JP7317565B2 - blow molding machine - Google Patents

blow molding machine Download PDF

Info

Publication number
JP7317565B2
JP7317565B2 JP2019085389A JP2019085389A JP7317565B2 JP 7317565 B2 JP7317565 B2 JP 7317565B2 JP 2019085389 A JP2019085389 A JP 2019085389A JP 2019085389 A JP2019085389 A JP 2019085389A JP 7317565 B2 JP7317565 B2 JP 7317565B2
Authority
JP
Japan
Prior art keywords
molten resin
extruder
resistance
storage chamber
delivery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019085389A
Other languages
Japanese (ja)
Other versions
JP2020179624A (en
Inventor
優介 大脇
浩史 白井
順二 小泉
隆一 川地
正二 阿部
琢也 永井
応之介 池ヶ谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
FTS Co Ltd
Original Assignee
Japan Steel Works Ltd
FTS Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, FTS Co Ltd filed Critical Japan Steel Works Ltd
Priority to JP2019085389A priority Critical patent/JP7317565B2/en
Publication of JP2020179624A publication Critical patent/JP2020179624A/en
Application granted granted Critical
Publication of JP7317565B2 publication Critical patent/JP7317565B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

本発明は、ブロー成形装置に関するものである。 The present invention relates to a blow molding apparatus.

特許文献1には、スクリューを有する押出機によって溶融樹脂をダイヘッドへ送り込み、ダイヘッドのノズルからパリソンを押し出すブロー成形装置が開示されている。この種のブロー成形装置では、パリソンの原料となる溶融樹脂の粘度が低いと、パリソンが自重により所定形状を維持できなくなるドローダウンと呼ばれる不具合が生じることがある。ドローダウンを防止するためには粘度の高い溶融樹脂材料を用いれば良いのであるが、粘度を高くした場合、背反として、押出機内を移動する過程において溶融樹脂が混練不足となるため、パリソンが固化したときにパリソンの内周面に凹凸が生じる。 Patent Literature 1 discloses a blow molding apparatus in which an extruder having a screw feeds a molten resin into a die head and extrudes a parison from a nozzle of the die head. In this type of blow molding apparatus, if the viscosity of the molten resin, which is the raw material of the parison, is low, a problem called drawdown may occur in which the parison cannot maintain a predetermined shape due to its own weight. In order to prevent drawdown, it is good to use a molten resin material with high viscosity, but if the viscosity is increased, the molten resin will be insufficiently kneaded during the process of moving inside the extruder, so the parison will solidify. As a result, unevenness occurs on the inner peripheral surface of the parison.

特開2008-155568号公報JP 2008-155568 A

高粘度の溶融樹脂を用いたことに起因する混練不足を解消する手段としては、圧縮比の高いスクリューを適用する方法や、スクリューの下流端部にミキサーを設けて、溶融樹脂を短時間で集中的に撹拌する方法等が考えられる。しかし、圧縮比の調整のみでは混練不足の解消は不十分である。また、ミキサーを適用した場合、短時間で集中的に撹拌すると、剪断による摩擦抵抗によって溶融樹脂の温度が著しく上昇し、樹脂の劣化や架橋反応等が発生する。樹脂の劣化や架橋反応は、パリソンが固化したときにパリソンの内周面に凹凸が生じる原因となる。 As a means to solve the lack of kneading due to the use of high-viscosity molten resin, there is a method of applying a screw with a high compression ratio, or installing a mixer at the downstream end of the screw to concentrate the molten resin in a short time. For example, a method of vigorously stirring can be considered. However, simply adjusting the compression ratio is not enough to solve the problem of insufficient kneading. In addition, when a mixer is used, intensive stirring for a short period of time causes the temperature of the molten resin to rise significantly due to frictional resistance due to shearing, resulting in degradation of the resin, cross-linking reaction, and the like. Degradation and cross-linking reaction of the resin cause unevenness on the inner peripheral surface of the parison when the parison is solidified.

本発明は上記のような事情に基づいて完成されたものであって、内周面が平滑なパリソンを成形できるようにすることを目的とする。 SUMMARY OF THE INVENTION The present invention has been completed based on the above circumstances, and an object of the present invention is to enable molding of a parison having a smooth inner peripheral surface.

本発明は、
溶融樹脂をスクリューにより送り出す押出機と、
前記押出機から送り込まれた溶融樹脂をノズルから下向きに押し出してパリソンを成形するダイヘッドと、
前記押出機内の溶融樹脂に対し送出方向の移動を抑制する抗力を付与する抵抗付与手段とを備えていることを特徴とする。
The present invention
An extruder that feeds out the molten resin with a screw,
a die head for forming a parison by extruding the molten resin sent from the extruder downward from a nozzle;
and resistance imparting means for imparting resistance to the molten resin in the extruder to suppress movement in the delivery direction.

押出機内でスクリューによって送られる溶融樹脂は、抵抗付与手段の抗力を受けることによってスクリューで剪断されることになるので、溶融樹脂の混練が進む。スクリューによる剪断は、短時間で集中的に行われるのではなくダイヘッド側へ送られながら時間をかけて行われるので、摩擦抵抗が少なく、溶融樹脂が高温になる虞もない。したがって、内周面が凹凸なく平滑なパリソンを成形することができる。 The molten resin fed by the screw in the extruder is sheared by the screw by receiving the resistance of the resistance imparting means, so kneading of the molten resin proceeds. The shearing by the screw is not performed intensively in a short time, but is performed over time while being sent to the die head side, so that there is little frictional resistance and there is no fear that the temperature of the molten resin will rise. Therefore, it is possible to mold a parison having a smooth inner peripheral surface without unevenness.

実施例1のブロー成形装置において溶融樹脂をダイヘッド側へ送出している過程をあらわす断面図FIG. 2 is a cross-sectional view showing the process of feeding molten resin to the die head side in the blow molding apparatus of Example 1. ブロー成形装置において溶融樹脂を押し出してパリソンを成形している状態をあらわす断面図Cross-sectional view showing a state in which a parison is being molded by extruding molten resin in a blow molding device 抵抗部材の正面図Front view of resistance member 図3とは異なる形態の抵抗部材の正面図4 is a front view of a resistance member having a form different from that of FIG. 3

本発明は、前記抵抗付与手段が、複数の貫通孔が形成され、前記押出機の下流端と前記ダイヘッドとの間に配置された抵抗部材を備えていてもよい。この構成によれば、溶融樹脂は、複数の貫通孔を通過する際に生じる流動抵抗により、送出方向への移動を抑制される。抵抗部材は形状がシンプルなので、コストを抑えることができる。 In the present invention, the resistance imparting means may comprise a resistance member having a plurality of through holes formed therein and disposed between the downstream end of the extruder and the die head. According to this configuration, the molten resin is restrained from moving in the feeding direction due to the flow resistance generated when passing through the plurality of through holes. Since the resistance member has a simple shape, the cost can be suppressed.

本発明は、前記ダイヘッドには、溶融樹脂を貯留する貯留室と、前記押出機から前記貯留室へ溶融樹脂が送り込まれるのに伴って前記貯留室の容積を増加させる方向へ変位する可動部材とが設けられており、前記抵抗付与手段が、前記可動部材に対し前記貯留室の容積を減少させる方向の付勢力を付与する付勢機構を備えていてもよい。この構成によれば、溶融樹脂は、付勢機構から可動部材に付与される付勢力により、送出方向への移動を抑制される。 In the present invention, the die head includes a storage chamber for storing the molten resin, and a movable member that is displaced in a direction to increase the volume of the storage chamber as the molten resin is fed from the extruder to the storage chamber. may be provided, and the resistance applying means may include an urging mechanism that applies an urging force to the movable member in a direction to reduce the volume of the storage chamber. According to this configuration, the molten resin is restrained from moving in the delivery direction by the biasing force applied to the movable member from the biasing mechanism.

本発明は、前記付勢機構が、前記貯留室の容積を減少させる方向へ前記可動部材を駆動する流体圧シリンダを備えて構成されていてもよい。この構成によれば、流体圧シリンダが、可動部材を駆動する機能と溶融樹脂に抗力を付与する機能とを兼ね備えているので、単機能タイプの2つの流体圧シリンダを設ける場合に比べると、ブロー成形装置に構造を簡素化することができる。 In the present invention, the biasing mechanism may include a fluid pressure cylinder that drives the movable member in a direction to decrease the volume of the storage chamber. According to this configuration, the fluid pressure cylinder has both the function of driving the movable member and the function of applying resistance to the molten resin. The structure of the molding device can be simplified.

<実施例1>
以下、本発明を具体化した実施例1を図1~図4を参照して説明する。尚、以下の説明において、上下の方向については、図1,2にあらわれる向きを、そのまま上方、下方と定義する。
<Example 1>
A first embodiment embodying the present invention will be described below with reference to FIGS. 1 to 4. FIG. In the following description, the directions shown in FIGS. 1 and 2 are defined as upward and downward as they are.

本実施例1のブロー成形装置Aは、押出機10とダイヘッド22と押出装置30と抵抗付与手段50とを備えて構成されている。押出機10は、溶融樹脂Rをダイヘッド22へ向けて水平に送出する装置であり、ケース11と、ケース11内に収容されたスクリュー12と、スクリュー12を回転駆動するモータ21とを備えて構成されている。スクリュー12は、軸線を水平方向(前後方向)に向けた軸部13と、軸部13の外周に設けた螺旋状の羽根板14とから構成されている。ケース11の内周面と軸部13の外周面との隙間は、溶融樹脂Rを送出するための送出路15となっている。押出機10には、送出路15の送出方向下流端部に連通する送出口16が形成されている。 The blow molding apparatus A of Example 1 comprises an extruder 10 , a die head 22 , an extrusion device 30 and resistance imparting means 50 . The extruder 10 is a device that horizontally feeds the molten resin R toward a die head 22, and includes a case 11, a screw 12 housed in the case 11, and a motor 21 that rotates the screw 12. It is The screw 12 is composed of a shaft portion 13 whose axis is oriented in the horizontal direction (front-to-rear direction) and a helical vane plate 14 provided on the outer periphery of the shaft portion 13 . A gap between the inner peripheral surface of the case 11 and the outer peripheral surface of the shaft portion 13 serves as a delivery path 15 for delivering the molten resin R. The extruder 10 is formed with a delivery port 16 that communicates with the downstream end of the delivery path 15 in the delivery direction.

スクリュー12のうち送出方向上流端部は供給部17となっており、スクリュー12のうち送出方向略中央部は圧縮部18となっており、スクリュー12のうち送出方向下流端部は計量部19となっている。送出路15は、軸部13の外周と羽根板14とによって区画された螺旋状の溝部20によって構成されている。供給部17における溝部20の深さ(羽根板14の外径と軸部13の外径との寸法差)は、計量部19における溝部20の深さ(羽根板14の外径と軸部13の外径との寸法差)より大きい寸法に設定されている。 The upstream end of the screw 12 in the delivery direction serves as a supply section 17, the substantially central portion of the screw 12 in the delivery direction serves as a compression section 18, and the downstream end in the delivery direction of the screw 12 serves as a metering section 19. It's becoming The delivery path 15 is constituted by a spiral groove portion 20 defined by the outer circumference of the shaft portion 13 and the blade plate 14 . The depth of the groove portion 20 in the supply portion 17 (the dimensional difference between the outer diameter of the blade plate 14 and the outer diameter of the shaft portion 13) is the depth of the groove portion 20 in the weighing portion 19 (the outer diameter of the blade plate 14 and the shaft portion 13 is set to a dimension larger than the dimensional difference from the outer diameter of the

送出路15の上流端において送出路15内に供給された溶融樹脂Rは、回転するスクリュー12の羽根板14で軸線方向に押されることにより、送出路15内を上流側から下流側へ押し動かされる。また、送出路15内の溶融樹脂Rは、押し動かされながら羽根板14によって剪断されることにより、混練される。 The molten resin R supplied into the delivery path 15 at the upstream end of the delivery path 15 is pushed in the axial direction by the blade plate 14 of the rotating screw 12, thereby being pushed and moved in the delivery path 15 from the upstream side to the downstream side. be Further, the molten resin R in the delivery path 15 is kneaded by being sheared by the blade plate 14 while being pushed.

ダイヘッド22は、軸線を上下方向に向けた筒状のハウジング23と、ハウジング23内に同軸状に収容した円柱形のコア24とを備えて構成されている。ハウジング23の内周面とコア24の外周面との間には、筒状の貯留室25が形成されている。ハウジング23には流入路26が設けられている。流入路26の上流端は、ハウジング23の外部において後述する抵抗部材51を介して押出機10の送出口16に接続されている。流入路26の下流端は、ハウジング23内の貯留室25と連通している。 The die head 22 comprises a cylindrical housing 23 with its axis directed vertically, and a cylindrical core 24 coaxially accommodated in the housing 23 . A tubular storage chamber 25 is formed between the inner peripheral surface of the housing 23 and the outer peripheral surface of the core 24 . An inflow passage 26 is provided in the housing 23 . The upstream end of the inflow path 26 is connected to the delivery port 16 of the extruder 10 outside the housing 23 via a later-described resistance member 51 . A downstream end of the inflow path 26 communicates with the storage chamber 25 inside the housing 23 .

ダイヘッド22の下端面には、ハウジング23の下端面における開口縁と、コア24の下端部外周面とによって区画された円環形のスリット状をなすノズル27が形成されている。ノズル27は貯留室25の下端部に連通している。貯留室25内に貯留された溶融樹脂Rは、押出装置30によってノズル27から下向きに押し出されるようになっている。ノズル27から押し出された溶融樹脂Rは、軸線を上下方向に向けたパリソンPとなり、図示しない金型により成形されて高圧容器や燃料タンク等の製品となる。 An annular slit-shaped nozzle 27 defined by the opening edge of the lower end surface of the housing 23 and the outer peripheral surface of the lower end portion of the core 24 is formed in the lower end surface of the die head 22 . The nozzle 27 communicates with the lower end of the storage chamber 25 . The molten resin R stored in the storage chamber 25 is pushed out downward from the nozzle 27 by the extrusion device 30 . The molten resin R extruded from the nozzle 27 becomes a parison P with its axis directed vertically, which is molded by a mold (not shown) to become a product such as a high-pressure container or a fuel tank.

押出装置30は、ハウジング23の上端面に固定した基台31と、基台31の上面に設けた開閉用シリンダ32と、円環形の可動部材34と、基台31の上面に設けた複数の押出用シリンダ36(請求項に記載の流体圧シリンダ)と、作動油給排装置40とを備えて構成されている。開閉用シリンダ32は、コア24と同軸状に配置されており、基台31を貫通してコア24の上端部と一体化された開閉用ロッド33を有している。開閉用シリンダ32の駆動により、コア24は、ノズル27を閉塞する閉塞位置(図1を参照)と、ノズル27を開放させる開放位置(図2を参照)との間で昇降するようになっている。 The extrusion device 30 includes a base 31 fixed to the upper end surface of the housing 23 , an opening/closing cylinder 32 provided on the upper surface of the base 31 , an annular movable member 34 , and a plurality of actuators provided on the upper surface of the base 31 . It is composed of an extrusion cylinder 36 (a fluid pressure cylinder described in the claims) and a hydraulic oil supply/discharge device 40 . The opening/closing cylinder 32 is arranged coaxially with the core 24 and has an opening/closing rod 33 that passes through the base 31 and is integrated with the upper end portion of the core 24 . By driving the opening/closing cylinder 32, the core 24 moves up and down between a closed position (see FIG. 1) that closes the nozzle 27 and an open position (see FIG. 2) that opens the nozzle 27. there is

貯留室25の上端側領域は、コア24及び貯留室25と同軸の円環形をなす昇降空間35となっている。即ち、昇降空間35は貯留室25を構成している。昇降空間35内には可動部材34が昇降可能に収容されている。可動部材34の下端面は貯留室25に対し下向きに臨んでいる。複数の押出用シリンダ36はコア24を包囲するように配置されている。複数の押出用シリンダ36は、基台31を貫通して下向きに突出する複数本の押出用ロッド37を有している。複数本の押出用ロッド37は周方向に間隔を空けてコア33を包囲するように配されている。複数本の押出用ロッド37の下端は、可動部材34の上端面に固着されており、可動部材34は押出用シリンダ36の駆動によって昇降する。可動部材34が上昇すると貯留室25の容積が増大し、可動部材34が下降すると貯留室25の容積が減少する。可動部材34はアキュムレータ38を構成する。 An upper end region of the storage chamber 25 is an elevating space 35 having an annular shape coaxial with the core 24 and the storage chamber 25 . That is, the elevating space 35 constitutes the storage chamber 25 . A movable member 34 is accommodated in the elevating space 35 so as to be able to ascend and descend. A lower end surface of the movable member 34 faces downward toward the storage chamber 25 . A plurality of extrusion cylinders 36 are arranged to surround the core 24 . The plurality of push-out cylinders 36 have a plurality of push-out rods 37 penetrating through the base 31 and protruding downward. A plurality of pushing rods 37 are arranged so as to surround the core 33 at intervals in the circumferential direction. The lower ends of the plurality of pushing rods 37 are fixed to the upper end surface of the movable member 34 , and the movable member 34 moves up and down by driving the pushing cylinder 36 . When the movable member 34 rises, the volume of the storage chamber 25 increases, and when the movable member 34 descends, the volume of the storage chamber 25 decreases. The movable member 34 constitutes an accumulator 38 .

作動油給排装置40は、共用流路41と方向切換弁43と圧送流路44とポンプ45と貯留タンク46と排出流路47と絞り弁48とを備えている。共用流路41は複数の分岐路42に分岐して複数の押出用シリンダ36に個別に接続されている。共用流路41のうち押出用シリンダ36とは反対側の端部に、方向切換弁43(三方弁)が接続されている。方向切換弁43の流入ポートには圧送流路44の下流端が接続されている。圧送流路44の途中にはポンプ45が設けられ、圧送流路44の上流端は貯留タンク46に接続されている。方向切換弁43の流出ポートには、排出流路47の上流端が接続されている。排出流路47の途中には絞り弁48が設けられ、排出流路47の下流端は貯留タンク46に接続されている。 The hydraulic oil supply/discharge device 40 includes a common flow path 41 , a directional switching valve 43 , a pumping flow path 44 , a pump 45 , a storage tank 46 , a discharge flow path 47 and a throttle valve 48 . The common flow path 41 branches into a plurality of branch paths 42 and is individually connected to a plurality of extrusion cylinders 36 . A directional switching valve 43 (three-way valve) is connected to the end of the shared flow path 41 opposite to the extrusion cylinder 36 . The inflow port of the direction switching valve 43 is connected to the downstream end of the pressure feed passage 44 . A pump 45 is provided in the middle of the pressure-feeding channel 44 , and the upstream end of the pressure-feeding channel 44 is connected to a storage tank 46 . An upstream end of a discharge passage 47 is connected to an outflow port of the direction switching valve 43 . A throttle valve 48 is provided in the middle of the discharge channel 47 , and the downstream end of the discharge channel 47 is connected to a storage tank 46 .

ダイヘッド22からパリソンPを押し出す際には、予め、可動部材34を上昇させ、流入路26の下流端を貯留室25に臨ませておく。貯留室25に溶融樹脂Rを貯留する際には、図1に示すように、ノズル27を閉塞し、方向切換弁43を貯留形態へ切り換える。この状態で、押出機10内の溶融樹脂Rが貯留室25内に送り込まれると、貯留室25内の溶融樹脂Rの圧力が上昇するので、可動部材34が上昇するとともに貯留室25の容積が増大し、貯留室25内における溶融樹脂Rの貯留量が増大する。可動部材34が上昇するのに伴い、押出用シリンダ36内の作動油が、方向切換弁43と絞り弁48を通過して貯留タンク46内に排出される。 When extruding the parison P from the die head 22 , the movable member 34 is raised in advance so that the downstream end of the inflow path 26 faces the storage chamber 25 . When storing the molten resin R in the storage chamber 25, as shown in FIG. 1, the nozzle 27 is closed and the directional switching valve 43 is switched to the storage mode. In this state, when the molten resin R in the extruder 10 is fed into the storage chamber 25, the pressure of the molten resin R in the storage chamber 25 increases, so the movable member 34 rises and the volume of the storage chamber 25 increases. As a result, the amount of molten resin R stored in the storage chamber 25 increases. As the movable member 34 rises, the working oil in the pushing cylinder 36 passes through the direction switching valve 43 and the throttle valve 48 and is discharged into the storage tank 46 .

所定量の溶融樹脂Rが貯留室25に貯留されたら、図2に示すように、ノズル27を開放し、方向切換弁43を圧送形態に切り換える。この状態でポンプ45を駆動すると、貯留タンク46内の作動油が、方向切換弁43を介して押出用シリンダ36に圧送され、押出用シリンダ36の駆動力により可動部材34が下降するので、貯留室25の容積が減少する。これにより、貯留室25内の溶融樹脂Rがノズル27から下向きに押し出されてパリソンPとなる。 After a predetermined amount of molten resin R is stored in the storage chamber 25, as shown in FIG. When the pump 45 is driven in this state, the hydraulic oil in the storage tank 46 is pressure-fed to the extrusion cylinder 36 via the direction switching valve 43, and the driving force of the extrusion cylinder 36 causes the movable member 34 to descend. The volume of chamber 25 is reduced. As a result, the molten resin R in the storage chamber 25 is extruded downward from the nozzle 27 to become the parison P. As shown in FIG.

抵抗付与手段50は、抵抗部材51と付勢機構54とを備えて構成されている。抵抗部材51は、押出機10の送出口16(送出経路の下流端)と、流入路26の上流端との間に設けられている。抵抗部材51は、送出口16から流入路26への溶融樹脂Rの流路を遮るような板状をなす。抵抗部材51には、送出口16と流入路26とを連通させる複数の貫通孔52が形成されている。貫通孔52としては、図3に示すように、複数の独立した円形の開口部でもよく、図4に示すように、抵抗部材51をメッシュ状にすることで複数の独立した方形の開口部であってもよい。 The resistance applying means 50 is configured with a resistance member 51 and an urging mechanism 54 . The resistance member 51 is provided between the delivery port 16 (downstream end of the delivery path) of the extruder 10 and the upstream end of the inflow path 26 . The resistance member 51 has a plate shape that blocks the flow path of the molten resin R from the delivery port 16 to the inflow path 26 . The resistance member 51 is formed with a plurality of through holes 52 that allow the delivery port 16 and the inflow path 26 to communicate with each other. As the through holes 52, a plurality of independent circular openings may be used as shown in FIG. There may be.

溶融樹脂Rが抵抗部材51の貫通孔52を通過する際には、溶融樹脂Rのうち抵抗部材51より上流側の部分(即ち、溶融樹脂Rのうち押出機10内でスクリュー12により送出されている部分)に対し、流動抵抗が付与される。したがって、抵抗部材51を設けない場合に比べると、押出機10内におけるスクリュー12による溶融樹脂Rの送出が抑制され、押出機10(送出路15)内の溶融樹脂Rの圧力が高くなっている。 When the molten resin R passes through the through hole 52 of the resistance member 51, the part of the molten resin R on the upstream side of the resistance member 51 (that is, the molten resin R is fed out by the screw 12 in the extruder 10). flow resistance is applied to the Therefore, compared to the case where the resistance member 51 is not provided, the delivery of the molten resin R by the screw 12 in the extruder 10 is suppressed, and the pressure of the molten resin R in the extruder 10 (delivery path 15) is high. .

付勢機構54は、上記した可動部材34と押出用シリンダ36と絞り弁48とを備えて構成されている。上述のように、押出機10内の溶融樹脂Rが貯留室25内に送り込まれて可動部材34が上昇する過程では、押出用シリンダ36内の作動油が絞り弁48を通過することによって貯留タンク46内に排出される。ここで、絞り弁48内における作動油の流路を排出流路47より狭くしておくと、作動油が絞り弁48を通過するときに、排出流路47のうち絞り弁48より上流側の部分(即ち、押出用シリンダ36側の部分)において作動油に流動抵抗が付与される。この作動油に付与された流動抵抗は、押出用ロッド37と可動部材34を介して貯留室25内の溶融樹脂Rに伝達され、更には、押出機10(送出路15)内の溶融樹脂Rに伝達される。これにより、押出機10内におけるスクリュー12による溶融樹脂Rの送出が抑制され、押出機10内の溶融樹脂Rの圧力が高くなる。 The biasing mechanism 54 includes the movable member 34, the pushing cylinder 36, and the throttle valve 48 described above. As described above, in the process in which the molten resin R in the extruder 10 is fed into the storage chamber 25 and the movable member 34 rises, the hydraulic oil in the extrusion cylinder 36 passes through the throttle valve 48, thereby 46 is discharged. Here, if the flow path of the hydraulic oil in the throttle valve 48 is narrower than the discharge flow path 47 , when the hydraulic oil passes through the throttle valve 48 Flow resistance is applied to the hydraulic oil at the portion (that is, the portion on the extrusion cylinder 36 side). The flow resistance imparted to the hydraulic oil is transmitted to the molten resin R in the storage chamber 25 via the extrusion rod 37 and the movable member 34, and furthermore, the molten resin R in the extruder 10 (delivery passage 15) is transmitted to As a result, delivery of the molten resin R by the screw 12 within the extruder 10 is suppressed, and the pressure of the molten resin R within the extruder 10 increases.

上述のように、抵抗部材51と付勢機構54を設けたことにより、押出機10内の溶融樹脂Rにはスクリュー12による送出を抑制する抵抗が付与されるので、スクリュー12による本来の送出速度よりも、実際の溶融樹脂Rの送出速度は遅くなる。そのため、溶融樹脂Rは、スクリュー12の羽根板14によってダイヘッド22側へ押し動かされながら、羽根板14によって剪断されることになる。このスクリュー12による剪断によって、溶融樹脂Rの混練が進む。 As described above, by providing the resistance member 51 and the biasing mechanism 54, the molten resin R in the extruder 10 is given resistance to suppress the feeding by the screw 12, so the original feeding speed by the screw 12 , the actual delivery speed of the molten resin R becomes slower than Therefore, the molten resin R is sheared by the blade plate 14 while being pushed toward the die head 22 by the blade plate 14 of the screw 12 . The kneading of the molten resin R proceeds by shearing by the screw 12 .

溶融樹脂Rを剪断する手段としては、送出の途中でミキサーにより短時間で溶融樹脂Rを集中して撹拌する方法もあるが、短時間で剪断すると摩擦抵抗が大きくなるので、その分、溶融樹脂Rの温度が上昇することになる。溶融樹脂Rを温度の高い状態で押し出すと、パリソンPの内周面が平滑にならず、内周面に凹凸が生じる虞がある。その点、本実施例では、溶融樹脂Rを押出機10内で送出する過程でゆっくりと剪断するので、摩擦抵抗が小さく抑えられ、溶融樹脂Rが高温になる虞もない。したがって、パリソンPの内周面は凹凸のない平滑な面に形成される。 As a means for shearing the molten resin R, there is a method of concentrating and stirring the molten resin R with a mixer in the middle of delivery for a short period of time. The temperature of R will rise. If the molten resin R is extruded while the temperature is high, the inner peripheral surface of the parison P may not be smooth and uneven. In this regard, in this embodiment, since the melted resin R is slowly sheared in the process of being delivered from the extruder 10, the frictional resistance is kept small, and the melted resin R does not become hot. Therefore, the inner peripheral surface of the parison P is formed as a smooth surface without irregularities.

下記の表1は、抵抗付与手段50を備えたブロー成形装置Aを用いてパリソンPを成形した実施形態1~3と、抵抗付与手段50を有しない成形装置(図示省略)を用いてパリソンPを形成した比較例1~4を示している。実施形態と比較例は下記を共通条件として実行された。溶融樹脂Rの材料は、ポリアミド樹脂(熱可塑性樹脂)に耐衝撃材(ゴム)を含有させたものであり、溶融樹脂Rの融点は220℃である。 Table 1 below shows Embodiments 1 to 3 in which a parison P is molded using a blow molding apparatus A equipped with a resistance applying means 50, and a parison P using a molding apparatus (not shown) having no resistance applying means 50. Comparative Examples 1 to 4 are shown. The embodiment and the comparative example were carried out under the following common conditions. The material of the molten resin R is a polyamide resin (thermoplastic resin) containing an impact resistant material (rubber), and the melting point of the molten resin R is 220°C.

表1における「溶融粘度」は、250℃、剪断速度が12/sにおける溶融樹脂Rの粘度の値である。「開口率」は、送出口16(送出経路の下流端)と流入路26の上流端との間に抵抗部材51を設けた実施形態1~3では、抵抗部材51の上流側近傍に位置する送出口16の断面積に対し、抵抗部材51に形成した複数の貫通孔52の総開口面積が閉める割合である。抵抗部材51を設けない比較例1~4では、開口率を100%としている。「溶融樹脂の圧力」は、押出機10の先端部、貯留室25内及びダイヘッド22内における溶融樹脂Rの圧力である。「パリソン内周面の平滑度」は、パリソンPの内周面における凹凸の有無及び凹凸の程度を示す。 The "melt viscosity" in Table 1 is the value of the viscosity of the molten resin R at 250°C and a shear rate of 12/s. In the first to third embodiments in which the resistance member 51 is provided between the delivery port 16 (downstream end of the delivery path) and the upstream end of the inflow passage 26, the "opening ratio" is positioned near the upstream side of the resistance member 51. It is the ratio of the total opening area of the plurality of through holes 52 formed in the resistance member 51 to the cross-sectional area of the delivery port 16 . Comparative Examples 1 to 4, in which the resistance member 51 is not provided, have an aperture ratio of 100%. The “pressure of the molten resin” is the pressure of the molten resin R at the tip of the extruder 10 , inside the storage chamber 25 and inside the die head 22 . The "smoothness of the inner peripheral surface of the parison" indicates the presence or absence of unevenness on the inner peripheral surface of the parison P and the degree of unevenness.

Figure 0007317565000001
Figure 0007317565000001

実施形態1では、溶融粘度が15,000[Pa・s]の溶融樹脂Rを用い、押出機10にはミキサーを設けず、押出機10の圧縮比を3.4とし、抵抗付与手段50を抵抗部材51のみとし、開口率を60%とした。押出機10の圧縮比は、供給部17におけるスクリュー12の溝部20の深さ(羽根板14の外径と軸部13の外径との寸法差)を、計量部19におけるスクリュー12の溝部20の深さ(羽根板14の外径と軸部13の外径との寸法差)で除した数値である。圧縮比が高いほど、溶融樹脂Rに対する剪断作用が向上するので、溶融樹脂Rの混練度も高まる。 In Embodiment 1, the molten resin R having a melt viscosity of 15,000 [Pa s] is used, the extruder 10 is not provided with a mixer, the compression ratio of the extruder 10 is 3.4, and the resistance applying means 50 is Only the resistance member 51 was used, and the aperture ratio was set to 60%. The compression ratio of the extruder 10 is determined by dividing the depth of the groove 20 of the screw 12 in the feeding section 17 (dimensional difference between the outer diameter of the blade plate 14 and the outer diameter of the shaft section 13) into the groove 20 of the screw 12 in the measuring section 19. is a numerical value divided by the depth of (the dimensional difference between the outer diameter of the blade plate 14 and the outer diameter of the shaft portion 13). As the compression ratio is higher, the shearing action on the molten resin R is improved, so the kneading degree of the molten resin R is also increased.

実施形態2では、溶融粘度が21,000[Pa・s]の溶融樹脂Rを用い、押出機10にはミキサーを設けず、押出機10の圧縮比を3.4とし、抵抗付与手段50を抵抗部材51のみとし、開口率を60%とした。実施形態3では、溶融粘度が21,000[Pa・s]の溶融樹脂Rを用い、押出機10にはミキサーを設けず、押出機10の圧縮比を3.4とし、抵抗付与手段50として抵抗部材51と付勢機構54とを用い、開口率を47%とした。 In Embodiment 2, the molten resin R having a melt viscosity of 21,000 [Pa s] is used, the extruder 10 is not provided with a mixer, the compression ratio of the extruder 10 is 3.4, and the resistance applying means 50 is Only the resistance member 51 was used, and the aperture ratio was set to 60%. In Embodiment 3, the molten resin R having a melt viscosity of 21,000 [Pa s] is used, the extruder 10 is not provided with a mixer, the compression ratio of the extruder 10 is set to 3.4, and the resistance applying means 50 is A resistance member 51 and an urging mechanism 54 are used, and the aperture ratio is set to 47%.

比較例1では、溶融粘度が3,500[Pa・s]の溶融樹脂Rを用い、押出機10にはミキサーを設けず、押出機10の圧縮比を2.4とした。比較例2では、溶融粘度が15,000[Pa・s]の溶融樹脂Rを用い、押出機10にはミキサーを設けず、押出機10の圧縮比を2.4とした。比較例3では、溶融粘度が15,000[Pa・s]の溶融樹脂Rを用い、押出機10にはミキサーを設けず、押出機10の圧縮比を3.4とした。比較例4では、溶融粘度が15,000[Pa・s]の溶融樹脂Rを用い、押出機10にミキサーを設け、押出機10の圧縮比を2.2とした。 In Comparative Example 1, the molten resin R having a melt viscosity of 3,500 [Pa·s] was used, the extruder 10 was not provided with a mixer, and the compression ratio of the extruder 10 was set to 2.4. In Comparative Example 2, a molten resin R having a melt viscosity of 15,000 [Pa·s] was used, the extruder 10 was not provided with a mixer, and the compression ratio of the extruder 10 was set to 2.4. In Comparative Example 3, a molten resin R having a melt viscosity of 15,000 [Pa·s] was used, the extruder 10 was not provided with a mixer, and the compression ratio of the extruder 10 was set to 3.4. In Comparative Example 4, a molten resin R having a melt viscosity of 15,000 [Pa·s] was used, a mixer was provided in the extruder 10, and the compression ratio of the extruder 10 was set to 2.2.

実施形態1~3及び比較例1~4の条件で成形したパリソンPについて説明する。ドローダウンに関しては、溶融粘度の低い(5,000[Pa・s]未満の)比較例1では、パリソンPの長さが1.8mに至る前にドローダウンが発生した。これに対し、実施形態1~3と比較例2~4では、溶融粘度が高いので(5,000[Pa・s]以上なので)、パリソンPの長さを1.8mまで伸ばしてもドローダウンは発生しなかった。 The parisons P molded under the conditions of Embodiments 1 to 3 and Comparative Examples 1 to 4 will be described. As for drawdown, in Comparative Example 1 with a low melt viscosity (less than 5,000 [Pa·s]), drawdown occurred before the length of the parison P reached 1.8 m. On the other hand, in Embodiments 1 to 3 and Comparative Examples 2 to 4, the melt viscosity is high (because it is 5,000 [Pa s] or more), so even if the length of the parison P is extended to 1.8 m, there is no drawdown. did not occur.

パリソンPの内周面の平滑度(凹凸の有無と凹凸の程度)に関しては、比較例1では、圧縮比が低く(2.6未満)、押出機10内の溶融樹脂Rに対して抵抗が付与されないので、剪断不足となり、剪断不足に起因する平滑度の低下が懸念される。しかし、比較例1では溶融粘度が低いので(5,000[Pa・s]未満なので)、平滑度は良好であった。比較例2では、圧縮比が低い(2.6未満)上に、押出機10内の溶融樹脂Rに対して抵抗が付与されないので、剪断不足となり、平滑度は不良であった。比較例3では、圧縮比が高い(2.6以上)のであるが、押出機10内の溶融樹脂Rに対して抵抗が付与されないので、剪断不足となり、平滑度は不良であった。比較例4では、ミキサーで急激に剪断されることによる発熱に加えて、圧縮比が低く(2.6未満)送出過程での剪断が不足しているので、平滑度が不良であった。 Regarding the smoothness of the inner peripheral surface of the parison P (presence or absence of unevenness and the degree of unevenness), in Comparative Example 1, the compression ratio is low (less than 2.6), and the resistance to the molten resin R in the extruder 10 is low. Since it is not imparted, shearing is insufficient, and there is concern about a decrease in smoothness due to insufficient shearing. However, in Comparative Example 1, since the melt viscosity was low (because it was less than 5,000 [Pa·s]), the smoothness was good. In Comparative Example 2, since the compression ratio was low (less than 2.6) and resistance was not imparted to the molten resin R in the extruder 10, the shear was insufficient and the smoothness was poor. In Comparative Example 3, although the compression ratio was high (2.6 or more), since resistance was not imparted to the molten resin R in the extruder 10, shearing was insufficient and the smoothness was poor. In Comparative Example 4, in addition to heat generation due to rapid shearing in the mixer, the compression ratio was low (less than 2.6) and the shearing during delivery was insufficient, resulting in poor smoothness.

これに対し、圧縮比が高く(2.6以上)、押出機10内の溶融樹脂Rに抵抗が付与された実施形態1~3では、平滑度は良好であった。ここで、実施形態1~3と比較例3とを比較すると、溶融粘度の高さと圧縮比は概ね同等であるが、押出機10で送出中の溶融樹脂Rに抵抗が付与されない比較例3では平滑度が不良であったのに対し、押出機10で送出中の溶融樹脂Rに抵抗が付与された実施形態1~3では平滑度が良好であるという結果が得られた。このことから、押出機10で送出中の溶融樹脂Rに抵抗を付与することが、平滑度を高める要因になるという知見が得られた。 In contrast, in Embodiments 1 to 3 in which the compression ratio was high (2.6 or more) and resistance was imparted to the molten resin R in the extruder 10, the smoothness was good. Here, when comparing Embodiments 1 to 3 and Comparative Example 3, the melt viscosity and the compression ratio are approximately the same, but in Comparative Example 3 in which resistance is not given to the molten resin R being delivered by the extruder 10 While the smoothness was poor, in Embodiments 1 to 3 in which resistance was imparted to the molten resin R being delivered from the extruder 10, good smoothness was obtained. From this, it was found that giving resistance to the molten resin R being delivered from the extruder 10 is a factor in increasing the smoothness.

また、押出機10で送出中の溶融樹脂Rに抵抗が付与することで平滑度が良好となるメカニズムについては、次のように考えることができる。押出機10において送出される溶融樹脂Rに対して抵抗を付与すると、溶融樹脂Rを送出する過程で時間を掛けながら剪断することになるので、溶融樹脂Rの発熱を抑えつつ溶融樹脂Rを混練することができる。即ち、平滑度低下の原因となる発熱を抑えながら、良好な平滑度を得るための要因である混練性を高めることができるので、平滑度が良好になると推察される。 The mechanism by which the smoothness is improved by applying resistance to the molten resin R being delivered from the extruder 10 can be considered as follows. If resistance is applied to the molten resin R delivered from the extruder 10, the molten resin R is sheared while taking time in the process of delivering the molten resin R. Therefore, the molten resin R is kneaded while suppressing heat generation of the molten resin R. can do. That is, it is presumed that the kneadability, which is a factor for obtaining good smoothness, can be improved while suppressing the heat generation that causes the deterioration of smoothness, so that the smoothness will be good.

また、パリソンPの平滑度を高める要因であるスクリュー12(押出機10)の圧縮率と、押出機10で送出中の溶融樹脂Rに抵抗を付与する手段としての抵抗部材51(貫通孔52)の開口率については、圧縮率が2.8~4.0で、開口率が35%~70%であることが好ましく、開口率が40%~62%であることがより好ましい。開口率が35%より小さい場合は、溶融樹脂Rに付与される抵抗が大きくなり過ぎるために押出機10への負荷が高くなり、好ましくない。開口率が70%より大きい場合は、溶融樹脂Rに付与される抵抗が小さくなり過ぎるため、混練不足の解消が困難となる。 In addition, the compressibility of the screw 12 (extruder 10), which is a factor for increasing the smoothness of the parison P, and the resistance member 51 (through hole 52) as a means for applying resistance to the molten resin R being delivered by the extruder 10 With respect to the aperture ratio, the compression ratio is preferably 2.8 to 4.0, the aperture ratio is preferably 35% to 70%, and the aperture ratio is more preferably 40% to 62%. If the open area ratio is less than 35%, the load on the extruder 10 will increase due to excessive resistance applied to the molten resin R, which is not preferable. If the open area ratio is more than 70%, the resistance imparted to the molten resin R becomes too small, making it difficult to eliminate insufficient kneading.

上述のように本実施例1のブロー成形装置Aは、溶融樹脂Rをスクリュー12により送り出す押出機10と、押出機10から送り込まれた溶融樹脂Rをノズル27から下向きに押し出してパリソンPを成形するダイヘッド22と、押出機10内の溶融樹脂Rに対し送出方向の移動を抑制する抗力を付与する抵抗付与手段50とを備えている。 As described above, the blow molding apparatus A of the first embodiment includes the extruder 10 that feeds the molten resin R by the screw 12, and the molten resin R fed from the extruder 10 is pushed downward from the nozzle 27 to form the parison P. and a resistance imparting means 50 that imparts a drag force to the molten resin R in the extruder 10 to suppress its movement in the delivery direction.

押出機10内でスクリュー12によって送られる溶融樹脂Rは、抵抗付与手段50の抗力を受けることによってスクリュー12で剪断されることになるので、溶融樹脂Rの混練が進む。スクリュー12による剪断は、短時間で集中的に行われるのではなくダイヘッド22側へ送られながら時間をかけて行われるので、摩擦抵抗が少なく、溶融樹脂Rが高温になる虞もない。したがって、内周面が凹凸なく平滑なパリソンPを成形することができる。 The molten resin R sent by the screw 12 in the extruder 10 is sheared by the screw 12 by receiving the resistance of the resistance imparting means 50, so the kneading of the molten resin R proceeds. Since the shearing by the screw 12 is not performed intensively in a short time, but is performed over time while being sent to the die head 22 side, there is little frictional resistance, and there is no possibility that the temperature of the molten resin R becomes high. Therefore, it is possible to mold the parison P having a smooth inner peripheral surface without unevenness.

また、抵抗付与手段50は、複数の貫通孔52が形成され、押出機10の下流端とダイヘッド22との間に配置された抵抗部材51を備えている。このような抵抗部材51を用いると、溶融樹脂Rは、複数の貫通孔52を通過する際に生じる流動抵抗により、送出方向への移動を抑制される。抵抗部材51は形状がシンプルなので、コストを抑えることができる。 The resistance imparting means 50 also includes a resistance member 51 formed with a plurality of through holes 52 and arranged between the downstream end of the extruder 10 and the die head 22 . When such a resistance member 51 is used, the molten resin R is restrained from moving in the delivery direction due to flow resistance generated when passing through the plurality of through holes 52 . Since the resistance member 51 has a simple shape, the cost can be suppressed.

また、ダイヘッド22には、溶融樹脂Rを貯留する貯留室25と、押出機10から貯留室25へ溶融樹脂Rが送り込まれるのに伴って貯留室25の容積を増加させる方向へ変位する可動部材34とが設けられている。そして、抵抗付与手段50は、可動部材34に対し貯留室25の容積を減少させる方向の付勢力を付与する付勢機構54を備えて構成されている。この構成によれば、溶融樹脂Rは、付勢機構54から可動部材34に付与される付勢力により、送出方向への移動を抑制される。 Further, the die head 22 includes a storage chamber 25 for storing the molten resin R, and a movable member that is displaced in a direction to increase the volume of the storage chamber 25 as the molten resin R is fed from the extruder 10 to the storage chamber 25. 34 are provided. The resistance applying means 50 includes an urging mechanism 54 that applies an urging force to the movable member 34 in a direction to reduce the volume of the storage chamber 25 . According to this configuration, the molten resin R is restrained from moving in the delivery direction by the biasing force applied from the biasing mechanism 54 to the movable member 34 .

また、付勢機構54は、貯留室25の容積を減少させる方向へ可動部材34を駆動する押出用シリンダ36を備えて構成されている。押出用シリンダ36は、可動部材34を駆動する機能と溶融樹脂Rに抗力を付与する機能とを兼ね備えているので、単機能タイプの2つの流体圧シリンダを設ける場合に比べると、ブロー成形装置Aに構造を簡素化することができる。 Further, the biasing mechanism 54 is configured to include an extrusion cylinder 36 that drives the movable member 34 in the direction of decreasing the volume of the storage chamber 25 . Since the extrusion cylinder 36 has both the function of driving the movable member 34 and the function of applying resistance to the molten resin R, compared to the case where two single-function type fluid pressure cylinders are provided, the blow molding apparatus A structure can be simplified.

また、溶融樹脂Rとしては、耐衝撃材(ゴム)を含有させないポリアミド樹脂であってもよい。溶融樹脂Rの材料としては、ポリアミド樹脂に限らず、エチレン・ビニルアルコール共重合樹脂、ポリエチレンテレフタレート樹脂、ポリケトン樹脂、ポリフェニレンサルファイド樹脂等を用いることができる。また、これらの樹脂材料に、ゴム等の耐衝撃材、ドローダウンを抑制する添加剤、フィラー等の充填材を混合・含有させてもよい。 Further, the molten resin R may be a polyamide resin that does not contain an impact resistant material (rubber). The material of the molten resin R is not limited to polyamide resin, and may be ethylene-vinyl alcohol copolymer resin, polyethylene terephthalate resin, polyketone resin, polyphenylene sulfide resin, or the like. In addition, these resin materials may be mixed and contained with an impact resistant material such as rubber, an additive for suppressing drawdown, and a filler such as a filler.

また、溶融樹脂Rがポリアミド樹脂又はポリアミド樹脂組成物である場合、ドローダウンの発生を回避するためには、250℃、剪断速度12/sにおける溶融粘度は5,000~25,000[Pa・s]が好ましく、8,000~20,000[Pa・s]がより好ましく、10,000~20,000[Pa・s]が更に好ましい。溶融樹脂Rがエチレン・ビニルアルコール共重合樹脂又はエチレン・ビニルアルコール共重合樹脂組成物である場合、ドローダウンの発生を回避するためには、210℃、剪断速度12/sにおける溶融粘度は5,000~20,000[Pa・s]が好ましく、6,000~15,000[Pa・s]がより好ましい。 Further, when the molten resin R is a polyamide resin or a polyamide resin composition, in order to avoid the occurrence of drawdown, the melt viscosity at 250 ° C. and a shear rate of 12 / s is 5,000 to 25,000 [Pa · s], more preferably 8,000 to 20,000 [Pa·s], and even more preferably 10,000 to 20,000 [Pa·s]. When the molten resin R is an ethylene-vinyl alcohol copolymer resin or an ethylene-vinyl alcohol copolymer resin composition, the melt viscosity at 210° C. and a shear rate of 12/s should be 5,000 to avoid drawdown. 000 to 20,000 [Pa·s] is preferable, and 6,000 to 15,000 [Pa·s] is more preferable.

<他の実施例>
本発明は上記記述及び図面によって説明した実施例に限定されるものではなく、例えば次のような実施例も本発明の技術的範囲に含まれる。
(1)上記実施例では、抵抗付与手段として、抵抗部材と付勢機構を用いたが、抵抗付与手段は、抵抗部材だけで構成されていてもよく、付勢機構だけで構成されていてもよい。
(2)上記実施例では、付勢機構が流体圧シリンダを備えて構成されているが、付勢機構は流体圧シリンダを有しない形態であってもよい。
(3)上記実施例では、付勢機構の付勢力を流体圧によって生じさせたが、付勢力はスプリングの弾力によって生じさせたものであってもよい。
<Other Examples>
The present invention is not limited to the embodiments explained by the above description and drawings, and the following embodiments are also included in the technical scope of the present invention.
(1) In the above embodiments, the resistance member and the biasing mechanism are used as the resistance applying means. good.
(2) In the above embodiment, the biasing mechanism is provided with a fluid pressure cylinder, but the biasing mechanism may not have a fluid pressure cylinder.
(3) In the above embodiment, the urging force of the urging mechanism is generated by the fluid pressure, but the urging force may be generated by the elasticity of the spring.

A…ブロー成形装置
P…パリソン
R…溶融樹脂
10…押出機
12…スクリュー
22…ダイヘッド
25…貯留室
27…ノズル
34…可動部材
36…押出用シリンダ(流体圧シリンダ)
50…抵抗付与手段
51…抵抗部材
52…貫通孔
54…付勢機構
A... Blow molding device P... Parison R... Molten resin 10... Extruder 12... Screw 22... Die head 25... Storage chamber 27... Nozzle 34... Movable member 36... Cylinder for extrusion (fluid pressure cylinder)
50... Resistance applying means 51... Resistance member 52... Through hole 54... Biasing mechanism

Claims (3)

溶融樹脂をスクリューにより送り出す押出機と、
前記押出機から送り込まれた溶融樹脂をノズルから下向きに押し出してパリソンを成形するダイヘッドと、
前記押出機内の溶融樹脂に対し送出方向の移動を抑制する抗力を付与する抵抗付与手段とを備え
前記抵抗付与手段が、複数の貫通孔が形成され、前記押出機の下流端と前記ダイヘッドとの間に配置された抵抗部材を備え、
前記押出機は、前記スクリューが配される送出路と、前記送出路よりも小径の送出口と、を有し、
前記ダイヘッドは、前記送出口に接続される流入路を有し、
前記抵抗部材は、前記送出口と前記流入路との間に設けられていることを特徴とするブロー成形装置。
An extruder that feeds out the molten resin with a screw,
a die head for forming a parison by extruding the molten resin sent from the extruder downward from a nozzle;
and a resistance applying means for applying a resistance force that suppresses the movement of the molten resin in the extruder in the delivery direction ,
The resistance imparting means comprises a resistance member having a plurality of through holes and disposed between the downstream end of the extruder and the die head,
The extruder has a delivery path in which the screw is arranged, and a delivery port having a smaller diameter than the delivery path,
The die head has an inflow channel connected to the outlet,
A blow molding apparatus , wherein the resistance member is provided between the delivery port and the inflow path .
前記ダイヘッドには、溶融樹脂を貯留する貯留室と、前記押出機から前記貯留室へ溶融樹脂が送り込まれるのに伴って前記貯留室の容積を増加させる方向へ変位する可動部材とが設けられており、
前記抵抗付与手段が、前記可動部材に対し前記貯留室の容積を減少させる方向の付勢力を付与する付勢機構を備えていることを特徴とする請求項1記載のブロー成形装置。
The die head is provided with a storage chamber for storing the molten resin, and a movable member that is displaced in a direction to increase the volume of the storage chamber as the molten resin is fed from the extruder to the storage chamber. cage,
2. A blow molding apparatus according to claim 1, wherein said resistance imparting means comprises an urging mechanism for imparting an urging force to said movable member in a direction to reduce the volume of said storage chamber.
前記付勢機構が、前記貯留室の容積を減少させる方向へ前記可動部材を駆動する流体圧シリンダを備えて構成されていることを特徴とする請求項記載のブロー成形装置。 3. A blow molding apparatus according to claim 2 , wherein said biasing mechanism comprises a fluid pressure cylinder for driving said movable member in a direction to reduce the volume of said storage chamber.
JP2019085389A 2019-04-26 2019-04-26 blow molding machine Active JP7317565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019085389A JP7317565B2 (en) 2019-04-26 2019-04-26 blow molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019085389A JP7317565B2 (en) 2019-04-26 2019-04-26 blow molding machine

Publications (2)

Publication Number Publication Date
JP2020179624A JP2020179624A (en) 2020-11-05
JP7317565B2 true JP7317565B2 (en) 2023-07-31

Family

ID=73024035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019085389A Active JP7317565B2 (en) 2019-04-26 2019-04-26 blow molding machine

Country Status (1)

Country Link
JP (1) JP7317565B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000198136A (en) 1999-01-07 2000-07-18 Japan Steel Works Ltd:The Crosshead of blow molder
JP2001105472A (en) 1999-10-12 2001-04-17 Japan Steel Works Ltd:The Diverter valve for extruder
JP2013014031A (en) 2011-06-30 2013-01-24 Mitsubishi Gas Chemical Co Inc Method for manufacturing direct blow-molded container, and package

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4362688A (en) * 1979-06-29 1982-12-07 Excell Corporation Method for molding a plastic pipe
US5356282A (en) * 1992-01-21 1994-10-18 The Geon Company Blow molding extrustion head
JPH05309650A (en) * 1992-05-14 1993-11-22 Mitsui Toatsu Chem Inc Accumulator device
JP2581878Y2 (en) * 1993-07-23 1998-09-24 宇部興産株式会社 Parison Extrusion Equipment
ITMI20050067A1 (en) * 2005-01-21 2006-07-22 Uniloy Milacron S R L DEVICE AND METHOD FOR DYNAMIC CHECK MADE ON EXTRUSION HEADS FOR CABLE BODY BLOWING

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000198136A (en) 1999-01-07 2000-07-18 Japan Steel Works Ltd:The Crosshead of blow molder
JP2001105472A (en) 1999-10-12 2001-04-17 Japan Steel Works Ltd:The Diverter valve for extruder
JP2013014031A (en) 2011-06-30 2013-01-24 Mitsubishi Gas Chemical Co Inc Method for manufacturing direct blow-molded container, and package

Also Published As

Publication number Publication date
JP2020179624A (en) 2020-11-05

Similar Documents

Publication Publication Date Title
US4904178A (en) Apparatus for injecting resin into a mold
US9199393B2 (en) High-shear melt-kneader and method of high shearing
US3335461A (en) Reciprocating screw injection molding machine
KR100252564B1 (en) Injection unit for injection molding machine
JP2019533593A (en) Better controllable printhead for 3D printers
CN102917855A (en) Kneading extrusion device
US5486327A (en) Apparatus and method for injecting or extruding colored plastic
CN101500777B (en) Integration apparatus having kneading part and injection part
US6387306B1 (en) Deaeration of feed materials in an extrusion process
CN1732073A (en) Blowing agent introduction systems and methods
KR20060129283A (en) Injection molding method and apparatus for continuous plastication
WO2016158789A1 (en) Gear pump extruding machine
JP2009269182A (en) Plasticization and delivery device for molding material and injection molding machine using it
JP6560470B1 (en) Foam molded body manufacturing apparatus, foam molded body manufacturing method, and foam molded body manufacturing apparatus screw
JP2007001122A (en) Plastication apparatus for vegetable raw material
US20040265419A1 (en) Injection molding compounder
JP6777935B2 (en) Vent device and vent type injection molding machine
JP7317565B2 (en) blow molding machine
JP5889115B2 (en) Kneading extrusion molding equipment
JP4272502B2 (en) Injection molding method
EP4132768A1 (en) Printing device, preferably a 3d printer
CN115605339A (en) A granule extruder for 3D prints
CN105936119A (en) Short screw extruder
JP2004538180A (en) Injection unit with device for mixing and metering of synthetic melt and additives
US20130015259A1 (en) Method for changing the resistance of a liquid and vessel for a liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230719

R150 Certificate of patent or registration of utility model

Ref document number: 7317565

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150