JP7321381B2 - Vibration suppression device - Google Patents

Vibration suppression device Download PDF

Info

Publication number
JP7321381B2
JP7321381B2 JP2022543855A JP2022543855A JP7321381B2 JP 7321381 B2 JP7321381 B2 JP 7321381B2 JP 2022543855 A JP2022543855 A JP 2022543855A JP 2022543855 A JP2022543855 A JP 2022543855A JP 7321381 B2 JP7321381 B2 JP 7321381B2
Authority
JP
Japan
Prior art keywords
wall
vibration propagation
unit cells
suppressing device
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022543855A
Other languages
Japanese (ja)
Other versions
JPWO2022038690A1 (en
Inventor
多聞 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2022038690A1 publication Critical patent/JPWO2022038690A1/ja
Application granted granted Critical
Publication of JP7321381B2 publication Critical patent/JP7321381B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/023Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using fluid means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F5/00Liquid springs in which the liquid works as a spring by compression, e.g. combined with throttling action; Combinations of devices including liquid springs

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Vibration Prevention Devices (AREA)

Description

本開示は、振動伝播抑制装置に関する。 The present disclosure relates to a vibration propagation suppression device.

振動伝播抑制装置は、精密機器を設置する場合、外部から加えられる振動および衝撃から精密機器を保護する目的で用いられている。振動伝播抑制装置は、一般に弾性を有する素材または部材を備える装置であり、振動または衝撃の発生源と精密機器の間に配置されることで、精密機器への振動または衝撃を緩和する。 Vibration propagation suppressing devices are used for the purpose of protecting precision equipment from vibrations and impacts applied from the outside when the precision equipment is installed. A vibration propagation suppressing device is generally a device that includes an elastic material or member, and is placed between a source of vibration or shock and the precision instrument to reduce vibration or shock to the precision instrument.

振動伝播抑制装置の一形態として、弾性に加えて慣性を有する流体機械要素の周期配置により、振動の伝播を広帯域で遮断するバンドストップ効果を活用するものが知られている。これは、電磁波の帯域除去に用いられるバンドストップフィルタに着想を得たものであり、周期構造を形成することで広い周波数帯域の弾性波の伝搬を抑制する振動伝播抑制装置を得ることができる。このような周期構造による振動伝播抑制装置の性能評価指標は、バンドストップ効果の現れる周波数帯域の低域性、広域性、低応答性である。したがって先行例では流体機械要素の材質が選定され、また、形状および周期配置法が考案され、これらの性能改善が追求されている。 As one form of vibration propagation suppressing device, there is known one that utilizes a bandstop effect that blocks the propagation of vibration over a wide band by periodically arranging fluid mechanical elements that have inertia in addition to elasticity. This is inspired by a band-stop filter used for band elimination of electromagnetic waves, and by forming a periodic structure, it is possible to obtain a vibration propagation suppressing device that suppresses the propagation of elastic waves in a wide frequency band. The performance evaluation index of the vibration propagation suppressing device with such a periodic structure is the low frequency range, wide range, and low response of the frequency band in which the band stop effect appears. Therefore, in the prior art, the material of the fluid machine element is selected, the shape and periodic arrangement method are devised, and the improvement of these performances is pursued.

特許文献1は、流体機械要素を振動伝播方向に周期配置した1軸の振動伝播抑制装置を開示する。流体機械要素は、中間質量の設けられたオリフィスを挟んで2つの容積室を同軸上に配置し内部を流体で満たしている。また、流体機械要素に配置された中間質量同士は弾性体で振動伝播方向に接続されている。振動伝播抑制装置に外部荷重が入力されると流体機械要素の容積室が軸方向に伸縮し、内部流体がオリフィスを介して流動する。この際に流体が狭隘なオリフィスを流れるために流体が加速され、荷重側から見て流体機械要素の質量が増大した流体質量効果を生む。この流体質量効果を含む流体機械要素の周期配置により、特許文献1に記載の振動伝播抑制装置は従来の機械系のみで形成される振動伝播抑制装置に対して、装置外形寸法を維持したままストップバンドの低域化、広域化、低応答化を実現できる。 Patent Literature 1 discloses a uniaxial vibration propagation suppressing device in which fluid mechanical elements are periodically arranged in the vibration propagation direction. The hydromechanical element has two coaxially arranged volume chambers with an orifice having an intermediate mass therebetween and is filled with a fluid. In addition, the intermediate masses arranged in the fluid machine elements are connected to each other in the vibration propagation direction by means of elastic bodies. When an external load is input to the vibration propagation suppression device, the volume chamber of the fluid machine element expands and contracts in the axial direction, causing the internal fluid to flow through the orifice. At this time, since the fluid flows through the narrow orifice, the fluid is accelerated, producing a fluid mass effect in which the mass of the fluid mechanical element is increased when viewed from the load side. Due to the periodic arrangement of the fluid machine elements including this fluid mass effect, the vibration propagation suppressing device described in Patent Document 1 can stop while maintaining the external dimensions of the device compared to the vibration propagation suppressing device formed only by the conventional mechanical system. It is possible to achieve a lower band, a wider band, and a lower response.

国際公開第2019/064669号WO2019/064669

特許文献1では機械的な変位を流体の流動に変換し、その際に流体を狭隘なオリフィスに流動させることで流体質量効果を増幅しバンドストップの低域性、広域性、低応答性を実現している。本性能を実現するため、特許文献1に記載の流体機械要素は上下の容積室とオリフィスで形成される流体充填領域を閉空間とし、流体の流動をオリフィスに集中させている。しかし流体充填領域を閉空間とする要求から、それぞれ独立した部品である容積室、フランジ、そして中間質量体を組み合わせて空間を閉じる必要性が生じ、またこれに付随して流体機械要素同士も互いに独立した部品として溶接またはボルトなどで接続する必要がある。これらにより特許文献1に記載の振動伝播抑制装置は複雑な構造を有することで、部品点数が増大するという実用上の問題がある。 In Patent Document 1, mechanical displacement is converted into fluid flow, and at that time, the fluid mass effect is amplified by causing the fluid to flow through a narrow orifice, realizing bandstop low-range, wide-range, and low responsiveness. are doing. In order to achieve this performance, the fluid machine element described in Patent Document 1 has a fluid-filled region formed by upper and lower volume chambers and an orifice as a closed space, and concentrates the flow of the fluid on the orifice. However, due to the requirement that the fluid-filled area be a closed space, it becomes necessary to combine independent parts such as a volume chamber, a flange, and an intermediate mass to close the space. They must be welded or bolted together as separate parts. As a result, the vibration propagation suppressing device described in Patent Literature 1 has a complicated structure, which poses a practical problem of increasing the number of parts.

本開示は、上記に鑑みてなされたものであり、部品点数が少ない振動伝播抑制装置を提供することを目的とする。 The present disclosure has been made in view of the above, and an object thereof is to provide a vibration propagation suppressing device with a small number of parts.

上記目的を達成するため、本開示に係る振動伝播抑制装置は、支持対象体と強制変位を受ける基礎面との間に、振動伝播方向に、直列に複数結合されて設置される複数の単位セルを備え、複数の単位セルのそれぞれは、振動伝播方向と交差する第1の方向に延びる形状を有し、閉断面を形成する隔壁と、隔壁で囲まれた空間に充填された流体と、を有し、隔壁は、振動伝播方向に加えられた荷重に対して閉断面の面積変化を生ずる構造を有し、第1の方向における両端部のうち少なくとも一端部が開放され、隣接する単位セルは、互いに隔壁で外接する。 In order to achieve the above object, a vibration propagation suppressing device according to the present disclosure includes a plurality of unit cells connected in series in the direction of vibration propagation between a support object and a base surface that undergoes forced displacement. each of the plurality of unit cells has a shape extending in a first direction that intersects the vibration propagation direction, partition walls forming a closed cross section, and a fluid filled in the space surrounded by the partition walls. The partition wall has a structure that causes a change in the area of the closed cross section with respect to a load applied in the direction of vibration propagation, at least one of both ends in the first direction is open, and the adjacent unit cells are , circumscribing each other with partition walls.

本開示によれば、振動伝播方向と交差する第1の方向に延びる形状を有し、閉断面を形成する隔壁と、隔壁で囲まれた空間に充填された流体と、を有することで、部品点数が少ない振動伝播抑制装置を提供することができる。 According to the present disclosure, a partition having a shape extending in a first direction that intersects the vibration propagation direction and forming a closed cross section, and a fluid filled in the space surrounded by the partition; It is possible to provide a vibration propagation suppressing device with a small number of points.

実施の形態1に係る振動伝播抑制装置を示す図1 shows a vibration propagation suppressing device according to Embodiment 1. FIG. 実施の形態1に係る振動伝播抑制装置を示す斜視図1 is a perspective view showing a vibration propagation suppressing device according to Embodiment 1. FIG. 実施の形態2に係る振動伝播抑制装置を示す斜視図The perspective view which shows the vibration propagation suppression apparatus which concerns on Embodiment 2. 実施の形態3に係る振動伝播抑制装置を示す斜視図The perspective view which shows the vibration propagation suppression apparatus which concerns on Embodiment 3. 実施の形態3に係る振動伝播抑制装置を示す図FIG. 11 shows a vibration propagation suppressing device according to a third embodiment; 実施の形態4に係る振動伝播抑制装置を示す斜視図The perspective view which shows the vibration propagation suppression apparatus which concerns on Embodiment 4. 実施の形態4に係る振動伝播抑制装置を示す図The figure which shows the vibration propagation suppression apparatus which concerns on Embodiment 4. 実施の形態5に係る振動伝播抑制装置を示す斜視図The perspective view which shows the vibration propagation suppression apparatus which concerns on Embodiment 5. 実施の形態6に係る振動伝播抑制装置を示す断面図Sectional view showing a vibration propagation suppressing device according to Embodiment 6 実施の形態7に係る振動伝播抑制装置を示す斜視図The perspective view which shows the vibration propagation suppression apparatus which concerns on Embodiment 7. 実施の形態7に係る振動伝播抑制装置を示す上面図FIG. 11 is a top view showing a vibration propagation suppressing device according to Embodiment 7; 図11のXII-XII断面図XII-XII sectional view of FIG. 図11のXIII-XIII断面図XIII-XIII sectional view of FIG. 変形例に係る振動伝播抑制装置を示す図The figure which shows the vibration propagation suppression apparatus which concerns on a modification

以下、本開示を実施するための形態に係る振動伝播抑制装置を図面を参照しながら説明する。 Hereinafter, a vibration propagation suppressing device according to embodiments for carrying out the present disclosure will be described with reference to the drawings.

(実施の形態1)
本実施の形態1に係る振動伝播抑制装置100は、図1に示すように、振動伝播方向400に、直列に複数結合されて設置される複数の単位セル10a~10fを備え、支持対象体である精密機器200と強制変位を受ける基礎面300との間に配置される。精密機器200は、基礎面300の上に振動伝播抑制装置100により支持される。振動伝播抑制装置100と、支持対象の精密機器200と基礎面300とは、防振系を構成する。複数の単位セル10a~10fのそれぞれは、図2に示すように、振動伝播方向400と交差する第1の方向に延びる形状を有し、第1の方向に垂直な閉断面11を形成する隔壁20と、隔壁20で囲まれた空間に充填された流体30と、を有する。なお、第1の方向に延びる形状とは、第1の方向に垂直な面で切断した断面が、閉じた閉断面11を有する形状であり、隔壁20の断面12は楕円、円形または多角形を含む任意の形状を含む。実施の形態1では、楕円の断面12を有する振動伝播抑制装置100について説明する。また、振動伝播方向400と交差する第1の方向は、振動伝播方向400と直交する方向として説明するが、第1の方向は、振動伝播方向400と交差する方向であればよく、直交する方向に限定されない。また、図1では、単位セル10が6個の場合について示しているが、精密機器200と基礎面300との間で振動伝搬が抑制されれば単位セル10の個数は複数であれば何個でもよい。
(Embodiment 1)
As shown in FIG. 1, the vibration propagation suppressing device 100 according to the first embodiment includes a plurality of unit cells 10a to 10f that are connected in series in a vibration propagation direction 400. It is placed between a certain precision instrument 200 and a base surface 300 that undergoes forced displacement. The precision instrument 200 is supported by the vibration propagation suppression device 100 on the base surface 300 . The vibration propagation suppression device 100, the precision device 200 to be supported, and the base surface 300 constitute a vibration isolation system. Each of the plurality of unit cells 10a to 10f has a shape extending in a first direction intersecting the vibration propagation direction 400, as shown in FIG. 2, and partition walls forming a closed section 11 perpendicular to the first direction 20 and a fluid 30 filled in the space surrounded by the partition wall 20 . Note that the shape extending in the first direction is a shape in which a cross section taken along a plane perpendicular to the first direction has a closed closed cross section 11, and the cross section 12 of the partition wall 20 is elliptical, circular, or polygonal. including any shape including In Embodiment 1, a vibration propagation suppressing device 100 having an elliptical cross section 12 will be described. Also, the first direction intersecting the vibration propagation direction 400 will be described as the direction orthogonal to the vibration propagation direction 400, but the first direction may be any direction as long as it intersects the vibration propagation direction 400. is not limited to FIG. 1 shows a case where there are six unit cells 10, but if vibration propagation between the precision device 200 and the base surface 300 is suppressed, how many unit cells 10 are there? It's okay.

理解を容易にするために、相互に直交するxyz座標を設定し、適宜参照する。振動伝播方向400をz方向、単位セル10a~10fが延びる第1の方向をx方向、x方向およびz方向に垂直な方向をy方向、と設定する。 To facilitate understanding, mutually orthogonal xyz coordinates are set and referred to as appropriate. The vibration propagation direction 400 is set as the z direction, the first direction in which the unit cells 10a to 10f extend is set as the x direction, and the direction perpendicular to the x and z directions is set as the y direction.

単位セル10a~10fは、一様な断面12を有してx方向に延びる楕円筒形状を有する隔壁20と、隔壁20で囲まれた空間に充填された流体30と、を有する。振動伝播抑制装置100は、複数の単位セル10a~10fを振動伝播方向400に直列に複数配置した周期構造体である。単位セル10a~10fは、隔壁20の外側で隣接する単位セル10a~10fと結合している。つまり、隣接する単位セル10a~10fは、互いに隔壁20で外接する。直列に複数配置により周期構造体の中段に位置する単位セル10b~10eは、隣接する2個の単位セル10a~10fと結合する。また1段目の単位セル10aは隣接する1個の単位セル10bと結合し、最終段目の単位セル10fは隣接する1個の単位セル10eと結合する。 Each of the unit cells 10a to 10f has a partition wall 20 having a uniform cross section 12 and an elliptical cylindrical shape extending in the x-direction, and a fluid 30 filled in the space surrounded by the partition wall 20. FIG. The vibration propagation suppressing device 100 is a periodic structure in which a plurality of unit cells 10a to 10f are arranged in series in a vibration propagation direction 400. As shown in FIG. The unit cells 10a-10f are connected to adjacent unit cells 10a-10f outside the barrier ribs 20. As shown in FIG. That is, the adjacent unit cells 10a to 10f are circumscribed by the partition walls 20. As shown in FIG. The unit cells 10b to 10e located in the middle stage of the periodic structure by arranging a plurality of them in series are coupled to two adjacent unit cells 10a to 10f. Also, the unit cell 10a in the first stage is coupled with one adjacent unit cell 10b, and the unit cell 10f in the last stage is coupled with one adjacent unit cell 10e.

隔壁20は、金属または樹脂を含む弾性体により作成され、振動伝播方向400に加えられた荷重に対して閉断面11の面積変化を生じ、荷重が除去されると元の形状に戻る可撓性を有する。閉断面11は、x方向に垂直な面である。隔壁20の厚みは、均一であり、隔壁20の断面形状は、第1の方向において均一である。隔壁20は、x方向における両端部のうち少なくとも一端部21が開放されている。 The partition wall 20 is made of an elastic material containing metal or resin, and is flexible enough to change the area of the closed cross section 11 against a load applied in the vibration propagation direction 400 and return to its original shape when the load is removed. have The closed cross section 11 is a plane perpendicular to the x direction. The thickness of the partition 20 is uniform, and the cross-sectional shape of the partition 20 is uniform in the first direction. The partition wall 20 is open at least one end 21 of both ends in the x direction.

流体30は、水、シリコンオイルまたは超流動ヘリウムを含む流体である。単位セル10に面内の変形が生じる外力が加わった場合、充填された流体30は面外方向13に押し出される。流体30としては、後述する流体質量効果を最大化し、ストップバンドの低域性、広域性、および低応答性を実現するために、高い密度を有するものを用いることが好ましい。また、流体30が面外方向13へ流動する際、隔壁20との相対速度による摩擦減衰が生じるため、摩擦減衰を少なくし、流体30の流動を大きくするため、流体30の粘度は、小さいことが好ましく、水または水以下の低粘度流体で、動粘度として1mm/s以下が好ましい。なお、流体30として、液体を用いる場合、振動伝播抑制装置100は、流体30が満たされている場所で使用されるとよい。このようにすることで、面外方向13に押し出された流体30は、隔壁20に加えられた荷重が除去されると、押し出された流体30は隔壁20で囲まれた空間に戻る。また、流体30として、空気を用いる場合、空気による反力を大きくするため、隔壁20の一端部21に設けられる開口を小さくするとよい。Fluid 30 is a fluid comprising water, silicone oil or superfluid helium. When an external force that causes in-plane deformation is applied to the unit cell 10 , the filled fluid 30 is pushed out in the out-of-plane direction 13 . The fluid 30 preferably has a high density in order to maximize the fluid mass effect, which will be described later, and to achieve a stop band with a low frequency range, a wide range, and a low response. In addition, when the fluid 30 flows in the out-of-plane direction 13, frictional attenuation occurs due to the relative speed with the partition wall 20, so the frictional attenuation is reduced and the flow of the fluid 30 is increased. is preferably water or a fluid with a viscosity lower than that of water, and preferably has a kinematic viscosity of 1 mm 2 /s or less. Note that when liquid is used as the fluid 30 , the vibration propagation suppressing device 100 is preferably used in a place filled with the fluid 30 . By doing so, the fluid 30 pushed out in the out-of-plane direction 13 returns to the space surrounded by the partitions 20 when the load applied to the partitions 20 is removed. Further, when air is used as the fluid 30, the opening provided at the one end portion 21 of the partition wall 20 should be made small in order to increase the reaction force of the air.

つぎに、上述の振動伝播抑制装置100の動作について説明する。 Next, the operation of the vibration propagation suppressing device 100 described above will be described.

振動伝播抑制装置100は、図1に示す精密機器200と基礎面300の間における荷重の伝達経路に配置される。このため一段目の単位セル10aへの荷重入力が最終段目の単位セル10fに伝搬しない効果、逆に最終段目の単位セル10fへの荷重入力が一段目の単位セル10aに伝搬しない効果を有する。一段目の単位セル10aに対し、振動伝播方向400への動的な強制変位が加わった場合、一段目の単位セル10aの隔壁20にはその可撓性により閉断面11の面積に変化が生じ、流体30は閉断面11の面外方向13に押し出される。この際、隔壁20の可撓性による弾性力と、隔壁20および流体30の振動伝播方向400への加速運動による慣性力と、さらに流体30の面外方向13への加速運動による慣性力の3つの力が、強制変位に対する反力として生じる。このうち3つ目の流体30の面外方向13への加速運動による慣性力の拡大効果は、流体質量効果と呼ばれ、実際に単位セル10a~10fが有する質量以上の慣性力を生み出す効果を有する。 The vibration propagation suppressing device 100 is arranged in a load transmission path between the precision equipment 200 and the base surface 300 shown in FIG. Therefore, the effect that the load input to the first-stage unit cell 10a is not propagated to the final-stage unit cell 10f, and conversely, the effect that the load input to the final-stage unit cell 10f is not propagated to the first-stage unit cell 10a. have. When dynamic forced displacement in the vibration propagation direction 400 is applied to the first-stage unit cell 10a, the area of the closed cross section 11 changes due to the flexibility of the partition wall 20 of the first-stage unit cell 10a. , the fluid 30 is pushed in the out-of-plane direction 13 of the closed cross-section 11 . At this time, the elastic force due to the flexibility of the partition 20, the inertial force due to the accelerated motion of the partition 20 and the fluid 30 in the vibration propagation direction 400, and the inertial force due to the accelerated motion of the fluid 30 in the out-of-plane direction 13 are three. two forces arise as reaction forces to the forced displacement. Among these, the third effect of increasing the inertial force due to the acceleration motion of the fluid 30 in the out-of-plane direction 13 is called the fluid mass effect, and it is an effect that produces an inertial force greater than the mass actually possessed by the unit cells 10a to 10f. have.

弾性と慣性を有する単位セル10a~10fを含む周期構造体である振動伝播抑制装置100は、特定の周波数の弾性波の伝搬を抑制する効果を有する。この効果は、バンドストップ効果と呼ばれる。また、伝搬が抑制される弾性波の周波数帯域は、ストップバンドと呼ばれる。ストップバンドは、振動伝播抑制装置100を伝搬する弾性波の波数κ(rad/m)と周波数ω(rad/s)の分散関係を理論解析で導出し予測および設計を実施する。 A vibration propagation suppression device 100, which is a periodic structure including unit cells 10a to 10f having elasticity and inertia, has the effect of suppressing the propagation of elastic waves of specific frequencies. This effect is called the bandstop effect. A frequency band of elastic waves whose propagation is suppressed is called a stop band. The stop band is predicted and designed by deriving the dispersion relationship between the wave number κ (rad/m) and the frequency ω (rad/s) of the elastic wave propagating through the vibration propagation suppressing device 100 by theoretical analysis.

上記構成を有する振動伝播抑制装置100は、隔壁20で囲まれた空間に充填された流体30を有する複数の単位セル10a~10fを備えることで、一段目の単位セル10aへの荷重入力が最終段目の単位セル10fに伝搬しない効果、逆に最終段目の単位セル10fへの荷重入力が一段目の単位セル10aに伝搬しない効果を有する。これにより、振動伝播抑制装置100は、強制変位を受ける基礎面300から支持対象体である精密機器200に振動が伝搬しない効果を有する。また、流体30の面外方向13への加速運動による慣性力の拡大効果は、流体質量効果と呼ばれ、実際に単位セル10a~10fが有する質量以上の慣性力を生み出す効果を有する。単位セル10a~10fは、弾性と慣性を有する周期構造体であるため、特定の周波数の弾性波の伝搬を抑制するバンドストップ効果を得ることができる。単位セル10a~10fは、一様な断面12を有しているため、周期構造体全体として一様な断面構造を有することから、一体構造としてワイヤ放電加工で製造可能である。また、3次元プリンタを用いて同周期構造体を一体造形可能である。このような流体充填領域を閉断面とすることで、流体質量効果を得つつ、部品点数の削減、装置の小型化、単純化および製造コストを低減する効果が得られる。 The vibration propagation suppressing device 100 having the above configuration is provided with a plurality of unit cells 10a to 10f each having a fluid 30 filled in a space surrounded by the partition wall 20, so that the load input to the first stage unit cell 10a is final. This has the effect of not propagating to the unit cell 10f of the stage, and conversely, the effect of not propagating the load input to the unit cell 10f of the final stage to the unit cell 10a of the first stage. As a result, the vibration propagation suppressing device 100 has the effect of preventing the vibration from propagating from the base surface 300 subjected to forced displacement to the precision equipment 200, which is the object to be supported. Further, the effect of expanding the inertial force due to the accelerated motion of the fluid 30 in the out-of-plane direction 13 is called the fluid mass effect, and has the effect of generating an inertial force greater than the mass actually possessed by the unit cells 10a to 10f. Since the unit cells 10a to 10f are periodic structures having elasticity and inertia, it is possible to obtain a bandstop effect that suppresses the propagation of elastic waves of specific frequencies. Since the unit cells 10a to 10f have a uniform cross-section 12, the periodic structure as a whole has a uniform cross-section and can be manufactured as an integral structure by wire electric discharge machining. In addition, the same periodic structure can be integrally formed using a three-dimensional printer. By forming the closed cross-section of the fluid-filled region, the effect of reducing the number of parts, downsizing and simplification of the device, and reducing the manufacturing cost can be obtained while obtaining the fluid mass effect.

これに対して、流体充填領域を閉空間とする構造により流体質量効果を得るためには、閉空間であることにより外部の加工ツールのアクセスが不可能となり、閉空間の内部の形状を一体構造で製造することが困難である。このため、閉空間は、容積室、蓋およびオリフィスを別部品として製作し、これらを溶接またはボルト締結することで閉空間を形成する必要がある。従って、流体充填領域を閉空間とする構造では、部品点数が多く、構造が複雑であり、製造に手間が掛かるという問題を有する。 On the other hand, in order to obtain the fluid mass effect by making the fluid-filled area a closed space, the closed space makes it impossible to access external processing tools, and the shape of the inside of the closed space is integrated. It is difficult to manufacture with For this reason, the closed space must be formed by manufacturing the volume chamber, the lid and the orifice as separate parts and welding or bolting them together. Therefore, the structure in which the fluid-filled region is a closed space has the problem that the number of parts is large, the structure is complicated, and the manufacturing process is time-consuming.

(実施の形態2)
実施の形態1に係る振動伝播抑制装置100では、厚みが均一である筒形状を有する隔壁20を備える例について説明した。これにより、隔壁20の全体に可撓性があり、振動伝播方向400の荷重に対して振動伝播抑制装置100が座屈しやすい構造のため、精密機器200の大きさまたは質量によっては、不安定になる場合がある。実施の形態2に係る振動伝播抑制装置100は、このような不安定になる状態を解決するものであり、具体的には、図3に示すように、互いに向かい合って配置された第1の剛体壁22および第2の剛体壁23と、第1の剛体壁22および第2の剛体壁23を接続する第1の可撓壁24と第2の可撓壁25と、を有する隔壁20を備える。
(Embodiment 2)
In the vibration propagation suppressing device 100 according to Embodiment 1, an example in which the partition wall 20 having a cylindrical shape with a uniform thickness has been described. Due to this structure, the bulkhead 20 is flexible as a whole, and the vibration propagation suppressing device 100 is likely to buckle against the load in the vibration propagation direction 400 . may become. The vibration propagation suppressing device 100 according to the second embodiment solves such an unstable state. Specifically, as shown in FIG. A bulkhead 20 having a wall 22 and a second rigid wall 23 and a first flexible wall 24 and a second flexible wall 25 connecting the first rigid wall 22 and the second rigid wall 23. .

隔壁20は、第1の剛体壁22および第2の剛体壁23と第1の可撓壁24と第2の可撓壁25とが接続され、一様な断面を有してx方向に延びる中空の扁平な筒形状を有する。隔壁20で囲まれた空間には、流体30が充填されている。また、図3では、単位セル10が6個の場合について示しているが、振動伝搬が抑制されれば単位セル10の個数は複数であれば何個でもよい。 The partition 20 has a first rigid wall 22, a second rigid wall 23, a first flexible wall 24 and a second flexible wall 25 connected to each other, and has a uniform cross section and extends in the x-direction. It has a hollow, flat cylindrical shape. A space surrounded by the partition wall 20 is filled with a fluid 30 . Also, FIG. 3 shows a case where there are six unit cells 10, but the number of unit cells 10 may be any number as long as vibration propagation is suppressed.

第1の剛体壁22および第2の剛体壁23は、金属または樹脂により作成され、z方向に垂直な平板状の形状を有し、互いに平行に配置されている。第1の剛体壁22の厚みt1および第2の剛体壁23の厚みt2は、第1の剛体壁22と第2の剛体壁23との間隔d1より小さい。単位セル10a~10eの第1の剛体壁22は、隣接する単位セル10b~10fの第2の剛体壁23と結合している。つまり、隣接する単位セル10a~10fのうちの一方の単位セル10a~10eの第1の剛体壁22と他方の単位セル10b~10fの第2の剛体壁23とが外接する。例えば、一方の単位セル10aの第1の剛体壁22と他方の単位セル10bの第2の剛体壁23とが外接する。これにより、単位セル10a~10eが互いに安定して結合される。第1の剛体壁22の厚みt1は、第2の剛体壁23の厚みt2と同じであってもよく、異なっていてもよい。 The first rigid wall 22 and the second rigid wall 23 are made of metal or resin, have flat plate shapes perpendicular to the z-direction, and are arranged parallel to each other. The thickness t1 of the first rigid wall 22 and the thickness t2 of the second rigid wall 23 are smaller than the distance d1 between the first rigid wall 22 and the second rigid wall 23 . The first rigid walls 22 of the unit cells 10a-10e are joined to the second rigid walls 23 of the adjacent unit cells 10b-10f. That is, the first rigid wall 22 of one of the adjacent unit cells 10a-10f circumscribes the second rigid wall 23 of the other unit cell 10b-10f. For example, the first rigid wall 22 of one unit cell 10a and the second rigid wall 23 of the other unit cell 10b circumscribe. Thereby, the unit cells 10a to 10e are stably connected to each other. The thickness t1 of the first rigid wall 22 may be the same as or different from the thickness t2 of the second rigid wall 23 .

第1の可撓壁24および第2の可撓壁25は、金属または樹脂を含む弾性体により作成され、隔壁20により形成される空間を内側として、外側に凸の曲面形状を有する。第1の可撓壁24および第2の可撓壁25は、加えられた荷重に対して閉断面11の面積変化を生じ、荷重が除去されると元の形状に戻る可撓性を有する。第1の可撓壁24の厚みt3および第2の可撓壁25の厚みt4は、第1の剛体壁22の厚みt1および第2の剛体壁23の厚みt2より小さい。このため、第1の可撓壁24と第2の可撓壁25は、第1の剛体壁22および第2の剛体壁23と同じ金属または樹脂を用いて作成されたとしても、第1の可撓壁24と第2の可撓壁25は、可撓性を有することができる。第1の可撓壁24の厚みt3と第2の可撓壁25の厚みt4とは、同じであることが好ましい。また、第1の可撓壁24は、第1の剛体壁22の一端部22aと第2の剛体壁23の一端部23aとを接続し、第2の可撓壁25は、第1の剛体壁22の他端部22bと第2の剛体壁23の他端部23bとを接続する。これにより、第1の可撓壁24と第2の可撓壁25とが離れて配置されることで、モーメントアームを確保でき、単位セル10a~10eの曲げ剛性が向上する。また、第1の可撓壁24の厚みt3と第2の可撓壁25の厚みt4とが、同じであることで、第1の可撓壁24と第2の可撓壁25とが均等に撓み、第1の剛体壁22および第2の剛体壁23がz方向に対して傾斜することを防ぐことができる。これにより、振動伝播抑制装置100全体としても曲げ剛性が向上し、座屈を抑制でき、構造安定性が向上する。 The first flexible wall 24 and the second flexible wall 25 are made of an elastic body containing metal or resin, and have a curved surface shape convex outward with the space formed by the partition wall 20 inside. The first flexible wall 24 and the second flexible wall 25 have the flexibility to change the area of the closed cross-section 11 with respect to the applied load and return to the original shape when the load is removed. The thickness t3 of the first flexible wall 24 and the thickness t4 of the second flexible wall 25 are smaller than the thickness t1 of the first rigid wall 22 and the thickness t2 of the second rigid wall 23 . Therefore, even if the first flexible wall 24 and the second flexible wall 25 are made of the same metal or resin as the first rigid wall 22 and the second rigid wall 23, Flexible wall 24 and second flexible wall 25 may be flexible. The thickness t3 of the first flexible wall 24 and the thickness t4 of the second flexible wall 25 are preferably the same. The first flexible wall 24 connects one end 22a of the first rigid wall 22 and one end 23a of the second rigid wall 23, and the second flexible wall 25 connects the first rigid wall 23. The other end 22b of the wall 22 and the other end 23b of the second rigid wall 23 are connected. As a result, the first flexible wall 24 and the second flexible wall 25 are arranged apart from each other, so that the moment arm can be secured and the bending rigidity of the unit cells 10a to 10e is improved. Since the thickness t3 of the first flexible wall 24 and the thickness t4 of the second flexible wall 25 are the same, the first flexible wall 24 and the second flexible wall 25 are made uniform. to prevent the first rigid wall 22 and the second rigid wall 23 from tilting with respect to the z-direction. As a result, the bending rigidity of the vibration propagation suppressing device 100 as a whole is improved, buckling can be suppressed, and structural stability is improved.

(実施の形態3)
実施の形態2に係る振動伝播抑制装置100では、構造安定性の向上のため、振動伝播抑制装置100が、互いに向かい合って配置された第1の剛体壁22および第2の剛体壁23と、第1の剛体壁22および第2の剛体壁23を接続する第1の可撓壁24と第2の可撓壁25と、を有する隔壁20を備える例について説明した。これに対して、実施の形態3に係る振動伝播抑制装置100は、実施の形態2に係る振動伝播抑制装置100の基本構造を踏襲しつつ、図4に示すように、隔壁20により形成される閉断面11の面積を相対的に小さくする構造とする。
(Embodiment 3)
In vibration propagation suppressing device 100 according to Embodiment 2, in order to improve structural stability, vibration propagation suppressing device 100 includes first rigid wall 22 and second rigid wall 23 arranged to face each other, and second rigid wall 22 and second rigid wall 23 facing each other. An example has been described with a partition 20 having a first flexible wall 24 and a second flexible wall 25 connecting one rigid wall 22 and a second rigid wall 23 . On the other hand, the vibration propagation suppressing device 100 according to Embodiment 3 follows the basic structure of the vibration propagation suppressing device 100 according to Embodiment 2, and is formed of partition walls 20 as shown in FIG. The structure is such that the area of the closed cross section 11 is made relatively small.

隔壁20は、第1の剛体壁22および第2の剛体壁23と第1の可撓壁24と第2の可撓壁25とが接続され、一様な断面を有してx方向に延びる扁平な筒形状を有する。隔壁20で囲まれた空間には、流体30が充填されている。隔壁20により形成される閉断面11は、x方向に見て、H形状を有している。また、図4では、単位セル10が6個の場合について示しているが、振動伝搬が抑制されれば単位セル10の個数は複数であれば何個でもよい。 The partition 20 has a first rigid wall 22, a second rigid wall 23, a first flexible wall 24 and a second flexible wall 25 connected to each other, and has a uniform cross section and extends in the x-direction. It has a flat cylindrical shape. A space surrounded by the partition wall 20 is filled with a fluid 30 . The closed cross section 11 formed by the partition walls 20 has an H shape when viewed in the x direction. Also, FIG. 4 shows a case where there are six unit cells 10, but the number of unit cells 10 may be any number as long as vibration propagation is suppressed.

第1の剛体壁22および第2の剛体壁23は、金属または樹脂により作成され、zに垂直な平板状の形状を有し、互いに平行に配置されている。図5に示すように、第1の剛体壁22の厚みt5および第2の剛体壁23の厚みt6は、第1の剛体壁22と第2の剛体壁23との間隔d2より大きい。第1の剛体壁22の厚みt5および第2の剛体壁23の厚みt6は、好ましくは、間隔d2の2倍以上である。隔壁20をワイヤ放電加工により製造することで、第1の剛体壁22と第2の剛体壁23との間隔d2の小さい隔壁20を容易に得ることが可能である。これにより、隔壁20により形成される図4に示す閉断面11の面積を相対的に小さくすることができる。第1の剛体壁22の厚みt5は、第2の剛体壁23の厚みt6と同じであってもよく、異なっていてもよい。 The first rigid wall 22 and the second rigid wall 23 are made of metal or resin, have a plate-like shape perpendicular to z, and are arranged parallel to each other. As shown in FIG. 5, the thickness t5 of the first rigid wall 22 and the thickness t6 of the second rigid wall 23 are greater than the distance d2 between the first rigid wall 22 and the second rigid wall 23. As shown in FIG. The thickness t5 of the first rigid wall 22 and the thickness t6 of the second rigid wall 23 are preferably at least twice the distance d2. By manufacturing the barrier ribs 20 by wire electric discharge machining, it is possible to easily obtain the barrier ribs 20 having a small distance d2 between the first rigid wall 22 and the second rigid wall 23 . As a result, the area of the closed cross section 11 shown in FIG. 4 formed by the partition wall 20 can be made relatively small. The thickness t5 of the first rigid wall 22 may be the same as or different from the thickness t6 of the second rigid wall 23 .

第1の可撓壁24および第2の可撓壁25は、金属または樹脂を含む弾性体により作成され、隔壁20により形成される空間を内側として、外側に凸の曲面形状を有する。第1の可撓壁24および第2の可撓壁25は、加えられた荷重に対して閉断面11の面積変化を生じ、荷重が除去されると元の形状に戻る可撓性を有する。第1の可撓壁24の厚みt7および第2の可撓壁25の厚みt8は、第1の剛体壁22の厚みt5および第2の剛体壁23の厚みt6より小さい。このため、第1の可撓壁24と第2の可撓壁25は、第1の剛体壁22および第2の剛体壁23と同じ金属または樹脂を用いて作成されたとしても、第1の可撓壁24と第2の可撓壁25は、可撓性を有することができる。第1の可撓壁24の厚みt5と第2の可撓壁25の厚みt6とは、同じであることが好ましい。また、第1の可撓壁24は、第1の剛体壁22の一端部22aと第2の剛体壁23の一端部23aとを接続し、第2の可撓壁25は、第1の剛体壁22の他端部22bと第2の剛体壁23の他端部23bとを接続する。 The first flexible wall 24 and the second flexible wall 25 are made of an elastic body containing metal or resin, and have a curved surface shape convex outward with the space formed by the partition wall 20 inside. The first flexible wall 24 and the second flexible wall 25 have the flexibility to change the area of the closed cross-section 11 with respect to the applied load and return to the original shape when the load is removed. The thickness t7 of the first flexible wall 24 and the thickness t8 of the second flexible wall 25 are smaller than the thickness t5 of the first rigid wall 22 and the thickness t6 of the second rigid wall 23, respectively. Therefore, even if the first flexible wall 24 and the second flexible wall 25 are made of the same metal or resin as the first rigid wall 22 and the second rigid wall 23, Flexible wall 24 and second flexible wall 25 may be flexible. The thickness t5 of the first flexible wall 24 and the thickness t6 of the second flexible wall 25 are preferably the same. The first flexible wall 24 connects one end 22a of the first rigid wall 22 and one end 23a of the second rigid wall 23, and the second flexible wall 25 connects the first rigid wall 23. The other end 22b of the wall 22 and the other end 23b of the second rigid wall 23 are connected.

第1の剛体壁22の厚みt5および第2の剛体壁23の厚みt6が、第1の剛体壁22と第2の剛体壁23との間隔d2より大きいことで、図4に示す閉断面11の面積を相対的に小さくすることができる。閉断面11の面積が相対的に小さくすることで、振動伝播抑制装置100に対して振動伝播方向400に外力が加わることにより、流体30がx方向に受ける加速度が増大する。これにより、流体30の慣性力が増大し、流体質量効果を高めることができる。この結果、実施の形態3に係る振動伝播抑制装置100のストップバンド効果は、実施の形態2に係る振動伝播抑制装置100に比してさらに低域性および広域性を有する。実施の形態3に係る振動伝播抑制装置100が有する単位セル10a~10fは、一様な断面12を有しており、第1の剛体壁22と第2の剛体壁23との間隔d2が相対的に小さいため、一体構造としてワイヤ放電加工により容易に製造可能である。 Since the thickness t5 of the first rigid wall 22 and the thickness t6 of the second rigid wall 23 are larger than the distance d2 between the first rigid wall 22 and the second rigid wall 23, the closed cross section 11 shown in FIG. can be made relatively small. By making the area of the closed cross section 11 relatively small, an external force is applied to the vibration propagation suppressing device 100 in the vibration propagation direction 400, thereby increasing the acceleration that the fluid 30 receives in the x direction. This increases the inertial force of the fluid 30 and enhances the fluid mass effect. As a result, the stop band effect of the vibration propagation suppressing device 100 according to the third embodiment has a lower frequency range and a wider range than the vibration propagation suppressing device 100 according to the second embodiment. The unit cells 10a to 10f included in the vibration propagation suppressing device 100 according to the third embodiment have a uniform cross section 12, and the distance d2 between the first rigid wall 22 and the second rigid wall 23 is relative to each other. Since it is relatively small, it can be easily manufactured by wire electric discharge machining as a monolithic structure.

(実施の形態4)
実施の形態3に係る振動伝播抑制装置100では、閉断面11の面積を相対的に小さくすることで、振動伝播抑制装置100に対して振動伝播方向400に外力が加わることにより、流体30がx方向に受ける加速度が増大し、より大きい流体質量効果を得る例について説明した。この場合、単位セル10a~10fに振動伝播方向400に外力が加わると、第1の可撓壁24および第2の可撓壁25は、外に膨らむ変形を呈する。これにより、第1の可撓壁24と、第1の剛体壁22の一端部22aおよび第2の剛体壁23の一端部23aと、の間の隙間、および第2の可撓壁25と、第1の剛体壁22の他端部22bおよび第2の剛体壁23の他端部23bと、の隙間が広がり、流体30がx方向に移動する量が低減し、十分な流体質量効果が得られにくい場合がある。
(Embodiment 4)
In vibration propagation suppressing device 100 according to Embodiment 3, the area of closed cross section 11 is relatively small, so that an external force is applied to vibration propagation suppressing device 100 in vibration propagation direction 400, causing fluid 30 to move in x direction. Examples have been described in which the directionally experienced acceleration is increased, resulting in a greater fluid mass effect. In this case, when an external force is applied to the unit cells 10a to 10f in the vibration propagation direction 400, the first flexible wall 24 and the second flexible wall 25 bulge outward. Thereby, the gap between the first flexible wall 24, the one end 22a of the first rigid wall 22 and the one end 23a of the second rigid wall 23, the second flexible wall 25, The gap between the other end 22b of the first rigid wall 22 and the other end 23b of the second rigid wall 23 widens, the amount of fluid 30 moving in the x direction is reduced, and a sufficient fluid mass effect is obtained. may be difficult to obtain.

これに対して、実施の形態4に係る振動伝播抑制装置100は、図6および図7に示すように、互いに向かい合う方向に凸の曲面形状を有する第1の可撓壁24および第2の可撓壁25を有する。この場合、単位セル10a~10fに振動伝播方向400に外力が加わると、第1の可撓壁24および第2の可撓壁25は、さらにくびれる変形を呈する。これにより、第1の可撓壁24と、第1の剛体壁22の一端部22aおよび第2の剛体壁23の一端部23aと、の間の隙間、および第2の可撓壁25と、第1の剛体壁22の他端部22bおよび第2の剛体壁23の他端部23bと、の隙間が狭まり、図6に示す閉断面11の面積をさらに低減する変形が生じる。この結果、流体30がx方向に移動する量が実施の形態3に係る振動伝播抑制装置100に比べて、相対的に増加し、十分な流体質量効果を容易に得ることができる。また、実施の形態4に係る振動伝播抑制装置100のストップバンドは、実施の形態3に係る振動伝播抑制装置100に比してさらに低域性および広域性を得ることができる。また、実施の形態4に係る振動伝播抑制装置100は、実施の形態4に係る振動伝播抑制装置100と同様に、隔壁20をワイヤ放電加工により製造することで、第1の剛体壁22と第2の剛体壁23との間隔d2の小さい隔壁20を容易に得ることが可能である。 In contrast, as shown in FIGS. 6 and 7, the vibration propagation suppressing device 100 according to the fourth embodiment includes the first flexible wall 24 and the second flexible wall 24 having convex curved surfaces facing each other. It has a flexible wall 25 . In this case, when an external force is applied to the unit cells 10a to 10f in the vibration propagation direction 400, the first flexible wall 24 and the second flexible wall 25 exhibit further necking deformation. Thereby, the gap between the first flexible wall 24, the one end 22a of the first rigid wall 22 and the one end 23a of the second rigid wall 23, the second flexible wall 25, The gap between the other end 22b of the first rigid wall 22 and the other end 23b of the second rigid wall 23 narrows, and deformation occurs to further reduce the area of the closed cross section 11 shown in FIG. As a result, the amount by which the fluid 30 moves in the x direction is relatively increased compared to the vibration propagation suppressing device 100 according to the third embodiment, and a sufficient fluid mass effect can be easily obtained. Further, the stop band of the vibration propagation suppressing device 100 according to the fourth embodiment can obtain a lower frequency range and a wider range than the vibration propagation suppressing device 100 according to the third embodiment. Further, in the vibration propagation suppressing device 100 according to Embodiment 4, similarly to the vibration propagation suppressing device 100 according to Embodiment 4, the partition walls 20 are manufactured by wire electric discharge machining, so that the first rigid wall 22 and the second rigid wall 22 are formed. It is possible to easily obtain the partition wall 20 with a small distance d2 from the two rigid walls 23.

(実施の形態5)
実施の形態1~4に係る振動伝播抑制装置100では、単位セル10a~10fを振動伝播方向400の一方向に複数並べた周期構造体である振動伝播抑制装置100について説明した。これにより、振動伝播方向400一軸へのバンドストップ効果を実現する。しかし、振動伝播抑制装置100または支持対象体である精密機器200に対して、z方向およびy方向の2軸に荷重が加わり、これらの伝搬を2軸にわたって抑制したい場合がある。このような場合に対応するため、実施の形態5に係る振動伝播抑制装置100では、単位セル10をz方向およびy方向の2軸の2方向に周期配置する2次元周期構造体である振動伝播抑制装置100を開示する。図8に示すように、振動伝播方向400に加えて直交する振動伝播方向410を定義し、当該方向にも単位セル10を周期配置する。これにより2次元周期構造体である振動伝播抑制装置100の外部に加わった2次元方向の荷重は、である振動伝播抑制装置100により伝播が抑制される。なお、実施の形態3および4に係る振動伝播抑制装置100が有する単位セル10の閉断面11を小さくすること、および実施の形態4で示した、互いに向かい合う方向に凸の曲面形状を有する第1の可撓壁24および第2の可撓壁25を、実施の形態5に係る振動伝播抑制装置100で示されるように、単位セル10をz方向およびy方向の2軸の2方向に周期配置する2次元周期構造体である振動伝播抑制装置100に適用してもよい。このようにすることで、構造安定性の向上、およびバンドストップ効果の向上に有効である。
(Embodiment 5)
In the vibration propagation suppressing device 100 according to Embodiments 1 to 4, the vibration propagation suppressing device 100, which is a periodic structure in which a plurality of unit cells 10a to 10f are arranged in one direction of the vibration propagation direction 400, has been described. As a result, a band-stop effect is realized in the vibration propagation direction 400 uniaxially. However, there are cases where a load is applied to the vibration propagation suppressing device 100 or the precision device 200, which is the object to be supported, along two axes in the z direction and the y direction, and it is desired to suppress the propagation of these along the two axes. In order to deal with such a case, the vibration propagation suppressing device 100 according to the fifth embodiment has a vibration propagation suppressing device which is a two-dimensional periodic structure in which the unit cells 10 are periodically arranged in two directions of two axes of the z-direction and the y-direction. A restraining device 100 is disclosed. As shown in FIG. 8, in addition to the vibration propagation direction 400, a vibration propagation direction 410 that is orthogonal is defined, and the unit cells 10 are also periodically arranged in this direction. As a result, the propagation of the two-dimensional load applied to the outside of the vibration propagation suppressing device 100, which is a two-dimensional periodic structure, is suppressed by the vibration propagation suppressing device 100, which is a two-dimensional periodic structure. It should be noted that the closed cross-section 11 of the unit cell 10 of the vibration propagation suppressing devices 100 according to Embodiments 3 and 4 may be reduced, and the first unit cell 10 having curved surfaces convex in the facing directions shown in Embodiment 4 may be used. The flexible wall 24 and the second flexible wall 25 are periodically arranged in the two directions of the z direction and the y direction, as shown in the vibration propagation suppressing device 100 according to the fifth embodiment. It may be applied to the vibration propagation suppressing device 100 which is a two-dimensional periodic structure. By doing so, it is effective in improving the structural stability and improving the band stop effect.

(実施の形態6)
実施の形態1~5に係る振動伝播抑制装置100では、振動伝播方向400、410に外部荷重が加わった際、単位セル10の隔壁20が変形し、流体30がx方向に流動する。しかし、単位セル10の一端部21は封止されておらず、流体30が満たされている場所で使用されない場合、流体30が外部にリークする。このため実施の形態6に係る振動伝播抑制装置100は、図9に示すように、単位セル10の一端部21および他端部26に可撓性を有する封止壁27を有する。これにより、流体30が外部にリークすることを防ぐことができ、流体30が満たされている場所で使用されない場合であっても、振動伝播抑制装置100を用いることができる。その他の構成は、実施の形態1に係る振動伝播抑制装置100と同様の構成を有する。
(Embodiment 6)
In the vibration propagation suppressing devices 100 according to Embodiments 1 to 5, when external loads are applied in the vibration propagation directions 400 and 410, the partition walls 20 of the unit cells 10 are deformed and the fluid 30 flows in the x direction. However, one end 21 of the unit cell 10 is not sealed, and the fluid 30 leaks to the outside when it is not used where it is filled with the fluid 30 . Therefore, the vibration propagation suppressing device 100 according to Embodiment 6 has flexible sealing walls 27 at the one end 21 and the other end 26 of the unit cell 10, as shown in FIG. As a result, the fluid 30 can be prevented from leaking to the outside, and the vibration propagation suppressing device 100 can be used even when it is not used in a place filled with the fluid 30 . Other configurations are similar to those of the vibration propagation suppressing device 100 according to the first embodiment.

ただし、封止壁27は、2つの観点で流体質量効果を劣化させることに注意が必要である。まず、封止壁27は、振動伝播方向400に有限の剛性を有することで、外部荷重に対する単位セル10の面内変形を抑制し、流体30の面外方向13への吐出量を減少させる。またさらに吐出方向に蓋をするため、吐出される流体30の行き場がなく流動が発生にくい。封止壁27が柔軟性を有さない場合、流体質量効果が小さくなり、振動伝播抑制装置100のバンドストップ効果は期待された性能を発揮できない。 Note, however, that the sealing wall 27 degrades the fluid mass effect in two respects. First, the sealing wall 27 has finite rigidity in the vibration propagation direction 400 , thereby suppressing in-plane deformation of the unit cell 10 due to an external load and reducing the discharge amount of the fluid 30 in the out-of-plane direction 13 . Furthermore, since the discharge direction is covered, the discharged fluid 30 has nowhere to go and is less likely to flow. If the sealing wall 27 does not have flexibility, the fluid mass effect becomes small, and the band stop effect of the vibration propagation suppressing device 100 cannot exhibit the expected performance.

このため、実施の形態6では封止壁27は振動伝播方向400に加えて、面外方向13に対して柔軟な封止壁27とする。封止壁27は、隔壁20より高い可撓性を有することが好ましい。これにより、流体30のリークによる振動伝播抑制装置100または外部装置への悪影響を取り除きつつ流体質量効果が小さくなることを抑制し、ストップバンドが十分低域化された小型、軽量かつ製造容易な振動伝播抑制装置100が得られる。なお、可撓性を有する封止壁27の具体的な例として、粘弾性体による栓、または面外方向13に延びるベローズ構造を採用してもよい。このようにすることで、実施の形態6の振動伝播抑制装置100は、流体30が外部にリークすることを防ぐことができるため、本リークが、振動伝播抑制装置100の性能に影響を与える、または外部装置に不具合を生じさせるリスクがある場合、有効である。また、同様に、実施の形態2~5に係る振動伝播抑制装置100の単位セル10の一端部21および他端部26に可撓性を有する封止壁27設けてもよい。 Therefore, in the sixth embodiment, the sealing wall 27 is flexible in the out-of-plane direction 13 in addition to the vibration propagation direction 400 . The sealing wall 27 preferably has a higher flexibility than the partition wall 20 . As a result, the vibration propagation suppression device 100 or an external device due to the leakage of the fluid 30 is prevented from being adversely affected by the vibration propagation suppression device 100 or an external device. A propagation suppression device 100 is obtained. As a specific example of the sealing wall 27 having flexibility, a viscoelastic plug or a bellows structure extending in the out-of-plane direction 13 may be employed. By doing so, the vibration propagation suppressing device 100 of Embodiment 6 can prevent the fluid 30 from leaking to the outside. Alternatively, it is effective when there is a risk of causing a malfunction in an external device. Similarly, flexible sealing walls 27 may be provided at the one end 21 and the other end 26 of the unit cell 10 of the vibration propagation suppressing device 100 according to the second to fifth embodiments.

(実施の形態7)
実施の形態6に係る振動伝播抑制装置100では、流体30の面外方向13へのリークを抑止するためにそれぞれの単位セル10の一端部21および他端部26に封止壁27を有する。ただし、それぞれの単位セル10に封止壁27を設けると、封止壁27の可撓性を確保しづらく、図1に示す閉断面11自体の断面積変化および面外方向13への流体30の流動が十分に励起されない。これにより、流体質量効果が小さくなり、振動伝播抑制装置100のバンドストップ効果は、期待された性能を十分に発揮できない。
(Embodiment 7)
In the vibration propagation suppressing device 100 according to the sixth embodiment, sealing walls 27 are provided at the one end 21 and the other end 26 of each unit cell 10 in order to suppress leakage of the fluid 30 in the out-of-plane direction 13 . However, if the sealing wall 27 is provided in each unit cell 10, it is difficult to secure the flexibility of the sealing wall 27, and the change in the cross-sectional area of the closed cross-section 11 itself shown in FIG. flow is not sufficiently excited. As a result, the fluid mass effect becomes small, and the bandstop effect of the vibration propagation suppressing device 100 cannot sufficiently exhibit the expected performance.

このため、実施の形態7に係る振動伝播抑制装置100は、図10および図11に示すように、単位セル10の全体を一括で密閉して収容する外殻壁40を備え、流体30は、外殻壁40で囲まれた空間に充填されている。これにより、流体30が外殻壁40の外部にリークすることを防ぐことができる。その他の構成は、実施の形態4に係る振動伝播抑制装置100と同様である。 Therefore, as shown in FIGS. 10 and 11, the vibration propagation suppressing device 100 according to Embodiment 7 includes an outer shell wall 40 that seals and houses the entire unit cell 10, and the fluid 30 is The space surrounded by the outer shell wall 40 is filled. This can prevent the fluid 30 from leaking to the outside of the outer shell wall 40 . Other configurations are the same as those of the vibration propagation suppressing device 100 according to the fourth embodiment.

外殻壁40は、図12に示すように、単位セル10aに接続された第1のフランジ41と、単位セル10fに接続された第2のフランジ42と、第1のフランジ41と第2のフランジ42を接続し、少なくとも一部に可撓性を有する側壁43と、を有し、内部の閉空間44に単位セル10a~10fを収容する。第1のフランジおよび第2のフランジは、振動伝播方向400において、複数の単位セル10a~10fを挟んで配置される。閉空間44および隔壁20で囲まれた空間には、流体30が満たされている。外殻壁40は、振動伝播方向400に力が加わると、内部の閉空間44の体積が変化できるよう少なくとも側壁43の一部に可撓性を有し、振動伝播抑制装置100への荷重に対して内部の単位セル10a~10fに変位が発生する構造とする。 As shown in FIG. 12, the outer shell wall 40 includes a first flange 41 connected to the unit cell 10a, a second flange 42 connected to the unit cell 10f, and a first flange 41 and a second flange 42 connected to the unit cell 10f. It has a side wall 43 that connects the flange 42 and is at least partially flexible, and the unit cells 10a to 10f are accommodated in an internal closed space 44. FIG. The first flange and the second flange are arranged across the plurality of unit cells 10a-10f in the vibration propagation direction 400. As shown in FIG. A space surrounded by the closed space 44 and the partition wall 20 is filled with the fluid 30 . The outer shell wall 40 has flexibility in at least a part of the side wall 43 so that the volume of the internal closed space 44 can be changed when a force is applied in the vibration propagation direction 400 , and the load on the vibration propagation suppressing device 100 is reduced. In contrast, the structure is such that displacement occurs in the internal unit cells 10a to 10f.

側壁43は、粘弾性体または金属の膜により作成されてもよく、ベローズ構造を有してもよい。これにより、外殻壁40は、振動伝播方向400に力が加わると変形し、第1のフランジ41が固定されている場合、第2のフランジ42は、z方向に移動することができ、内部の閉空間44の体積が変化する。また、図11および図13に示すように、側壁43は、単位セル10a~10fとの間にx方向にクリアランスを有して配置される。側壁43と単位セル10a~10fとの間隔d3は、単位セル10a~10fに充填された流体30がスムーズに吐出できる大きさであることが好ましい。これに対して、図11および図12に示すように、y方向において、側壁43と単位セル10a~10fとの間隔d4は、単位セル10a~10fと、側壁43と、が互いに干渉しない大きさであることが好ましいい。だたし、y方向においては、間隔d4が0であったとしても、単位セル10a~10fに充填された流体30が吐出できなくなるわけではないので、側壁43と単位セル10a~10fとの間にクリアランスを設ける必要は必ずしもない。 Side wall 43 may be made of a viscoelastic or metallic membrane and may have a bellows structure. Thereby, the outer shell wall 40 deforms when a force is applied in the direction of vibration propagation 400, and when the first flange 41 is fixed, the second flange 42 can move in the z-direction and the inner , the volume of the closed space 44 changes. Further, as shown in FIGS. 11 and 13, the sidewalls 43 are arranged with clearances in the x direction between the unit cells 10a to 10f. The distance d3 between the side wall 43 and the unit cells 10a to 10f is preferably of a size that allows the fluid 30 filled in the unit cells 10a to 10f to be discharged smoothly. On the other hand, as shown in FIGS. 11 and 12, the distance d4 between the side wall 43 and the unit cells 10a to 10f in the y direction is a size that prevents the unit cells 10a to 10f and the side wall 43 from interfering with each other. It is preferable that However, in the y direction, even if the distance d4 is 0, the fluid 30 filled in the unit cells 10a to 10f cannot be discharged. It is not always necessary to provide a clearance for

なお、外殻壁40は力学的に単位セル10a~10fと並列のばね要素となるため、振動伝播方向400に対して必要以上の剛性を持たせず柔軟に設計する必要がある。ただし、振動伝播抑制装置100として最低限の強度を要求される場合には、バンドストップ効果と強度の両立がなされるよう適切な設計をすること重要である。 Since the outer shell wall 40 dynamically serves as a spring element parallel to the unit cells 10a to 10f, it must be designed flexibly without having excessive rigidity in the vibration propagation direction 400. FIG. However, when minimum strength is required for the vibration propagation suppressing device 100, it is important to design appropriately so that both the band stop effect and the strength are achieved.

つぎに、上記構成を有する振動伝播抑制装置100の動作について説明する。 Next, the operation of the vibration propagation suppressing device 100 having the above configuration will be described.

振動伝播抑制装置100に対して振動伝播方向400に外部荷重が加わった際、第1のフランジ41または第2のフランジ42を介して内部の単位セル10a~10fに荷重が伝達する。これによりそれぞれの単位セル10a~10fの隔壁20が面内につぶれ、x方向または-x方向に流体30が加速的に吐出され、結果として流体質量効果を得る。 When an external load is applied to the vibration propagation suppressing device 100 in the vibration propagation direction 400, the load is transmitted through the first flange 41 or the second flange 42 to the internal unit cells 10a to 10f. As a result, the partition walls 20 of the respective unit cells 10a to 10f are crushed in-plane, and the fluid 30 is discharged at an accelerated rate in the x direction or -x direction, resulting in a fluid mass effect.

このとき側壁43と単位セル10a~10fとの間にはx方向にクリアランスが存在するため、x方向への流体30の流動は阻害されない。これにより実施の形態7に係る振動伝播抑制装置100は、流体30の外部へのリークを抑制しながら、流体質量効果によってストップバンドが低域性かつ広域性を有する振動伝播抑制効果を得ることができる。なお、実施の形態6に係る振動伝播抑制装置100は、実施の形態4に係る振動伝播抑制装置100の単位セル10の全体を一括で密閉して収容する外殻壁40を備える例について説明したが、実施の形態7に係る振動伝播抑制装置100は、実施の形態4に係る振動伝播抑制装置100の単位セル10に代えて、実施の形態1~3および5に係る振動伝播抑制装置100の単位セル10を用いてもよい。 At this time, since clearances exist in the x direction between the side walls 43 and the unit cells 10a to 10f, the flow of the fluid 30 in the x direction is not hindered. As a result, the vibration propagation suppressing device 100 according to the seventh embodiment can suppress the leakage of the fluid 30 to the outside while obtaining the vibration propagation suppressing effect in which the stop band has a low-range property and a wide-range property due to the fluid mass effect. can. It should be noted that the vibration propagation suppressing device 100 according to the sixth embodiment is provided with the outer shell wall 40 that collectively seals and accommodates the entire unit cells 10 of the vibration propagation suppressing device 100 according to the fourth embodiment. However, the vibration propagation suppressing device 100 according to the seventh embodiment has the vibration propagation suppressing device 100 according to the first to third and fifth embodiments instead of the unit cell 10 of the vibration propagation suppressing device 100 according to the fourth embodiment. A unit cell 10 may be used.

(変形例)
上述の実施の形態においては、隔壁20が、可撓性部材により作成されるか、または第1の可撓壁24と第2の可撓壁25を有する例について説明した。隔壁20は、加えられた荷重に対して図2に示す閉断面11の面積変化を生ずる構成であればよく、隔壁20が、可撓性部材によらず、機械的に変形することで面積変化を生ずる構造を有してもよい。一つの例として、図14に示すように、隔壁20は、板状の形状を有する固定壁51と、固定壁51の端部52に垂直に配置された一対の摺動壁53と、板状の形状を有し、一対の摺動壁53の間に配置され、摺動壁53に沿ってz方向に移動する移動壁54と、固定壁51と移動壁54との間に配置された弾性体55、を備えてもよい。固定壁51と移動壁54とは、互いに平行に配置されている。移動壁54は、弾性体55により支持され、固定壁51との間隔が維持される。流体30は、固定壁51と、摺動壁53と、移動壁54と、に囲まれた空間に充填される。この構造により、荷重が加えられると、弾性体55が弾性変形し、移動壁54がz方向に移動することで、流体30が押し出される。この結果、流体質量効果によってストップバンドが低域性かつ広域性を有する振動伝播抑制効果を得ることができる。
(Modification)
In the above-described embodiments, examples were described in which the partition wall 20 was made of a flexible member or had the first flexible wall 24 and the second flexible wall 25 . The partition wall 20 may have any structure as long as it changes the area of the closed cross section 11 shown in FIG. 2 in response to the applied load. may have a structure that produces As an example, as shown in FIG. 14, the partition wall 20 includes a fixed wall 51 having a plate-like shape, a pair of sliding walls 53 arranged perpendicularly to the ends 52 of the fixed wall 51, and a plate-like wall. and is arranged between a pair of sliding walls 53 and moves in the z direction along the sliding walls 53, and an elastic wall 54 arranged between the fixed wall 51 and the moving wall 54. A body 55 may be provided. The fixed wall 51 and the moving wall 54 are arranged parallel to each other. The moving wall 54 is supported by an elastic body 55 to maintain a distance from the fixed wall 51 . The fluid 30 fills the space surrounded by the fixed wall 51 , the sliding wall 53 and the moving wall 54 . With this structure, when a load is applied, the elastic body 55 is elastically deformed and the moving wall 54 moves in the z direction, thereby pushing out the fluid 30 . As a result, it is possible to obtain a vibration propagation suppressing effect in which the stop band has both low-frequency and wide-range characteristics due to the fluid mass effect.

上述の実施の形態においては、振動伝播抑制装置100が、支持対象体である精密機器200と強制変位を受ける基礎面300との間に配置される例について説明した。振動伝播抑制装置100は、モータを含む機械的構成を有する振動発生装置と基礎面300との間に配置されてもよい。振動発生装置は、HDD(hard disk drive)またはモータを含む機械的構成を有する装置を含む。このようにすることで、振動発生装置により発生した振動を基礎面300に振動が伝搬しない効果を有する。これにより、基礎面300に設置された他の装置に振動が伝搬しない効果を有する。 In the above-described embodiment, an example in which vibration propagation suppressing device 100 is arranged between precision instrument 200, which is an object to be supported, and base surface 300 that undergoes forced displacement has been described. The vibration propagation suppressing device 100 may be arranged between a vibration generating device having a mechanical configuration including a motor and the base surface 300 . A vibration generator includes a device having a mechanical configuration including a HDD (hard disk drive) or a motor. By doing so, there is an effect that the vibration generated by the vibration generator does not propagate to the base surface 300 . This has the effect of not propagating the vibration to other devices installed on the base surface 300 .

本開示は、本開示の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この開示を説明するためのものであり、本開示の範囲を限定するものではない。すなわち、この開示の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の開示の意義の範囲内で施される様々な変形が、この開示の範囲内とみなされる。 This disclosure is capable of various embodiments and modifications without departing from the broader spirit and scope of this disclosure. In addition, the embodiments described above are for explaining this disclosure, and do not limit the scope of this disclosure. That is, the scope of this disclosure is indicated by the claims rather than the embodiments. Various modifications made within the scope of the claims and within the scope of equivalent disclosure are considered to be within the scope of this disclosure.

10、10a~10f…単位セル、11…閉断面、12…断面、13…面外方向、20…隔壁、21、22a、23a一端部、22…第1の剛体壁、22b、23b、26…他端部、23…第2の剛体壁、24…第1の可撓壁、25…第2の可撓壁、27…封止壁、30…流体、40…外殻壁、41…第1のフランジ、42…第2のフランジ、43…側壁、44…閉空間、51…固定壁、52…端部、53…摺動壁、54…移動壁、55…弾性体、100…振動伝播抑制装置、200…精密機器、300…基礎面、400、410…振動伝播方向。 10, 10a to 10f unit cell 11 closed section 12 section 13 out-of-plane direction 20 partition wall 21, 22a, 23a one end 22 first rigid wall 22b, 23b, 26 ... Other end 23... Second rigid wall 24... First flexible wall 25... Second flexible wall 27... Sealing wall 30... Fluid 40... Outer shell wall 41... First 42... Second flange 43... Side wall 44... Closed space 51... Fixed wall 52... End 53... Sliding wall 54... Moving wall 55... Elastic body 100... Vibration propagation suppression Apparatus 200... Precision instrument 300... Base surface 400, 410... Vibration propagation direction.

Claims (10)

支持対象体と強制変位を受ける基礎面との間に、振動伝播方向に、直列に複数結合されて設置される複数の単位セルを備え、
複数の前記単位セルのそれぞれは、前記振動伝播方向と交差する第1の方向に延びる形状を有し、閉断面を形成する隔壁と、前記隔壁で囲まれた空間に充填された流体と、を有し、
前記隔壁は、前記振動伝播方向に加えられた荷重に対して前記閉断面の面積変化を生ずる構造を有し、前記第1の方向における両端部のうち少なくとも一端部が開放され、
隣接する前記単位セルは、互いに前記隔壁で外接する、
振動伝播抑制装置。
A plurality of unit cells connected in series in the vibration propagation direction between the support object and the base surface that receives forced displacement,
Each of the plurality of unit cells has a shape extending in a first direction that intersects with the vibration propagation direction, and includes a partition wall forming a closed cross section, and a fluid filled in a space surrounded by the partition wall. have
The partition wall has a structure that changes the area of the closed cross section with respect to the load applied in the vibration propagation direction, and at least one of both ends in the first direction is open,
the adjacent unit cells are circumscribed by the partition walls;
Vibration propagation suppression device.
前記隔壁の断面形状が、前記第1の方向において均一である
請求項1に記載の振動伝播抑制装置。
The vibration propagation suppressing device according to claim 1, wherein the cross-sectional shape of the partition wall is uniform in the first direction.
前記隔壁は、互いに向かい合って配置された第1の剛体壁および第2の剛体壁と、前記第1の剛体壁および前記第2の剛体壁を接続する可撓性を有する第1の可撓壁と第2の可撓壁と、を有し、
隣接する前記単位セルのうちの一方の前記単位セルの前記第1の剛体壁と他方の前記単位セルの前記第2の剛体壁とが外接する、
請求項1または2に記載の振動伝播抑制装置。
The partition includes a first rigid wall and a second rigid wall arranged to face each other, and a flexible first flexible wall connecting the first rigid wall and the second rigid wall. and a second flexible wall,
the first rigid wall of one of the adjacent unit cells and the second rigid wall of the other unit cell circumscribe;
3. The vibration propagation suppressing device according to claim 1 or 2.
前記第1の剛体壁と前記第2の剛体壁との間隔は、前記第1の剛体壁または前記第2の剛体壁の厚さより小さい、
請求項3に記載の振動伝播抑制装置。
the distance between the first rigid wall and the second rigid wall is smaller than the thickness of the first rigid wall or the second rigid wall;
The vibration propagation suppressing device according to claim 3.
前記第1の可撓壁と前記第2の可撓壁とは、それぞれ、互いに向かい合う方向に凸の曲面形状を有する、
請求項3または4に記載の振動伝播抑制装置。
each of the first flexible wall and the second flexible wall has a convex curved surface shape facing each other,
5. The vibration propagation suppression device according to claim 3 or 4.
複数の前記単位セルのそれぞれは、前記振動伝播方向および前記第1の方向と交差する方向に並べて配置される、
請求項1から5の何れか1項に記載の振動伝播抑制装置。
each of the plurality of unit cells are arranged side by side in a direction intersecting the vibration propagation direction and the first direction;
The vibration propagation suppressing device according to any one of claims 1 to 5.
支持対象体と強制変位を受ける基礎面との間に、振動伝播方向に、直列に複数結合されて設置される複数の単位セルを備え、
複数の前記単位セルのそれぞれは、前記振動伝播方向と交差する第1の方向に延びる形状を有し、閉断面を形成する隔壁と、前記隔壁で囲まれた空間に充填された流体と、を有し、
前記隔壁は、前記振動伝播方向に加えられた荷重に対して前記閉断面の面積変化を生ずる構造を有し、
隣接する前記単位セルは、互いに前記隔壁で外接し、前記第1の方向における両端部に可撓性を有する封止壁を有する、
動伝播抑制装置。
A plurality of unit cells connected in series in the vibration propagation direction between the support object and the base surface that receives forced displacement,
Each of the plurality of unit cells has a shape extending in a first direction that intersects with the vibration propagation direction, and includes a partition wall forming a closed cross section, and a fluid filled in a space surrounded by the partition wall. have
The partition wall has a structure that changes the area of the closed cross section with respect to the load applied in the direction of propagation of the vibration,
The adjacent unit cells are circumscribed by the partition walls and have flexible sealing walls at both ends in the first direction,
Vibration propagation suppression device.
前記封止壁は、前記隔壁より高い可撓性を有する
請求項7に記載の振動伝播抑制装置。
The vibration propagation suppressing device according to claim 7, wherein the sealing wall has higher flexibility than the partition wall.
複数の前記単位セルを密閉して収容する外殻壁を備え、
前記流体は、前記外殻壁で囲まれた空間に充填されている、
請求項1から6の何れか1項に記載の振動伝播抑制装置。
An outer shell wall that hermetically accommodates the plurality of unit cells,
The fluid is filled in a space surrounded by the outer shell wall,
The vibration propagation suppressing device according to any one of claims 1 to 6.
前記外殻壁は、前記振動伝播方向において、複数の前記単位セルを挟んで配置される第1のフランジおよび第2のフランジと、前記第1のフランジと前記第2のフランジを接続し、少なくとも一部に可撓性を有する側壁と、を有する、
請求項9に記載の振動伝播抑制装置。
The outer shell wall connects a first flange and a second flange arranged across the plurality of unit cells in the vibration propagation direction, and connects the first flange and the second flange, and at least a partially flexible sidewall;
The vibration propagation suppressing device according to claim 9.
JP2022543855A 2020-08-18 2020-08-18 Vibration suppression device Active JP7321381B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/031172 WO2022038690A1 (en) 2020-08-18 2020-08-18 Vibration transmission suppression device

Publications (2)

Publication Number Publication Date
JPWO2022038690A1 JPWO2022038690A1 (en) 2022-02-24
JP7321381B2 true JP7321381B2 (en) 2023-08-04

Family

ID=80323478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022543855A Active JP7321381B2 (en) 2020-08-18 2020-08-18 Vibration suppression device

Country Status (2)

Country Link
JP (1) JP7321381B2 (en)
WO (1) WO2022038690A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002227928A (en) 2001-01-31 2002-08-14 Toshiba Corp Base isolation device
JP2002317851A (en) 2001-04-19 2002-10-31 Showa Electric Wire & Cable Co Ltd Vibration isolating member for mounting engine
JP2015094448A (en) 2013-11-13 2015-05-18 有限会社鯛のたい Vibration-proofing sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002227928A (en) 2001-01-31 2002-08-14 Toshiba Corp Base isolation device
JP2002317851A (en) 2001-04-19 2002-10-31 Showa Electric Wire & Cable Co Ltd Vibration isolating member for mounting engine
JP2015094448A (en) 2013-11-13 2015-05-18 有限会社鯛のたい Vibration-proofing sheet

Also Published As

Publication number Publication date
WO2022038690A1 (en) 2022-02-24
JPWO2022038690A1 (en) 2022-02-24

Similar Documents

Publication Publication Date Title
Zhou et al. A nonlinear resonator with inertial amplification for very low-frequency flexural wave attenuations in beams
Zhou et al. Tunable ultralow frequency wave attenuations in one-dimensional quasi-zero-stiffness metamaterial
EP3449479B1 (en) Phononic crystal vibration isolator with inertia amplification mechanism
US5775472A (en) Multi-axis tuned mass damper
US9275622B2 (en) Vibro-acoustic attenuation or reduced energy transmission
JP6985575B2 (en) Sound absorbers, noise barriers and methods for design and manufacture
EP2733381B1 (en) Vibration isolator
CN108757807B (en) Band gap adjustable elastic wave vibration isolator based on liquid additional mass effect and vibration isolation method
JP5172243B2 (en) Vibration isolator
JPS60159435A (en) Fluid enclosed power unit mount device
JP6253500B2 (en) Vibration isolator
JP2860701B2 (en) Liquid filled vibration isolator
JP7321381B2 (en) Vibration suppression device
Anvariyeh et al. Nonlinear vibration analysis of a circular plate–cavity system
JPH01238730A (en) Fluid seal type mount device
JP2006250281A (en) Fluid encapsulated type vibration isolating device
EP3354930B1 (en) Three parameter isolators containing rolling seal damper assemblies
Cui et al. Acoustic-structure interaction in an adaptive Helmholtz resonator by compliance and constraint
Duvigneau et al. A numerical study on the potential of acoustic metamaterials
Chan et al. Experimental studies for particle damping on a bond arm
JP6614117B2 (en) Vibration isolator
US20240229887A9 (en) Damped structure with internal lattice and vibration damper(s)
JP4794501B2 (en) Liquid filled anti-vibration support device
Brown-Moore et al. Fabrication of Liquid-Filled Voronoi Foams for Impact Absorption Using Material Jetting Technology
Bukhari et al. On the nonlinear vibration analysis of ultra precision manufacturing machines with mode coupling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230725

R150 Certificate of patent or registration of utility model

Ref document number: 7321381

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150