JP7320434B2 - Cryogenic liquid storage tank, manufacturing method thereof, and construction method of side cold-heat resistance relaxation layer - Google Patents

Cryogenic liquid storage tank, manufacturing method thereof, and construction method of side cold-heat resistance relaxation layer Download PDF

Info

Publication number
JP7320434B2
JP7320434B2 JP2019210584A JP2019210584A JP7320434B2 JP 7320434 B2 JP7320434 B2 JP 7320434B2 JP 2019210584 A JP2019210584 A JP 2019210584A JP 2019210584 A JP2019210584 A JP 2019210584A JP 7320434 B2 JP7320434 B2 JP 7320434B2
Authority
JP
Japan
Prior art keywords
layer
insulating layer
low
heat insulating
urethane foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019210584A
Other languages
Japanese (ja)
Other versions
JP2021080777A (en
Inventor
計仁 渡邊
龍樹 斎藤
健二 伊熊
伸也 杉浦
英晃 中村
駿也 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Inoac Polyurethanes Ltd
Original Assignee
BASF Inoac Polyurethanes Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF Inoac Polyurethanes Ltd filed Critical BASF Inoac Polyurethanes Ltd
Priority to JP2019210584A priority Critical patent/JP7320434B2/en
Priority to TW109138337A priority patent/TWI756899B/en
Publication of JP2021080777A publication Critical patent/JP2021080777A/en
Application granted granted Critical
Publication of JP7320434B2 publication Critical patent/JP7320434B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Building Environments (AREA)

Description

本発明は、0℃以下の低温液が貯留される低温液貯槽、及びその製造方法、及び、低温液貯槽の防液堤を冷熱衝撃から保護する側部冷熱抵抗緩和層の施工方法に関する。 The present invention relates to a low-temperature liquid storage tank in which low-temperature liquid of 0°C or lower is stored, a method for manufacturing the same, and a method for constructing a side cooling-heat resistance relaxation layer for protecting the liquid barrier of the low-temperature liquid storage tank from thermal shock.

従来の低温液貯槽は、内部に低温液を貯留する内槽と、その内槽を外側から覆う外槽とを備え、外槽の内側面に側部冷熱抵抗緩和層が形成されている。側部冷熱抵抗緩和層として、硬質ウレタンフォームの表面にメッシュ構造の補強シートを備えたものが知られている(例えば、特許文献1参照)。 A conventional low-temperature liquid storage tank includes an inner tank for storing a low-temperature liquid inside and an outer tank for covering the inner tank from the outside. As a side cold-heat resistance relaxation layer, there is known one in which a reinforcing sheet having a mesh structure is provided on the surface of rigid urethane foam (see, for example, Patent Document 1).

特許第3044605号(段落[0002]、図4)Patent No. 3044605 (paragraph [0002], Fig. 4)

上記した従来の低温液貯槽では、補強シートが硬質ウレタンフォームの表面から浮いたり、はがれた場合に、漏洩した低温液により硬質ウレタンフォームが冷熱衝撃にさらされるという問題があり、側部冷熱抵抗緩和層の硬質ウレタンフォームに伝わる冷熱衝撃の緩和を図ることが求められていた。 In the above-mentioned conventional low-temperature liquid storage tank, if the reinforcing sheet floats or peels off from the surface of the rigid urethane foam, there is a problem that the leaked low-temperature liquid exposes the rigid urethane foam to thermal shock. There has been a demand for mitigation of thermal shock transmitted to the hard urethane foam of the layer.

上記課題を解決するためになされた請求項1の発明は、0℃以下の低温液が貯留される内槽と、その外側を覆う外槽との間に保冷層が配置されると共に、前記外槽の外側面がコンクリート製の防液堤で覆われる一方、前記外槽の内側面が、前記保冷層として、前記低温液の漏れを抑え、冷熱衝撃を緩和するために、硬質ウレタンフォームを含む防熱層を有する側部冷熱抵抗緩和層がコーティングされている低温液貯槽であって、前記側部冷熱抵抗緩和層は、前記防熱層の内側面に、前記低温液を前記外槽の面方向に拡散させる拡散層を有している、低温液貯槽である。 In the invention of claim 1, which has been made to solve the above problems, a cold insulation layer is arranged between an inner tank in which a low temperature liquid of 0 ° C. or less is stored and an outer tank that covers the outside thereof, and the outer tank While the outer surface of the tank is covered with a concrete liquid barrier, the inner surface of the outer tank contains rigid urethane foam as the cooling layer to suppress leakage of the low-temperature liquid and mitigate thermal shock. A low-temperature liquid storage tank coated with a side cold-heat resistance mitigating layer having a heat insulating layer, wherein the side cold-heat resistance mitigating layer is provided on the inner surface of the heat insulating layer and directs the low-temperature liquid in the surface direction of the outer tank. A cryogenic liquid reservoir having a diffusion layer for diffusion.

請求項2の発明は、前記拡散層は、前記防熱層よりも通気性が高い、請求項1に記載の低温液貯槽である。 The invention of claim 2 is the low-temperature liquid storage tank according to claim 1, wherein the diffusion layer has higher air permeability than the heat insulating layer.

請求項3の発明は、前記拡散層のコア部における該拡散層の厚み方向の通気性(JIS K 6400-7 B法:201 2/ISO 7231:2010)が、0.05~30ml/cm/sである、請求項1又は2に記載の低温液貯槽である。 In the invention of claim 3, the air permeability (JIS K 6400-7 B method: 2012/ISO 7231:2010) in the thickness direction of the diffusion layer at the core portion of the diffusion layer is 0.05 to 30 ml/cm 2 . /s.

請求項4の発明は、前記拡散層は、ウレタンフォームである、請求項1乃至3のうち何れか1の請求項に記載の低温液貯槽である。 The invention of claim 4 is the low-temperature liquid storage tank according to any one of claims 1 to 3, wherein the diffusion layer is made of urethane foam.

請求項5の発明は、前記拡散層は、前記防熱層よりも密度が小さい低密度硬質ウレタンフォームである、請求項1乃至4のうち何れか1の請求項に記載の低温液貯槽である。 The invention of claim 5 is the low-temperature liquid storage tank according to any one of claims 1 to 4, wherein the diffusion layer is a low-density rigid urethane foam having a density lower than that of the heat insulating layer.

請求項6の発明は、前記低密度硬質ウレタンフォームからなる前記拡散層は、前記防熱層に直接固着している、請求項5に記載の低温液貯槽である。 The invention according to claim 6 is the low-temperature liquid storage tank according to claim 5, wherein the diffusion layer made of the low-density rigid urethane foam is directly fixed to the heat insulating layer.

請求項7の発明は、0℃以下の低温液が貯留される内槽と、その外側を覆う外槽との間に保冷層が配置されると共に、前記外槽の外側面がコンクリート製の防液堤で覆われている低温液貯槽における前記外槽の内側面に、前記保冷層として、前記低温液の漏れを抑え、冷熱衝撃を緩和するために、硬質ウレタンフォームを含む防熱層を有する側部冷熱抵抗緩和層をコーティングする施工方法であって、前記外槽の内側面にウレタンフォーム原料を塗布し、発泡硬化させて防熱層を形成する第1工程と、前記防熱層の内側面に、前記低温液を前記外槽の面方向に拡散させる拡散層を積層する第2工程とを行って、前記防熱層と前記拡散層とを含んだ前記側部冷熱抵抗緩和層を前記外槽の内側面にコーティングする側部冷熱抵抗緩和層の施工方法である。 In the invention of claim 7, a cold insulation layer is arranged between an inner tank in which a low-temperature liquid of 0°C or less is stored and an outer tank covering the outside thereof, and the outer surface of the outer tank is made of concrete. A side having a heat insulating layer containing rigid urethane foam as the cold insulating layer on the inner surface of the outer tank in the cold liquid storage tank covered with the liquid bank, in order to suppress the leakage of the cold liquid and mitigate the thermal shock. A first step of applying a urethane foam raw material to the inner surface of the outer tank and foaming and curing it to form a heat insulating layer, and on the inner surface of the heat insulating layer, and a second step of laminating a diffusion layer for diffusing the low-temperature liquid in the surface direction of the outer tank, so that the side cold-heat resistance relaxation layer including the heat insulating layer and the diffusion layer is formed inside the outer tank. This is the construction method of the side cold-heat resistance relaxation layer to be coated on the side.

請求項8の発明は、0℃以下の低温液が貯留される内槽と、その外側を覆う外槽との間に保冷層が配置されると共に、前記外槽の外側面がコンクリート製の防液堤で覆われている低温液貯槽における前記外槽の内側面に、前記保冷層として、前記低温液の漏れを抑え、冷熱衝撃を緩和するために、硬質ウレタンフォームを含む防熱層を有する側部冷熱抵抗緩和層をコーティングする施工方法であって、前記外槽の内側面に第1ウレタンフォーム原料を塗布し、発泡硬化させて防熱層を形成する第1工程と、前記防熱層の内側面に、第2ウレタンフォーム原料を塗布し、発泡硬化させて前記防熱層よりも通気性が高く、かつ、密度が小さい低密度硬質ウレタンフォームからなる拡散層を形成する第2工程とを行って、前記防熱層と、前記拡散層とを含んだ前記側部冷熱抵抗緩和層を前記外槽の内側面にコーティングする側部冷熱抵抗緩和層の施工方法である。 In the invention of claim 8, a cold insulating layer is arranged between an inner tank in which a low-temperature liquid of 0°C or less is stored and an outer tank covering the outside thereof, and the outer surface of the outer tank is made of concrete. A side having a heat insulating layer containing rigid urethane foam as the cold insulating layer on the inner surface of the outer tank in the cold liquid storage tank covered with the liquid bank, in order to suppress the leakage of the cold liquid and mitigate the thermal shock. A first step of applying a first urethane foam raw material to the inner surface of the outer tank and foaming and curing to form a heat insulating layer, and an inner surface of the heat insulating layer. a second step of applying a second urethane foam raw material and foaming and curing to form a diffusion layer made of low-density rigid urethane foam having higher air permeability and lower density than the heat insulating layer; A method for constructing a side cooling-heat resistance reducing layer, in which the side cooling-heat resistance reducing layer including the heat insulating layer and the diffusion layer is coated on the inner surface of the outer tank.

請求項9の発明は、請求項7又は8に記載の側部冷熱抵抗緩和層の施工方法を使用して低温液貯槽を製造する低温液貯槽の製造方法である。 A ninth aspect of the invention is a method for manufacturing a low-temperature liquid storage tank using the method for constructing a side cold-heat resistance relaxation layer according to claim 7 or 8.

請求項1,4,7,9の発明によれば、漏洩した低温液は、硬質ウレタンフォームを含む防熱層よりも先に拡散層に接触し、低温液は拡散層の厚み方向だけでなく、外槽の面方向にも拡散される。拡散層において、低温液が外槽の面方向に拡散されることにより、防熱層は、局所的に急激に冷却されることが抑制され、面方向に広がった低温液によりゆっくりと時間をかけて冷却される。これにより、低温液による冷熱衝撃が、拡散層で緩和され、防熱層に急激に伝わることが低減される。 According to the inventions of claims 1, 4, 7, and 9, the leaked low-temperature liquid contacts the diffusion layer before the heat insulating layer containing the rigid urethane foam, and the low-temperature liquid contacts the diffusion layer not only in the thickness direction of the diffusion layer, but also in the diffusion layer. It is also diffused in the surface direction of the outer tank. In the diffusion layer, the low-temperature liquid is diffused in the surface direction of the outer tank, so that the heat insulating layer is prevented from being rapidly cooled locally, and the low-temperature liquid spreading in the surface direction cools down slowly over time. Cooled. As a result, the thermal shock caused by the low-temperature liquid is mitigated by the diffusion layer, and abrupt transmission to the heat insulating layer is reduced.

そして、請求項2,3の発明のように、拡散層を、防熱層よりも通気性が高い構成とすれば、低温液が防熱層に到達する前に、拡散層で低温液を面方向に拡散させることができる。例えば、請求項5,8のように、拡散層を低密度硬質ウレタンフォームとすれば、低温液が接触した低密度硬質ウレタンフォームの内部に入り込む。このとき、低温液は、低密度硬質ウレタンフォーム内部の連通した空孔を通って外槽の面方向に拡散される。 Then, if the diffusion layer is configured to have higher air permeability than the heat insulating layer as in the inventions of claims 2 and 3, the low temperature liquid flows through the diffusion layer in the plane direction before the low temperature liquid reaches the heat insulating layer. can be diffused. For example, as in claims 5 and 8, if the diffusion layer is made of low-density rigid urethane foam, the low-temperature liquid enters the interior of the low-density rigid urethane foam in contact. At this time, the low-temperature liquid diffuses in the surface direction of the outer tank through the interconnected pores inside the low-density rigid urethane foam.

また、拡散層を備えることによって、上述したように、低温液の冷熱衝撃から防熱層の硬質ウレタンフォームを保護することができるので、従来のように硬質ウレタンフォームの表面を補強するためのメッシュ構造の補強シートを備えなくてもよい(請求項6の発明)。 In addition, by providing the diffusion layer, as described above, the hard urethane foam of the heat insulating layer can be protected from the thermal shock of the low-temperature liquid. No reinforcing sheet may be provided (invention of claim 6).

本開示の一実施形態に係る低温液貯槽の破断正面図1 is a cutaway front view of a cryogenic liquid storage tank according to an embodiment of the present disclosure; FIG. タンク部の拡大断面図Enlarged sectional view of the tank 側部冷熱抵抗緩和層の断面図Cross-sectional view of the side thermal resistance mitigating layer 低密度硬質ウレタンフォームからなる拡散層の内部に進入した液化天然ガスの流れを示す概略図Schematic diagram showing the flow of liquefied natural gas entering the diffusion layer made of low-density rigid urethane foam. 外槽の内側面への側部冷熱抵抗緩和層の施工状態を示す図A diagram showing the state of construction of the side cold-heat resistance relaxation layer on the inner surface of the outer tank 側部冷熱抵抗緩和層の施工方法の流れを示す図Diagram showing the flow of construction method for the side thermal resistance mitigating layer

以下、本開示の一実施形態を図1~図4に基づいて説明する。図1に示すように、本実施形態の低温液貯槽100は、内槽20と外槽30とを備えた中空円筒状のタンク部40と、タンク部40の周囲を取り囲む円筒状の防液堤50と、からなる。タンク部40は、内槽20の内部に液化天然ガスLを貯留する。なお、低温液貯槽100の容量は、一般的に14万~23万kLであり、23万kLの低温液貯槽100では、防液堤50の直径は約90mであり、その高さは約40mとなる。 An embodiment of the present disclosure will be described below with reference to FIGS. 1 to 4. FIG. As shown in FIG. 1, the cryogenic liquid storage tank 100 of this embodiment includes a hollow cylindrical tank portion 40 having an inner tank 20 and an outer tank 30, and a cylindrical liquid barrier surrounding the tank portion 40. 50. The tank part 40 stores the liquefied natural gas L inside the inner tank 20 . Incidentally, the capacity of the low-temperature liquid storage tank 100 is generally 140,000 to 230,000 kL. becomes.

内槽20及び外槽30は、それぞれ天井部21,31を備え、その内部が外部に対して遮断された構造となっている。天井部21,31は、中央部が膨らんだドーム形状をなし、気化した液化天然ガスLが充満する空間となっている。内槽20及び外槽30は共に、金属で構成されていて、例えば、低温靭性の観点から、鉄や鋼鉄等が好ましい。特に、内槽20は、常時極低温に曝されるため、低温靭性に優れた鉄を主成分とするニッケル等の合金が好ましい。 The inner tub 20 and the outer tub 30 are provided with ceiling portions 21 and 31, respectively, and have a structure in which the inside thereof is shut off from the outside. The ceiling portions 21 and 31 have a dome shape with a swollen central portion, and form a space filled with vaporized liquefied natural gas L. Both the inner tank 20 and the outer tank 30 are made of metal. For example, from the viewpoint of low temperature toughness, iron or steel is preferable. In particular, since the inner tank 20 is always exposed to extremely low temperatures, an alloy such as nickel containing iron as a main component, which is excellent in low-temperature toughness, is preferable.

防液堤50は、液化天然ガスLの漏洩事故発生時に液化天然ガスLの拡散防止のために設置されていて、本実施形態では、防液堤50の内側面は、外槽30の外側面に重ねられている。なお、防液堤50は、ひび割れしにくいプレストレストコンクリートで構成されている。 The dike 50 is installed to prevent the diffusion of the liquefied natural gas L in the event of an accidental leakage of the liquefied natural gas L. In this embodiment, the inner surface of the dike 50 is superimposed on The dike 50 is made of prestressed concrete that is hard to crack.

タンク部40において、内槽20と外槽30の間に形成される空間Kには、液化天然ガスLを-160℃程度に保ち、液化天然ガスLの気化を低減するための保冷層60が備えられている。保冷層60は、天井部保冷層61、側部保冷層62、底部保冷層63から構成されている。 In the tank part 40, the space K formed between the inner tank 20 and the outer tank 30 is provided with a cooling layer 60 for keeping the liquefied natural gas L at about -160°C and reducing the vaporization of the liquefied natural gas L. are provided. The cold insulation layer 60 is composed of a ceiling cold insulation layer 61 , a side cold insulation layer 62 and a bottom cold insulation layer 63 .

詳細には、内槽20及び外槽30のうち、天井部21,31に形成される空間Kには、天井部保冷層61として、断熱性能を有する粒状パーライト等が充填されている。内槽20と外槽30のうち、側部22,32に形成される空間Kには、側部保冷層62として、外槽30の内側面30Sに側部冷熱抵抗緩和層10がコーティングされると共に、側部冷熱抵抗緩和層10と内槽20との間に、天井部保冷層61と同様に粒状パーライト等が充填されている。また、内槽20及び外槽30のうち、底部23,33に形成される空間Kには、底部保冷層63として、耐荷重性能及び断熱性能を有するパーライトコンクリート、軽量気泡コンクリート等が配設されている。なお、側部冷熱抵抗緩和層10は、漏洩した液化天然ガスLの冷熱衝撃が、防液堤50に急激に伝わることを防止するために形成されている。ここで、側部保冷層62が本開示の「保冷層」に相当する。 Specifically, the space K formed in the ceiling portions 21 and 31 of the inner tank 20 and the outer tank 30 is filled with granular perlite or the like having heat insulating performance as the ceiling cold insulation layer 61 . In the space K formed in the side portions 22 and 32 of the inner tub 20 and the outer tub 30, the inner surface 30S of the outer tub 30 is coated with the side thermal resistance reducing layer 10 as the side cold insulation layer 62. In addition, granular perlite or the like is filled between the side cold-heat resistance relaxation layer 10 and the inner tank 20 in the same manner as the ceiling cold insulation layer 61 . In the space K formed in the bottoms 23 and 33 of the inner tank 20 and the outer tank 30, perlite concrete, lightweight cellular concrete, or the like having load-bearing performance and heat insulation performance is disposed as the bottom cold insulation layer 63. ing. The side cooling-heat resistance reducing layer 10 is formed in order to prevent the cooling-heat shock of the leaked liquefied natural gas L from being rapidly transmitted to the liquid barrier 50 . Here, the side cooling layer 62 corresponds to the "cooling layer" of the present disclosure.

図2に示すように、側部冷熱抵抗緩和層10は、外槽30の内側面30S全体を覆う側面冷熱抵抗緩和層10Sと、外槽30の内底面30Tのうち、周縁部を全周に亘って覆う環状の底面冷熱抵抗緩和層10Tとからなる。底面冷熱抵抗緩和層10Tは外縁部が側面冷熱抵抗緩和層10Sの下端部と連続し、内縁部は、上方に曲げられて、その端面が内底面30Tを覆う底部保冷層63の端面に突き当てられている。仮に、外槽30の内部に液化天然ガスLが流入してきても、その冷熱衝撃を所定の期間、防液堤50まで到達させることなく外槽30の内側で緩和できるようになっている。 As shown in FIG. 2, the side thermal resistance reducing layer 10 includes the side thermal resistance reducing layer 10S covering the entire inner surface 30S of the outer tank 30 and the inner bottom surface 30T of the outer tank 30. It consists of an annular bottom thermal resistance relaxation layer 10T that covers the entire surface. The outer edge of the bottom thermal resistance reducing layer 10T is continuous with the lower end of the side thermal resistance reducing layer 10S, and the inner edge is bent upward so that the end surface abuts the end surface of the bottom cold insulation layer 63 covering the inner bottom surface 30T. It is Even if the liquefied natural gas L flows into the outer tank 30, the thermal shock can be relieved inside the outer tank 30 without reaching the liquid barrier 50 for a predetermined period.

図3には、本実施形態の側部冷熱抵抗緩和層10の断面構造が示されている。側部冷熱抵抗緩和層10は、外槽30の内面(内側面30S及び内底面30T)に、下吹き層12、防熱層13(13A,13B)、拡散層14が積層されてなる。 FIG. 3 shows the cross-sectional structure of the side thermal resistance reducing layer 10 of this embodiment. The side thermal resistance relaxation layer 10 is formed by stacking an underblown layer 12, a heat insulating layer 13 (13A, 13B), and a diffusion layer 14 on the inner surface (inner side surface 30S and inner bottom surface 30T) of the outer tub 30. As shown in FIG.

防熱層13は、下吹き層12に積層されていて、ウレタンフォーム原料を発泡硬化させて形成される硬質ウレタンフォームで構成されている。防熱層13は、液化天然ガスLの冷熱衝撃を緩和して冷熱衝撃が防液堤50に影響を与えることを抑制する必要がある。そのため、構成される硬質ウレタンフォームは、優れた断熱性能及び圧縮強度を有し、かつ、空間の効率利用の観点から厚みは薄い方が好ましい。具体的には、密度が40~90kg/m、通気性が1ml/cm/s以下、熱伝導率が0.040W/mK以下、圧縮強度が360kPa以上のものが好ましく、厚みは、40mm以上60mm以下が好ましい。なお、本実施形態では、防熱層13は2層(13A,13B)で構成されているが、1層であってもよいし、3層以上で構成されていてもよい。ここで、防熱層13のスキン層は、高密度のウレタン層であり、コア部に比べてウレタン樹脂の比率が増すため、熱伝導率が高くなり、断熱性能が低下する。このため、防熱層を構成する層の数は少ない方が好ましく、1層又は2層で構成することがより好ましい。 The heat insulating layer 13 is laminated on the underblown layer 12 and is made of rigid urethane foam formed by foaming and curing a raw material of urethane foam. The heat insulating layer 13 needs to mitigate the thermal shock of the liquefied natural gas L and suppress the impact of the thermal shock on the liquid barrier 50 . Therefore, it is preferable that the rigid urethane foam has excellent heat insulating performance and compressive strength, and that the thickness is thin from the viewpoint of efficient use of space. Specifically, it preferably has a density of 40 to 90 kg/m 3 , air permeability of 1 ml/cm 2 /s or less, thermal conductivity of 0.040 W/mK or less, compressive strength of 360 kPa or more, and a thickness of 40 mm. More than 60 mm or less is preferable. In this embodiment, the heat insulating layer 13 is composed of two layers (13A, 13B), but it may be composed of one layer, or may be composed of three or more layers. Here, the skin layer of the heat insulating layer 13 is a high-density urethane layer, and since the ratio of urethane resin is increased compared to the core portion, the heat conductivity is increased and the heat insulation performance is lowered. Therefore, the number of layers constituting the heat insulating layer is preferably as small as possible, and it is more preferable that the heat insulating layer is composed of one or two layers.

本実施形態の防熱層13は、密度、65kg/m、通気性、0.01ml/cm/s以下、熱伝導率、0.022W/mK、圧縮強度、520KPaである。測定方法及び、測定用サンプルの作製方法については後述する。 The heat insulating layer 13 of this embodiment has a density of 65 kg/m 3 , air permeability of 0.01 ml/cm 2 /s or less, thermal conductivity of 0.022 W/mK, and compressive strength of 520 KPa. A method of measurement and a method of preparing a sample for measurement will be described later.

なお、防熱層13に求められる圧縮強度は、一般社団法人 日本ガス協会のLNG地上式貯槽指針における「9.5.2.2 荷重の算定」より、防液堤の高さを40m(23万kLの低温液貯槽を想定)とし、「8.4.4 冷熱抵抗緩和材」より、安全率を2.0として算出すると、約360KPaとなる。そのため、防熱層13に必要な圧縮強度は、360KPa以上となる。 The compressive strength required for the heat insulating layer 13 is determined by setting the height of the dike to 40 m (230,000 kL low-temperature liquid storage tank), and calculated with a safety factor of 2.0 according to "8.4.4 Cold resistance relaxation material", it is about 360 KPa. Therefore, the compressive strength required for the heat insulating layer 13 is 360 KPa or more.

下吹き層12は、外槽30の内面に直接積層される層であり、防熱層13の接着性を確保するためのプライマー的役割を果たす層である。下吹き層12は、防熱層13と同じ硬質ウレタンフォームで構成されていて、防熱層13と同じウレタンフォーム原料を外槽30の内面に吹き付け、硬化又は発泡硬化させて形成される。下吹き層12の厚みは、0.1~5mmが好ましい。 The underblown layer 12 is a layer directly laminated on the inner surface of the outer tank 30 and serves as a primer for ensuring the adhesion of the heat insulating layer 13 . The lower layer 12 is made of the same hard urethane foam as the heat insulating layer 13, and is formed by spraying the same urethane foam raw material as the heat insulating layer 13 onto the inner surface of the outer tank 30 and curing or foaming. The thickness of the underblown layer 12 is preferably 0.1 to 5 mm.

拡散層14は、防熱層13の内側面に積層され、側部冷熱抵抗緩和層10の最表面を構成して防熱層13を冷熱衝撃から保護する保護層となっている。拡散層14は、防熱層13と同様に、ウレタンフォーム原料を発泡硬化させて形成されるが、防熱層13よりも低密度かつ、通気性の高い低密度硬質ウレタンフォームで構成されている。 The diffusion layer 14 is laminated on the inner surface of the heat insulating layer 13, constitutes the outermost surface of the side thermal resistance reducing layer 10, and serves as a protective layer that protects the heat insulating layer 13 from thermal shock. Like the heat insulating layer 13, the diffusion layer 14 is formed by foaming and curing a raw material of urethane foam.

本実施形態では、拡散層14を防熱層13よりも低密度かつ、通気性の高い硬質ウレタンフォームとしたが、軟質ウレタンフォームや繊維体としてもよい。これらを用いる場合、拡散層14の厚み方向に液化天然ガスLが透過し難い厚みや目付量等に設定すればよい。また、拡散層14の面方向に拡散し易くするために、軟質ウレタンフォームであれば、熱プレス成形することにより、気泡(セル)の長径が外側槽30の内面と略平行となるようにしたり、繊維体であれば、バインダ(接着剤)の塗布量(目付量)や塗布方法等を調整し、繊維の並ぶ方向を外側槽30の内面と略平行となるようにすればよい。何れの場合であっても、防熱層13よりも通気性を高くすることで、拡散層14の面方向に液化天然ガスLを拡散し易くすることができる。 In this embodiment, the diffusion layer 14 is made of hard urethane foam with a lower density and higher air permeability than the heat insulating layer 13, but it may be made of soft urethane foam or a fibrous body. When these materials are used, the thickness, basis weight, etc. may be set such that the liquefied natural gas L is difficult to permeate in the thickness direction of the diffusion layer 14 . In addition, in order to facilitate diffusion in the surface direction of the diffusion layer 14, soft urethane foam is heat-press molded so that the major axis of the cells is substantially parallel to the inner surface of the outer tank 30. In the case of a fibrous body, the coating amount (basis weight) and coating method of the binder (adhesive) may be adjusted so that the direction in which the fibers are arranged is substantially parallel to the inner surface of the outer tank 30 . In any case, the liquefied natural gas L can be easily diffused in the surface direction of the diffusion layer 14 by making the air permeability higher than that of the heat insulation layer 13 .

ここで、拡散層14と防熱層13を構成する硬質ウレタンフォームについて説明する。図4に示すように、どちらの硬質ウレタンフォームも、1つ1つの気泡Pが独立した独立気泡構造のセル(気泡)を有する多孔質体であり、気泡Pの中に封じ込められたガスは独立し、温度変化が隣接する気泡Pのガスに伝わりにくくなって、優れた断熱性能を発揮する。但し、防熱層13を構成する硬質ウレタンフォームは、拡散層14を構成する低密度硬質ウレタンフォームに比べて、独立気泡構造を有する気泡Pを多く有しているのに対し、拡散層14を構成する低密度硬質ウレタンフォームは、独立気泡構造を有する気泡Pよりも、一部の気泡Qが連通した連続気泡構造を有する気泡Qを多く有している。つまり、防熱層13に比べて、連続気泡構造の気泡Qの割合が高い拡散層14は、通気性が高くなっている。 Here, the rigid urethane foam forming the diffusion layer 14 and the heat insulating layer 13 will be described. As shown in FIG. 4, both rigid urethane foams are porous bodies having cells (cells) with a closed cell structure in which each cell P is independent, and the gas enclosed in the cells P is independent. This makes it difficult for the temperature change to be transmitted to the gas in the adjacent bubbles P, thereby exhibiting excellent heat insulating performance. However, the rigid urethane foam that constitutes the heat insulating layer 13 has more cells P having a closed cell structure than the low-density rigid urethane foam that constitutes the diffusion layer 14. The low-density rigid urethane foam has more cells Q having an open cell structure in which some of the cells Q communicate with each other than cells P having a closed cell structure. In other words, the diffusion layer 14 having a higher ratio of the open-celled cells Q has a higher air permeability than the heat insulating layer 13 .

さて、内槽20の内部から液化天然ガスLが漏洩した場合、液化天然ガスLは防熱層13よりも先に拡散層14に接触する。拡散層14は、局所的に急激な冷却にさらされて表面(スキン層)から内部に液化天然ガスLが進入する。ここで、低密度硬質ウレタンフォームからなる拡散層14は、連続気泡構造の気泡Qの割合が高いため、液化天然ガスLは連通した気泡Qの内部を通って拡散層14内を外槽30の面方向に広がっていくことができる。つまり、連通した気泡Q群が、液化天然ガスLを拡散層14の厚み方向(以下、「第2方向H2」という)に進ませるだけではなく、外槽30の面に沿った方向(以下、「第1方向H1」という)にも拡散させることができる。その結果、液化天然ガスLの冷熱衝撃を拡散層14内に分散することで和らげることができる。これにより、防熱層13は、局所的に急激な冷却にさらされることなく、拡散層14内に拡散した液化天然ガスLによりゆっくり冷却され、防熱層13に伝わる冷熱衝撃が緩和される。 Now, when the liquefied natural gas L leaks from the inner tank 20 , the liquefied natural gas L contacts the diffusion layer 14 before the heat insulating layer 13 . The diffusion layer 14 is locally exposed to rapid cooling, and the liquefied natural gas L enters the inside from the surface (skin layer). Here, since the diffusion layer 14 made of low-density rigid urethane foam has a high ratio of cells Q with an open-cell structure, the liquefied natural gas L passes through the interior of the communicating cells Q and flows through the diffusion layer 14 to the outer tank 30. It can spread laterally. That is, the communicating bubble Q group not only advances the liquefied natural gas L in the thickness direction of the diffusion layer 14 (hereinafter referred to as the “second direction H2”), but also in the direction along the surface of the outer tank 30 (hereinafter referred to as the “second direction H2”). (referred to as “first direction H1”). As a result, the thermal shock of the liquefied natural gas L can be dispersed in the diffusion layer 14 to soften it. As a result, the heat insulating layer 13 is slowly cooled by the liquefied natural gas L diffused in the diffusion layer 14 without being locally subjected to rapid cooling, and thermal shock transmitted to the heat insulating layer 13 is alleviated.

つまり、上述したように、拡散層14に進入した液化天然ガスLが第1方向H1にも拡散されることで、防熱層13への局所的な急激な冷却を防止することができる。即ち、液化天然ガスLの第1方向H1への拡散が効果的に行われなければ、液化天然ガスLは第2方向H2に一気に進んで防熱層13を局所的な急激な冷却にさらしてしまうこととなる。このような観点から、本開示の拡散層14としては、第1方向H1への液拡散性が高い材料を用いる必要がある。第1方向H1への液拡散性が高い材料として、本実施形態の低密度硬質ウレタンフォームのような通気性の高い材料が挙げられる。その一方で、拡散層14の通気性を高くし過ぎると、液化天然ガスLが第2方向H2に拡散する速度も速まり、冷熱衝撃が一気に防熱層13まで到達する虞がある。そのため、低密度硬質ウレタンフォームの他にも、例えば、軟質ポリウレタンフォームであれば、密度や通気性、気泡(セル)の長径の向き等を適宜設定することにより、第1方向H1及び第2方向H2への液化天然ガスLの拡散速度を調整することができる。また、繊維体の場合であっても、バインダの目付量や塗布方法、各繊維の向き等を適宜設定することにより、第1方向H1及び第2方向H2への液化天然ガスLの拡散速度を調整することができる。 That is, as described above, the liquefied natural gas L that has entered the diffusion layer 14 is diffused in the first direction H1, so that the thermal insulation layer 13 can be prevented from being locally and rapidly cooled. That is, if the diffusion of the liquefied natural gas L in the first direction H1 is not effectively performed, the liquefied natural gas L advances in the second direction H2 at once, exposing the heat insulating layer 13 to local rapid cooling. It will happen. From this point of view, it is necessary to use a material with high liquid diffusibility in the first direction H1 as the diffusion layer 14 of the present disclosure. Materials with high liquid diffusibility in the first direction H1 include materials with high air permeability, such as the low-density rigid urethane foam of the present embodiment. On the other hand, if the air permeability of the diffusion layer 14 is made too high, the speed at which the liquefied natural gas L diffuses in the second direction H2 also increases, and the thermal shock may reach the heat insulating layer 13 at once. Therefore, in addition to low-density rigid urethane foam, for example, in the case of flexible polyurethane foam, by appropriately setting the density, air permeability, the direction of the major axis of cells, etc., the first direction H1 and the second direction The diffusion rate of liquefied natural gas L into H2 can be adjusted. In addition, even in the case of a fibrous body, the diffusion rate of the liquefied natural gas L in the first direction H1 and the second direction H2 can be increased by appropriately setting the basis weight of the binder, the application method, the orientation of each fiber, and the like. can be adjusted.

上述したような、第1方向H1への高い液拡散性を満たす拡散層14として、低密度硬質ウレタンフォームの密度は、7~40kg/m、コア部における拡散層の厚み方向の通気性が0.05~30ml/cm/s、圧縮強度が15~150KPaのものが好ましい。また、厚みは、10mm以上が好ましく、また経済的な観点から、60mm以下が好ましい。 As the diffusion layer 14 that satisfies the high liquid diffusibility in the first direction H1 as described above, the density of the low-density rigid urethane foam is 7 to 40 kg/m 3 , and the diffusion layer in the core portion has air permeability in the thickness direction. It is preferably 0.05 to 30 ml/cm 2 /s and has a compressive strength of 15 to 150 KPa. Moreover, the thickness is preferably 10 mm or more, and is preferably 60 mm or less from an economical viewpoint.

本実施形態で用いた低密度硬質ウレタンフォームからなる拡散層14は、密度、10kg/m、通気性、0.3ml/cm/s、圧縮強度、30KPaである。 The diffusion layer 14 made of low-density rigid urethane foam used in this embodiment has a density of 10 kg/m 3 , air permeability of 0.3 ml/cm 2 /s, and compressive strength of 30 KPa.

ここで、本実施形態の防熱層13及び拡散層14については、密度は、JIS K 7222:2005/ISO 845:1988に基づいて測定を行い、通気性は、JIS K 6400-7 B法:2012/ISO 7231:2010に準拠して測定を行い、熱伝導率は、JIS A 1412-2:1999/ISO 8301:1999に準拠して測定を行い、圧縮強度は、JIS K 7220:2006/ISO 844:2004に準拠して測定を行った。 Here, regarding the heat insulating layer 13 and the diffusion layer 14 of this embodiment, the density is measured based on JIS K 7222:2005/ISO 845:1988, and the air permeability is measured according to JIS K 6400-7 B method: 2012. / ISO 7231: Measured in accordance with 2010, thermal conductivity was measured in accordance with JIS A 1412-2: 1999 / ISO 8301: 1999, compressive strength was measured in accordance with JIS K 7220: 2006 / ISO 844 : 2004.

詳細には、以下に示す測定用サンプルをJIS A9526:2015に基づいて作製し、測定を行った。測定用サンプルは、900mm角×5mm厚みのアルミ板に、防熱層13用のウレタンフォーム原料を用いて、約3mmの下吹き層12を吹き付けた後、約25mmの防熱層を2層積層することで、約50mmの防熱層13を作製した。拡散層14についても、防熱層13と同様に、拡散層14用のウレタンフォーム原料を用いて、測定用サンプルを作製した。 Specifically, the following measurement samples were prepared based on JIS A9526:2015 and measured. The sample for measurement is an aluminum plate of 900 mm square and 5 mm thick. Using urethane foam raw material for the heat insulating layer 13, a lower blowing layer 12 of about 3 mm is sprayed, and then two heat insulating layers of about 25 mm are laminated. A heat insulating layer 13 having a thickness of about 50 mm was produced. For the diffusion layer 14 as well, similarly to the heat insulating layer 13, a measurement sample was prepared using the urethane foam raw material for the diffusion layer 14. FIG.

密度は、測定用サンプルを第1防熱層13Aのスキン層を厚み方向に含むように、100mm角×30mm厚み(全面にスキン層無し)に切り出して作製し、測定を行った。熱伝導率は、測定用サンプルを第1防熱層13Aのスキン層を厚み方向に含むように、200mm角×25mm厚み(全面にスキン層無し)に切り出して作製し、測定を行った。圧縮強度は、測定用サンプルを第1防熱層13Aのスキン層を厚み方向に含むように、50mm角×30mm厚み(全面にスキン層無し)に切り出して作製し、測定を行った。通気性は、測定用サンプルの第2防熱層13Bから220mm角×10mm厚み(全面にスキン層無し)に切り出して作製した。なお、通気性は、厚み方向に第1防熱層13A及び第2防熱層13Bの何れのスキン層も含まず、コア部の通気性の測定を行った。 The density was measured by cutting a measurement sample into a 100 mm square×30 mm thickness (no skin layer over the entire surface) so as to include the skin layer of the first heat insulating layer 13A in the thickness direction. The thermal conductivity was measured by cutting a sample for measurement into a 200 mm square×25 mm thick (no skin layer on the entire surface) so as to include the skin layer of the first heat insulating layer 13A in the thickness direction. Compressive strength was measured by cutting out a measurement sample into a 50 mm square×30 mm thickness (no skin layer on the entire surface) so as to include the skin layer of the first heat insulating layer 13A in the thickness direction. The air permeability was produced by cutting out a 220 mm square×10 mm thick (no skin layer over the entire surface) from the second heat insulating layer 13B of the measurement sample. The air permeability was measured in the core portion without including the skin layers of the first heat insulating layer 13A and the second heat insulating layer 13B in the thickness direction.

次に、側部冷熱抵抗緩和層10の施工方法について図5,6を用いて説明する。側部冷熱抵抗緩和層10の施工は、内槽20、外槽30および防液堤50がほぼ完成した状態で、空間Kにおける内槽20及び外槽30の側部22,32に配置される側部保冷層62としての粒状パーライトが充填される前に行われる。従って、図6に示すように、内槽20の側部22と外槽30の側部32との間の狭い空間K内に作業者M,N,Oが入って施工を行う。このとき、底部は外槽30の上に底部保冷層63が配設され、その上に内槽20が配置されているため、通常は、図示しない天井に設けられた入口から出入りする。なお、内槽20の側部22と外槽30の側部32との幅は、1000mm~2000mmであり、高さは約45mである。 Next, a method for constructing the side thermal resistance reducing layer 10 will be described with reference to FIGS. Construction of the side thermal resistance relaxation layer 10 is performed by placing the side portions 22 and 32 of the inner tank 20 and the outer tank 30 in the space K in a state where the inner tank 20, the outer tank 30 and the liquid barrier 50 are almost completed. This is done before the granular perlite as the side cooling layer 62 is filled. Therefore, as shown in FIG. 6, workers M, N, and O enter a narrow space K between the side portion 22 of the inner tank 20 and the side portion 32 of the outer tank 30 to carry out construction. At this time, since the bottom cold insulation layer 63 is arranged on the outer tank 30 and the inner tank 20 is arranged thereon, the entrance is normally provided in the ceiling (not shown). The width of the side portion 22 of the inner bath 20 and the side portion 32 of the outer bath 30 is 1000 mm to 2000 mm, and the height is about 45 m.

側部冷熱抵抗緩和層10のうち、外槽30の内側面30Sに備えられる側面冷熱抵抗緩和層10Sの施工は、図5に示すように、図示しない天井に設置されたトロリービームに取り付けられたゴンドラ70に乗り込んだ作業者M又はNによって施工が行われる。ゴンドラ70は、空間K内を外槽30の内側面30Sに沿って昇降可能及び水平移動可能に吊持されている。 Of the side thermal resistance mitigating layers 10, the side thermal resistance mitigating layers 10S provided on the inner surface 30S of the outer tank 30 are constructed by attaching to a trolley beam installed on the ceiling (not shown) as shown in FIG. Construction is performed by a worker M or N who has boarded the gondola 70 . The gondola 70 is suspended along the inner side surface 30S of the outer tank 30 in the space K so as to be vertically movable and horizontally movable.

側部冷熱抵抗緩和層10の施工は、外槽30の内側面30S及び内底面30Tを、鉛直方向に所定間隔で分割した複数の施工領域W毎に行われる。側面冷熱抵抗緩和層10Sの施工においては、ゴンドラ70に乗り込んだ作業者M又はNが、施工領域Wを上端部又は下端部から順に施工を行っていく。ある施工領域Wの施工が終わったら、隣の施工領域Wに水平移動し、同様にして上端部又は下端部から繰り返し施工を行っていく。なお、施工領域Wを上端部又は下端部から順に施工を行う際、ゴンドラ70から施工できない領域は、施工を行わないで、隣りの施工領域Wへ水平移動する。上述した側面冷熱抵抗緩和層10Sのうちゴンドラ70から施工できない領域及び底面冷熱抵抗緩和層10Tについては、図5に示すように、側面冷熱抵抗緩和層10Sの施工が完了した後に作業者Oが行う。あるいはM又はNが都度、ゴンドラ70を降りて連続して施工してもよい。 The construction of the side thermal resistance relaxation layer 10 is performed for each of a plurality of construction areas W obtained by dividing the inner side surface 30S and the inner bottom surface 30T of the outer tub 30 at predetermined intervals in the vertical direction. In the construction of the side thermal resistance relaxation layer 10S, the worker M or N who got into the gondola 70 constructs the construction area W in order from the upper end or the lower end. When the construction of a certain construction area W is completed, it moves horizontally to the adjacent construction area W, and similarly construction is repeatedly performed from the upper end or the lower end. It should be noted that when construction is performed on the construction area W in order from the upper end or the lower end, an area that cannot be constructed from the gondola 70 is moved horizontally to the adjacent construction area W without performing construction. As shown in FIG. 5, the area of the side thermal resistance relaxation layer 10S that cannot be constructed from the gondola 70 and the bottom thermal resistance relaxation layer 10T are performed by the worker O after the construction of the side thermal resistance relaxation layer 10S is completed, as shown in FIG. . Alternatively, M or N may get off the gondola 70 each time and work continuously.

図6には、側部冷熱抵抗緩和層10の施工の流れが示されている。同図に示されるように、側部冷熱抵抗緩和層10の施工は、まず第1工程S1が作業者Mにより行われる。その後、作業者Mを追いかけるように作業者Nにより、第2工程S2が行われる。 FIG. 6 shows the flow of construction of the side thermal resistance reducing layer 10 . As shown in the figure, in the construction of the side thermal resistance reducing layer 10, a first step S1 is first performed by an operator M. As shown in FIG. After that, the second step S2 is performed by the worker N so as to follow the worker M.

第1工程S1では、ウレタンフォーム原料をスプレー工法により外槽30の内面に吹き付け、発泡硬化させて防熱層13を形成させる。このとき、防熱層13を形成する前に、同様のスプレー工法により下吹き層12を形成させておく。 In the first step S1, the heat insulating layer 13 is formed by spraying a urethane foam raw material onto the inner surface of the outer tank 30 by a spraying method and foaming and curing the raw material. At this time, before forming the heat insulating layer 13, the under-blown layer 12 is formed by the same spray method.

詳細には、第1工程S1では、作業者Mが、携行しているスプレーガン90を外槽30の内面に向けて吹き付けて下吹き層12を形成した後、再度吹き付けて、防熱層13を所定の厚さになるように形成する。本実施形態では、2回に分けて吹き付けを行い、2層の防熱層13A,13Bを形成している。これは、1回のスプレー吹き付けで、所定の厚みを形成しようとしても、吹き付けたウレタンフォーム原料が垂れることで、所定の厚みが確保できない虞があるためである。この場合、1回目の吹き付けが終わった後、硬化が進行して表面のタック(ベタツキ)がなくなった後に2回目の吹き付けを行う。なお、第1防熱層13A及び第2防熱層13Bの厚みは略同じとなるように形成する。 Specifically, in the first step S1, the worker M sprays the spray gun 90 that he is carrying toward the inner surface of the outer tank 30 to form the lower layer 12, and then sprays again to form the heat insulating layer 13. It is formed to have a predetermined thickness. In this embodiment, the two heat insulating layers 13A and 13B are formed by performing the spraying in two steps. This is because even if it is attempted to form a predetermined thickness with a single spray, the sprayed urethane foam raw material may drip and the predetermined thickness may not be obtained. In this case, after the first spraying is completed, the second spraying is carried out after the hardening progresses and the tackiness (stickiness) of the surface disappears. The first heat insulating layer 13A and the second heat insulating layer 13B are formed so as to have substantially the same thickness.

本実施形態では、下吹き層12は、防熱層13と同じウレタンフォーム原料を塗布して形成される。下吹き層12の存在により第1防熱層13Aの外槽30の内側面30Sへの接着性を向上させることができる。この場合も、下吹き層12の吹き付けが終わった後、硬化が進行して表面のタックがなくなった後に吹き付けを行う。なお、下吹き層12を設けず、外槽30の内面に直接、防熱層13を形成した場合、金属製で熱伝導率の高い外槽30の内面に付着した部分から熱が奪われて、発泡度合いが不十分となったり、外槽30と防熱層13との接着力が低下し、防熱層13が外槽30から剥がれてしまう虞がある。 In this embodiment, the underblown layer 12 is formed by applying the same urethane foam raw material as the heat insulating layer 13 . The presence of the underblown layer 12 can improve the adhesiveness of the first heat insulating layer 13A to the inner surface 30S of the outer tank 30 . In this case as well, after the under-blown layer 12 has been sprayed, it is sprayed after curing progresses and the tackiness of the surface disappears. If the heat-insulating layer 13 is formed directly on the inner surface of the outer tank 30 without providing the under-blown layer 12, the heat is taken away from the portion adhering to the inner surface of the outer tank 30, which is made of metal and has high thermal conductivity. There is a risk that the degree of foaming will be insufficient, or the adhesion between the outer tub 30 and the heat insulating layer 13 will be reduced, and the heat insulating layer 13 will be peeled off from the outer tub 30 .

第2工程S2では、防熱層13に対して、作業者Nが、携行しているスプレーガン90を吹き付け、低密度硬質ウレタンフォームからなる拡散層14を所定の厚さになるように形成する。このとき、防熱層13よりも低密度の硬質ウレタンフォームが形成されるウレタンフォーム原料を吹き付ける。 In the second step S2, the worker N sprays the heat insulating layer 13 with the spray gun 90 that he is carrying to form the diffusion layer 14 made of low-density rigid urethane foam to a predetermined thickness. At this time, a urethane foam raw material that forms a rigid urethane foam having a density lower than that of the heat insulating layer 13 is sprayed.

本実施形態の側部冷熱抵抗緩和層10の構成及びその施工方法に関する説明は以上である。次に、側部冷熱抵抗緩和層10及びその施工方法の作用効果について説明する。 The configuration of the side thermal resistance reducing layer 10 of the present embodiment and the construction method thereof have been described above. Next, the effects of the side thermal resistance reducing layer 10 and its construction method will be described.

本実施形態の側部冷熱抵抗緩和層10では、防熱層13は拡散層14で覆われ、内槽20の内部から漏洩した液化天然ガスLは、防熱層13よりも先に拡散層14に接触する。そして、拡散層14が局所的に急激に冷却されることで表面(スキン層)から内部に液化天然ガスLが進入する。ここで、拡散層14は、低密度硬質ウレタンフォームで構成され、連続気泡構造を多く有しているので、液化天然ガスLは連通した気泡Q群の内部を通って第1方向H1に広がっていくことができ、拡散層14内に拡散される。これにより、冷熱衝撃が緩和され、防熱層13は、局所的に急激な冷却にさらされることがなくなり、防熱層13に伝わる冷熱衝撃が緩和される。 In the side thermal resistance reducing layer 10 of the present embodiment, the heat insulating layer 13 is covered with the diffusion layer 14, and the liquefied natural gas L leaking from the inner tank 20 contacts the diffusion layer 14 before the heat insulating layer 13. do. As the diffusion layer 14 is rapidly cooled locally, the liquefied natural gas L enters from the surface (skin layer) to the inside. Here, since the diffusion layer 14 is made of low-density rigid urethane foam and has many open-cell structures, the liquefied natural gas L spreads in the first direction H1 through the inside of the group of communicating cells Q. , and is diffused into diffusion layer 14 . As a result, the thermal shock is mitigated, the heat insulating layer 13 is no longer exposed to local abrupt cooling, and the thermal shock transmitted to the heat insulating layer 13 is mitigated.

また、拡散層14を備えることによって液化天然ガスLの冷熱衝撃から防熱層13を保護することができるので、従来のように防熱層13の表面を補強するためのメッシュ構造の補強シートを備えなくてもよい。 In addition, since the heat insulating layer 13 can be protected from the thermal shock of the liquefied natural gas L by providing the diffusion layer 14, the reinforcing sheet of the mesh structure for reinforcing the surface of the heat insulating layer 13 is not provided as in the conventional art. may

具体的には、防熱層13の表面に補強シートを積層する構成では、第1工程S1の後に、防熱層13の表面に補強シートを接着剤等で貼り付ける。このとき、補強シートはその剛性により防熱層13の表面から浮いたり、はがれる虞がある。そのため、防熱層13の表面を切削して平坦にする工程が必要となる。この工程は、全ての施工領域Wに対して手作業で行うこととなり膨大な工数及び費用がかかってしまう。しかもこの粉塵を除去する工数及び費用も必要となる。さらに、切削時に発生する切削屑の粉塵により作業環境が悪化するだけでなく、粉塵爆発のリスクが生じてしまう。これに対して、本実施形態では、この工程を必要としないため、このような問題は生じることなく、作業性を向上させることができる。 Specifically, in the configuration in which the reinforcing sheet is laminated on the surface of the heat insulating layer 13, the reinforcing sheet is attached to the surface of the heat insulating layer 13 with an adhesive or the like after the first step S1. At this time, there is a risk that the reinforcing sheet will float or come off from the surface of the heat insulating layer 13 due to its rigidity. Therefore, a step of cutting and flattening the surface of the heat insulating layer 13 is required. This process must be performed manually for all the construction areas W, and requires a huge amount of man-hours and costs. Moreover, man-hours and costs for removing the dust are required. Furthermore, dust from cutting chips generated during cutting not only worsens the working environment, but also poses the risk of dust explosion. On the other hand, in the present embodiment, since this step is not required, such problems do not occur and workability can be improved.

また、切削の工程は、平坦にする目的であるから、防熱層13の発泡硬化が進行して十分な強度を発現してから行う必要がある。十分な強度が発現する前に切削やグランダー等の加工を行うと、平坦に削れなかったり裂けてしまう虞がある。十分な強度が発現するまでの目安としては、約24時間(1日)であり、余計に日数を要することとなり、費用が増えてしまう。これに対して、本実施形態では、第1工程S1の硬化が進行して表面のタックがなくなった後に、次の第2工程S2を行うことができる。これにより、第1工程S1の防熱層13の発泡硬化を待つ時間が不要となる。従って上述した問題は生じず、作業性を向上させることができる。 Further, since the purpose of the cutting process is to flatten the surface, it is necessary to perform the cutting process after the heat insulating layer 13 is foamed and hardened to develop sufficient strength. If processing such as cutting or grounding is performed before sufficient strength is developed, there is a risk that the material may not be cut flat or may tear. As a guideline, it takes about 24 hours (one day) to develop sufficient strength, which requires an extra number of days, resulting in an increase in cost. On the other hand, in the present embodiment, the second step S2 can be performed after the hardening in the first step S1 has progressed and the tack on the surface has disappeared. This eliminates the time required to wait for foaming and curing of the heat insulating layer 13 in the first step S1. Therefore, the above problem does not occur, and workability can be improved.

[確認実験]
上記実施形態の側部冷熱抵抗緩和層10について、硬質ウレタンフォームからなる防熱層13を低密度硬質ウレタンフォームからなる拡散層14で保護することにより、冷熱衝撃を受けたときに冷熱衝撃を緩和できることを実験により確認した。この実験では、金属型内に側部冷熱抵抗緩和層10を作製し、その上から液体窒素を流し込み、硬質ウレタンフォームからなる防熱層13にクラックが入るか否かを確認した。なお、液体窒素の温度は、-196℃であり、約-160℃の液化天然ガスLに比べてより過酷な条件となる。また、窒素は不活性ガスであり、火災等のリスクがないため、実験用の代替液とした。
[Confirmation experiment]
Regarding the side thermal resistance mitigating layer 10 of the above embodiment, by protecting the heat insulating layer 13 made of rigid urethane foam with the diffusion layer 14 made of low-density rigid urethane foam, the thermal shock can be mitigated. was confirmed by experiments. In this experiment, the side cold-heat resistance relaxation layer 10 was produced in the metal mold, and liquid nitrogen was poured over it to confirm whether or not the heat insulation layer 13 made of rigid urethane foam cracked. The temperature of liquid nitrogen is -196.degree. In addition, since nitrogen is an inert gas and has no risk of fire or the like, it was used as an alternative liquid for experiments.

具体的には、内寸が、1600mm長さ×700mm幅×100mm厚みであり、上側が開放した解体可能な金属型を準備する。金属型を立て(長さ方向と厚み方向を底面とする)、金属型の底面(開放面と反対側)を外槽30に見立て、防熱層13用のウレタンフォーム原料を吹き付けて約3mmの下吹き層12を形成した後、50mm厚み(2層構造で各層の厚みは、25mm)の硬質ウレタンフォームからなる防熱層13を形成した。さらに、その上に、拡散層14用のウレタンフォーム原料を吹き付けて10mm厚み(1層構造)の低密度硬質ウレタンフォームからなる拡散層14を形成してテストピースを作製した。そして、作製したテストピースの上を倒し(長さ方向と幅方向を底面とする)、その上(拡散層14側)から液体窒素を流し込み、液体窒素の液面が拡散層14から20~30mm高さとなるようにした。その後、液体窒素の液面高さが20~30mmとなるように、随時継ぎ足し、2時間経過させた。2時間経過後、液体窒素を金属型から除去し、クラックの発生の有無を目視にて確認した。クラックが発生している場合、クラックの表面から溶剤で希釈した染料をスポイトで垂らし、約1時間放置してクラックに着色を行った。その後、金属型を解体してテストピースを取り出して、テストピースをカットし、カット断面を目視し、硬質ウレタンフォームからなる防熱層13へのクラックの有無を確認した。比較用に、低密度硬質ウレタンフォームからなる拡散層14を備えない、防熱層のみ(50mm厚み(2層構造で各層の厚みは、25mm))の比較サンプルと、参考用に、防熱層(50mm厚み(2層構造で各層の厚みは、25mm))の表面に補強シート接着剤で固定した参考サンプル(従来の構成)と、を作成した。 Specifically, a dismantleable metal mold having internal dimensions of 1600 mm length×700 mm width×100 mm thickness and having an open upper side is prepared. A metal mold is erected (with the length direction and thickness direction as the bottom surface), the bottom surface of the metal mold (the side opposite to the open surface) is regarded as the outer tank 30, and the urethane foam raw material for the heat insulating layer 13 is sprayed to a depth of about 3 mm. After forming the blown layer 12, a heat insulating layer 13 made of rigid urethane foam and having a thickness of 50 mm (a two-layer structure, each layer having a thickness of 25 mm) was formed. Further, a urethane foam raw material for the diffusion layer 14 was sprayed thereon to form a diffusion layer 14 made of low-density rigid urethane foam having a thickness of 10 mm (single-layer structure) to prepare a test piece. Then, the prepared test piece is laid down (the length direction and the width direction are the bottom surface), liquid nitrogen is poured from above (the diffusion layer 14 side), and the liquid surface of the liquid nitrogen is 20 to 30 mm from the diffusion layer 14. height. Thereafter, the liquid nitrogen was replenished at any time so that the liquid level of the liquid nitrogen became 20 to 30 mm, and the liquid nitrogen was allowed to pass for 2 hours. After 2 hours had passed, the liquid nitrogen was removed from the metal mold, and the presence or absence of cracks was visually confirmed. When cracks were generated, a solvent-diluted dye was dripped from the surface of the cracks with a dropper and allowed to stand for about 1 hour to color the cracks. After that, the metal mold was dismantled, a test piece was taken out, the test piece was cut, and the cross section of the cut was visually observed to confirm the presence or absence of cracks in the heat insulating layer 13 made of rigid urethane foam. For comparison, a comparison sample with only a heat insulating layer (50 mm thick (two-layer structure, thickness of each layer is 25 mm)) without the diffusion layer 14 made of low-density rigid urethane foam, and for reference, a heat insulating layer (50 mm A reference sample (conventional configuration) was prepared by fixing a reinforcing sheet adhesive to the surface of a thickness (two-layer structure, each layer having a thickness of 25 mm).

その結果、低密度硬質ウレタンフォームからなる拡散層14を備えた側部冷熱抵抗緩和層10の防熱層13及び防熱層の表面に補強シートを有する従来の側部冷熱抵抗緩和層の防熱層には、クラックは生じていなかった。一方、比較サンプルの防熱層には、クラックが多数入っていた。本実験から、硬質ウレタンフォームからなる防熱層13を低密度硬質ウレタンフォームからなる拡散層14で保護することにより、冷熱衝撃を受けたときに防熱層13の硬質ウレタンフォームのクラックの発生を抑制できることが確認できた。また、本開示の側部冷熱抵抗緩和層は、従来の防熱層の表面に補強シートを有する構成の側部冷熱抵抗緩和層と同等に、冷熱衝撃を緩和することが確認できた。 As a result, the thermal insulation layer 13 of the side thermal resistance relaxation layer 10 provided with the diffusion layer 14 made of low-density rigid urethane foam and the thermal insulation layer of the conventional side thermal resistance relaxation layer having a reinforcing sheet on the surface of the thermal insulation layer , no cracks occurred. On the other hand, the heat insulating layer of the comparative sample had many cracks. From this experiment, it was found that by protecting the heat insulating layer 13 made of rigid urethane foam with the diffusion layer 14 made of low-density rigid urethane foam, it is possible to suppress the occurrence of cracks in the hard urethane foam of the heat insulating layer 13 when subjected to thermal shock. was confirmed. In addition, it was confirmed that the side thermal resistance mitigating layer of the present disclosure mitigates thermal shock in the same manner as a conventional side thermal resistance mitigating layer having a reinforcing sheet on the surface of a heat insulating layer.

[他の実施形態]
(1)上記実施形態において、低温液貯槽100には、液化天然ガスLを貯留していたが、例えば、液化プロパンガス等の他の低温液であってもよい。
[Other embodiments]
(1) In the above embodiment, the low-temperature liquid storage tank 100 stores liquefied natural gas L, but other low-temperature liquid such as liquefied propane gas may be used.

(2)上記実施形態において、タンク部40は、天井部21,31を備えていたが、蓋体を備えて上方が開放した構造であってもよい。 (2) In the above embodiment, the tank part 40 has the ceiling parts 21 and 31, but it may have a structure in which a lid is provided and the top is open.

(3)上記実施形態において、低密度硬質ウレタンフォームからなる拡散層14は1層であったが、複数層積層されていてもよい。 (3) In the above embodiment, the diffusion layer 14 made of low-density rigid urethane foam is one layer, but multiple layers may be laminated.

(4)上記実施形態において、防熱層13と拡散層14との間にメッシュ構造の補強シートが積層されていてもよい。 (4) In the above embodiment, a reinforcing sheet having a mesh structure may be laminated between the heat insulating layer 13 and the diffusion layer 14 .

このとき、第1工程S1と第2工程S2との間に、補強シートを防熱層13に積層させる工程S12を行うこととなる。工程S12において、補強シートを防熱層13に重ねてタッカー等で仮止めしてから第2工程S2を行うことで、補強シートが拡散層14としての低密度硬質ウレタンフォームに内包するように防熱層13に固着させてもよい。このようにすることで、補強シートを防熱層13に貼り付けるための接着剤が不要となり、しかも防熱層13を平坦にする工程が不要となる。 At this time, a step S12 of laminating a reinforcing sheet on the heat insulating layer 13 is performed between the first step S1 and the second step S2. In step S12, the reinforcing sheet is superimposed on the heat insulating layer 13 and temporarily fixed with a tucker or the like, and then the second step S2 is performed, whereby the heat insulating layer is formed so that the reinforcing sheet is included in the low-density rigid urethane foam as the diffusion layer 14. 13 may be fixed. This eliminates the need for an adhesive for attaching the reinforcing sheet to the heat-insulating layer 13, and also eliminates the need for the step of flattening the heat-insulating layer 13.

(5)本開示の拡散層として、進入した液化天然ガスLを第1方向H1に拡散させるものであれば、低密度硬質ウレタンフォーム層からなる拡散層14に限定されない。例えば、繊維体が挙げられ、防熱層13側に低温液の浸透を阻害する処理を施したガラスマット又は不織布等であってもよい。 (5) The diffusion layer of the present disclosure is not limited to the diffusion layer 14 made of a low-density rigid urethane foam layer as long as it diffuses the entering liquefied natural gas L in the first direction H1. For example, a fibrous body may be mentioned, and a glass mat or a non-woven fabric or the like may be used, the heat insulating layer 13 side of which is treated to inhibit the permeation of the low-temperature liquid.

また、軟質ウレタンフォームであってもよい。この場合、軟質ウレタンフォームの密度や通気性等を調整することで、第2方向H2への浸透を抑えつつ、第1方向H1に拡散させればよい。特に、軟質ウレタンフォームを熱プレスすることで、内部の気泡(セル)が、つぶれて第1方向H1に延び、進入した液化天然ガスLの第1方向H1に拡散させ易くすることができる。 Moreover, a flexible urethane foam may be used. In this case, by adjusting the density, air permeability, etc. of the flexible urethane foam, it is possible to diffuse in the first direction H1 while suppressing permeation in the second direction H2. In particular, by hot-pressing the soft urethane foam, the internal air bubbles (cells) can be collapsed and extended in the first direction H1, making it easier for the liquefied natural gas L to diffuse in the first direction H1.

10 側部冷熱抵抗緩和層
13 防熱層
14 拡散層
20 内槽
30 外槽
62 側部保冷層(保冷層)
50 防液堤
100 低温液貯槽
L 液化天然ガス(低温液)
REFERENCE SIGNS LIST 10 side thermal resistance relaxation layer 13 heat insulating layer 14 diffusion layer 20 inner tank 30 outer tank 62 side cold insulation layer (cold insulation layer)
50 Liquid barrier 100 Cryogenic liquid storage tank L Liquefied natural gas (Cryogenic liquid)

Claims (9)

0℃以下の低温液が貯留される内槽と、その外側を覆う外槽との間に保冷層が配置されると共に、前記外槽の外側面がコンクリート製の防液堤で覆われる一方、前記外槽の内側面が、前記保冷層として、前記低温液の漏れを抑え、冷熱衝撃を緩和するために、硬質ウレタンフォームを含む防熱層を有する側部冷熱抵抗緩和層がコーティングされている低温液貯槽であって、
前記側部冷熱抵抗緩和層は、前記防熱層の内側面に、前記低温液を前記外槽の面方向に拡散させる拡散層を有している、低温液貯槽。
A cold insulation layer is arranged between an inner tank in which a low-temperature liquid of 0° C. or less is stored and an outer tank that covers the outside thereof, and the outer surface of the outer tank is covered with a concrete liquid barrier, The inner surface of the outer tank is coated with a side cold-heat resistance relaxation layer having a heat-insulating layer containing rigid urethane foam in order to suppress leakage of the low-temperature liquid and mitigate cold-heat shock as the cold-insulating layer. a liquid reservoir,
The low-temperature liquid storage tank, wherein the side cold-heat resistance relaxation layer has a diffusion layer on the inner surface of the heat insulating layer for diffusing the low-temperature liquid in the surface direction of the outer tank.
前記拡散層は、前記防熱層よりも通気性が高い、請求項1に記載の低温液貯槽。 2. The cryogenic liquid storage tank according to claim 1, wherein said diffusion layer has higher air permeability than said heat insulating layer. 前記拡散層のコア部における該拡散層の厚み方向の通気性(JIS K 6400-7 B法:201 2/ISO 7231:2010)が、0.05~30ml/cm/sである、請求項1又は2に記載の低温液貯槽。 The air permeability (JIS K 6400-7 B method: 2012/ISO 7231:2010) in the thickness direction of the diffusion layer at the core portion of the diffusion layer is 0.05 to 30 ml/cm 2 /s. 3. The cryogenic liquid storage tank according to 1 or 2. 前記拡散層は、ウレタンフォームである、請求項1乃至3のうち何れか1の請求項に記載の低温液貯槽。 4. The cryogenic liquid storage tank according to any one of claims 1 to 3, wherein said diffusion layer is urethane foam. 前記拡散層は、前記防熱層よりも密度が小さい低密度硬質ウレタンフォームである、請求項1乃至4のうち何れか1の請求項に記載の低温液貯槽。 5. The cryogenic liquid storage tank according to any one of claims 1 to 4, wherein said diffusion layer is a low-density rigid urethane foam having a density lower than that of said heat insulating layer. 前記低密度硬質ウレタンフォームからなる前記拡散層は、前記防熱層に直接固着している、請求項5に記載の低温液貯槽。 6. The cryogenic liquid storage tank according to claim 5, wherein said diffusion layer made of said low-density rigid urethane foam is directly attached to said heat insulating layer. 0℃以下の低温液が貯留される内槽と、その外側を覆う外槽との間に保冷層が配置されると共に、前記外槽の外側面がコンクリート製の防液堤で覆われている低温液貯槽における前記外槽の内側面に、前記保冷層として、前記低温液の漏れを抑え、冷熱衝撃を緩和するために、硬質ウレタンフォームを含む防熱層を有する側部冷熱抵抗緩和層をコーティングする施工方法であって、
前記外槽の内側面にウレタンフォーム原料を塗布し、発泡硬化させて防熱層を形成する第1工程と、
前記防熱層の内側面に、前記低温液を前記外槽の面方向に拡散させる拡散層を積層する第2工程とを行って、
前記防熱層と前記拡散層とを含んだ前記側部冷熱抵抗緩和層を前記外槽の内側面にコーティングする側部冷熱抵抗緩和層の施工方法。
A cooling layer is arranged between an inner tank in which a low-temperature liquid of 0°C or less is stored and an outer tank covering the outside thereof, and the outer surface of the outer tank is covered with a concrete dike. The inner surface of the outer tank of the low-temperature liquid storage tank is coated with a side cold-heat resistance relaxation layer having a heat-insulating layer containing rigid urethane foam as the cold-insulating layer, in order to suppress leakage of the low-temperature liquid and mitigate thermal shock. A construction method for
A first step of applying a urethane foam raw material to the inner surface of the outer tank and foaming and curing it to form a heat insulating layer;
a second step of laminating a diffusion layer for diffusing the low-temperature liquid in the surface direction of the outer tank on the inner surface of the heat insulating layer,
A method for constructing a side cooling-heat resistance reducing layer, in which the side cooling-heat resistance reducing layer including the heat insulating layer and the diffusion layer is coated on the inner surface of the outer tub.
0℃以下の低温液が貯留される内槽と、その外側を覆う外槽との間に保冷層が配置されると共に、前記外槽の外側面がコンクリート製の防液堤で覆われている低温液貯槽における前記外槽の内側面に、前記保冷層として、前記低温液の漏れを抑え、冷熱衝撃を緩和するために、硬質ウレタンフォームを含む防熱層を有する側部冷熱抵抗緩和層をコーティングする施工方法であって、
前記外槽の内側面に第1ウレタンフォーム原料を塗布し、発泡硬化させて防熱層を形成する第1工程と、
前記防熱層の内側面に、第2ウレタンフォーム原料を塗布し、発泡硬化させて前記防熱層よりも通気性が高く、かつ、密度が小さい低密度硬質ウレタンフォームからなる拡散層を形成する第2工程とを行って、
前記防熱層と、前記拡散層とを含んだ前記側部冷熱抵抗緩和層を前記外槽の内側面にコーティングする側部冷熱抵抗緩和層の施工方法。
A cooling layer is arranged between an inner tank in which a low-temperature liquid of 0°C or less is stored and an outer tank covering the outside thereof, and the outer surface of the outer tank is covered with a concrete dike. The inner surface of the outer tank of the low-temperature liquid storage tank is coated with a side cold-heat resistance relaxation layer having a heat-insulating layer containing rigid urethane foam as the cold-insulating layer, in order to suppress leakage of the low-temperature liquid and mitigate thermal shock. A construction method for
A first step of applying a first urethane foam raw material to the inner surface of the outer tank and foaming and curing to form a heat insulating layer;
A second urethane foam raw material is applied to the inner surface of the heat insulating layer and foamed and cured to form a diffusion layer made of low-density rigid urethane foam having higher air permeability and lower density than the heat insulating layer. go through the process and
A method for constructing a side cooling-heat resistance reducing layer, in which the side cooling-heat resistance reducing layer including the heat insulating layer and the diffusion layer is coated on the inner surface of the outer tank.
請求項7又は8に記載の側部冷熱抵抗緩和層の施工方法を使用して低温液貯槽を製造する低温液貯槽の製造方法。 A method for manufacturing a low-temperature liquid storage tank using the method for constructing a side cold-heat resistance relaxation layer according to claim 7 or 8.
JP2019210584A 2019-11-21 2019-11-21 Cryogenic liquid storage tank, manufacturing method thereof, and construction method of side cold-heat resistance relaxation layer Active JP7320434B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019210584A JP7320434B2 (en) 2019-11-21 2019-11-21 Cryogenic liquid storage tank, manufacturing method thereof, and construction method of side cold-heat resistance relaxation layer
TW109138337A TWI756899B (en) 2019-11-21 2020-11-04 Low temperature liquid storage tank and method for manufacturing the same, and method for constructing side cold and heat resistance mitigation layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019210584A JP7320434B2 (en) 2019-11-21 2019-11-21 Cryogenic liquid storage tank, manufacturing method thereof, and construction method of side cold-heat resistance relaxation layer

Publications (2)

Publication Number Publication Date
JP2021080777A JP2021080777A (en) 2021-05-27
JP7320434B2 true JP7320434B2 (en) 2023-08-03

Family

ID=75964485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019210584A Active JP7320434B2 (en) 2019-11-21 2019-11-21 Cryogenic liquid storage tank, manufacturing method thereof, and construction method of side cold-heat resistance relaxation layer

Country Status (2)

Country Link
JP (1) JP7320434B2 (en)
TW (1) TWI756899B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006077994A (en) 2005-12-02 2006-03-23 Kajima Corp Installation method of cold-resistant relaxation material for dike-integrated low temperature tank, and dike-integrated low temperature tank
JP2012171655A (en) 2011-02-22 2012-09-10 Ihi Corp Membrane anchor for corner part
US20170130898A1 (en) 2014-03-21 2017-05-11 Hyundai Heavy Industries Co., Ltd. Ground liquefied natural gas storage tank and method for manufacturing the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3395084B2 (en) * 1992-10-23 2003-04-07 株式会社石井鐵工所 Concrete roof
JPH10246397A (en) * 1997-03-03 1998-09-14 Toyo Tire & Rubber Co Ltd Ceiling cold insulator of cryogenic liquefied gas underground tank and manufacture thereof
JP2009203787A (en) * 2008-01-28 2009-09-10 Kajima Corp Tank and tank construction method
RU2554369C2 (en) * 2010-01-28 2015-06-27 Осака Гэс Ко., Лтд. Cryogenic tank
JP6106539B2 (en) * 2013-06-27 2017-04-05 株式会社Ihi Construction method of cylindrical tank
CN205560271U (en) * 2016-01-20 2016-09-07 开封空分集团有限公司 Cryogenic tank fluid pipeline cold insulation structure
JP2017150568A (en) * 2016-02-24 2017-08-31 株式会社Ihi Low temperature liquid tank

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006077994A (en) 2005-12-02 2006-03-23 Kajima Corp Installation method of cold-resistant relaxation material for dike-integrated low temperature tank, and dike-integrated low temperature tank
JP2012171655A (en) 2011-02-22 2012-09-10 Ihi Corp Membrane anchor for corner part
US20170130898A1 (en) 2014-03-21 2017-05-11 Hyundai Heavy Industries Co., Ltd. Ground liquefied natural gas storage tank and method for manufacturing the same

Also Published As

Publication number Publication date
JP2021080777A (en) 2021-05-27
TW202126952A (en) 2021-07-16
TWI756899B (en) 2022-03-01

Similar Documents

Publication Publication Date Title
US4459334A (en) Composite building panel
CA1078722A (en) Insulation board
NO145424B (en) LAMINATED PANEL WITH CORE FOAM CORE AND PROCEDURE FOR PANEL MANUFACTURING
CN106662286B (en) Vacuum insulation part and use its thermally insulated container, house wall, transporting equipment, hydrogen cargo ship and LNG cargo ships
NO145423B (en) LAMINATED PANEL AND PROCEDURE FOR PRODUCING THE SAME
US3852973A (en) Structure for storage of liquified gas
JP7320434B2 (en) Cryogenic liquid storage tank, manufacturing method thereof, and construction method of side cold-heat resistance relaxation layer
CN105601883B (en) Hard polyurethane foam thermal insulating warm-keeping layer for Cryo Heat Insulation pipeline and preparation method thereof
CN105992616B (en) Inhibit the foam glass system of vaporization, burning and the heat radiation of liquid hydrocarbon
GB2058320A (en) Double-walled tanks for low temperature liquids
KR0172999B1 (en) Reinforced thermal protective system
JP2022179904A (en) Low-temperature liquid storage tank, manufacturing method therefor, and thermal shock reduction method
JP7340429B2 (en) Low-temperature liquid storage tank, its manufacturing method, and construction method of side cold/heat resistance relaxation layer
RU155106U1 (en) ROOF BUILDING PANEL
KR101336019B1 (en) Composition for protecting pvc waterproof sheet, partial division type pvc waterproof sheet coated its composition, partial division type construction structure and method for complex waterproofing using partial division type pvc waterproof sheet
CN108302320B (en) Low-temp. liquefied gas metal full-containing tank
JP2023014489A (en) Low temperature liquid storage tank and method for producing the same
CN110886465A (en) Construction process of floating floor slab heat preservation and sound insulation system material
KR20040091885A (en) fire retardant complex adiabatic waterproof-sheet and construction method thereof
JP2011127624A (en) Low-temperature tank and method of manufacturing the same
US20060207203A1 (en) Structural sandwich plate members
JP3215222U (en) Thermal insulation laminate for metal roof
JPH0949323A (en) Three-layer curing mat
JPH0882020A (en) Manufacture of heat insulating panel
KR102595970B1 (en) Combination apparatus for pump tower roof of lng tank

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200616

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230724

R150 Certificate of patent or registration of utility model

Ref document number: 7320434

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150