization method using the control method
JP4013486B2 (en) Cooling water slime prevention method
CN101999403A (en) Method for preparing stable liquid bromine biocide
JP2005052735A (en) Wastewater disinfection system and wastewater disinfection method
JP2004267896A (en) Contamination preventing method for industrial/waste water system
JP6331364B2 (en) Corrosion reducing method and corrosion reducing agent
JP2003210557A (en) Sterilization and deodorization method using acidic electrolysis water and preserving chamber sterilized and deodorized using the same
JP4161071B2 (en) Water-based disinfectant manufacturing equipment
JP2005131534A (en) Microbial damage prevention method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131022

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140522

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140602

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150907

R150 Certificate of patent or registration of utility model

Ref document number: 5806793

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157