JP7320642B2 - Wind power generation system for mobile body and mobile body provided with the same - Google Patents

Wind power generation system for mobile body and mobile body provided with the same Download PDF

Info

Publication number
JP7320642B2
JP7320642B2 JP2022026080A JP2022026080A JP7320642B2 JP 7320642 B2 JP7320642 B2 JP 7320642B2 JP 2022026080 A JP2022026080 A JP 2022026080A JP 2022026080 A JP2022026080 A JP 2022026080A JP 7320642 B2 JP7320642 B2 JP 7320642B2
Authority
JP
Japan
Prior art keywords
conical portion
power generation
impeller
wind tunnel
generation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022026080A
Other languages
Japanese (ja)
Other versions
JP2022063347A (en
Inventor
訓範 津田
芳久 古藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017253963A external-priority patent/JP7030511B2/en
Application filed by Individual filed Critical Individual
Priority to JP2022026080A priority Critical patent/JP7320642B2/en
Publication of JP2022063347A publication Critical patent/JP2022063347A/en
Application granted granted Critical
Publication of JP7320642B2 publication Critical patent/JP7320642B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines

Landscapes

  • Wind Motors (AREA)

Description

本発明は、移動体用の風力発電システム、及びこれを備えた移動体。 The present invention relates to a wind power generation system for mobile bodies and a mobile body having the same.

近年、電気をエネルギー源として走行する電気自動車が注目を浴びている。電気自動車は、走行中に排気ガスを排出しない等の利点を有する一方、ガソリン自動車よりも航続距離が短く、また、充電に数時間かかるといった問題がある。 2. Description of the Related Art In recent years, electric vehicles that run using electricity as an energy source have attracted attention. While electric vehicles have advantages such as not emitting exhaust gas while driving, they have problems such as a shorter cruising range than gasoline vehicles and a charging time of several hours.

このような問題を解決するため、電気自動車に小型の風力発電装置を取り付け、走行中に受ける風力を利用して走行しながら充電をおこなうことが提案されている。このような電気自動車用の風力発電装置として、例えば、特許文献1では、円錐台のドラムの表面上に小さい羽根を複数並べて配置した羽根車を用いた風力発電装置が提案されている。また、例えば、特許文献2では、螺旋羽根車を用いた風力発電装置が提案されている。 In order to solve such problems, it has been proposed to attach a small wind power generator to an electric vehicle and charge the electric vehicle while driving using the wind force received while the vehicle is running. As such a wind power generator for an electric vehicle, for example, Patent Document 1 proposes a wind power generator using an impeller in which a plurality of small blades are arranged side by side on the surface of a truncated conical drum. Further, for example, Patent Literature 2 proposes a wind turbine generator using a spiral impeller.

特開2010-101275号公報JP 2010-101275 A 特開2017-149168号公報JP 2017-149168 A

しかし、特許文献1に記載されている風力発電装置は、高速での走行中に発電することを目的としたものである。特許文献1の羽根車は、羽根が小さく、また、羽根が軸方向に沿って並んでいるため、風力から回転エネルギーへの変換効率が十分なものではなく、例えば、低速での走行中は、羽根車の回転数を十分なものとすることが難しく、結果として、十分な発電量を得られないという問題があった。 However, the wind turbine generator described in Patent Literature 1 is intended to generate power during high-speed travel. The impeller of Patent Document 1 has small blades and the blades are arranged along the axial direction, so the conversion efficiency from wind power to rotational energy is not sufficient. There was a problem that it was difficult to obtain a sufficient rotation speed of the impeller, and as a result, a sufficient amount of power generation could not be obtained.

また、特許文献2に記載されている風力発電装置は、螺旋羽根車を用いることで、風力から回転エネルギーへの変換効率を向上させているが、耐久性が十分なものではなかった。例えば、高速での走行中は、羽根車が気流から受ける力が非常に大きくなるため、羽根車が破損しやすいという問題があった。 Further, the wind power generator described in Patent Document 2 uses a spiral impeller to improve the conversion efficiency from wind power to rotational energy, but the durability is not sufficient. For example, there is a problem that the impeller is easily damaged because the force that the impeller receives from the air current is extremely large during high-speed running.

本発明は、上記の問題に鑑みてなされたものである。すなわち、本発明の課題は、風力から回転エネルギーへの変換効率および耐久性が高い、移動体用の風力発電システムを提供することである。 The present invention has been made in view of the above problems. That is, an object of the present invention is to provide a wind power generation system for a moving body that has high conversion efficiency from wind power to rotational energy and high durability.

本発明の要旨は、以下の通りである。 The gist of the present invention is as follows.

[1]風洞と、風洞内に配置され、ハブ及び複数の羽根を有する羽根車と、羽根車の回転によって発電する発電機とを備え、ハブが、前端部側から後端部側に向かうにつれ径が大きくなる略円錐部または略裁頭円錐部を有し、複数の羽根のそれぞれが、ハブの前端部近傍から後端部近傍にかけて、略円錐部または略裁頭円錐部の母線に対して斜めに所定の角度をなすように形成されている、移動体用の風力発電システム。 [1] Equipped with a wind tunnel, an impeller disposed in the wind tunnel and having a hub and a plurality of blades, and a generator that generates electricity by rotation of the impeller, the hub moving from the front end side to the rear end side Each of the plurality of blades has a substantially conical portion or substantially truncated conical portion with an increasing diameter, and each of the plurality of blades extends from near the front end portion to near the rear end portion of the hub with respect to the generatrix of the substantially conical portion or substantially truncated conical portion. A wind power generation system for a moving object, formed obliquely at a predetermined angle.

[2]羽根が、略三角形状であり、略三角形状の斜辺に相当する部位と略円錐部または略裁頭円錐部の側面とが接するように形成されている、上記[1]に記載の移動体用の風力発電システム。 [2] The above-mentioned [1], wherein the blade has a substantially triangular shape, and is formed such that a portion corresponding to the oblique side of the substantially triangular shape is in contact with the side surface of the substantially conical portion or the substantially truncated conical portion. A wind power generation system for mobile objects.

[3]羽根車の回転軸に垂直な任意の平面によって羽根車を切断した場合に、断面における羽根の長さが、略円錐部または略裁頭円錐部の底面の半径と、略円錐部または略裁頭円錐部の断面の半径との差と略等しい、上記[1]又は[2]に記載の移動体用の風力発電システム。 [3] When the impeller is cut by an arbitrary plane perpendicular to the rotation axis of the impeller, the length of the blade in the cross section is the radius of the bottom surface of the substantially conical portion or substantially truncated conical portion and the substantially conical portion or The wind power generation system for a moving body according to the above [1] or [2], which is substantially equal to the difference from the radius of the cross section of the substantially truncated cone portion.

[4]所定の角度が、25~45度である、上記[1]~[3]のいずれかに記載の移動体用の風力発電システム。 [4] The wind power generation system for a moving object according to any one of [1] to [3] above, wherein the predetermined angle is 25 to 45 degrees.

[5]任意の1の羽根に着目した場合、該1の羽根が、略円錐部または略裁頭円錐部の側面を1周することなく形成されている、上記[1]~[4]のいずれかに記載の移動体用の風力発電システム。 [5] When focusing on any one blade, the one blade is formed without going around the side surface of the substantially conical portion or substantially truncated conical portion. A wind power generation system for a moving object according to any one of the above.

[6]風洞が、風洞の前端部と後端部との間であって、羽根車の後端部近傍に対応する位置に、風洞の前端部から流入した風を風洞の外へ排気するための開口部を有する、上記[1]~[5]のいずれかに記載の移動体用の風力発電システム。 [6] The wind tunnel is between the front end and the rear end of the wind tunnel, and the wind that has flowed in from the front end of the wind tunnel to a position corresponding to the vicinity of the rear end of the impeller is exhausted to the outside of the wind tunnel. The wind power generation system for a moving body according to any one of [1] to [5] above, having an opening of .

[7]上記[1]~[6]のいずれかに記載の移動体用の風力発電システムを備えた、移動体。 [7] A moving object comprising the wind power generation system for a moving object according to any one of [1] to [6] above.

本発明にかかる風力発電システムによれば、羽根車がハブ及び複数の羽根を有し、ハブが前端部側から後端部側に向かうにつれ径が大きくなる略円錐部または略裁頭円錐部を有し、複数の羽根のそれぞれがハブの前端部近傍から後端部近傍にかけて略円錐部または略裁頭円錐部の母線に対して斜めに所定の角度をなすように形成されていることにより、羽根車による風力から回転エネルギーへの変換効率が高く、低速での走行中であっても十分な発電量を得ることが可能になる。 According to the wind power generation system of the present invention, the impeller has a hub and a plurality of blades, and the hub has a substantially conical portion or substantially truncated conical portion whose diameter increases from the front end side to the rear end side. and each of the plurality of blades is obliquely formed at a predetermined angle with respect to the generatrix of the substantially conical portion or the substantially truncated conical portion from near the front end portion to near the rear end portion of the hub, The efficiency of conversion from wind power to rotational energy by the impeller is high, and it is possible to obtain a sufficient amount of power generation even while traveling at low speed.

本発明の実施の形態にかかる、風力発電システムの一例を示す正面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a front view which shows an example of the wind power generation system concerning embodiment of this invention. 本発明の実施の形態にかかる、風力発電システムの一例を示す側面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a side view which shows an example of the wind power generation system concerning embodiment of this invention. 本発明の実施の形態にかかる、風力発電システムの一例を示す部分断面図である。1 is a partial cross-sectional view showing an example of a wind power generation system according to an embodiment of the present invention; FIG. 本発明の実施の形態にかかる、風力発電システムの吸気および排気を示す模式図である。1 is a schematic diagram showing an intake and an exhaust of a wind power generation system according to an embodiment of the present invention; FIG. 本発明の実施の形態にかかる、羽根車の一例を示す斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a perspective view which shows an example of the impeller concerning embodiment of this invention. 本発明の実施の形態にかかる、羽根車の一例を示す模式図である。It is a mimetic diagram showing an example of an impeller concerning an embodiment of the invention.

以下、図面を用いて本発明の実施の形態を説明するが、本発明は図面及び実施の形態に限定されるものではない。また、本発明は、以下に記載する好ましい数値や構成に限定されるものではない。 Embodiments of the present invention will be described below with reference to the drawings, but the present invention is not limited to the drawings and the embodiments. Moreover, the present invention is not limited to the preferred numerical values and configurations described below.

本明細書において、「軸方向」とは、羽根車の回転軸に平行な方向のことをいう。また、「径方向」とは、羽根車の回転軸に垂直な方向のことをいう。 As used herein, the term “axial direction” refers to a direction parallel to the rotation axis of the impeller. Moreover, "radial direction" refers to a direction perpendicular to the rotation axis of the impeller.

[風力発電システム]
図1は、本発明の実施の形態にかかる風力発電システムの一例を示す正面図である。図2は、本発明の実施の形態にかかる風力発電システムの一例を示す側面図であり、図1に示す風力発電システムを真横から見た場合の図である。図3は、本発明の実施の形態にかかる風力発電システムの一例を示す部分断面図であり、図2に示す風力発電システムにおける風洞の内部の構造を示す模式図である。
[Wind power generation system]
FIG. 1 is a front view showing an example of a wind power generation system according to an embodiment of the invention. FIG. 2 is a side view showing an example of the wind power generation system according to the embodiment of the present invention, and is a view when the wind power generation system shown in FIG. 1 is viewed from the side. FIG. 3 is a partial cross-sectional view showing an example of the wind power generation system according to the embodiment of the present invention, and is a schematic diagram showing the internal structure of the wind tunnel in the wind power generation system shown in FIG.

図1~3に示す風力発電システムは、略円筒状の風洞1と、風洞1を支持する台座2を備えている。また、風洞1の内部には、ハブ3及び羽根4を有する羽根車5、増速機7、出力軸8、発電機9、並びに制御装置10が備えられている。なお、図3において、増速機7、出力軸8、発電機9、及び制御装置10は、それぞれの具体的な構造を示すものではなく、それぞれの配置を簡略的に示すものである。 The wind power generation system shown in FIGS. 1 to 3 includes a substantially cylindrical wind tunnel 1 and a pedestal 2 that supports the wind tunnel 1 . Further, inside the wind tunnel 1, an impeller 5 having a hub 3 and blades 4, a gearbox 7, an output shaft 8, a generator 9, and a control device 10 are provided. In FIG. 3, the gearbox 7, the output shaft 8, the generator 9, and the control device 10 do not show their specific structures, but simply show their arrangement.

風洞1は、その内部に風を集束させるとともに、その内部に流れ込んだ風を増速させことによって、発電量および発電効率を向上させるものである。また、風洞1は、羽根車5や発電機9など、風洞1の内部に配置されたものを保護する役割を有する。 The wind tunnel 1 concentrates the wind in its interior and increases the speed of the wind that has flowed into it, thereby improving the amount of power generation and power generation efficiency. In addition, the wind tunnel 1 has a role of protecting the impeller 5, the generator 9, and other elements arranged inside the wind tunnel 1. As shown in FIG.

風洞1は、図2及び図3に示すように、略円筒状の風洞前部1a、風洞連結部1b、及び略円筒状の風洞後部1cを備えていることが好ましい。風洞前部1aと風洞後部1cは所定の間隔をあけて配置されており、風洞前部1aと風洞後部1cとは、両者の間に開口部ができるように、風洞連結部1bによって連結されている。 As shown in FIGS. 2 and 3, the wind tunnel 1 preferably includes a substantially cylindrical wind tunnel front portion 1a, a wind tunnel connecting portion 1b, and a substantially cylindrical wind tunnel rear portion 1c. The wind tunnel front part 1a and the wind tunnel rear part 1c are arranged with a predetermined gap therebetween, and the wind tunnel front part 1a and the wind tunnel rear part 1c are connected by the wind tunnel connection part 1b so as to form an opening between them. there is

風洞前部1aの前端部は吸気口である。風洞前部1aは、移動体の移動によって発生する相対的な気流を、風洞前部1aの内部に集束させるとともに、内部に流れ込んだ気流を増速させる。その結果、内部に備えられた羽根車5に十分な風力を与えることが可能になり、発電量および発電効率を向上させることが可能になる。気流の集束効果を高めるという観点からは、図3に示すように、風洞前部1aの前端部近傍は、風洞前部1aの内径が徐々に小さくなるように構成されていることが好ましい。 A front end portion of the wind tunnel front portion 1a is an intake port. The wind tunnel front part 1a converges the relative airflow generated by the movement of the moving object inside the wind tunnel front part 1a, and accelerates the airflow that has flowed inside. As a result, it becomes possible to apply sufficient wind power to the impeller 5 provided inside, and to improve the amount of power generation and power generation efficiency. From the viewpoint of enhancing the airflow convergence effect, as shown in FIG. 3, it is preferable that the inner diameter of the wind tunnel front portion 1a is gradually reduced in the vicinity of the front end portion of the wind tunnel front portion 1a.

風洞連結部1bは、風洞前部1aと風洞後部1cとの間に開口部ができるように両者を連結するものであれば、特に制限はされない。開口部は、風洞1の内部へ流入した気流や雨などを、風洞1の外へと排出するためのものである。 The wind tunnel connecting portion 1b is not particularly limited as long as it connects the wind tunnel front portion 1a and the wind tunnel rear portion 1c so as to form an opening between them. The opening is for discharging the air flow, rain, etc. that flowed into the inside of the wind tunnel 1 to the outside of the wind tunnel 1 .

図4は、本発明の実施の形態にかかる、風力発電システムの吸気および排気を示す模式図である。本実施の形態にかかる風力発電システムは、風洞前部1aの前端部から風洞前部1aの内部へと気流を吸気し、吸気した気流の少なくとも一部を開口部から排気することができる。そのため、風洞1内における羽根車5の後方で生じ得る気流の乱れを抑制することができ、結果として、発電量および発電効率を向上させることが可能になる。また、開口部の後方に配置された増速機7や発電機9などに衝突する気流を減らすことができ、結果として、増速機7や発電機9など、開口部の後方に配置されたものの破損を防止することが可能になる。 FIG. 4 is a schematic diagram showing the intake and exhaust of the wind power generation system according to the embodiment of the present invention. The wind power generation system according to the present embodiment can suck airflow from the front end portion of the wind tunnel front portion 1a into the inside of the wind tunnel front portion 1a, and exhaust at least part of the sucked airflow from the opening. Therefore, it is possible to suppress airflow turbulence that may occur behind the impeller 5 in the wind tunnel 1, and as a result, it is possible to improve the power generation amount and the power generation efficiency. In addition, it is possible to reduce the airflow that collides with the gearbox 7, the generator 9, and the like arranged behind the opening. It is possible to prevent damage to things.

また、開口部を備えることによって、例えば、風洞前部1aの内部へと入り込んだ雨やゴミなども風洞1の外へと排出することができるため、増速機7や発電機9など開口部の後方に配置されたものが雨やゴミなどによって破損する可能性を低下させることが可能になる。なお、上述のように、開口部からは風洞1の外へと気流が噴き出すため、開口部から風洞1の内部へ雨やゴミが侵入する可能性は少ない。 In addition, by providing the opening, for example, rain and dust that have entered the inside of the wind tunnel front portion 1a can be discharged to the outside of the wind tunnel 1. It is possible to reduce the possibility that things arranged behind are damaged by rain, dust, or the like. As described above, since the airflow blows out of the wind tunnel 1 from the opening, there is little possibility that rain or dust will enter the inside of the wind tunnel 1 from the opening.

開口部は、羽根車5の後端部近傍に対応する位置にあることが好ましい。本実施の形態にかかる羽根4は、羽根車5の前端部では受風面積が大きく、羽根車5の後端部へ向かうにつれ受風面積が小さくなるように構成されている。そのため、羽根車5の前端部では気流が羽根車5の回転に与える影響が大きいが、羽根車5の後端部では気流が羽根車5の回転に与える影響が少ないためである。開口部が羽根車5の後端部近傍に対応する位置にあることによって、羽根車5に十分な回転エネルギーを与え、かつ、開口部の後方に配置されたものの破損を防止することが可能になる。 The opening is preferably located near the rear end of the impeller 5 . The blade 4 according to the present embodiment is configured such that the front end portion of the impeller 5 has a large wind receiving area, and the wind receiving area decreases toward the rear end portion of the impeller 5 . Therefore, the airflow has a large effect on the rotation of the impeller 5 at the front end of the impeller 5 , but the airflow has little effect on the rotation of the impeller 5 at the rear end of the impeller 5 . Since the opening is located near the rear end of the impeller 5, it is possible to apply sufficient rotational energy to the impeller 5 and prevent damage to objects arranged behind the opening. Become.

開口部の幅、すなわち、風洞前部1aの後端部と風洞後部1cの前端部との間の距離は、風洞前部1aの内部に流れ込んだ気流の少なくとも一部を排気できるものであれば、特に制限はされない。 The width of the opening, that is, the distance between the rear end of the wind tunnel front portion 1a and the front end of the wind tunnel rear portion 1c should be such that at least a portion of the air flow that has flowed into the wind tunnel front portion 1a can be exhausted. , is not particularly restricted.

風洞後部1cの内部には、増速機7、出力軸8、発電機9、及び制御装置10が配置されている。風洞後部1cは、内部に配置されたものを保護する役割を有する。風洞後部1cの形状や大きさは特に制限されず、発電機9の形状や大きさに応じて適宜決定することができ、例えば、風洞前部1aと異なっていても良い。 A gearbox 7, an output shaft 8, a generator 9, and a control device 10 are arranged inside the wind tunnel rear portion 1c. The wind tunnel rear part 1c has a role of protecting things arranged inside. The shape and size of the wind tunnel rear portion 1c are not particularly limited, and can be appropriately determined according to the shape and size of the generator 9. For example, they may be different from the wind tunnel front portion 1a.

台座2は、風洞1を支持する。台座2の形状や大きさは、特に制限はされず、移動体の種類や大きさ、移動体に取り付ける位置に応じて、適宜決定することができる。 A pedestal 2 supports the wind tunnel 1 . The shape and size of the pedestal 2 are not particularly limited, and can be appropriately determined according to the type and size of the moving body and the position of attachment to the moving body.

羽根車5は、羽根車5の後端部近傍が風洞1の開口部に対応する位置に配置され、その他の部分が風洞前部1aの内部に位置するよう配置されている。羽根車5は、ハブ3と、複数の羽根4と、回転軸とを備えている。 The impeller 5 is arranged such that the vicinity of the rear end portion of the impeller 5 is arranged at a position corresponding to the opening of the wind tunnel 1, and other portions are arranged inside the wind tunnel front portion 1a. The impeller 5 includes a hub 3, a plurality of blades 4, and a rotating shaft.

ハブ3は、ハブ3の前端部側から後端部側に向かうにつれ径が大きくなる略円錐部または略裁頭円錐部を有する。ハブ3の前端部側の径が小さいことにより、ハブ3の前端部近傍では、羽根4の径方向の長さを長くすることができる。そのため、羽根4が受ける気流を効率よく回転エネルギーに変換することができ、例えば、低速(例えば、時速10km程度)で移動する場合であっても、十分な発電量を得ることが可能になる。 The hub 3 has a substantially conical portion or substantially truncated conical portion whose diameter increases from the front end side to the rear end side of the hub 3 . Since the diameter of the front end portion of the hub 3 is small, the radial length of the blades 4 can be increased in the vicinity of the front end portion of the hub 3 . Therefore, the airflow received by the blades 4 can be efficiently converted into rotational energy, and, for example, even when moving at a low speed (for example, about 10 km / h), it is possible to obtain a sufficient amount of power generation.

また、ハブ3の後端部側の径が大きいことにより、ハブ3の後端部近傍では、径の大きさが羽根4の径方向の長さの数倍になる。そのため、本実施の形態にかかる羽根車5は、十分な強度と耐久性を有し、例えば、高速で移動する場合に強い気流に受けたとしても、破損する恐れが少ない。 Further, since the diameter of the rear end portion of the hub 3 is large, the size of the diameter near the rear end portion of the hub 3 is several times the length of the blades 4 in the radial direction. Therefore, the impeller 5 according to the present embodiment has sufficient strength and durability, and is less likely to be damaged, for example, even if it is subjected to strong air currents when moving at high speed.

ハブ3の略円錐部または略裁頭円錐部の底面の直径は、特に制限はされないが、風洞前部1aの内部に流入した気流を効率良く回転エネルギーに変換するという観点からは、例えば、風洞前部1aの内径と略等しいことが好ましい。 The diameter of the bottom surface of the substantially conical portion or the substantially truncated conical portion of the hub 3 is not particularly limited, but from the viewpoint of efficiently converting the airflow that has flowed into the wind tunnel front portion 1a into rotational energy, for example, the wind tunnel It is preferably substantially equal to the inner diameter of the front portion 1a.

回転軸は、略円錐部の頂点と底面の円の中心とを結ぶ線分上、または略裁頭円錐部の上面の円の中心と底面の円の中心とを結ぶ線分上に設けられている。回転軸は、ハブ3と一体的に形成されていても良いし、ハブ3と独立して形成し、ハブ3に嵌合させても良い。羽根車5の回転に連動して回転軸が回転し、その回転が増速機7に入力されることになる。 The rotation axis is provided on a line segment connecting the apex of the substantially conical portion and the center of the bottom circle, or on a line segment connecting the center of the top circle and the center of the bottom circle of the substantially truncated conical portion. there is The rotating shaft may be formed integrally with the hub 3 or may be formed independently of the hub 3 and fitted to the hub 3 . The rotating shaft rotates in conjunction with the rotation of the impeller 5 , and the rotation is input to the gearbox 7 .

複数の羽根4のそれぞれは、ハブ3の前端部近傍から後端部近傍にかけて、略円錐部または略裁頭円錐部の母線に対して斜めに所定の角度をなすように形成されており、尚且つ風洞前部1aの内径に近い直径(羽根径)を有している。このような構成により、羽根4が受ける受風面積が大きくなり、また、風洞前部1a内に流入するほぼ全ての気流を複数の羽根4のいずれかで受けることができるため、羽根車に十分な回転エネルギーを与え、十分な回転数を得ることが可能になる。 Each of the plurality of blades 4 is obliquely formed at a predetermined angle with respect to the generatrix of the substantially conical portion or substantially truncated conical portion from the vicinity of the front end portion to the vicinity of the rear end portion of the hub 3, and It has a diameter (blade diameter) close to the inner diameter of the wind tunnel front portion 1a. With such a configuration, the wind receiving area of the blades 4 is increased, and almost all the airflow flowing into the wind tunnel front portion 1a can be received by any one of the plurality of blades 4, so that the impeller is sufficiently It is possible to give sufficient rotational energy and obtain sufficient rotational speed.

前記所定の角度としては、特に制限はされないが、例えば、25度以上が好ましく、また、40度以下が好ましい。前記所定の角度が25度未満の場合、例えば、羽根4と気流とが衝突しにくくなり、羽根車の回転数が低下する恐れがある。また、前記所定の角度が40度を越える場合、例えば、羽根4と気流とが衝突した後に気流の乱れが発生しやすくなり、羽根車の回転数が低下する恐れがある。 Although the predetermined angle is not particularly limited, it is preferably 25 degrees or more, and preferably 40 degrees or less. If the predetermined angle is less than 25 degrees, for example, collision between the blades 4 and the airflow becomes difficult, and the rotation speed of the impeller may decrease. Further, if the predetermined angle exceeds 40 degrees, for example, after the blades 4 collide with the airflow, the airflow is likely to be turbulent, and there is a risk that the rotation speed of the impeller will decrease.

また、羽根4は、略円錐部または略裁頭円錐部の側面を1周以上するような、いわゆる螺旋状に形成されていても良いが、隣り合う2つの羽根4の間の空間で気流の乱れを生じにくくするという観点からは、略円錐部または略裁頭円錐部の側面を1周することなく形成されていることが好ましい。 In addition, the blades 4 may be formed in a so-called spiral shape such that the side surfaces of the substantially conical portion or the substantially truncated conical portion are circulated one or more times. From the viewpoint of making it difficult for disturbance to occur, it is preferable to form the side surface of the substantially conical portion or the substantially truncated conical portion without making one round.

図1に示す正面図では、複数の羽根4それぞれが、ハブ3の前端部近傍(略裁頭円錐部の上面近傍の側面)から放射状に、風洞1の内壁近傍まで伸びている。ハブ3の前端部近傍において、羽根4が十分な長さを有することにより、風洞前部1aの内部に流入した気流を効率良く回転エネルギーに変換することができる。 In the front view shown in FIG. 1, each of the plurality of blades 4 radially extends from the vicinity of the front end of the hub 3 (the side surface of the substantially frustoconical portion near the upper surface) to the vicinity of the inner wall of the wind tunnel 1 . Since the blades 4 have a sufficient length near the front end of the hub 3, the air flow that has flowed into the wind tunnel front portion 1a can be efficiently converted into rotational energy.

以下、図5および図6を用いて、本実施の形態にかかる羽根車についてさらに説明をする。図5は、本発明の実施の形態にかかる、羽根車の一例を示す斜視図である。図6は、本発明の実施の形態にかかる、羽根車の一例を示す模式図であり、理解を容易にするため、羽根車の一部を簡略化して示している。そのため、図5と整合がとれていない部分があるが、整合がとれていない部分は、図5に従って解釈されることが正しい。 The impeller according to the present embodiment will be further described below with reference to FIGS. 5 and 6. FIG. FIG. 5 is a perspective view showing an example of an impeller according to an embodiment of the present invention; FIG. 6 is a schematic diagram showing an example of an impeller according to an embodiment of the present invention, in which a part of the impeller is simplified for easy understanding. Therefore, although there are some parts that are not consistent with FIG. 5, it is correct to interpret the parts that are not consistent according to FIG.

図5及び図6に示す羽根車5は、略裁頭円錐部を有するハブ3と、複数の羽根4と、回転軸6とを備えている。また、図6に示すハブ3は、略裁頭円錐部の上面の円の中心と底面の円の中心とを結ぶ線分を含む平面によってハブ3を切断した場合の断面を模式的に表したものである。また、羽根4は、対向する位置にある2枚のみを簡略的に示し、その他の羽根4は省略している。正確には、図6における上側の羽根4は、羽根車5の前端部では図の奥側に位置し、羽根車5の後端部では図の手前側に位置するものである。また、図6における下側の羽根4は、羽根車5の前端部では図の手前側に位置し、羽根車5の後端部では図の奥側に位置するものである。なお、図5および図6に示すハブ3、複数の羽根4、羽根車5、および回転軸6に関しては、図1~4などを用いて上述した内容を適宜援用することができるため、重複する説明は省略する。 The impeller 5 shown in FIGS. 5 and 6 includes a hub 3 having a substantially frustoconical portion, a plurality of blades 4 and a rotating shaft 6 . The hub 3 shown in FIG. 6 is a schematic cross-section of the hub 3 cut by a plane including a line segment connecting the center of the circle on the top surface of the truncated cone portion and the center of the circle on the bottom surface. It is. Also, only two blades 4 facing each other are shown in a simplified manner, and the other blades 4 are omitted. More precisely, the upper blade 4 in FIG. 6 is located on the back side of the figure at the front end of the impeller 5 and on the front side of the figure at the rear end of the impeller 5 . 6 is located on the front side of the figure at the front end of the impeller 5, and is located on the back side of the figure at the rear end of the impeller 5. As shown in FIG. Regarding the hub 3, the plurality of blades 4, the impeller 5, and the rotating shaft 6 shown in FIGS. 5 and 6, the contents described above with reference to FIGS. Description is omitted.

図5に示すように、径方向における羽根4の長さは、例えば、ハブ3の前端部近傍では長く、ハブ3の後端部近傍では短くなっていることが好ましい。また、羽根車5の回転軸に垂直な任意の平面によって羽根車5を切断した場合に、その断面における羽根4の長さが、略円錐部または略裁頭円錐部の底面の半径と、略円錐部または略裁頭円錐部の断面の半径との差と略等しいことが好ましい。これらのような構成により、風力から回転エネルギーへの変換効率をより高めることができ、例えば、移動体が低速で移動するような場合であっても、十分な発電量を得ることが可能になる。 As shown in FIG. 5, it is preferable that the length of the blades 4 in the radial direction is long near the front end of the hub 3 and short near the rear end of the hub 3, for example. Further, when the impeller 5 is cut by an arbitrary plane perpendicular to the rotation axis of the impeller 5, the length of the blade 4 in the cross section is approximately the radius of the bottom surface of the substantially conical portion or substantially truncated conical portion It is preferably substantially equal to the difference in cross-sectional radius of the conical portion or substantially truncated conical portion. With such a configuration, the conversion efficiency from wind power to rotational energy can be further increased, and for example, even when the moving body moves at a low speed, it becomes possible to obtain a sufficient amount of power generation. .

同様の観点から、羽根4の形状としては、例えば、略三角形状が好ましく、略直角三角形状がより好ましい。羽根4の形状を略三角形状または略直角三角形状とする場合、斜辺に相当する部位と略円錐部または略裁頭円錐部の側面とが接するように羽根車5を構成することが好ましい。 From the same point of view, the shape of the blades 4 is preferably, for example, a substantially triangular shape, and more preferably a substantially right-angled triangular shape. When the shape of the blades 4 is substantially triangular or substantially right-angled triangular, it is preferable to configure the impeller 5 so that the portion corresponding to the oblique side and the side surface of the substantially conical portion or substantially truncated conical portion are in contact with each other.

なお、ハブ3の後端部近傍では径が大きくなっているため、ハブ3の後端部近傍では、羽根車5における気流が通過するスペースが小さくなり、気流の圧力が増加する。気流の圧力を増加させた状態で、気流を風洞1に設けられた開口部へ導くことによって、開口部からの排気を効率的に行うことができ、風洞後部1cの内部に配置されたものが破損する可能性を低下させることが可能になる。 Since the diameter near the rear end portion of the hub 3 is large, the space through which the airflow passes in the impeller 5 becomes small near the rear end portion of the hub 3, and the pressure of the airflow increases. By guiding the airflow to the opening provided in the wind tunnel 1 with the pressure of the airflow increased, the exhaust from the opening can be efficiently performed, and the airflow is arranged inside the rear part 1c of the wind tunnel. It is possible to reduce the possibility of breakage.

図3の説明に戻る。増速機7は、羽根車5と発電機9との間に配置される。増速機7は、羽根車5の回転軸(入力軸)6から入力された回転数を増加させ、出力軸8を介して発電機9へと伝える。増速機7を備えることで、移動体の移動速度が遅く、羽根車の回転数が不十分な場合でも、十分な発電量および発電効率を得ることが可能になる。増速機7としては、特に制限はされず、例えば、要求される発電量または発電機9の種類などに応じて、従来公知のものを適宜採用することができる。 Returning to the description of FIG. The gearbox 7 is arranged between the impeller 5 and the generator 9 . The speed increaser 7 increases the rotation speed input from the rotating shaft (input shaft) 6 of the impeller 5 and transmits it to the generator 9 via the output shaft 8 . By providing the speed increaser 7, it is possible to obtain sufficient power generation amount and power generation efficiency even when the moving speed of the moving body is slow and the rotation speed of the impeller is insufficient. The gearbox 7 is not particularly limited, and conventionally known gearboxes can be appropriately employed depending on the amount of power generation required or the type of the generator 9, for example.

発電機9は、出力軸8を介して伝達された回転エネルギーを電気エネルギーに変換する。発電機としては、特に制限はされず、例えば、移動体に備えられた蓄電池の種類などに応じて、従来公知のものを適宜採用することができる。発電機9としては、直流発電機でも良いし、交流発電機でもよいが、例えば、発生した電流を蓄電池に蓄電させる場合、直流発電機、または整流器を備えた交流発電機(例えば、オルタネータ)が好ましい。 The generator 9 converts rotational energy transmitted through the output shaft 8 into electrical energy. The generator is not particularly limited, and for example, conventionally known generators can be appropriately employed according to the type of storage battery provided in the mobile object. The generator 9 may be a DC generator or an AC generator. For example, when the generated current is stored in a storage battery, a DC generator or an AC generator equipped with a rectifier (eg, an alternator) is used. preferable.

発電機9によって得られた電気エネルギーは、移動体に備えられた蓄電池(図示せず)において蓄電される。蓄電池としては特に制限されず、例えば、リチウムイオン電池、鉛蓄電池など従来公知のものを適宜採用することができる。また、いわゆる全固体電池であっても良い。移動体が動力源として蓄電池を備えている場合は、動力源である蓄電池に蓄電されることが好ましい。 The electrical energy obtained by the generator 9 is stored in a storage battery (not shown) provided in the mobile body. The storage battery is not particularly limited, and conventionally known batteries such as lithium ion batteries and lead storage batteries can be used as appropriate. Also, a so-called all-solid battery may be used. When the moving object has a storage battery as a power source, it is preferable that the power is stored in the storage battery as the power source.

制御装置10は、ケーブル等(図示せず)を介して、発電機9と電気的に接続されている。制御装置10は、発電機9によって得られた電気エネルギーを蓄電池に蓄電する際の制御を行う。制御装置10は、例えば、蓄電池がリチウムイオン電池の場合等に過充電などが起きないよう、蓄電池への出力電圧の制御などを行う。なお、蓄電池が鉛蓄電池の場合など、蓄電池への出力電圧の制御が不要な場合は、制御装置10を備えていなくても良い。制御装置10は、風洞後部1cの内部ではなく、例えば、蓄電池の近傍に備えられていても良い。 The control device 10 is electrically connected to the generator 9 via a cable or the like (not shown). The control device 10 performs control when the electrical energy obtained by the generator 9 is stored in the storage battery. For example, when the storage battery is a lithium ion battery, the control device 10 controls the output voltage to the storage battery so that overcharging does not occur. Note that the control device 10 may not be provided when control of the output voltage to the storage battery is unnecessary, such as when the storage battery is a lead-acid battery. The control device 10 may be provided, for example, in the vicinity of the storage battery instead of inside the wind tunnel rear portion 1c.

[移動体]
次に、本発明の実施の形態にかかる、移動体について説明をする。移動体とは、例えば、陸上、海上、または空中を、風力発電が可能な所定の速度(例えば、10km/時)以上で移動可能なものをいう。移動体の具体例としては、自転車、バイク、自動車、船舶、無人航空機(例えば、ドローン)などが挙げられる。
[Moving body]
Next, a moving body according to an embodiment of the present invention will be explained. A mobile means, for example, an object that can move on land, sea, or air at a predetermined speed (for example, 10 km/h) or higher that enables wind power generation. Specific examples of mobile objects include bicycles, motorcycles, automobiles, ships, and unmanned aerial vehicles (for example, drones).

移動体の動力源は、人力、ガソリン、電力など、特に制限はされないが、電力が好ましい。例えば、蓄電池に備えられた電力を動力源とする移動体であれば、移動によって消費した電力を風力発電システムによって発電した電力で補うことができるので、航続距離を伸ばすことが可能になる。電力を動力源とする移動体の具体例としては、電動自転車、電動バイク、電気自動車、ドローンなどが挙げられる。なお、移動体の動力源が電力でない場合でも、発電した電力を蓄電池に蓄え、他の用途に使用することができるため、有用である。 The power source of the moving body is not particularly limited, and may be human power, gasoline, electric power, etc., but electric power is preferable. For example, in the case of a mobile object powered by electric power stored in a storage battery, the electric power consumed by movement can be compensated for by the electric power generated by the wind power generation system, so the cruising range can be extended. Specific examples of mobile objects powered by electric power include electric bicycles, electric motorcycles, electric vehicles, and drones. Note that even if the power source of the moving body is not electric power, the generated electric power can be stored in a storage battery and used for other purposes, which is useful.

風力発電システムの取り付け位置は、移動によって発生する相対的な気流を受けることができる位置であれば、特に制限はされない。風力発電システムの取り付け位置は、移動体の内部であっても外部であっても良く、移動体の種類や大きさに応じて、適宜決定すればよい。移動体が電気自動車の場合、例えば、スポイラーなどのエアロパーツを取り付ける位置や、ボンネットの中などが挙げられる。ボンネットの中に取り付ける場合は、例えば、フロントグリルから流入する気流によって発電を行う。また、電気自動車のボディに専用の取り付けスペースを設け、風力発電システムの吸気口に気流が流れこめる態様にてボディに埋め込んでも良い。破損する可能性を低下できるという観点からは、ボンネットに配置する、又はボディに埋め込む態様で配置することが好ましい。 The installation position of the wind power generation system is not particularly limited as long as it can receive relative air currents generated by movement. The installation position of the wind power generation system may be inside or outside the moving body, and may be determined as appropriate according to the type and size of the moving body. If the mobile object is an electric vehicle, for example, the location where aero parts such as a spoiler are installed, the inside of the hood, and the like. When installed under the hood, for example, it generates electricity by the airflow that flows in from the front grille. Alternatively, a dedicated mounting space may be provided in the body of the electric vehicle, and it may be embedded in the body in such a manner that the airflow can flow into the intake port of the wind power generation system. From the viewpoint of reducing the possibility of breakage, it is preferable to arrange it in the bonnet or embed it in the body.

移動体に取り付ける風力発電システムの数は、特に制限はされず、要求される発電量に応じて、適宜決定すれば良い。上述した実施の形態にかかる風力発電システムは、従来の風力発電所に設置されている風力発電装置と比べて非常に小型かつ軽量であるため、移動体への取り付けが容易であり、また、複数取り付けた場合でも移動体の重量的な負担が少ない。 The number of wind power generation systems attached to the mobile body is not particularly limited, and may be determined as appropriate according to the amount of power generation required. The wind power generation system according to the above-described embodiment is much smaller and lighter than wind power generators installed in conventional wind power plants. Even when attached, the weight burden on the moving body is small.

1 風洞
1a 風洞前部
1b 風洞連結部
1c 風洞後部
2 台座
3 ハブ
4 羽根
5 羽根車
6 回転軸(入力軸)
7 増速機
8 出力軸
9 発電機
10 制御装置
REFERENCE SIGNS LIST 1 wind tunnel 1a wind tunnel front portion 1b wind tunnel connection portion 1c wind tunnel rear portion 2 pedestal 3 hub 4 blades 5 impeller 6 rotating shaft (input shaft)
7 gearbox 8 output shaft 9 generator 10 control device

Claims (7)

略円筒状の風洞と、
風洞内に配置され、ハブ及び複数の羽根を有する羽根車と、
羽根車の回転によって発電する発電機とを備え、
ハブが、前端部側から後端部側に向かうにつれ径が大きくなる略円錐部または略裁頭円錐部を有し、
ハブの略円錐部または略裁頭円錐部の底面の直径が、ハブが配置されている部分の風洞の内径と略等しく、
複数の羽根のそれぞれが、ハブの前端部近傍から後端部近傍にかけて、略円錐部または略裁頭円錐部の母線に対して斜めに所定の角度をなすように形成されている、
移動体用の風力発電システム。
a substantially cylindrical wind tunnel;
an impeller disposed in a wind tunnel and having a hub and a plurality of blades;
and a generator that generates power by rotating the impeller,
the hub has a substantially conical portion or a substantially truncated conical portion whose diameter increases from the front end side to the rear end side;
the bottom diameter of the substantially conical portion or the substantially truncated conical portion of the hub is substantially equal to the inner diameter of the wind tunnel in which the hub is located ;
Each of the plurality of blades is obliquely formed at a predetermined angle with respect to the generatrix of the substantially conical portion or substantially truncated conical portion from near the front end portion to near the rear end portion of the hub,
A wind power generation system for mobile objects.
羽根が、略三角形状であり、略三角形状の斜辺に相当する部位と略円錐部または略裁頭円錐部の側面とが接するように形成されている、
請求項1に記載の移動体用の風力発電システム。
The blade has a substantially triangular shape, and is formed so that a portion corresponding to the oblique side of the substantially triangular shape and the side surface of the substantially conical portion or substantially truncated conical portion are in contact,
The wind power generation system for a moving object according to claim 1.
羽根車の回転軸に垂直な任意の平面によって羽根車を切断した場合に、断面における羽根の長さが、略円錐部または略裁頭円錐部の底面の半径と、略円錐部または略裁頭円錐部の断面の半径との差と略等しい、
請求項1または2に記載の移動体用の風力発電システム。
When the impeller is cut by an arbitrary plane perpendicular to the axis of rotation of the impeller, the length of the blade in the cross section is the radius of the bottom surface of the substantially conical portion or substantially truncated conical portion and the substantially conical portion or substantially truncated conical portion. approximately equal to the difference from the radius of the section of the cone,
The wind power generation system for a moving object according to claim 1 or 2.
所定の角度が、25~45度である、
請求項1~3のいずれかに記載の移動体用の風力発電システム。
the predetermined angle is between 25 and 45 degrees;
A wind power generation system for a moving body according to any one of claims 1 to 3.
任意の1の羽根に着目した場合、該1の羽根が、略円錐部または略裁頭円錐部の側面を1周することなく形成されている、
請求項1~4のいずれかに記載の移動体用の風力発電システム。
When focusing on any one blade, the one blade is formed without making one turn around the side surface of the substantially conical portion or substantially truncated conical portion.
A wind power generation system for a moving body according to any one of claims 1 to 4.
風洞が、風洞の前端部と後端部との間であって、羽根車の後端部近傍に対応する位置に、風洞の前端部から流入した風を風洞の外へ排気するための開口部を有する、
請求項1~5のいずれかに記載の移動体用の風力発電システム。
The wind tunnel has an opening between the front end and the rear end of the wind tunnel and at a position corresponding to the vicinity of the rear end of the impeller for discharging the wind that has flowed in from the front end of the wind tunnel to the outside of the wind tunnel. has a
A wind power generation system for a moving body according to any one of claims 1 to 5.
請求項1~6のいずれかに記載の移動体用の風力発電システムを備えた、移動体。 A moving object comprising the wind power generation system for a moving object according to any one of claims 1 to 6.
JP2022026080A 2017-12-28 2022-02-22 Wind power generation system for mobile body and mobile body provided with the same Active JP7320642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022026080A JP7320642B2 (en) 2017-12-28 2022-02-22 Wind power generation system for mobile body and mobile body provided with the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017253963A JP7030511B2 (en) 2017-12-28 2017-12-28 Wind power generation system for mobiles, and mobiles equipped with it
JP2022026080A JP7320642B2 (en) 2017-12-28 2022-02-22 Wind power generation system for mobile body and mobile body provided with the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017253963A Division JP7030511B2 (en) 2017-12-28 2017-12-28 Wind power generation system for mobiles, and mobiles equipped with it

Publications (2)

Publication Number Publication Date
JP2022063347A JP2022063347A (en) 2022-04-21
JP7320642B2 true JP7320642B2 (en) 2023-08-03

Family

ID=87469829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022026080A Active JP7320642B2 (en) 2017-12-28 2022-02-22 Wind power generation system for mobile body and mobile body provided with the same

Country Status (1)

Country Link
JP (1) JP7320642B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009016899A1 (en) 2009-04-08 2010-10-28 Bruns, Cord Jürgen Dynamic pressure generator for producing electric energy for motor vehicle i.e. electric vehicle, has turbine including outer casing, cup-shaped inner casing, lying blades and attaching hub connected into single unit
JP7030511B2 (en) 2017-12-28 2022-03-07 訓範 津田 Wind power generation system for mobiles, and mobiles equipped with it

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5587864A (en) * 1978-12-27 1980-07-03 Nagao Furukawa Wind-driven power plant utilizing controlled wind

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009016899A1 (en) 2009-04-08 2010-10-28 Bruns, Cord Jürgen Dynamic pressure generator for producing electric energy for motor vehicle i.e. electric vehicle, has turbine including outer casing, cup-shaped inner casing, lying blades and attaching hub connected into single unit
JP7030511B2 (en) 2017-12-28 2022-03-07 訓範 津田 Wind power generation system for mobiles, and mobiles equipped with it

Also Published As

Publication number Publication date
JP2022063347A (en) 2022-04-21

Similar Documents

Publication Publication Date Title
US20170342964A1 (en) Wind Turbine Energy Tube Battery Charging System for a Vehicle
US7868476B2 (en) Wind-driven electric power generation system
US8436485B1 (en) Wind powered turbine motor for motor vehicles
US7665553B2 (en) Renewable energy system for electric vehicles
US20050098361A1 (en) Current powered vehicle
US20120085587A1 (en) Wind Power for Electric Cars
JP5676540B2 (en) In-vehicle wind power generator
WO2008121378A1 (en) Wind-driven electric power generation system
US20170113791A1 (en) Propulsion System for a Vehicle
US20140001760A1 (en) Wind-powered automotive electric generator
US20220082088A1 (en) Translationally movable wind power plant
US20200055403A1 (en) High Efficiency Aerodynamic Vehcular Power System
JP2011169297A (en) Wind power generation electric vehicle
CN105480418A (en) Ducted fixed-wing oil-electric hybrid unmanned aircraft
US20230030205A1 (en) Power-Generating Systems
CN110397560A (en) A kind of vehicle wind generation device and vehicle
JP7320642B2 (en) Wind power generation system for mobile body and mobile body provided with the same
JP7030511B2 (en) Wind power generation system for mobiles, and mobiles equipped with it
CN205418106U (en) Duct formula stationary vane oil -electricity hybrid vehicle unmanned aerial vehicle
JP4607234B1 (en) Power generation turbine
JPH05344601A (en) Linear motor car
GB2470181A (en) Electric vehicle having wind turbine to charge batteries
CN102072225A (en) Vehicle resistance reducing device
JP6120193B1 (en) Vehicle with wind power generator
RU191928U1 (en) Rotary wind power plant with kinetic energy storage for a vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221220

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230724

R150 Certificate of patent or registration of utility model

Ref document number: 7320642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150