JP7317170B2 - engine - Google Patents
engine Download PDFInfo
- Publication number
- JP7317170B2 JP7317170B2 JP2022066799A JP2022066799A JP7317170B2 JP 7317170 B2 JP7317170 B2 JP 7317170B2 JP 2022066799 A JP2022066799 A JP 2022066799A JP 2022066799 A JP2022066799 A JP 2022066799A JP 7317170 B2 JP7317170 B2 JP 7317170B2
- Authority
- JP
- Japan
- Prior art keywords
- oxidation catalyst
- temperature
- exhaust
- exhaust gas
- determination
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Exhaust Gas After Treatment (AREA)
Description
本発明は、エンジンに関する。詳細には、エンジンの排気通路に酸化触媒が設置された構成に関する。 The present invention relates to engines. Specifically, it relates to a configuration in which an oxidation catalyst is installed in an exhaust passage of an engine.
従来から、排気通路に酸化触媒が設置されたエンジンが知られている。特許文献1は、この種のエンジンを開示する。
2. Description of the Related Art Conventionally, an engine is known in which an oxidation catalyst is installed in an exhaust passage.
特許文献1の構成は、排気管に設置された酸化触媒と、排気管において酸化触媒の上流側に設置された第一排気温センサと、排気管において酸化触媒の下流側に設置された第二排気温センサと、を備える。そして、ポスト噴射の実行後、第一排気温センサにより検出された上流側の排気温度と、第二排気温センサにより検出された下流側の排気温度とに基づいて、酸化触媒が異常であるか否か、即ち劣化しているか否かの判定が行われるようになっている。
The configuration of
上記特許文献1の構成は、酸化触媒の異常判定のためにポスト噴射の実行を必要とする。しかしながら、ポスト噴射は、燃費が悪化及び酸化触媒の劣化の原因となるので、回数を抑制することが望まれていた。
The configuration of
本発明は以上の事情に鑑みてされたものであり、その目的は、ポスト噴射を行わずとも、即ち酸化触媒に未燃燃料を供給せずとも、酸化触媒が正常に機能しているか否かを判定することができるエンジンを提供することにある。 The present invention has been made in view of the above circumstances, and its object is to determine whether or not the oxidation catalyst is functioning normally without performing post-injection, that is, without supplying unburned fuel to the oxidation catalyst. To provide an engine capable of determining
本発明の一態様に係るエンジンは、酸化触媒と、温度差計算部と、判定部と、を備える。前記酸化触媒は、排気ガスが流通可能な排気通路に設置される。前記温度差計算部は、エンジン運転時、排気ガスが流れる方向で前記酸化触媒よりも上流側の排気温度と、排気ガスが流れる方向で前記酸化触媒よりも下流側の排気温度と、の温度差を計算する。前記判定部は、前記温度差計算部が計算した温度差の絶対値が予め定められた温度閾値よりも大きいか否かを判定することで、前記酸化触媒が正常に機能しているか否かを判定する判定[1]を行う。 An engine according to one aspect of the present invention includes an oxidation catalyst, a temperature difference calculation section, and a determination section. The oxidation catalyst is installed in an exhaust passage through which exhaust gas can flow. The temperature difference calculation unit calculates a temperature difference between an exhaust gas temperature on the upstream side of the oxidation catalyst in the exhaust gas flow direction and an exhaust gas temperature on the downstream side of the oxidation catalyst in the exhaust gas flow direction during engine operation. to calculate The determination unit determines whether the oxidation catalyst is functioning normally by determining whether the absolute value of the temperature difference calculated by the temperature difference calculation unit is greater than a predetermined temperature threshold. Judgment [1] is performed.
次に、図面を参照して本発明の実施の形態を説明する。初めに図1及び図2を参照して、本発明の一実施形態に係るエンジン1の基本的な構成について説明する。図1は、エンジン1の全体的な構成を示す図である。図2は、エンジン1の主要な電気的構成を示すブロック図である。
Next, embodiments of the present invention will be described with reference to the drawings. First, with reference to FIGS. 1 and 2, the basic configuration of an
図1に示すように、エンジン1は、吸気部2と、動力発生部3と、排気部4と、制御装置としてのECU5と、を備えている。
As shown in FIG. 1, the
吸気部2は、外部から空気を吸入する。吸気部2は、吸気管11と、吸気マニホールド12と、スロットル弁13と、過給機14と、を備えている。
The
吸気管11は、吸気通路を構成する。吸気管11は、後述の燃焼室23に吸気マニホールド12を介して接続され、外部から吸入された空気を内部で流すことができる。
The
吸気マニホールド12は、吸気通路で吸気が流れる方向において、吸気管11の下流側端部に接続されている。吸気マニホールド12は、吸気管11を介して供給された空気を、動力発生部3のシリンダの数に応じて分配する。分配後の空気は、それぞれのシリンダに形成された燃焼室23に供給される。
The
スロットル弁13は、吸気通路の中途部に配置されている。スロットル弁13は、ECU5からの制御指令に従ってその開度を変更することにより、吸気通路の断面積を変化させる。これにより、吸気マニホールド12へ供給する空気量を調整することができる。
The
動力発生部3は、シリンダブロックと、シリンダヘッド21と、を備えている。シリンダブロックの内部には、ピストン及びクランクシャフト等が配置されている。シリンダブロックの上部には、複数(本実施形態では4つ)のシリンダ22が形成されている。
The
シリンダブロックの上側に、シリンダヘッド21が配置されている。シリンダヘッド21及びシリンダブロックには、それぞれのシリンダ22に対応して吸気マニホールド12が設けられている。シリンダヘッド21には、吸気マニホールド12へ燃料を噴射するインジェクタ25等が取り付けられている。
A
各燃焼室23では、吸気マニホールド12からの空気が圧縮された後に、図略の燃料供給部から供給された燃料がインジェクタ25により噴射される。これにより、吸気マニホールド12で燃料を燃焼させて、ピストンを上下往復運動させることができる。こうして得られた動力は、クランク軸等を介して、動力下流側の適宜の装置へ伝達される。
In each
過給機14は、タービン27と、シャフト28と、コンプレッサ29と、を備えている。コンプレッサ29は、シャフト28を介してタービン27と連結されている。この構成で、燃焼室23から排出された排気ガスの流れによりタービン27が回転すると、コンプレッサ29が回転する。これにより、図略のエアクリーナによって浄化された空気が圧縮され強制的に吸入される。
The
排気部4は、燃焼室23内で発生した排気ガスを外部に排出する。排気部4は、排気管31と、排気マニホールド32と、排気浄化装置33と、を備えている。
The
排気管31は、排気通路を構成する。排気管31は、燃焼室23に排気マニホールド32を介して接続され、燃焼室23から排出された排気ガスを内部で流すことができる。
The
排気マニホールド32は、排気ガスが流れる方向において、排気管31の上流側端部に接続されている。排気マニホールド32は、各燃焼室23で発生した排気ガスをまとめて排気管31へ導く。
The
なお、以下の説明では、排気ガスが流れる方向において上流側を単に上流側と呼び、排気ガス流れる方向において下流側を単に下流側と呼ぶことがある。 In the following description, the upstream side in the direction in which the exhaust gas flows may be simply referred to as the upstream side, and the downstream side in the direction in which the exhaust gas may flow may simply be referred to as the downstream side.
排気浄化装置33は、排気通路の中途部に配置されている。排気浄化装置33は、収容ケース35と、酸化触媒36と、フィルタ37と、を有している。収容ケース35は、内部に排気ガスを導入し、外部へ排気ガスを送り出すことができる。酸化触媒36及びフィルタ37は、収容ケース35に収容されている。
The
酸化触媒36は、収容ケース35内においてフィルタ37よりも上流側に配置されている。こうして、排気浄化装置33は、燃焼室23から排出された排気ガスを収容ケース35内に導入し、酸化触媒36、フィルタ37を介して、排気ガスに含まれる一酸化炭素、一酸化窒素、粒子状物質等を除去する。
The
酸化触媒36は、白金等で構成され、排気ガスに含まれる未燃燃料、一酸化炭素、一酸化窒素等を酸化(燃焼)するための触媒である。フィルタ37は、酸化触媒よりも下流側に配置され、例えばフォールフロー型のフィルタとして構成される。フィルタは、酸化触媒で処理された排気ガスに含まれる粒子状物質を捕集する。
The
ECU5は、エンジン1の駆動を制御する。図2に示すように、ECU5には、上流側排気温度センサ56と、下流側排気温度センサ57と、エンジン回転数センサ58と、が接続されている。また、ECU5には、インジェクタ電磁弁61と、報知装置62と、が接続されている。
The
上流側排気温度センサ56は、収容ケース35内において酸化触媒36よりも上流側の領域に設置され、この上流側の領域における排気ガスの温度(排気温度)を検出する。上流側排気温度センサ56は、検出した排気ガスの温度をECU5へ出力する。
The upstream
下流側排気温度センサ57は、収容ケース35内において酸化触媒36よりも下流側の領域に設置され、この下流側の領域における排気温度を検出する。下流側排気温度センサ57は、検出した排気ガスの温度をECU5へ出力する。
The downstream
なお、以下の説明では、収容ケース35内のうち酸化触媒36よりも上流側の領域における排気ガスの温度を、上流側の排気温度と呼ぶことがある。また、収容ケース35内のうち酸化触媒36よりも下流側の領域における排気ガスの温度を、下流側の排気温度と呼ぶことがある。
In the following description, the temperature of the exhaust gas in the region of the
エンジン回転数センサ58は、クランクシャフトの近傍に設置され、このクランクシャフトの回転数に基づいてエンジン回転数を検出する。エンジン回転数センサ58は、検出したエンジン回転数をECU5へ出力する。
The
インジェクタ電磁弁61は、インジェクタ25に設けられ、インジェクタ25による燃焼室23への燃料の噴射を可能にする。インジェクタ電磁弁61は、ECU5からの指示に応じて開閉する。この開閉により、燃料の噴射状態が制御される。
The
報知装置62は、エンジン1を使用する機械に取り付けられ、オペレータに、注意すべき各種の状況を知らせる。報知装置62としては、例えば、ランプ、ブザー等が用いられる。
A
ECU5について詳細に説明する。ECU5は、ベクトル計算部50と、指標計算部51と、温度差計算部52と、判定部53と、を備える。
ECU5 is demonstrated in detail. The
具体的に説明すると、ECU5は、CPU等から構成される演算部と、ROM及びRAM等から構成される記憶部と、を備えるコンピュータとして構成されている。演算部は、様々なセンサからの情報に基づいて、様々なアクチュエータに制御指令を送り、エンジン1を動作させるための各種のパラメータ(例えば、燃料噴射量や、空気吸入量等)を制御する。記憶部は、各種プログラムを記憶するとともに、エンジン1の制御に関して予め設定された複数の制御情報を記憶している。ECU5は、前記のハードウェアとソフトウェアの協働により、ベクトル計算部50、指標計算部51、温度差計算部52、及び判定部53として動作することができる。
More specifically, the
ベクトル計算部50は、エンジン1の運転時、酸化触媒36に未燃燃料が供給されない状態(ポスト噴射が行われていない状態)で、上流側排気温度センサ56及び下流側排気温度センサ57が同じ時間にわたって検出したそれぞれの温度の変化に基づいて、上流側温度変化速度ベクトル及び下流側温度変化速度ベクトルを計算する。
When the
上流側温度変化速度ベクトルは、上流側排気温度センサ56が検出した上流側の排気温度の所定時間での変化に基づいて求められる。下流側温度変化速度ベクトルは、下流側排気温度センサ57が検出した下流側の排気温度の所定時間での変化に基づいて求められる。
The upstream temperature change speed vector is obtained based on the change in the upstream exhaust temperature detected by the upstream
上流側及び下流側の温度変化速度ベクトルは、何れも、図3に示すように、互いに直交する第1ベクトルと第2ベクトルの和として表現することができる。第1ベクトルは、図3に示す温度変化速度ベクトルの水平方向成分を意味し、その長さは、温度の変化が計測される所定時間を表している。この所定時間は任意であるが、例えば1秒とすることができる。第2ベクトルは、温度変化速度ベクトルの垂直方向成分を意味し、その長さ及び向きは、当該所定時間における温度変化の向き及び大きさを表している。図3の例では、温度変化がプラスであれば第2ベクトルは上向きとなり、温度変化がマイナスであれば第2ベクトルは下向きとなる。温度変化が緩やかであれば、温度変化速度ベクトルの向きは、水平方向に近くなる。温度変化が急激であれば、温度変化速度ベクトルの向きは、水平方向に対して大きな角度をなす。 Both the upstream and downstream temperature change rate vectors can be expressed as the sum of a first vector and a second vector that are orthogonal to each other, as shown in FIG. The first vector means the horizontal component of the temperature change rate vector shown in FIG. 3, and its length represents the predetermined time over which the temperature change is measured. Although this predetermined time is arbitrary, it can be set to 1 second, for example. The second vector means the vertical component of the temperature change rate vector, and its length and direction represent the direction and magnitude of the temperature change in the given time. In the example of FIG. 3, if the temperature change is positive, the second vector is upward, and if the temperature change is negative, the second vector is downward. If the temperature change is gradual, the direction of the temperature change speed vector is close to the horizontal direction. If the temperature change is abrupt, the direction of the temperature change rate vector makes a large angle with respect to the horizontal direction.
指標計算部51は、ベクトル計算部50が求めた上流側及び下流側の温度変化速度ベクトルに基づいて、2つの温度変化速度ベクトルの角度差θに基づいた指標I(パラメータ)を計算する。
The
具体的に説明すると、指標Iは、以下の式で示すように、ラジアン単位で表された角度差θを正規化のために円周率で除算し、更に、重み付けのために、上流側と下流側での温度変化速度の差の絶対値を乗算することにより得られる。
I=θ×|上流側と下流側での温度変化速度の差|/π
Specifically, the index I is obtained by dividing the angular difference θ, expressed in radians, by the pi for normalization, and the upstream and It is obtained by multiplying the absolute value of the difference of the temperature change rates on the downstream side.
I=θ×|difference in temperature change rate between upstream and downstream sides|/π
この指標Iは、温度変化速度ベクトルの角度差θが大きくなる程、大きくなる性質を有する。従って、当該指標Iは、上流側の排気温度と、下流側の排気温度と、の相関の強弱を実質的に表すものである。また、上記の重み付けにより、同一の角度差θであっても、上流側と下流側のうち一方の温度変化に対して他方の温度変化の追従が鈍い場合には、計算される指標の値が大きくなっている。 This index I has the property of increasing as the angular difference θ of the temperature change velocity vector increases. Therefore, the index I substantially represents the strength of the correlation between the upstream side exhaust temperature and the downstream side exhaust temperature. Further, due to the above weighting, even if the angle difference θ is the same, if the temperature change on one of the upstream side and the downstream side is slow to follow the temperature change on the other side, the calculated index value will be It's getting bigger.
図4には、上流側と下流側の温度変化速度について、酸化触媒36がある場合とない場合を比較した結果が示されている。エンジン1を使用する機械によって作業を行うと、例えば負荷の変動に応じて、排気ガスの温度が変動する。従って、上流側の温度変化速度は、状況に応じた振幅で、プラスとマイナスの間を振動する。
FIG. 4 shows the results of comparing the speed of temperature change on the upstream side and the downstream side with and without the
酸化触媒36がある場合は、図4の上側のグラフに示すように、触媒の熱容量があるため、下流側の温度変化は、上流側の温度変化と比べて緩やかになる。従って、上流側と下流側とで温度変化速度ベクトルの角度差θが大きくなるので、上記の指標Iは大きくなる。一方、仮に酸化触媒36が何らかの理由で抜き取られている場合は、図4の下側のグラフに示すように、下流側の温度変化は、上流側の温度変化に良く追従して大きく変動する。従って、上流側と下流側とで温度変化速度ベクトルの角度差θが小さくなるので、上記の指標Iは小さくなる。
When the
図2の温度差計算部52は、エンジン1の運転時、酸化触媒36に未燃燃料が供給されない状態(ポスト噴射が行われていない状態)で、上流側排気温度センサ56及び下流側排気温度センサ57が検出したそれぞれの排気温度から温度差を計算する。具体的には、温度差計算部52は、上流側排気温度センサ56が検出した排気温度と、同一のタイミングで下流側排気温度センサ57が検出した排気温度と、の温度差を計算する。
The
図5には、上流側と下流側の排気温度の差の推移について、酸化触媒36がある場合とない場合を比較した結果が示されている。酸化触媒36がある場合は、下流側の温度は上流側の温度変化に追従しにくいので、図5の上側のグラフに示すように、温度差が発生し易い。一方、酸化触媒36がない場合は、下流側の温度は上流側の温度に良く追従して変化するので、図5の下側のグラフに示すように、温度差が発生しにくい。
FIG. 5 shows the transition of the difference in exhaust gas temperature between the upstream side and the downstream side, comparing the results with and without the
図2の判定部53は、酸化触媒36が正常に機能しているか否かを判定する。この判定には、酸化触媒36が排気通路に設置されているか否かの判定が含まれる。何らかの理由により酸化触媒36が排気通路に設置されていない場合、判定部53は、酸化触媒36が正常に機能していないと判定する。
The
具体的には、判定部53は、指標計算部51により得られた指標Iを、予め定めた閾値と比較する。判定部53は、指標Iが閾値より大きければ触媒が設置されており、閾値より小さければ触媒が設置されていないと判定する。
Specifically, the
また、判定部53は、温度差計算部52により得られた温度差を、予め定めた閾値と比較する。判定部53は、温度差が閾値より大きければ酸化触媒36が設置されており、閾値より小さければ酸化触媒36が設置されていないと判定する。
Further, the
続いて、酸化触媒36が排気通路に正常に設置されているか否かを判定するための処理について、図6を参照して詳細に説明する。図6は、酸化触媒36の設置状態の判定を行うための処理を示すフローチャートである。
Next, the process for determining whether or not the
本実施形態では、エンジン1が通常の運転状態であるとき、ECU5が備える判定部53は、酸化触媒36が排気通路に正常に設置されているか否かを判定するために第1判定及び第2判定を行う。以下では、このECU5が行う制御について、図6のフローチャートを参照して詳細に説明する。
In this embodiment, when the
上記の通常の運転状態とは、アイドリング状態ではなく、燃焼室23での燃料の燃焼によりエンジン回転数が所定の回転数以上になっている状態である。第1判定及び第2判定は、何れも、酸化触媒36に未燃燃料が供給されない状態(ポスト噴射が行われていない状態)で行われる。
The normal operating state is not an idling state, but a state in which the engine speed is equal to or higher than a predetermined speed due to combustion of fuel in the
図6に示すフローは、エンジン1の始動後の適宜のタイミングで開始される。処理がスタートすると、ECU5は、先ず、所定の判定条件が成立しているか否かを判定する(ステップS101)。この判定条件には、エンジンが通常の運転状態であることが含まれる。エンジン1の運転状態は、エンジン回転数センサ58が検知したエンジン回転数に基づいて判定される。
The flow shown in FIG. 6 is started at an appropriate timing after the
具体的には、エンジン回転数センサ58により検出されたエンジン回転数が所定の回転数以上である場合には、エンジン1がアイドリング状態ではなく、エンジン1が通常の運転状態であると判定される。エンジン回転数が所定の回転数未満の場合、エンジン1が通常の運転状態ではないと判定される。上述の判定条件が成立していない場合は、ステップS101の判定が繰り返される。
Specifically, when the engine speed detected by the
ステップS101の判断で、判定条件が成立していた場合、ECU5は、上流側排気温度センサ56の検出結果に基づいて上流側の排気温度を取得するとともに、下流側排気温度センサ57の検出結果に基づいて下流側の排気温度を取得する(ステップS102)。
In step S101, if the determination condition is satisfied, the
次に、ベクトル計算部50は、上流側の排気温度の温度変化速度ベクトルと、下流側の排気側の温度変化速度ベクトルを、上述したように計算する(ステップS103)。
Next, the
2つの温度変化速度ベクトルが求められると、指標計算部51が、ベクトルの間の角度差θを用いて指標Iを上述の式に従って計算する。この指標Iに基づいて、判定部53は、酸化触媒36が排気通路に正常に設置されているか否かを判定する(第1判定、ステップS104)。具体的には、当該指標Iが閾値よりも大きい場合、酸化触媒36が排気通路に正常に設置されていると判定される。一方、指標Iが閾値以下である場合、酸化触媒36が排気通路に正常に設置されていない可能性があると判定される。閾値としては、実験等により適宜の値を定めれば良い。
When the two temperature change rate vectors are obtained, the
ECU5は、上記の第1判定の結果を調べる(ステップS105)。酸化触媒36が排気通路に正常に設置されている場合は、カウンタの値をゼロにリセットする(ステップS106)。カウンタは、後述のポスト噴射を伴う酸化触媒36の診断の条件に関するものであり、詳細は後述する。その後、処理はステップS101に戻る。
The
ステップS105の判断で、酸化触媒36が排気通路に正常に設置されていない可能性があると判定された場合は、温度差計算部52が、現在の上流側の排気温度と、下流側の排気温度と、の間の温度差を計算する。判定部53は、この温度差に基づいて、酸化触媒36が排気通路に正常に設置されているか否かを判定する(第2判定、ステップS107)。具体的には、温度差の絶対値が閾値よりも大きい場合、酸化触媒36が排気通路に正常に設置されていると判定される。一方、温度差の絶対値が閾値以下である場合、酸化触媒36が排気通路に正常に設置されていない可能性があると判定される。閾値としては、実験等により適宜の値を定めれば良い。
If it is determined in step S105 that there is a possibility that the
ECU5は、上記の第2判定の結果を調べる(ステップS108)。酸化触媒36が排気通路に正常に設置されている場合は、カウンタの値をゼロにリセットする(ステップS106)。その後、処理はステップS101に戻る。
The
ステップS108の判断で、酸化触媒36が排気通路に正常に設置されていない可能性があると判定された場合は、ECU5は、カウンタの値を1増加させる(ステップS109)。その後、ECU5は、カウンタの値が閾値以上であるか否かを判定する(ステップS110)。この閾値は任意であるが、例えば、ステップS101からステップS110までの判定サイクルを例えば1秒に1回反復したとして、当該判定サイクルが数時間程度継続した場合のカウンタの値を想定して定めることができる。
When it is determined in step S108 that there is a possibility that the
ステップS110の判断で、カウンタの値が閾値以上である場合には、ポスト噴射による酸化触媒36の診断が行われる(ステップS111)。カウンタの値が閾値未満である場合は、ステップS111の処理は行われない。何れの場合も、処理はステップS101に戻る。
If it is determined in step S110 that the value of the counter is equal to or greater than the threshold value, the post-injection diagnosis of the
ポスト噴射による酸化触媒36の診断は公知であるが、図7を参照して簡単に説明する。
Diagnosis of the
図6のステップS111により図7のサブルーチンが呼び出されると、ECU5は、先ず、ポスト噴射を行う(ステップS201)。ポスト噴射とは、未燃燃料が排気通路を経て酸化触媒36に供給されるように、燃料の燃焼後のタイミングでインジェクタ25から燃料を噴射させることを意味する。
When the subroutine of FIG. 7 is called by step S111 of FIG. 6, the
続いて、ECU5は、上流側排気温度センサ56の検出結果に基づいて上流側の排気温度を取得するとともに、下流側排気温度センサ57の検出結果に基づいて下流側の排気温度を取得する(ステップS202)。
Subsequently, the
温度の情報が得られると、ECU5は、当該温度を用いて、酸化触媒36に関する診断を行う(ステップS203)。この診断には、酸化触媒36の劣化等のほか、酸化触媒36の有無の判定も含まれる。この診断において、酸化触媒36がないと判定された場合は、ECU5は報知装置62を作動させてオペレータに報知し、注意を促す。このとき、エミッションの悪化を防止するために、エンジン1の出力が一部制限される制限運転に自動的かつ強制的に移行しても良い。
When the temperature information is obtained, the
以上の制御が行われることにより、エンジン1が通常の運転状態であるときに、酸化触媒36が正常に設置されているか否かに関して、第1判定及び第2判定を行うことができる。即ち、酸化触媒36がないことの確定的な判断はポスト噴射によって行うが、その確定的な判断の前に、第1判定及び第2判定で酸化触媒36があることを確認できれば、ポスト噴射を行わずに、酸化触媒36の有無の判定を完了させる。
By performing the above control, when the
本実施形態において実際にポスト噴射が行われるのは、第1判定及び第2判定の何れにおいても酸化触媒36がないと判定される状況が、ステップS110のカウント閾値に相当する時間(例えば、数時間)だけ継続した場合となる。従って、ポスト噴射の機会を大きく減少させることができるので、燃費の悪化及び酸化触媒36の劣化の促進を防止することができる。
In the present embodiment, post-injection is actually performed when the situation in which it is determined that there is no
以上に説明したように、本実施形態のエンジン1は、酸化触媒36と、上流側排気温度センサ56と、下流側排気温度センサ57と、ECU5と、を備える。酸化触媒36は、排気ガスが流通可能な排気通路に設置される。上流側排気温度センサ56は、排気ガスが流れる方向で酸化触媒36よりも上流側に設置され、排気温度を検出する。下流側排気温度センサ57は、排気ガスが流れる方向で酸化触媒36よりも下流側に設置され、排気温度を検出する。ECU5は、エンジン運転時、酸化触媒36に未燃燃料が供給されない状態で、上流側排気温度センサ56が検出した排気温度と、下流側排気温度センサ57が検出した排気温度と、の相関関係に基づいて、酸化触媒36が排気通路に正常に設置されているか否か(正常に機能しているか否か)を判定する。
As described above, the
これにより、エンジン1の運転時、酸化触媒36に未燃燃料を供給しなくても(ポスト噴射を行わなくても)酸化触媒36に対する上流側の排気温度と下流側の排気温度との相関関係に基づいて、酸化触媒36が排気通路に正常に設置されているか否かの判定を行うことができる。従って、ポスト噴射の機会を減らすことができるので、ポスト噴射に起因する燃費の悪化、及び酸化触媒36の劣化の促進を防止することができる。
As a result, when the
また、本実施形態のエンジン1において、ECU5は、ベクトル計算部50と、判定部53と、を備える。ベクトル計算部50は、上流側の温度変化速度ベクトルと、下流側の温度変化速度ベクトルと、を計算する。上流側の温度変化速度ベクトルは、上流側排気温度センサ56が検出した排気温度の所定時間での変化に基づく。下流側の温度変化速度ベクトルは、下流側排気温度センサ57が検出した排気温度の所定時間での変化に基づく。温度変化速度ベクトルは、互いに直交する第1ベクトルと第2ベクトルの和として表現される。第1ベクトルの長さが、所定時間を示す。第2ベクトルの向き及び長さが、排気温度の変化の向き及び大きさを示す。判定部53は、上流側の温度変化速度ベクトルと下流側の温度変化速度ベクトルとがなす角度(角度差θ)が大きくなるに従って大きくなる指標Iが予め定められた閾値よりも大きいか否かを判定する第1判定を行う。
Further, in the
これにより、上流側の排気温度の変化速度と、下流側の排気温度の変化速度と、に基づいて、酸化触媒36が正常に設置されているか否かを判定することができる。
Thus, it is possible to determine whether or not the
また、本実施形態のエンジン1において、ECU5は、温度差計算部52を備える。温度差計算部52は、エンジン運転時、酸化触媒36に未燃燃料が供給されない状態で、上流側排気温度センサ56が検出した排気温度と、下流側排気温度センサ57が検出した排気温度と、の温度差を計算する。判定部53は、温度差計算部52が計算した温度差の絶対値が予め定められた温度閾値よりも大きいか否かを判定する第2判定を行う。
Moreover, in the
これにより、上流側の排気温度と、下流側の排気温度と、に基づいて、酸化触媒36が正常に設置されているか否かを判定することができる。また、上流側の排気温度と下流側の排気温度の関係について、2つの異なる観点から総合的に判定を行うので、判定結果の正確さを向上させることができる。
Accordingly, it is possible to determine whether or not the
本実施形態のエンジン1において、ECU5は、第1判定によっても第2判定によっても酸化触媒36が排気通路に正常に設置されていると判定されなかった状態が所定時間継続した場合に、酸化触媒36に未燃燃料を供給して、酸化触媒36の設置状態に関する診断(酸化触媒36の機能についての診断)を行う。
In the
これにより、酸化触媒36がない(酸化触媒36が正常に機能していない)ことの最終的な判断は、第1判定及び第2判定が時間的な継続性をもって(繰り返して)行われた後に、ポスト噴射を用いて行われることになる。従って、ポスト噴射の機会を確実に減らすことができる。また、酸化触媒36が実際に設置されているのに設置されていないと誤って判定するのを防止することができる。
As a result, the final judgment that the
以上に本発明の好適な実施の形態を説明したが、上記の構成は例えば以下のように変更することができる。 Although the preferred embodiments of the present invention have been described above, the above configuration can be modified, for example, as follows.
上記の実施形態では、エンジン1が通常の運転状態のとき、酸化触媒36が排気通路に正常に設置されているか否かを判定するために第1判定及び第2判定の双方が行われる。しかしながら、これに代えて、第1判定のみが行われるようにしても良い。
In the above embodiment, both the first determination and the second determination are performed to determine whether or not the
第1判定と第2判定の順番は任意である。判定部53が第2判定を先ず行って、第2判定で酸化触媒36が排気通路に正常に設置されていると判定されなかった場合に、第1判定を行っても良い。
The order of the first determination and the second determination is arbitrary. The
ステップS101に示す判定条件は、上記に限定されず、適宜に定めることができる。例えば、判定条件は、エンジンの運転状態と、大気圧の状態と、を判定するものに変更することができる。 The determination condition shown in step S101 is not limited to the above, and can be determined as appropriate. For example, the determination condition can be changed to determine the operating state of the engine and the state of the atmospheric pressure.
排気浄化装置33は、上記に限定されず、例えばSCR(Selective Catalytic Reduction)装置を更に備える構成であっても良い。
The
第1判定に係る指標Iの式は、重み付けを考慮しないように変更しても良い。また、正規化を省略しても良い。 The formula for the index I related to the first determination may be changed so as not to consider weighting. Also, normalization may be omitted.
ECU5は、指標Iに代えて、例えば、上流側の温度変化速度と、下流側の温度変化速度と、の間の相関の強さを表す相関係数を計算しても良い。この場合、判定部53は、得られた相関係数を閾値と比較し、閾値以下であれば酸化触媒36が正常に設置されていると判定する。ただし、計算処理の簡素化の観点からは、上記のようにベクトルの角度差θを求める方が好ましい。
Instead of the index I, the
ポスト噴射を行わず、第1判定及び第2判定のうち少なくとも一方の結果に基づいて、酸化触媒36が排気通路に正常に設置されているか否かの最終的な判断を行っても良い。
A final determination as to whether the
上述の教示を考慮すれば、本発明が多くの変更形態及び変形形態をとり得ることは明らかである。従って、本発明が、添付の特許請求の範囲内において、本明細書に記載された以外の方法で実施され得ることを理解されたい。 Obviously, many modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as described herein.
<発明の付記>
本発明の観点によれば、以下の構成のエンジンが提供される。即ち、エンジンは、酸化触媒と、上流側排気温度センサと、下流側排気温度センサと、制御装置と、を備える。前記酸化触媒は、排気ガスが流通可能な排気通路に設置される。前記上流側排気温度センサは、排気ガスが流れる方向で前記酸化触媒よりも上流側に設置され、排気温度を検出する。前記下流側排気温度センサは、排気ガスが流れる方向で前記酸化触媒よりも下流側に設置され、排気温度を検出する。前記制御装置は、エンジン運転時、前記酸化触媒に未燃燃料が供給されない状態で、前記上流側排気温度センサが検出した排気温度と、前記下流側排気温度センサが検出した排気温度と、の相関関係に基づいて、前記酸化触媒が正常に機能しているか否かを判定する。
<Additional remarks of the invention>
According to the aspect of the present invention, an engine having the following configuration is provided. Specifically, the engine includes an oxidation catalyst, an upstream exhaust temperature sensor, a downstream exhaust temperature sensor, and a control device. The oxidation catalyst is installed in an exhaust passage through which exhaust gas can flow. The upstream exhaust temperature sensor is installed upstream of the oxidation catalyst in the direction in which the exhaust gas flows, and detects the exhaust temperature. The downstream exhaust temperature sensor is installed downstream of the oxidation catalyst in the direction in which the exhaust gas flows, and detects the exhaust temperature. The control device correlates the exhaust temperature detected by the upstream side exhaust temperature sensor and the exhaust temperature detected by the downstream side exhaust temperature sensor in a state where unburned fuel is not supplied to the oxidation catalyst during engine operation. Based on the relationship, it is determined whether the oxidation catalyst is functioning normally.
これにより、エンジンの運転時、酸化触媒に未燃燃料を供給しなくても(ポスト噴射を行わなくても)、酸化触媒に対する上流側の排気温度と下流側の排気温度との相関関係に基づいて、酸化触媒が正常に機能しているか否かの判定を行うことができる。よって、ポスト噴射の機会を減らすことができるので、ポスト噴射に起因する燃費の悪化、及び酸化触媒の劣化の促進を防止することができる。 As a result, when the engine is running, even if unburned fuel is not supplied to the oxidation catalyst (even if post-injection is not performed), it is possible to reduce the can be used to determine whether the oxidation catalyst is functioning normally. Therefore, it is possible to reduce the number of opportunities for post-injection, so that it is possible to prevent deterioration of fuel consumption and promotion of deterioration of the oxidation catalyst due to post-injection.
前記のエンジンにおいては、以下の構成とすることが好ましい。即ち、前記制御装置は、ベクトル計算部と、判定部と、を備える。前記ベクトル計算部は、上流側の温度変化速度ベクトルと、下流側の温度変化速度ベクトルと、を計算する。前記上流側の温度変化速度ベクトルは、前記上流側排気温度センサが検出した排気温度の所定時間での変化に基づく。前記下流側の温度変化速度ベクトルは、前記下流側排気温度センサが検出した排気温度の所定時間での変化に基づく。前記温度変化速度ベクトルは、互いに直交する第1ベクトルと第2ベクトルの和として表現される。前記第1ベクトルの長さが前記所定時間を示す。前記第2ベクトルの向き及び長さが前記排気温度の変化の向き及び大きさを示す。前記判定部は、前記上流側の温度変化速度ベクトルと前記下流側の温度変化速度ベクトルとがなす角度が大きくなるに従って大きくなるパラメータが予め定められた閾値よりも大きいか否かを判定する第1判定を行う。 The engine described above preferably has the following configuration. That is, the control device includes a vector calculation section and a determination section. The vector calculator calculates an upstream temperature change speed vector and a downstream temperature change speed vector. The upstream temperature change speed vector is based on a change in the exhaust temperature detected by the upstream exhaust temperature sensor over a predetermined period of time. The downstream temperature change speed vector is based on the change in the exhaust temperature detected by the downstream exhaust temperature sensor over a predetermined period of time. The temperature change rate vector is expressed as the sum of a first vector and a second vector that are orthogonal to each other. The length of the first vector indicates the predetermined time. The direction and length of the second vector indicate the direction and magnitude of change in the exhaust temperature. The determination unit determines whether or not a parameter that increases as an angle between the upstream temperature change rate vector and the downstream temperature change rate vector increases is greater than a predetermined threshold. make a judgment.
これにより、上流側の排気温度の変化速度と、下流側の排気温度の変化速度と、に基づいて、酸化触媒が正常に機能しているか否かを判定することができる。 Accordingly, it is possible to determine whether the oxidation catalyst is functioning normally based on the change speed of the exhaust gas temperature on the upstream side and the change speed of the exhaust gas temperature on the downstream side.
前記のエンジンにおいては、以下の構成とすることが好ましい。即ち、前記制御装置は、温度差計算部を備える。前記温度差計算部は、エンジン運転時、前記酸化触媒に未燃燃料が供給されない状態で、前記上流側排気温度センサが検出した排気温度と、前記下流側排気温度センサが検出した排気温度と、の温度差を計算する。前記判定部は、前記温度差計算部が計算した温度差の絶対値が予め定められた温度閾値よりも大きいか否かを判定する第2判定を行う。 The engine described above preferably has the following configuration. That is, the control device includes a temperature difference calculator. The temperature difference calculation unit calculates the exhaust temperature detected by the upstream side exhaust temperature sensor, the exhaust temperature detected by the downstream side exhaust temperature sensor, and Calculate the temperature difference between The determination section performs a second determination to determine whether or not the absolute value of the temperature difference calculated by the temperature difference calculation section is greater than a predetermined temperature threshold.
これにより、上流側の排気温度と、下流側の排気温度と、に基づいて、酸化触媒が正常に機能しているか否かを判定することができる。また、上流側の排気温度と下流側の排気温度の関係について、2つの異なる観点から総合的に判定を行うので、判定結果の正確さを向上させることができる。 Accordingly, it is possible to determine whether the oxidation catalyst is functioning normally based on the exhaust temperature on the upstream side and the exhaust temperature on the downstream side. In addition, since the relationship between the upstream side exhaust temperature and the downstream side exhaust temperature is comprehensively determined from two different viewpoints, the accuracy of the determination result can be improved.
前記のエンジンにおいては、前記制御装置は、前記第1判定によっても前記第2判定によっても前記酸化触媒が正常に機能していると判定されなかった状態が所定時間継続した場合に、前記酸化触媒に未燃燃料を供給して、前記酸化触媒の機能についての診断を行うことが好ましい。 In the above-described engine, the control device controls the oxidation catalyst when a state in which neither the first determination nor the second determination indicates that the oxidation catalyst is functioning normally continues for a predetermined period of time. It is preferable to diagnose the function of the oxidation catalyst by supplying unburned fuel to the .
これにより、酸化触媒が正常に機能していないことの最終的な判断は、第1判定及び第2判定が時間的な継続性をもって行われた後に、ポスト噴射を用いて行われることになる。従って、ポスト噴射の機会を確実に減らすことができる。また、酸化触媒が実際に正常に機能しているのに正常に機能していないと誤って判定するのを防止することができる。 As a result, the final determination that the oxidation catalyst is not functioning normally is made using the post-injection after the first determination and the second determination are made with temporal continuity. Therefore, the chance of post-injection can be reliably reduced. In addition, it is possible to prevent erroneous determination that the oxidation catalyst is not functioning normally when it actually functions normally.
1 エンジン
5 ECU(制御装置)
36 酸化触媒
50 ベクトル計算部
52 温度差計算部
53 判定部
56 上流側排気温度センサ
57 下流側排気温度センサ
θ 角度差(角度)
1
36
Claims (3)
エンジン運転時、ポスト噴射を行わない状態で、排気ガスが流れる方向で前記酸化触媒よりも上流側の排気温度と、排気ガスが流れる方向で前記酸化触媒よりも下流側の排気温度と、の温度差を計算する温度差計算部と、
前記温度差計算部が計算した温度差の絶対値が予め定められた温度閾値よりも大きいか否かを判定することで、前記酸化触媒が正常に機能しているか否かを判定する判定[1]を行う判定部と、を備える、
エンジン。 an oxidation catalyst installed in an exhaust passage through which exhaust gas can flow;
The temperature of the exhaust gas upstream of the oxidation catalyst in the direction of exhaust gas flow and the temperature of the exhaust gas downstream of the oxidation catalyst in the direction of exhaust gas flow when the engine is running and no post-injection is performed. a temperature difference calculator that calculates the difference;
Determination [1] for determining whether or not the oxidation catalyst is functioning normally by determining whether or not the absolute value of the temperature difference calculated by the temperature difference calculation unit is greater than a predetermined temperature threshold. ] and a determination unit for performing
engine.
エンジン運転時、排気ガスが流れる方向で前記酸化触媒よりも上流側の排気温度と、排気ガスが流れる方向で前記酸化触媒よりも下流側の排気温度と、の温度差を計算する温度差計算部と、
前記温度差計算部が計算した温度差の絶対値が予め定められた温度閾値よりも大きいか否かを判定することで、前記酸化触媒が正常に機能しているか否かを判定する判定[1]を行う判定部と、を備え、
前記判定部は、
排気ガスが流れる方向で前記酸化触媒よりも上流側の排気温度の所定時間での変化に基づく上流側の温度変化速度ベクトルと、排気ガスが流れる方向で前記酸化触媒よりも下流側の排気温度の所定時間での変化に基づく下流側の温度変化速度ベクトルと、がなす角度が大きくなるに従って大きくなるパラメータが予め定められた閾値よりも大きいか否かを判定することで、前記酸化触媒が正常に機能しているか否かを判定する判定[2]を行う、
エンジン。 an oxidation catalyst installed in an exhaust passage through which exhaust gas can flow;
During engine operation, a temperature difference calculation unit for calculating a temperature difference between an exhaust temperature upstream of the oxidation catalyst in the direction of exhaust gas flow and an exhaust temperature downstream of the oxidation catalyst in the direction of exhaust gas flow. and,
Determination [1] for determining whether or not the oxidation catalyst is functioning normally by determining whether or not the absolute value of the temperature difference calculated by the temperature difference calculation unit is greater than a predetermined temperature threshold. ] and a determination unit for performing
The determination unit
A temperature change speed vector on the upstream side based on a change in exhaust gas temperature on the upstream side of the oxidation catalyst in the direction of exhaust gas flow over a predetermined period of time, and an exhaust gas temperature on the downstream side of the oxidation catalyst in the direction of exhaust gas flow. By determining whether or not a parameter that increases as the angle formed by the downstream temperature change rate vector based on the change in the predetermined time increases is greater than a predetermined threshold value, the oxidation catalyst normally operates. perform determination [2] to determine whether it is functioning;
engine .
請求項2に記載のエンジン。 The determination unit determines that, when a state in which neither the determination [1] nor the determination [2] determines that the oxidation catalyst is functioning normally continues for a predetermined period of time, to diagnose the functioning of the oxidation catalyst;
3. An engine according to claim 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022066799A JP7317170B2 (en) | 2019-03-28 | 2022-04-14 | engine |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019064336A JP7083083B2 (en) | 2019-03-28 | 2019-03-28 | engine |
JP2022066799A JP7317170B2 (en) | 2019-03-28 | 2022-04-14 | engine |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019064336A Division JP7083083B2 (en) | 2019-03-28 | 2019-03-28 | engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022087269A JP2022087269A (en) | 2022-06-09 |
JP7317170B2 true JP7317170B2 (en) | 2023-07-28 |
Family
ID=87378555
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022066799A Active JP7317170B2 (en) | 2019-03-28 | 2022-04-14 | engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7317170B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008045478A (en) | 2006-08-15 | 2008-02-28 | Isuzu Motors Ltd | Catalyst degradation quantity detection method and catalyst degradation quantity detection device |
US20150033837A1 (en) | 2011-10-07 | 2015-02-05 | Mtu Friedrichshafen Gmbh | Method for monitoring an exhaust system |
JP2015137541A (en) | 2014-01-20 | 2015-07-30 | トヨタ自動車株式会社 | Control device for internal combustion engine |
JP2016053351A (en) | 2014-09-04 | 2016-04-14 | トヨタ自動車株式会社 | Abnormality determination device of oxidation catalyst |
-
2022
- 2022-04-14 JP JP2022066799A patent/JP7317170B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008045478A (en) | 2006-08-15 | 2008-02-28 | Isuzu Motors Ltd | Catalyst degradation quantity detection method and catalyst degradation quantity detection device |
US20150033837A1 (en) | 2011-10-07 | 2015-02-05 | Mtu Friedrichshafen Gmbh | Method for monitoring an exhaust system |
JP2015137541A (en) | 2014-01-20 | 2015-07-30 | トヨタ自動車株式会社 | Control device for internal combustion engine |
JP2016053351A (en) | 2014-09-04 | 2016-04-14 | トヨタ自動車株式会社 | Abnormality determination device of oxidation catalyst |
Also Published As
Publication number | Publication date |
---|---|
JP2022087269A (en) | 2022-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101147588B1 (en) | Apparatus for diagnosis of abnormality in exhaust gas purification system | |
JP5067509B2 (en) | Cylinder air-fuel ratio variation abnormality detecting device for multi-cylinder internal combustion engine | |
JP5632223B2 (en) | Exhaust gas recirculation system for engine equipment | |
WO2008062292A2 (en) | Fuel injection device and control method therefor | |
WO2015097520A1 (en) | Exhaust gas control device for internal combustion engine mounted on vehicle | |
JP2009281144A (en) | Control device for internal combustion engine with turbocharger | |
JP2010096050A (en) | Abnormality detection device for supercharging system | |
JP6036533B2 (en) | PM accumulation amount estimation device and exhaust purification system for internal combustion engine | |
JP2013224613A (en) | NOx GENERATION AMOUNT ESTIMATION DEVICE FOR INTERNAL COMBUSTION ENGINE AND NOx SENSOR FAILURE DIAGNOSING DEVICE | |
JP5999008B2 (en) | Inter-cylinder air-fuel ratio imbalance detector for multi-cylinder internal combustion engine | |
JP7317170B2 (en) | engine | |
JP2012197681A (en) | Exhaust gas recirculation system for engine device | |
JP5708593B2 (en) | Catalyst deterioration diagnosis device | |
JP5787083B2 (en) | Exhaust gas purification device for internal combustion engine | |
US20080307777A1 (en) | Exhaust Gas After-Treatment Apparatus | |
JP7083083B2 (en) | engine | |
JP2012145054A (en) | Apparatus for detecting fluctuation abnormality of air-fuel ratios among cylinders of multi-cylinder internal combustion engine | |
JP2014181650A (en) | Abnormality detecting device of multicylinder-type internal combustion engine | |
JP2012137050A (en) | Abnormality detector for inter-cylinder air-fuel ratio dispersion in multi-cylinder internal combustion engine | |
JP2002070619A (en) | Exhaust emission control device for internal combustion engine | |
JP2017015040A (en) | engine | |
KR101833349B1 (en) | Engine | |
JP3968306B2 (en) | Control device for internal combustion engine having diagnostic means for fuel injection valve | |
JP2020051404A (en) | Diagnostic device for internal combustion engine | |
JP4716188B2 (en) | Catalyst abnormality diagnosis device for internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220414 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230124 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230125 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230323 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230704 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230718 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7317170 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |