JP7316838B2 - Stranded conductors and coated wires - Google Patents

Stranded conductors and coated wires Download PDF

Info

Publication number
JP7316838B2
JP7316838B2 JP2019095588A JP2019095588A JP7316838B2 JP 7316838 B2 JP7316838 B2 JP 7316838B2 JP 2019095588 A JP2019095588 A JP 2019095588A JP 2019095588 A JP2019095588 A JP 2019095588A JP 7316838 B2 JP7316838 B2 JP 7316838B2
Authority
JP
Japan
Prior art keywords
wire
aluminum
stranded conductor
conductor
stranded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019095588A
Other languages
Japanese (ja)
Other versions
JP2020191223A (en
Inventor
祥 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2019095588A priority Critical patent/JP7316838B2/en
Publication of JP2020191223A publication Critical patent/JP2020191223A/en
Application granted granted Critical
Publication of JP7316838B2 publication Critical patent/JP7316838B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、軽量なアルミニウムやアルミニウム合金を用いた、撚線導体および被覆電線に関する。 TECHNICAL FIELD The present invention relates to a stranded conductor and a coated wire using lightweight aluminum or aluminum alloy.

電力を伝送する導体として、銅の代わりに、銅よりも軽量なアルミニウムやアルミニウム合金が用いられることがあり、複数本のアルミニウムやアルミニウム合金からなるアルミニウム系素線を撚り合わせて形成してなる撚線導体が用いられている。 Instead of copper, aluminum and aluminum alloys, which are lighter than copper, are sometimes used as conductors for transmitting electric power. Wire conductors are used.

このような撚線導体を有する被覆電線100は、例えば図11に示されるように、撚線導体101の外周に絶縁層102が被覆され、その外周にシース103が被覆されるものである。例えば、特許文献1には、軽量、柔軟かつ屈曲性に優れたアルミニウム導電線として、引張強度が110MPa以上であるアルミニウム合金素線を撚り合わせて形成したアルミニウム撚線が記載されている。また、特許文献2には、優れた耐熱性と柔軟性によって優れた配線作業性を発揮することができるアルミニウム電線として、引張強度が90~150MPaの軟質アルミ導体である単線アルミ導体を導体に用いたアルミニウム電線が記載されている。また、特許文献3には、PVC電線との共存下での使用に際して柔軟性などの機械的特性や耐熱性の低下を抑制するアルミニウム電線として、ポリエチレン樹脂とエチレン共重合体樹脂からなるベース樹脂に、難燃性を有する金属水和物を含む絶縁体組成物からなる絶縁被覆を、アルミニウム導体に被覆してなるアルミニウム電線が記載されている。 A covered electric wire 100 having such a stranded conductor, for example, as shown in FIG. For example, Patent Literature 1 describes a stranded aluminum wire formed by twisting together aluminum alloy wires having a tensile strength of 110 MPa or more, as an aluminum conductive wire that is lightweight, flexible, and excellent in flexibility. In addition, in Patent Document 2, a single-wire aluminum conductor, which is a soft aluminum conductor with a tensile strength of 90 to 150 MPa, is used as an aluminum electric wire that can exhibit excellent wiring workability due to excellent heat resistance and flexibility. aluminum wire is described. In addition, in Patent Document 3, as an aluminum electric wire that suppresses the deterioration of mechanical properties such as flexibility and heat resistance when used together with PVC electric wires, a base resin made of polyethylene resin and ethylene copolymer resin is used. , describes an aluminum electric wire obtained by coating an aluminum conductor with an insulating coating made of an insulating composition containing a flame-retardant metal hydrate.

特開2006-253109号公報JP 2006-253109 A 特開2002-208317号公報Japanese Unexamined Patent Application Publication No. 2002-208317 特開2012-099412号公報JP 2012-099412 A

しかし、アルミニウムやアルミニウム合金からなる撚線導体を用いたアルミニウム電線では、曲げ方向に力を加えた際に、元の形状に戻り易い傾向があり、曲げ癖を付けることが難しい傾向にあった。 However, an aluminum electric wire using a stranded conductor made of aluminum or an aluminum alloy tends to return to its original shape when a force is applied in a bending direction, and tends to be difficult to bend.

また、撚線導体を有する被覆電線100には、絶縁層102およびシース103を剥離(皮剥ぎ)して露出させた、撚線導体101の端部(図11(a)参照)や中間部分に、端子やコネクタ等の接続部材(図示せず)が圧着され、この接続部材を介して接続対象物に接続される。しかし、アルミニウムやアルミニウム合金からなる撚線導体の表面には、電気抵抗の大きな不働態皮膜が形成されるので、撚線導体を端子やコネクタなどの接続部材に接続させたときに、接続部材と撚線導体との接続部分の一部において電気抵抗が上昇することがあった。特に、接続部材と撚線導体との接続は、撚線導体を挿入した状態の接続部材の外面からカシメ加工等を行うことで圧着固定する方法が一般的であるが、カシメ加工が不十分であると、撚線導体の表面に形成された不働態皮膜の大部分が破壊されずに存在するため、結果として、多くの不働態皮膜が接続部分に残留し、接続部分における電気抵抗が上昇するため、素線間の抵抗値にばらつきが生じる傾向がある。 In addition, in the covered electric wire 100 having a stranded conductor, the insulating layer 102 and the sheath 103 are peeled off (skinned) to expose the ends (see FIG. 11A) and intermediate portions of the stranded conductor 101. , a connection member (not shown) such as a terminal or a connector is crimped, and connected to a connection object via this connection member. However, since a passivation film with high electrical resistance is formed on the surface of a stranded conductor made of aluminum or an aluminum alloy, when the stranded conductor is connected to a connection member such as a terminal or connector, The electrical resistance sometimes increased at a portion of the connection with the stranded conductor. In particular, the connection between the connection member and the stranded conductor is generally crimped and fixed by crimping the outer surface of the connection member in which the stranded conductor is inserted. If there is, most of the passivation film formed on the surface of the stranded wire conductor exists without being destroyed, and as a result, a large amount of the passivation film remains at the connection portion, increasing the electrical resistance at the connection portion. Therefore, there is a tendency for the resistance value between wires to vary.

ここで、特許文献1に記載されるアルミニウム撚線は、アルミニウム合金の組成を調整することで柔軟性や屈曲性を高めるものであり、撚線導体への曲げ癖の付け易さや、撚線導体と接続部材との接続信頼性については記載されていない。また、特許文献2に記載されるアルミニウム電線は、単線のアルミニウム電線の引張強度を調整することで柔軟性等の配線作業性を向上させるものであるが、撚線導体への曲げ癖の付け易さや、撚線導体と接続部材との接続信頼性については記載されていない。また、特許文献3に記載されるアルミニウム電線は、アルミニウム導体を被覆している絶縁被覆について、柔軟性などの機械的特性や耐熱性の低下を抑制するものであり、アルミニウム導体の特性や、アルミニウム導体と接続部材との接続信頼性については記載されていない。しかしながら、これらのアルミニウム電線は、線癖をつけ難く、また、素線を撚り合わせた撚線からアルミニウム電線を形成したときに素線間の抵抗値にばらつきが生じる傾向にあった。したがって、曲げ癖が付け易く、かつ接続部材との間で高い接続信頼性を有する撚線導体を開発することが求められていた。 Here, the aluminum stranded wire described in Patent Document 1 is improved in flexibility and bendability by adjusting the composition of the aluminum alloy. However, there is no description of the connection reliability between the and the connection member. Further, the aluminum electric wire described in Patent Document 2 improves wiring workability such as flexibility by adjusting the tensile strength of a single aluminum electric wire. It does not describe the connection reliability between the sheath, the stranded conductor and the connection member. In addition, the aluminum electric wire described in Patent Document 3 suppresses deterioration of mechanical properties such as flexibility and heat resistance of the insulating coating covering the aluminum conductor. No mention is made of connection reliability between the conductor and the connection member. However, it is difficult to form a curl in these aluminum electric wires, and when the aluminum electric wires are formed from a twisted wire in which the strands are twisted together, the resistance value tends to vary between the strands. Therefore, it has been desired to develop a stranded conductor that is easy to bend and has high connection reliability with connection members.

本発明の目的は、曲げ癖が付け易く、かつ接続部材との間で高い接続信頼性を有する撚線導体と、それを用いた被覆電線を提供することである。 SUMMARY OF THE INVENTION An object of the present invention is to provide a stranded conductor that is easily bent and has high connection reliability with a connection member, and a coated wire using the same.

本発明者らは、撚線導体の中心導体線の周りに形成される、単層または複数の層に位置するアルミニウム系素線について、撚線導体の径方向寸法に対する長手方向寸法の比であるアスペクト比の平均値が所定範囲内にある単位断面部を有するように構成することで、撚線導体に曲げ癖が付け易くなるとともに、撚線導体と接続部材との接続信頼性が高められることを見出し、かかる知見に基づき本発明を完成させるに至った。 The inventors have found that for aluminum-based strands located in a single layer or multiple layers formed around the central conductor wire of a stranded conductor, the ratio of the longitudinal dimension to the radial dimension of the stranded conductor is By constructing the unit cross section so that the average value of the aspect ratio is within a predetermined range, the stranded conductor can easily be bent and the connection reliability between the stranded conductor and the connection member can be improved. and completed the present invention based on such findings.

すなわち、本発明の要旨構成は、以下のとおりである。
(1)アルミニウム系素線からなる中心導体線の周りに、単層または複数の層を形成するように複数のアルミニウム系素線を撚り合わせて形成してなる撚線導体であって、前記アルミニウム系素線の0.2%耐力が50~120MPaであり、前記中心導体線の仮想中心線を含む前記撚線導体の長手方向断面で見て、前記単層または複数の層に位置するアルミニウム系素線は、前記撚線導体の径方向寸法に対する長手方向寸法の比であるアスペクト比の平均値が4.2~13.0の範囲である単位断面部を有する、撚線導体。
(2)前記複数のアルミニウム系素線は複数の層を形成し、前記撚線導体の長手方向断面で見て、前記撚線導体の半径の50%に相当する位置を結んだ2本の仮想中間線を境界線として、前記長手方向断面を前記2本の仮想中間線で区画された撚線導体の内層側領域と、前記2本の仮想中間線のそれぞれと前記撚線導体の外周面とで区画された撚線導体の外層側領域とに区分するとき、前記内層側領域に位置するアルミニウム系素線の前記単位断面部のアスペクト比の平均値が、前記外層側領域に位置するアルミニウム系素線の前記単位断面部のアスペクト比の平均値よりも大きい、上記(1)に記載の撚線導体。
(3)前記撚線導体の長手方向断面で見て、前記複数の層を形成する前記複数のアルミニウム系素線のうち、前記撚線導体の径方向内外で隣接する2層にそれぞれ位置するアルミニウム系素線同士は、径方向内側に位置するアルミニウム系素線の1つの第1単位断面部に対して、径方向外側に位置するアルミニウム系素線の2つ以上の第2単位断面部が重なり合う位置関係にあり、かつ、前記2つ以上の第2単位断面部のうち、前記第1単位断面部との長手方向の重なり割合が最も大きい第2単位断面部の長手方向中心位置が、前記第1単位断面部の長手方向中心位置から、前記第1単位断面部の長手方向寸法の35%に相当する寸法の範囲内にある、上記(2)に記載の撚線導体。
(4)前記撚線導体は、接続部材が圧着される被圧着部分の外周面を形成する、最外層に位置する最外層アルミニウム系素線の表面部分に、算術平均高さ(Sa)が0.4μm以上500μm以下の粗面化領域を有する、上記(1)~(3)のいずれか1項に記載の撚線導体。
(5)前記最外層アルミニウム系素線は、丸線または扁平線であり、かつ前記被圧着部分の最小線径に対する最大線径の比が、平均で1.1以上2.0以下である、上記(4)に記載の撚線導体。
(6)円筒形の巻き付け冶具に対し、前記撚線導体に荷重を負荷して巻き付けてから除荷したときに、前記撚線導体に曲率半径110mmの曲げ癖を付けるのに必要な荷重が、前記撚線導体の横断面積をα[mm]としたときに、0.025α[N]以下である、上記(1)~(5)のいずれか1項に記載の撚線導体。
(7)上記(1)~(6)のいずれか1項に記載の撚線導体と、前記撚線導体の外周面に形成された絶縁被覆とを有する被覆電線。
(8)上記(7)に記載の被覆電線と、前記被覆電線に圧着固定した接続部材とを有し、前記アルミニウム系素線と前記接続部材との間における抵抗値の標準偏差σが、前記抵抗値の平均の25%以下である、接続部材付き被覆電線。
That is, the gist and configuration of the present invention are as follows.
(1) A stranded conductor formed by twisting a plurality of aluminum-based wires so as to form a single layer or a plurality of layers around a central conductor wire made of an aluminum-based wire, wherein the aluminum The 0.2% proof stress of the system strand is 50 to 120 MPa, and the aluminum system located in the single layer or multiple layers when viewed in the longitudinal cross section of the stranded conductor including the virtual center line of the center conductor wire A stranded conductor, wherein the strand has a unit cross section with an average aspect ratio, which is the ratio of the longitudinal dimension to the radial dimension of the stranded conductor, in the range of 4.2 to 13.0.
(2) The plurality of aluminum-based wires form a plurality of layers, and when viewed in a longitudinal cross section of the stranded conductor, two imaginary wires connecting positions corresponding to 50% of the radius of the stranded conductor With the intermediate line as a boundary line, the inner layer side region of the stranded conductor defined by the two imaginary intermediate lines in the longitudinal cross section, and the outer peripheral surface of the stranded conductor and each of the two imaginary intermediate lines. When divided into the outer layer side region of the stranded conductor divided by The stranded conductor according to (1) above, which is larger than the average value of the aspect ratios of the unit cross-sectional portions of the strands.
(3) Aluminum positioned in two layers adjacent to each other in the radial direction of the stranded conductor, among the plurality of aluminum-based strands forming the plurality of layers, when viewed in a cross section in the longitudinal direction of the stranded conductor In the aluminum-based wires, two or more second unit cross-sectional portions of the aluminum-based wires positioned radially outward overlap with respect to one first unit cross-sectional portion of the aluminum-based wires positioned radially inward. The longitudinal center position of the second unit cross-section portion that is in a positional relationship and has the largest longitudinal overlap ratio with the first unit cross-section portion among the two or more second unit cross-section portions is the second unit cross-section portion. The stranded conductor according to (2) above, which is within a dimension range corresponding to 35% of the longitudinal dimension of the first unit cross section from the longitudinal center position of one unit cross section.
(4) The stranded conductor has an arithmetic mean height (Sa) of 0 on the surface portion of the outermost layer aluminum-based strand located in the outermost layer, which forms the outer peripheral surface of the crimped portion to which the connection member is crimped. The stranded conductor according to any one of (1) to (3) above, which has a roughened region of 4 μm or more and 500 μm or less.
(5) The outermost layer aluminum-based wire is a round wire or a flat wire, and the ratio of the maximum wire diameter to the minimum wire diameter of the crimped portion is 1.1 or more and 2.0 or less on average. The stranded conductor according to (4) above.
(6) When the stranded conductor is loaded with a load on a cylindrical winding jig, wound, and then unloaded, the load required to give the stranded conductor a bending habit with a curvature radius of 110 mm is The stranded conductor according to any one of (1) to (5) above, wherein the stranded conductor has a cross-sectional area of α [mm 2 ] of 0.025α[N] or less.
(7) A coated electric wire comprising the stranded conductor according to any one of (1) to (6) above and an insulating coating formed on the outer peripheral surface of the stranded conductor.
(8) The coated wire according to (7) above and a connection member crimped and fixed to the coated wire, wherein the standard deviation σ of the resistance value between the aluminum-based wire and the connection member is the above A coated wire with a connecting member, the resistance value of which is 25% or less of the average.

本発明によれば、アルミニウム系素線が、撚線導体の中心導体線の仮想中心線を含む長手方向断面で見て、アスペクト比の平均値が所定の範囲である単位断面部を有することにより、0.2%耐力の大きなアルミニウム系素線を用いた場合であっても、曲げ癖が付け易く、かつ接続部材との間で高い接続信頼性を有する撚線導体と、それを用いた被覆電線を提供することができる。 According to the present invention, the aluminum-based strand has a unit cross-section having an average aspect ratio within a predetermined range when viewed in a cross section in the longitudinal direction including the virtual center line of the central conductor wire of the stranded conductor. , a stranded wire conductor that is easy to bend and has high connection reliability with a connection member even when an aluminum-based strand with a large 0.2% yield strength is used, and a coating using the same Wires can be provided.

本発明の実施形態に係る撚線導体を有する被覆電線の構成の一例を示すものであって、(a)が正面図、(b)が(a)に示す被覆電線をI-I線上で切断したときの断面図、(c)が(b)に示す被覆電線をII-II線上で切断したときの断面図である。1 shows an example of the configuration of a covered electric wire having a stranded conductor according to an embodiment of the present invention, where (a) is a front view, and (b) is a cut of the covered electric wire shown in (a) on the II line. (c) is a cross-sectional view of the covered electric wire shown in (b) cut along line II-II. 本発明の実施形態に係る撚線導体の被圧着部分を示す断面図であって、圧着される前の(圧縮)状態における、撚線導体を構成する素線の最小線径と最大線径を示したものである。FIG. 2 is a cross-sectional view showing the crimped portion of the stranded conductor according to the embodiment of the present invention, showing the minimum wire diameter and the maximum wire diameter of the strands constituting the stranded conductor in a (compressed) state before being crimped. is shown. 本発明の実施形態に係る撚線導体における隣接する層の撚り方向の一例を示す正面図であって、隣接する層に位置する素線同士の撚り方向が、交差する向き(逆巻き)である場合を示す。FIG. 4 is a front view showing an example of the twisting direction of adjacent layers in the stranded conductor according to the embodiment of the present invention, where the twisting directions of the strands located in the adjacent layers are in the crossing direction (reverse winding). indicates 本発明の実施形態に係る端子付き被覆電線の要部構成の一例を示す斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a perspective view which shows an example of a principal part structure of the covered electric wire with a terminal which concerns on embodiment of this invention. 本発明の実施形態に係る分岐被覆電線の要部構成の一例を示す斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing an example of a configuration of a main part of a coated branch wire according to an embodiment of the present invention; 本発明の実施形態に係る補線付き被覆電線の要部構成の一例を示す斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a perspective view which shows an example of a principal part structure of the covered electric wire with an auxiliary wire which concerns on embodiment of this invention. 本発明の実施形態に係る端子付き分岐被覆電線の要部構成の一例を示す斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a perspective view which shows an example of a principal part structure of the covered branch electric wire with a terminal which concerns on embodiment of this invention. 本発明の実施形態に係る補線付き分岐被覆電線の要部構成の一例を示す斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing an example of a configuration of a main part of a covered branch electric wire with an auxiliary wire according to an embodiment of the present invention; 本発明例に係る撚線導体の断面の一例を示す図である。It is a figure which shows an example of the cross section of the twisted wire conductor which concerns on the example of this invention. 本発明例における曲げ癖を付けられる力の評価方法を示す模式図であって、(a)が曲げ癖をつける前の状態、(b)が曲げ癖をつけるために荷重を負荷したときの状態を示す。It is a schematic diagram showing the evaluation method of the force to form a bending habit in the example of the present invention, in which (a) is the state before forming the bending habit, and (b) is the state when a load is applied to form the bending habit. indicates 従来技術に係る撚線導体を有する被覆電線の構成の一例を示すものであって、(a)が正面図、(b)が(a)に示す被覆電線をIII-III線上で切断したときの断面図である。1 shows an example of the configuration of a covered electric wire having a stranded conductor according to the prior art, (a) is a front view, and (b) is a view of the covered electric wire shown in (a) cut along line III-III. It is a sectional view.

以下、本発明の具体的な実施形態について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲で種々の変更が可能である。 Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings. In addition, the present invention is not limited to the following embodiments, and various modifications are possible without changing the gist of the present invention.

<撚線導体>
本実施形態の撚線導体は、アルミニウム系素線からなる中心導体線の周りに、単層または複数の層を形成するように複数のアルミニウム系素線を撚り合わせて形成してなる撚線導体であって、前記アルミニウム系素線の0.2%耐力が50~120MPaであり、中心導体線の仮想中心線を含む前記撚線導体の長手方向断面で見て、前記単層または複数の層に位置するアルミニウム系素線は、撚線導体の径方向寸法に対する長手方向寸法の比であるアスペクト比の平均値が4.2~13.0の範囲である単位断面部を有する。
<Twisted wire conductor>
The stranded conductor of the present embodiment is a stranded conductor formed by twisting a plurality of aluminum-based strands so as to form a single layer or a plurality of layers around a central conductor wire made of an aluminum-based strand. wherein the aluminum-based strand has a 0.2% proof stress of 50 to 120 MPa, and the single layer or the plurality of layers when viewed in a longitudinal cross section of the stranded conductor including the virtual center line of the central conductor wire The aluminum-based strand located at 1 has a unit cross-sectional portion in which the average value of the aspect ratio, which is the ratio of the longitudinal dimension to the radial dimension of the stranded conductor, is in the range of 4.2 to 13.0.

本実施形態に係る撚線導体では、撚線導体の中心導体線の周りに形成される、単層または複数の層に位置するアルミニウム系素線について、撚線導体の径方向寸法に対する長手方向寸法の比であるアスペクト比の平均値が所定範囲内にある単位断面部を有するように構成することで、反力が撚線導体の全体で緩和され、また、アルミニウム系素線同士のかみ合いが発生し易くなるため、0.2%耐力の大きなアルミニウム系素線を用いた場合であっても、撚線導体に曲げ癖を付け易くすることができ、かつ端子やコネクタなどの接続部材との間での接続信頼性を高めることができる。 In the stranded conductor according to the present embodiment, the longitudinal dimension of the aluminum-based strands positioned in a single layer or multiple layers formed around the central conductor wire of the stranded conductor is By constructing the unit cross section so that the average value of the aspect ratio, which is the ratio of Therefore, even if an aluminum-based wire with a large 0.2% proof stress is used, it is possible to easily give a bending tendency to the stranded conductor, and between a connection member such as a terminal and a connector. connection reliability can be improved.

以下、本発明の実施形態について、詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.

<撚線導体についての実施形態>
図1(a)、(b)は、本実施形態に係る撚線導体10を有する被覆電線1の構成の一例を示すものであって、図1(a)が正面図、図1(b)が図1(a)に示す被覆電線をI-I線上で切断したときの断面図、図1(c)が図1(b)に示す被覆電線をII-II線上で切断したときの断面図である。本実施形態に係る撚線導体10は、アルミニウム系素線からなる中心導体線11の周りに、単層または複数の層を形成するように複数のアルミニウム系素線121、122を撚り合わせて形成してなるものであり、中心導体線11の仮想中心線Oを含む撚線導体10の長手方向Eについての断面である長手方向断面で見て、これら単層または複数の層に位置するアルミニウム系素線121、122は、撚線導体の径方向Dについての寸法W(W、W、W、・・・)に対する長手方向Eについての寸法X(X、X、X、・・・)の比であるアスペクト比の平均値が4.2~13.0の範囲である単位断面部(第1単位断面部123、第2単位断面部124)をそれぞれ有する。以下では、図1に示す二層撚り構造の撚線導体10を有する被覆電線1を例にして説明するが、本発明では、かかる構成だけには限定されず、例えば、素線を単層または三層以上の撚り構造の撚線導体を有していてもよい。
<Embodiment of stranded conductor>
FIGS. 1(a) and 1(b) show an example of the configuration of a covered electric wire 1 having a stranded conductor 10 according to this embodiment. FIG. 1(a) is a front view, and FIG. 1(b). is a cross-sectional view of the coated wire shown in FIG. 1(a) cut along the II line, and FIG. 1(c) is a cross-sectional view of the coated wire shown in FIG. 1(b) cut along the II-II line. is. The stranded conductor 10 according to the present embodiment is formed by twisting a plurality of aluminum-based wires 121 and 122 so as to form a single layer or a plurality of layers around a central conductor wire 11 made of an aluminum-based wire. When viewed in a longitudinal cross section, which is a cross section in the longitudinal direction E of the stranded conductor 10 including the virtual center line O of the central conductor wire 11, the aluminum-based The strands 121 and 122 have dimensions X ( X 1 , X 2 , X 3 , ) has an average value of aspect ratios in the range of 4.2 to 13.0 (first unit cross section 123, second unit cross section 124). In the following, the covered electric wire 1 having the stranded conductor 10 having a two-layer twist structure shown in FIG. 1 will be described as an example. It may have a stranded conductor with a twist structure of three or more layers.

[アルミニウム系素線とその単位断面部]
撚線導体10を構成するアルミニウム系素線としては、純アルミニウムまたはアルミニウム合金からなる素線が挙げられる。このうち、アルミニウム合金としては、アルミニウム-マンガン系合金、アルミニウム-マグネシウム系合金、アルミニウム-マグネシウム-ケイ素系合金、アルミニウム-亜鉛-マグネシウム系合金、アルミニウム-銅-マグネシウム系合金等を用いることができる。
[Aluminum-based strand and its unit cross section]
Examples of the aluminum-based strands forming the stranded conductor 10 include strands made of pure aluminum or an aluminum alloy. Among these, aluminum-manganese alloys, aluminum-magnesium alloys, aluminum-magnesium-silicon alloys, aluminum-zinc-magnesium alloys, aluminum-copper-magnesium alloys, and the like can be used as aluminum alloys.

ここで、アルミニウム系素線としては、0.2%耐力が50~120MPaのものを用いることができる。本発明の撚線導体10は、0.2%耐力が大きく、塑性変形させることが難しいアルミニウム系素線を用いた場合であっても、容易に所望の曲げ癖を付けることができる。ここで、アルミニウム系素線としては、0.2%耐力が50~115MPaのものを用いることがより好ましい。 Here, as the aluminum-based strands, those having a 0.2% proof stress of 50 to 120 MPa can be used. The stranded conductor 10 of the present invention has a large 0.2% yield strength, and can easily be given a desired bending habit even when aluminum-based strands that are difficult to plastically deform are used. Here, it is more preferable to use an aluminum-based wire having a 0.2% yield strength of 50 to 115 MPa.

本実施形態に係る撚線導体10を構成するアルミニウム系素線は、中心となる中心導体線11と、中心導体線11の周囲に単層または複数の層を形成するように複数のアルミニウム系素線121、122を撚り合わせて形成される外周素線12に大別される。 The aluminum-based element wires constituting the stranded conductor 10 according to the present embodiment include a central conductor wire 11 and a plurality of aluminum-based elements so as to form a single layer or a plurality of layers around the central conductor wire 11. The wires 121 and 122 are roughly divided into outer wires 12 formed by twisting wires 121 and 122 together.

ここで、撚線導体10に複数の層が形成されている場合、外周素線12は、中心導体線11の中心線である仮想中心線Oを含む撚線導体の長手方向断面で見て、撚線導体の半径rの50%((1/2)r)に相当する位置を結んだ2本の仮想中間線C(図1(c))を境界線として、外周素線12を構成する複数の層を、内層側領域15と外層側領域16に区分して考えることができる。具体的には、中心導体線11の仮想中心線Oを含む撚線導体10の長手方向断面で見て、撚線導体10の長手方向断面を、2本の仮想中間線Cで区画される内層側領域15と、前記2本の仮想中間線のそれぞれと前記撚線導体の外周面とで区画された撚線導体の外層側領域16とに区分することができる。ここで、内層側領域15は、撚線導体10の径方向Dについて内側の領域であり、外層側領域16は、撚線導体10の径方向Dについて外側の領域であり、内層側領域15の外側に隣接する。なお、図1(c)に示す単位断面部123のように、仮想中間線Cが単位断面部の内部を横切る場合、仮想中間線Cが横切っている単位断面部は、内層側領域15に含まれる(内層側領域15に位置するともいう)ものとする。また、撚線導体10の外周素線12が単層である場合も、外周素線12によって形成される単位断面部は、内層側領域15に含まれる(内層側領域15に位置するともいう)ものとする。 Here, when a plurality of layers are formed in the stranded conductor 10, the outer strand 12 is viewed in a longitudinal cross section of the stranded conductor including the virtual center line O which is the center line of the center conductor wire 11, The outer wire 12 is formed with two imaginary intermediate lines C (FIG. 1(c)) connecting positions corresponding to 50% ((1/2)r) of the radius r of the stranded conductor as boundary lines. A plurality of layers can be considered by dividing them into an inner layer side region 15 and an outer layer side region 16 . Specifically, when viewed in the longitudinal section of the stranded conductor 10 including the virtual center line O of the central conductor wire 11, the longitudinal section of the stranded conductor 10 is divided by two virtual intermediate lines C. It can be divided into a side region 15 and an outer layer side region 16 of the stranded conductor defined by each of the two virtual intermediate lines and the outer peripheral surface of the stranded conductor. Here, the inner layer side region 15 is a region inside the stranded conductor 10 in the radial direction D, and the outer layer side region 16 is a region outside the stranded conductor 10 in the radial direction D. adjacent to the outside. Note that when the imaginary intermediate line C crosses the inside of the unit cross section like the unit cross section 123 shown in FIG. (also referred to as being located in the inner layer side region 15). Further, even when the outer wire 12 of the stranded conductor 10 is a single layer, the unit cross section formed by the outer wire 12 is included in the inner layer side region 15 (also referred to as being located in the inner layer side region 15). shall be

このうち、撚線導体10の内層側領域15は、内層を構成する複数本の内層アルミニウム系素線121を有しており、各内層アルミニウム系素線121は、中心導体線11の仮想中心線Oを含む撚線導体10の長手方向断面で見たとき、複数の第1単位断面部123が撚線導体10の長手方向Eに沿って整列した状態で構成されているように見える。また、外層側領域16は、外層を構成する複数本の外層アルミニウム系素線122を有しており、各外層アルミニウム系素線122は、中心導体線11の仮想中心線Oを含む撚線導体10の長手方向断面で見たとき、複数の第2単位断面部124が撚線導体10の長手方向Eに沿って整列した状態で構成されているように見える。 Among these, the inner layer side region 15 of the stranded conductor 10 has a plurality of inner layer aluminum-based strands 121 constituting the inner layer, and each inner layer aluminum-based strand 121 is located on the virtual center line of the central conductor wire 11. When viewed in the longitudinal cross section of the stranded conductor 10 including O, it appears that the plurality of first unit cross-sectional portions 123 are arranged along the longitudinal direction E of the stranded conductor 10 . In addition, the outer layer side region 16 has a plurality of outer layer aluminum-based wires 122 constituting the outer layer, and each outer layer aluminum-based wire 122 is a stranded conductor including the virtual center line O of the central conductor wire 11. 10 , it appears that a plurality of second unit cross-sectional portions 124 are aligned along the longitudinal direction E of the stranded conductor 10 .

ここでいう「単位断面部」とは、撚線導体10を構成する、中心導体線以外の撚り合された各アルミニウム系素線を、撚線導体10の長手方向に切断したときの断面部を意味し、素線の線径、撚りピッチ、撚り方向等によって断面形状や相対位置等を適宜設定することができる。 The term "unit cross-section" as used herein refers to a cross-section obtained by cutting each of the twisted aluminum-based strands other than the central conductor wire constituting the stranded conductor 10 in the longitudinal direction of the stranded conductor 10. In other words, the cross-sectional shape, relative position, and the like can be appropriately set depending on the wire diameter, twist pitch, twist direction, and the like of the wire.

本実施形態に係る撚線導体10では、単層または複数の層に位置するアルミニウム系素線、すなわち外周素線12は、径方向寸法W(W、W、W・・・)に対する長手方向寸法X(X、X、X・・・)の比であるアスペクト比X/W(X/W、X/W、X/W・・・)の平均値が4.2~13.0の範囲である単位断面部を有する。より好ましくは、内層アルミニウム系素線121によって形成される単位断面部(例えば図1(c)の第1単位断面部123)のアスペクト比(X/W)の平均値が、4.2~13.0の範囲となるように構成される。アスペクト比が上記範囲内であることで、撚線導体に曲げ癖を付け易くすることができるとともに、接続部材との接続信頼性を向上させることができる。 In the stranded conductor 10 according to the present embodiment, the aluminum-based strands positioned in a single layer or a plurality of layers, that is, the outer strands 12 have a radial dimension W (W 1 , W 2 , W 3 . The average of the aspect ratios X/W (X1/ W1 , X2 / W2 , X3 / W3 ...) which is the ratio of the longitudinal dimensions X ( X1 , X2 , X3 ... ) It has a unit cross section with a value in the range of 4.2 to 13.0. More preferably, the average value of the aspect ratios (X 1 /W 1 ) of the unit cross sections (for example, the first unit cross sections 123 in FIG. 1(c)) formed by the inner layer aluminum-based strands 121 is 4.2. configured to be in the range of ~13.0. When the aspect ratio is within the above range, the stranded conductor can be easily bent, and the connection reliability with the connection member can be improved.

本発明におけるアスペクト比X/Wの平均値は、中心導体線11の周囲に複数の層を形成するように複数の外周素線12であるアルミニウム系素線121、122が撚り合わせられているとき、外層側領域16に位置するアルミニウム系素線によって構成される単位断面部(例えば図1(c)の第2単位断面部124a、124b)のアスペクト比の平均値(U)と、内層側領域15に位置するアルミニウム系素線によって構成される単位断面部(例えば図1(c)の第1単位断面部123)のアスペクト比の平均値(I)をそれぞれ求めたときの、これらの算術平均((U+I)/2)とする。他方で、中心導体線11の周囲に単層を形成するように複数のアルミニウム系素線が撚り合わせられた撚線導体(図示せず)では、撚り合わせられたアルミニウム系素線(内層側領域15に位置するアルミニウム系素線)によって構成される単位断面部のアスペクト比の平均値とする。なお、上述の平均値(U)および平均値(I)は、それぞれ5個のサンプル断面についての平均値を用いることができる。 The average value of the aspect ratio X/W in the present invention is obtained when the aluminum-based wires 121 and 122, which are the plurality of outer wires 12, are twisted together so as to form a plurality of layers around the central conductor wire 11. , the average value (U) of the aspect ratios of the unit cross-sections (for example, the second unit cross-sections 124a and 124b in FIG. 1(c)) composed of aluminum-based wires located in the outer layer side region 16, and the inner layer side region 15 (for example, the first unit cross section 123 in FIG. 1(c)), the arithmetic average of the aspect ratios (I) obtained respectively. ((U+I)/2). On the other hand, in a stranded conductor (not shown) in which a plurality of aluminum-based wires are twisted together so as to form a single layer around the central conductor wire 11, the twisted aluminum-based wires (inner layer side region 15) is the average value of the aspect ratios of the unit cross-sections. Note that the average value (U) and the average value (I) described above can each be an average value of five sample cross sections.

また、本実施形態に係る撚線導体10は、反力を撚線導体の全体で緩和させるとともに、素線同士のかみ合いを発生し易くすることで曲げ癖を付け易くするため、外層側領域16に位置するアルミニウム系素線によって構成される単位断面部(例えば図1(c)の第2単位断面部124a、124b)のアスペクト比の平均値(U)と、内層側領域15に位置するアルミニウム系素線によって構成される単位断面部(例えば図1(c)の第1単位断面部123)のアスペクト比の平均値(I)との割合(アスペクト比の平均値(I)/アスペクト比の平均値(U))は、0.8以上1.5以下が好ましい。さらには、内層側領域15に位置するアルミニウム系素線の単位断面部のアスペクト比の平均値Iが、外層側領域16に位置するアルミニウム系素線の単位断面部のアスペクト比の平均値Uよりも大きいことが好ましい。 Further, in the stranded conductor 10 according to the present embodiment, the reaction force is relieved by the entire stranded conductor, and the engagement between the strands is facilitated, thereby making it easier to form a bending habit. The average value (U) of the aspect ratios of the unit cross sections (for example, the second unit cross sections 124a and 124b in FIG. 1(c)) composed of the aluminum-based wires located in the inner layer side region 15, and the aluminum located in the inner layer side region 15 The ratio of the average value (I) of the aspect ratio of the unit cross section (for example, the first unit cross section 123 in FIG. 1(c)) formed by the system strands (the average value (I) of the aspect ratio/the ratio of the aspect ratio The average value (U) is preferably 0.8 or more and 1.5 or less. Furthermore, the average value I of the aspect ratios of the unit cross-sectional portions of the aluminum-based wires located in the inner layer side region 15 is higher than the average value U of the aspect ratios of the unit cross-sectional portions of the aluminum-based wires located in the outer layer side region 16. is preferably large.

本実施形態に係る撚線導体10における、内層側領域15と外層側領域16の双方に位置するアルミニウム系素線によって構成される単位断面部のアスペクト比の平均値の下限値は、反力を撚線導体の全体で緩和させるとともに、素線同士のかみ合いを発生し易くすることで曲げ癖を付け易くするため、4.2以上であり、好ましくは4.5以上である。他方で、本実施形態に係る撚線導体10における、内層側領域15と外層側領域16に位置するアルミニウム系素線によって構成される単位断面部のアスペクト比の平均値の上限値は、隣接する素線同士が擦れ合うことで酸化被膜を破壊され易くして素線抵抗値のばらつきを抑えるため、13.0以下であり、好ましくは10.0以下である。 In the stranded conductor 10 according to the present embodiment, the lower limit of the average value of the aspect ratios of the unit cross-sectional portions composed of the aluminum-based strands located in both the inner layer side region 15 and the outer layer side region 16 is the reaction force. It is 4.2 or more, preferably 4.5 or more, in order to relax the stranded conductor as a whole and facilitate engagement between strands to make it easier to bend. On the other hand, in the stranded conductor 10 according to the present embodiment, the upper limit of the average value of the aspect ratios of the unit cross sections formed by the aluminum-based strands located in the inner layer side region 15 and the outer layer side region 16 is It is 13.0 or less, preferably 10.0 or less, in order to suppress variations in the wire resistance value by facilitating destruction of the oxide film by the wires rubbing against each other.

また、本実施形態に係る撚線導体10における、内層側領域15に位置するアルミニウム系素線によって構成される単位断面部のアスペクト比の平均値の下限値は、反力を撚り線全体で緩和させ、また、素線同士のかみ合いを発生しやすくすることで曲げ癖を付け易くするため、好ましくは4.5以上であり、より好ましくは5.0以上である。他方で、本実施形態に係る撚線導体10における、内層側領域15に位置するアルミニウム系素線によって構成される単位断面部のアスペクト比の平均値の上限値は、隣接する素線同士が擦れ合うことで酸化被膜を破壊され易くして素線抵抗値のばらつきを抑えるため、好ましくは12.0以下であり、より好ましくは10.0以下である。 In addition, in the stranded conductor 10 according to the present embodiment, the lower limit of the average aspect ratio of the unit cross section formed by the aluminum-based strands located in the inner layer side region 15 relaxes the reaction force in the entire stranded wire. It is preferably 4.5 or more, more preferably 5.0 or more, in order to make it easier to form a bending habit by facilitating engagement between the strands. On the other hand, in the stranded conductor 10 according to the present embodiment, the upper limit of the average value of the aspect ratios of the unit cross-sectional portions formed by the aluminum-based strands located in the inner layer side region 15 is such that the adjacent strands rub against each other. It is preferably 12.0 or less, and more preferably 10.0 or less, in order to suppress variations in the wire resistance value by facilitating destruction of the oxide film.

本実施形態に係る撚線導体10のうち、長手方向断面で見て、複数の層を形成する複数のアルミニウム系素線121、122のうち、撚線導体10の径方向Dの内外で隣接する内層側領域15と外層側領域16を構成する隣接する2層にそれぞれ位置するアルミニウム系素線同士、例えば内層アルミニウム系素線121と外層アルミニウム系素線122同士は、径方向内側に位置する内層アルミニウム系素線121の1つの第1単位断面部123に対して、径方向外側に位置する外層アルミニウム系素線122の2つ以上の第2単位断面部(図1(c)では、2つの第2単位断面部124a、124b)が重なり合う位置関係にあることが好ましい。このとき、外層側に位置するアルミニウム系素線の2つ以上の第2単位断面部のうち、第1単位断面部123との長手方向Eの重なり割合が最も大きい第2単位断面部(図1(c)では第2単位断面部124a)の長手方向中心位置P2が、第1単位断面部123の長手方向中心位置P1から、第1単位断面部123の長手方向寸法Xの35%に相当する寸法0.35Xの位置Pまでの範囲内にあることが好ましい。このように、第1単位断面部123の長手方向中心位置P1から第2単位断面部124aの長手方向中心位置P2までの寸法dが、第1単位断面部123の長手方向中心位置P1から寸法位置Pまでの範囲内にあることで、内層側と外層側の素線の接触した部分が互いに擦れ合って酸化被膜が破壊され易くなるため、接続部材との接続信頼性を向上させることができる。 Among the stranded conductor 10 according to the present embodiment, among the plurality of aluminum-based strands 121 and 122 forming a plurality of layers when viewed in longitudinal cross section, The aluminum-based wires respectively positioned in the two adjacent layers constituting the inner layer side region 15 and the outer layer side region 16, for example, the inner layer aluminum-based wire 121 and the outer layer aluminum-based wire 122, are located in the inner layer positioned radially inward. Two or more second unit cross-sectional portions (in FIG. 1C, two It is preferable that the second unit cross-sectional portions 124a and 124b) have a positional relationship in which they overlap. At this time, of the two or more second unit cross-sectional portions of the aluminum-based wire positioned on the outer layer side, the second unit cross-sectional portion having the largest overlapping ratio in the longitudinal direction E with the first unit cross-sectional portion 123 (Fig. 1 In (c), the longitudinal center position P2 of the second unit cross section 124a) corresponds to 35 % of the longitudinal dimension X1 of the first unit cross section 123 from the longitudinal center position P1 of the first unit cross section 123. It is preferably within the range to the position P of the dimension 0.35X1 . Thus, the dimension d from the longitudinal center position P1 of the first unit cross section 123 to the longitudinal center position P2 of the second unit cross section 124a is the dimension position from the longitudinal center position P1 of the first unit cross section 123. By being within the range up to P, the contacting portions of the wires on the inner layer side and the outer layer side rub against each other and the oxide film is easily destroyed, so that the connection reliability with the connecting member can be improved.

内層側領域15に位置するアルミニウム系素線の単位断面部(例えば図1(c)の第1単位断面部123)のアスペクト比の平均値や、外層側領域16に位置するアルミニウム系素線の単位断面部(例えば図1(c)の第2単位断面部124a、124b)のアスペクト比の平均値、第1単位断面部123の長手方向中心位置P1から第2単位断面部124の長手方向中心位置P2までの寸法dについては、アルミニウム系素線の撚りの強さや、撚り合わせたアルミニウム系素線を圧縮して撚線導体10を得る際の撚線圧縮率を調整することで、適切な値に調整することができる。 The average value of the aspect ratios of the unit cross-sectional portions of the aluminum-based wires located in the inner layer side region 15 (for example, the first unit cross-sectional portion 123 in FIG. 1(c)) and the aluminum-based wires located in the outer layer side region 16 The average value of the aspect ratios of the unit cross-sections (for example, the second unit cross-sections 124a and 124b in FIG. 1(c)) is measured from the longitudinal center position P1 of the first unit cross-section 123 to the longitudinal center of the second unit cross-section 124. The dimension d up to the position P2 can be appropriately adjusted by adjusting the strength of twisting of the aluminum-based strands and the twisted wire compression rate when compressing the twisted aluminum-based strands to obtain the stranded conductor 10. value can be adjusted.

[粗面化領域]
本実施形態に係る撚線導体10の外層アルミニウム系素線122のうち、最外層にある最外層アルミニウム系素線126は、端子30(図4参照)、分岐コネクタ41(図5参照)、延長コネクタ52(図6参照)等の接続部材が圧着される被圧着部分の外周面を形成するため、その被圧着部分を含む表面部分に、算術平均高さ(Sa)が0.4μm以上500μm以下の粗面化領域2を有することが好ましい。このような数値範囲の算術平均高さ(Sa)を備える粗面化領域2を有することで、粗面化領域2を構成する凹凸形状の中で凸になっている部分の多くが接続部材(図示せず)と圧着する際に変形し、その変形した多くの部分が大気と接触せずに接続部材と電気的に接続されるため、圧着後の最外層アルミニウム系素線126と接続部材との間の接続部分における不動態皮膜の形成が大幅に抑制され、撚線導体10と接続部材との間における電気抵抗の上昇を大幅に抑えることができる。すなわち、撚線導体10が上記数値範囲の算術平均高さ(Sa)を備える粗面化領域2を有すると、曲げ癖容易性および接続部材との高い接続信頼性に加えて、接続部材との接続部分における電気抵抗の上昇を大幅に抑制できるため、曲げ癖が付与された撚線導体であっても、接続部分の導電性の低下を大幅に抑制することができる。
[Roughened area]
Of the outer-layer aluminum-based wires 122 of the stranded conductor 10 according to the present embodiment, the outermost-layer aluminum-based wires 126 in the outermost layer include the terminal 30 (see FIG. 4), the branch connector 41 (see FIG. 5), the extension In order to form the outer peripheral surface of the crimped portion to which a connecting member such as the connector 52 (see FIG. 6) is crimped, the surface portion including the crimped portion has an arithmetic mean height (Sa) of 0.4 μm or more and 500 μm or less. It is preferred to have a roughened region 2 of By having the roughened region 2 having an arithmetic mean height (Sa) within such a numerical range, many of the convex portions in the uneven shape forming the roughened region 2 are connected members ( (not shown)), and many of the deformed portions are electrically connected to the connection member without being in contact with the atmosphere. Formation of a passivation film at the connecting portion between the stranded conductors 10 is greatly suppressed, and an increase in electrical resistance between the stranded wire conductor 10 and the connecting member can be greatly suppressed. That is, when the stranded conductor 10 has the roughened region 2 having the arithmetic mean height (Sa) within the above numerical range, in addition to the ease of bending and high connection reliability with the connection member, Since an increase in electrical resistance at the connection portion can be greatly suppressed, even a twisted wire conductor having a bending habit can be greatly suppressed from a decrease in conductivity at the connection portion.

ここで、最外層アルミニウム系素線126の粗面化領域2の算術平均高さ(Sa)は、最外層アルミニウム系素線126の1本のうち、撚線導体10の外面を構成している素線表面について、素線の線径の3分の1の長さを一辺とした正方形の領域を基準面として測定される、粗面化領域2の算術平均高さ(Sa)である。撚線導体10と接続部材との電気抵抗の上昇を抑える観点から、この算術平均高さ(Sa)の下限は、6.0μmがより好ましく、9.0μmがさらに好ましく、他方でこの算術平均高さ(Sa)の上限は、350μmがより好ましく、50μmがさらに好ましい。 Here, the arithmetic mean height (Sa) of the roughened region 2 of the outermost aluminum-based strands 126 constitutes the outer surface of the stranded conductor 10 of one of the outermost aluminum-based strands 126. It is the arithmetic mean height (Sa) of the roughened region 2 measured with respect to the surface of the wire, with a square region having a side length of 1/3 of the wire diameter of the wire as a reference plane. From the viewpoint of suppressing an increase in electrical resistance between the stranded conductor 10 and the connecting member, the lower limit of the arithmetic mean height (Sa) is more preferably 6.0 μm, more preferably 9.0 μm. The upper limit of the thickness (Sa) is more preferably 350 µm, and even more preferably 50 µm.

また、この粗面化領域2は、撚線導体10の長手方向Eについての寸法である長手方向寸法Zが、接続部材と接触する接続部分の全体について電気抵抗の上昇を抑えるため、接続部材の長手方向寸法以上であることが好ましい。ここで、接続部材の長手方向寸法とは、撚線導体10の長手方向Eに対応して延在する方向の寸法である。より具体的には、粗面化領域2の長手方向寸法Zは、例えば10mm以上300mm以下の範囲にすることが好ましい。 In addition, the longitudinal dimension Z, which is the dimension in the longitudinal direction E of the stranded conductor 10, of the roughened region 2 suppresses an increase in the electrical resistance of the entire connecting portion in contact with the connecting member. It is preferably equal to or greater than the longitudinal dimension. Here, the longitudinal dimension of the connection member is the dimension in the direction corresponding to the longitudinal direction E of the stranded conductor 10 . More specifically, the longitudinal dimension Z of the roughened region 2 is preferably in the range of, for example, 10 mm or more and 300 mm or less.

特に、撚線導体10が圧縮を施してなる圧縮撚線導体である場合には、外周素線12、例えば最外層アルミニウム系素線126の断面は、図2に示すように、接続部材と接触する部分が圧縮されていることが好ましく、また、(圧着前の)被圧着部分の最小線径L1に対する最大線径L2の比(最大線径L2/最小線径L1)が、素線ごとの算術平均で1.1以上2.0以下であることが好ましい。ここで、最外層アルミニウム系素線126の断面について、被圧着部分の最小線径L1に対する最大線径L2の比を、平均で1.1以上2.0以下の範囲にすることで、最外層アルミニウム系素線126と接続部材との接触面積が増加するとともに、上述の算術平均高さ(Sa)によって、撚線導体10と接続部材との電気的な接続をさらに図ることができるため、接続部材との間における接続信頼性をより高めることができる。 In particular, when the stranded conductor 10 is a compressed stranded conductor obtained by applying compression, the cross section of the outer strand 12, for example, the outermost aluminum-based strand 126, as shown in FIG. It is preferable that the portion to be crimped is compressed, and the ratio of the maximum wire diameter L2 to the minimum wire diameter L1 of the crimped portion (before crimping) (maximum wire diameter L2/minimum wire diameter L1) is The arithmetic mean is preferably 1.1 or more and 2.0 or less. Here, regarding the cross section of the outermost layer aluminum-based wire 126, by setting the ratio of the maximum wire diameter L2 to the minimum wire diameter L1 of the crimped portion to be in the range of 1.1 or more and 2.0 or less on average, the outermost layer Since the contact area between the aluminum-based strands 126 and the connection member increases, and the arithmetic mean height (Sa) described above makes it possible to achieve further electrical connection between the stranded conductor 10 and the connection member, the connection The connection reliability between members can be further improved.

撚線導体10に粗面化領域2を形成する方法は、特に限定されないが、例えば中心導体線11を中心にアルミニウム系素線を撚り合わせて単層または2層以上の外周素線12を形成した後、最外層アルミニウム系素線126のうち、接続部材が圧着される部分、すなわち被圧着部分について、ステンレスブラシなどの粗面化部材を用いて手動で粗面化領域2を形成し、または、この粗面化部材を備えた粗面化機械を用いて粗面化領域2を形成することができる。 The method of forming the roughened region 2 in the stranded conductor 10 is not particularly limited, but for example, aluminum-based strands are twisted around the central conductor wire 11 to form the outer strand 12 of a single layer or two or more layers. After that, of the outermost layer aluminum-based wire 126, a roughened region 2 is manually formed using a roughening member such as a stainless brush for the portion to which the connection member is crimped, that is, the crimped portion, or , a roughening machine with this roughening member can be used to form the roughened region 2 .

ここで、粗面化領域2の算術平均高さ(Sa)は、粗面化領域2を形成する際の条件を調整することで、適切な値に調整することができる。例えば、ステンレスブラシを用いて粗面化領域2を形成する場合には、ブラシの素線直径や素線密度、最外層アルミニウム系素線126を擦る際の荷重や回数を調整することができる。 Here, the arithmetic mean height (Sa) of the roughened region 2 can be adjusted to an appropriate value by adjusting the conditions for forming the roughened region 2 . For example, when the roughened region 2 is formed using a stainless steel brush, the wire diameter and wire density of the brush, and the load and the number of times of rubbing the outermost aluminum-based wire 126 can be adjusted.

また、最外層アルミニウム系素線126の断面における最小線径に対する最大線径の比については、アルミニウム系素線の扁平率(素線扁平率)や形状、撚り合わせたアルミニウム系素線を圧縮して撚線導体10を得る際の撚線圧縮率を調整することで、適切な値に調整することができる。 In addition, regarding the ratio of the maximum wire diameter to the minimum wire diameter in the cross section of the outermost aluminum-based wire 126, the flatness (wire flatness) and shape of the aluminum-based wire, and the twisted aluminum-based wire are compressed. An appropriate value can be obtained by adjusting the stranded wire compression rate when obtaining the stranded wire conductor 10 by means of the following.

[アルミニウム系素線の形状等]
内層アルミニウム系素線121および外層アルミニウム系素線122は、接続部材との接触部分を安定して形成できるとともに、撚線導体10が屈曲し易くなるため、丸線や扁平線であることが好ましい。
[Shape, etc. of aluminum-based wire]
The inner-layer aluminum-based strands 121 and the outer-layer aluminum-based strands 122 are preferably round wires or flat wires because they can stably form a contact portion with the connection member and the stranded conductor 10 can be easily bent. .

内層アルミニウム系素線121と外層アルミニウム系素線122の線径は、特に限定されないが、その下限値は、摩耗などによる断線を防ぐ観点から、1.0mmが好ましく、1.5mmがより好ましい。他方で、内層アルミニウム系素線121と外層アルミニウム系素線122の線径の上限値は、所望の曲げ加工性を持たせる観点から、3.2mmが好ましく、3.0mmがより好ましく、2.5mmがさらに好ましい。 The wire diameters of the inner layer aluminum-based wire 121 and the outer layer aluminum-based wire 122 are not particularly limited, but the lower limit thereof is preferably 1.0 mm, more preferably 1.5 mm, from the viewpoint of preventing disconnection due to wear or the like. On the other hand, the upper limit of the wire diameters of the inner layer aluminum-based wire 121 and the outer layer aluminum-based wire 122 is preferably 3.2 mm, more preferably 3.0 mm, from the viewpoint of providing desired bending workability. 5 mm is more preferred.

なお、本明細書において、扁平線のように断面が円形でないアルミニウム系素線の線径(素線径)は、断面積が等しい丸線の断面積から線径を換算して求めることとする。また、圧縮を施された圧縮撚線導体における最外層アルミニウム系素線126の線径についても、同様に、断面積が等しい丸線の断面積から線径を換算して求めることとする。 In this specification, the wire diameter (wire diameter) of an aluminum-based wire having a non-circular cross section such as a flat wire is obtained by converting the wire diameter from the cross-sectional area of a round wire having the same cross-sectional area. . Similarly, the wire diameter of the outermost layer aluminum-based strands 126 in the compressed stranded conductor that has been subjected to compression is similarly obtained by converting the cross-sectional area of a round wire having the same cross-sectional area into the wire diameter.

ここで、内層アルミニウム系素線121の線径は、外層アルミニウム系素線122の線径と同じであってもよく、異なっていてもよい。 Here, the wire diameter of the inner layer aluminum-based wire 121 may be the same as or different from the wire diameter of the outer layer aluminum-based wire 122 .

本実施形態に係る撚線導体10では、撚線導体の径方向Dについて内外に隣接した層(例えば、図1の内層アルミニウム系素線121と外層アルミニウム系素線122)にそれぞれ位置するアルミニウム系素線同士は、互いに撚り方向が交差する方向になるような配置関係を有していることが好ましい。このとき、隣接した層の撚り方向を交差させることで、点接触した素線同士の部分が互いに強く擦れ合って動き難くなるため、撚線導体10に曲げ癖を付け易くすることができる。また、隣接した層の撚り方向を交差させることで、撚線導体10はより円形に近い径方向の断面を有し、接続部材に安定して圧着される撚線導体10を得ることができる。また、隣接した層の撚り方向を交差させることで、最外層を構成するアルミニウム系素線と、隣接する内層を構成するアルミニウム系素線とが互いに点接触するように配置されているため、点接触した素線同士の部分が互いに擦れ合って酸化被膜が破壊されやすくなる結果、接続安定性を向上させることができる。 In the stranded conductor 10 according to the present embodiment, the aluminum-based aluminum-based wires located in adjacent layers (for example, the inner-layer aluminum-based wire 121 and the outer-layer aluminum-based wire 122 in FIG. 1) are adjacent to each other in the radial direction D of the stranded conductor. It is preferable that the strands have an arrangement relationship such that the twist directions intersect each other. At this time, by intersecting the twist directions of adjacent layers, the portions of the strands that are in point contact rub against each other strongly and become difficult to move, so that the stranded conductor 10 can be easily given a bend. Further, by intersecting the twisting directions of adjacent layers, the stranded conductor 10 has a radial cross section closer to a circular shape, and the stranded conductor 10 can be stably crimped to the connection member. In addition, by crossing the twist directions of adjacent layers, the aluminum-based wires forming the outermost layer and the aluminum-based wires forming the adjacent inner layer are arranged so as to be in point contact with each other. The portions of the wires that are in contact rub against each other, making it easier for the oxide film to break, resulting in improved connection stability.

ここで、撚り方向が交差する方向になるような配置関係としては、例えば図3に示す撚線導体10のように、隣接した層にそれぞれ位置するアルミニウム系素線同士、例えば図3の外層アルミニウム系素線122と内層アルミニウム系素線121同士の撚り方向が、互いに交差する方向(逆向き)になるような配置関係(逆巻き)が好ましいが、このほか、隣接する層に位置するアルミニウム系素線の撚りに強弱の差をつけることで、撚り方向を交差させてもよい。また、隣接した層にそれぞれ位置するアルミニウム系素線同士の撚り方向が、互いに同じ方向(略平行方向)になるような配置関係(平行巻き)にしてもよい。 Here, the arrangement relationship in which the twist directions intersect is, for example, aluminum-based wires located in adjacent layers, such as the stranded conductor 10 shown in FIG. The arrangement relationship (reverse winding) is preferable so that the twist directions of the aluminum-based wires 122 and the inner-layer aluminum-based wires 121 intersect each other (reverse directions). The twist directions may be crossed by giving a difference in strength to the twist of the wire. Further, the arrangement relationship (parallel winding) may be such that the twisting directions of the aluminum-based strands located in adjacent layers are the same (substantially parallel) to each other.

本実施形態に係る撚線導体10を構成する中心導体線11は、図1では、1本の素線によって構成されている場合を示しているが、中心導体線11に代わって、複数の素線で構成してもよい。ここで、中心導体線11を複数の素線を撚り合わせた中心撚線で構成する場合、複数の素線を撚り合わせた中心撚線の中心軸を、中心導体線の仮想中心線Oとすることができる。また、中心撚線は、隣接した外側の層に位置する素線とは、上述のように撚り方向を互いに交差させることが好ましい。 FIG. 1 shows a case where the central conductor wire 11 constituting the stranded conductor 10 according to the present embodiment is composed of one element wire. It may consist of lines. Here, when the central conductor wire 11 is composed of a central twisted wire obtained by twisting a plurality of strands, the central axis of the central twisted wire obtained by twisting a plurality of strands is assumed to be the virtual center line O of the central conductor wire. be able to. In addition, it is preferable that the twist directions of the central twisted wire and the strands positioned in the adjacent outer layer cross each other as described above.

本実施形態に係る撚線導体10は、円筒形の巻き付け冶具に対し、前記撚線導体に荷重を負荷して巻き付けてから除荷したときに、曲率半径110mmの曲げ癖を付けるのに必要な荷重が、撚線導体10の横断面積をα[mm]としたときに、0.025α[N]以下であることが好ましい。このような撚線導体10は、曲げ方向に力を加えると元の形状に戻り難く、曲げ癖を付け易いものである。特に、本実施形態に係る撚線導体10では、0.2%耐力の大きなアルミニウム系素線を用いた場合であっても、曲げ癖を付け易くすることができる。ここで、撚線導体10における、曲率半径110mmの曲げ癖を付けるのに必要な荷重は、0.010α[N]以下であることがより好ましい。なお、円筒形の巻き付け冶具の半径は、撚線導体10に曲げ癖を容易に付ける観点から、例えば50~109mmとすることができる。 The stranded conductor 10 according to the present embodiment has a bending tendency with a radius of curvature of 110 mm when the stranded conductor 10 according to the present embodiment is wound with a load applied to a cylindrical winding jig and then unloaded. The load is preferably 0.025α[N] or less, where α[mm 2 ] is the cross-sectional area of the stranded conductor 10 . Such a stranded conductor 10 is difficult to return to its original shape when force is applied in the bending direction, and tends to be bent. In particular, in the stranded conductor 10 according to the present embodiment, even when aluminum-based strands having a large 0.2% yield strength are used, it is possible to easily form a bending habit. Here, it is more preferable that the load required to give the stranded conductor 10 a bending habit with a radius of curvature of 110 mm is 0.010α[N] or less. The radius of the cylindrical winding jig can be set to, for example, 50 to 109 mm from the viewpoint of easily giving the stranded conductor 10 a bend.

<被覆電線についての実施形態>
本実施形態に係る被覆電線1は、例えば図1に示されるように、上述の撚線導体10と、撚線導体10の外周面部分に形成された絶縁被覆13とを有する。ここで、撚線導体10と接続部材との接続信頼性を向上する観点から、被覆電線1は、撚線導体10と、粗面化領域2を除く撚線導体10の外周面部分に形成された絶縁被覆13とを有することが好ましい。より具体的には、撚線導体10の外周に、少なくとも絶縁被覆13が積層され、より好ましくはその外周に最外層としてシース14が積層されたものとすることができる。
<Embodiment of Covered Wire>
The covered electric wire 1 according to the present embodiment has the above-described stranded conductor 10 and an insulating coating 13 formed on the outer peripheral surface portion of the stranded conductor 10, as shown in FIG. 1, for example. Here, from the viewpoint of improving connection reliability between the stranded conductor 10 and the connection member, the covered electric wire 1 is formed on the stranded conductor 10 and the outer peripheral surface portion of the stranded conductor 10 excluding the roughened region 2. It is preferable to have an insulating coating 13 with a More specifically, at least the insulating coating 13 is laminated on the outer circumference of the stranded conductor 10, and more preferably, the sheath 14 is laminated on the outer circumference as the outermost layer.

ここで、絶縁被覆13としては、公知の材料を用いることができ、例えばポリエチレン、ポリプロピレンなどのポリオレフィンや、ポリ塩化ビニルなどを用いることができる。また、粗面化領域2による絶縁被覆13の破損を防ぐため、絶縁被覆13は、粗面化領域2を除く撚線導体10の外周面部分に形成されていることが好ましい。 Here, as the insulating coating 13, a known material can be used, for example, polyolefin such as polyethylene and polypropylene, and polyvinyl chloride can be used. In addition, in order to prevent the insulating coating 13 from being damaged by the roughened region 2 , the insulating coating 13 is preferably formed on the outer peripheral surface portion of the stranded conductor 10 excluding the roughened region 2 .

<端子付き被覆電線、分岐被覆電線、補線付き被覆電線についての実施形態>
本実施形態に係る被覆電線1は、撚線導体10に、端子、分岐コネクタ、延長コネクタ等の接続部材が圧着されることが好ましく、それにより端子付き被覆電線、分岐被覆電線、補線付き被覆電線を構成することが好ましい。撚線導体10と接続部材との接続信頼性を向上する観点から、被覆電線1は、少なくとも粗面化領域2に、接続部材が圧着されることがより好ましい。以下では、各種の接続部材が被覆電線1の粗面化領域2に圧着される例を示すが、接続部材が粗面化領域2を具備しない被覆電線1に圧着されてもよい。
<Embodiments of Covered Wire with Terminal, Covered Branch Wire, and Covered Wire with Complementary Wire>
In the covered electric wire 1 according to the present embodiment, connection members such as a terminal, a branch connector, and an extension connector are preferably crimped to the stranded conductor 10, thereby forming a covered electric wire with a terminal, a covered branch electric wire, and a covered electric wire with an auxiliary wire. It is preferable to constitute an electric wire. From the viewpoint of improving connection reliability between the stranded conductor 10 and the connection member, it is more preferable that the connection member is crimped onto at least the roughened region 2 of the covered electric wire 1 . An example in which various connection members are crimped to the roughened region 2 of the covered wire 1 will be described below, but the connection member may be crimped to the covered wire 1 that does not have the roughened region 2 .

このとき、撚線導体10を構成する各々のアルミニウム系素線と接続部材との間における抵抗値の標準偏差σは、抵抗値の平均の25%以下であることが好ましい。これにより、アルミニウム系素線の各々と接続部材とが、撚線導体の表面に形成された不働態皮膜の大部分が破壊されることで、不働態皮膜による電気抵抗の上昇が起こり難くなるため、撚線導体10と接続部材との間で高い接続信頼性を得ることができる。ここで、各々のアルミニウム系素線と接続部材との間における抵抗値の標準偏差σは、抵抗値の平均の10%以下であることがより好ましい。 At this time, it is preferable that the standard deviation σ of the resistance values between the aluminum-based strands and the connection member constituting the stranded conductor 10 is 25% or less of the average resistance value. As a result, most of the passivation film formed on the surface of the stranded wire conductor is destroyed between each of the aluminum-based strands and the connection member, so that the increase in electrical resistance due to the passivation film is less likely to occur. , high connection reliability can be obtained between the stranded conductor 10 and the connection member. Here, it is more preferable that the standard deviation σ of the resistance values between each aluminum-based element wire and the connecting member is 10% or less of the average resistance value.

(端子付き被覆電線)
このうち、端子付き被覆電線3は、例えば図4に示すように、上述した被覆電線1と、この被覆電線1の一端または両端に形成した粗面化領域2に圧着固定した端子30とを有する。
(coated wire with terminal)
Among them, the covered wire 3 with a terminal has the above-described covered wire 1 and a terminal 30 crimped and fixed to the roughened region 2 formed at one end or both ends of the covered wire 1, as shown in FIG. .

ここで、端子30は、上述のアルミニウム系素線と同様に純アルミニウムまたはアルミニウム合金からなり、筒状の内部空間31を有する部材である。この端子30には、被覆電線1のうち撚線導体10の粗面化領域2が内部空間31に挿入された状態でカシメ加工が施されており、それにより形成される係止部32によって、端子30が被覆電線1の粗面化領域2で圧着される。 Here, the terminal 30 is a member made of pure aluminum or an aluminum alloy similarly to the above-described aluminum-based wire and having a tubular inner space 31 . This terminal 30 is crimped with the roughened area 2 of the stranded conductor 10 of the covered electric wire 1 being inserted into the internal space 31, and the locking portion 32 formed thereby A terminal 30 is crimped on the roughened area 2 of the coated wire 1 .

(分岐被覆電線)
分岐被覆電線4は、例えば図5に示すように、幹線としての上述の被覆電線である第1被覆電線1と、分岐線としての他の被覆電線である第2被覆電線40と、分岐コネクタ41とを備え、この分岐コネクタ41の第1圧着部42で、第1被覆電線1に形成した粗面化領域2に圧着固定するとともに、分岐コネクタ41の第2圧着部43で、第2被覆電線40の皮剥ぎした一端に圧着固定したものである。
(branch covered wire)
As shown in FIG. 5, for example, the branch covered electric wire 4 includes a first covered electric wire 1 which is the above-described covered electric wire as a main line, a second covered electric wire 40 which is another covered electric wire as a branch wire, and a branch connector 41. The first crimping portion 42 of the branch connector 41 is crimped and fixed to the roughened region 2 formed in the first covered wire 1, and the second crimping portion 43 of the branch connector 41 is used to secure the second covered wire. 40 is crimped to the stripped end.

ここで、第2被覆電線40の導体材料は、上述のアルミニウム系素線と同様に純アルミニウムまたはアルミニウム合金からなっていてもよく、また、銅やステンレス鋼(SUS)のように、被覆電線1の撚線導体10の構成材料とは異なる材料からなってもよい。 Here, the conductor material of the second coated wire 40 may be made of pure aluminum or an aluminum alloy like the above-described aluminum-based wire, or may be made of copper or stainless steel (SUS). may be made of a material different from the constituent material of the stranded conductor 10 of .

また、分岐コネクタ41は、上述のアルミニウム系素線と同様に純アルミニウムまたはアルミニウム合金からなり、両側が開いた筒状の内部空間を有する第1圧着部42と、片側が開いた筒状の内部空間を有する第2圧着部43と、を有する部材である。この分岐コネクタ41は、被覆電線1のうち撚線導体10の粗面化領域2が第1圧着部42内に位置し、かつ第2被覆電線40の皮剥ぎした端部が第2圧着部43の内部空間に挿入された状態で圧潰されており、それにより第1圧着部42が被覆電線1の粗面化領域2に圧着固定されるとともに、第2圧着部43が第2被覆電線40の皮剥ぎした一端に圧着固定されることによって、分岐被覆電線4を得ることができる。 In addition, the branch connector 41 is made of pure aluminum or an aluminum alloy in the same manner as the aluminum-based wire described above, and has a first crimping portion 42 having a cylindrical inner space with both sides open and a cylindrical inner space with one side open. It is a member having a second crimping portion 43 having a space. In this branch connector 41 , the roughened area 2 of the stranded conductor 10 of the covered electric wire 1 is positioned within the first crimping portion 42 , and the peeled end portion of the second covered electric wire 40 is the second crimping portion 43 . The first crimping portion 42 is crimped and fixed to the roughened region 2 of the covered wire 1, and the second crimping portion 43 of the second covered wire 40 is crushed while being inserted into the inner space of the The branch covered electric wire 4 can be obtained by crimping and fixing the peeled one end.

(補線付き被覆電線)
補線付き被覆電線5は、例えば図6に示すように、上述の被覆電線である第1被覆電線1と、第1被覆電線1を延長する補線である別の被覆電線である第3被覆電線50と、延長コネクタ52とを備え、この延長コネクタ52の第3圧着部53で、第1被覆電線1に形成されている粗面化領域2に圧着固定するとともに、延長コネクタ52の第4圧着部54で、第3被覆電線50の皮剥ぎした一端に圧着固定することで得ることができる。
(Coated wire with auxiliary wire)
For example, as shown in FIG. 6, the covered electric wire 5 with supplementary wire includes a first covered electric wire 1 which is the above-described covered electric wire and a third covered electric wire which is another covered electric wire which is an auxiliary wire extending from the first covered electric wire 1. An electric wire 50 and an extension connector 52 are provided, and a third crimp portion 53 of the extension connector 52 is crimped and fixed to the roughened region 2 formed on the first covered electric wire 1 , and a fourth It can be obtained by crimping and fixing to the stripped end of the third coated wire 50 at the crimping portion 54 .

ここで、第3被覆電線50の導体材料は、アルミニウム系素線よりも電気抵抗の大きい不動態皮膜を形成し難い材料であることが好ましく、例えば銅やステンレス鋼(SUS)などが挙げられる。 Here, the conductor material of the third coated wire 50 is preferably a material that is less likely to form a passive film having a higher electric resistance than the aluminum-based wire, such as copper and stainless steel (SUS).

また、延長コネクタ52は、上述のアルミニウム系素線と同様に純アルミニウムまたはアルミニウム合金からなり、筒状の内部空間を有する第3圧着部53および第4圧着部54を有する部材である。この延長コネクタ52は、被覆電線1のうち撚線導体10の粗面化領域2が第3圧着部53に挿入され、かつ第3被覆電線50の皮剥ぎした端部が第4圧着部54の内部空間に挿入された状態で圧潰されており、それにより第3圧着部53が被覆電線1の粗面化領域2に圧着固定されるとともに、第4圧着部54が第3被覆電線50の皮剥ぎした一端に圧着固定されることによって、被覆電線1が延長された補線付き被覆電線5を得ることができる。 The extension connector 52 is made of pure aluminum or an aluminum alloy like the aluminum-based wire described above, and is a member having a third crimping portion 53 and a fourth crimping portion 54 having a cylindrical inner space. In this extension connector 52 , the roughened area 2 of the stranded conductor 10 of the covered electric wire 1 is inserted into the third crimping portion 53 , and the peeled end portion of the third covered electric wire 50 is inserted into the fourth crimping portion 54 . The third crimping portion 53 is crimped and fixed to the roughened region 2 of the coated wire 1 and the fourth crimping portion 54 is pressed against the skin of the third coated wire 50 . By crimping and fixing to the stripped one end, a covered electric wire 5 with an auxiliary wire, which is an extension of the covered electric wire 1, can be obtained.

(複数の接続部材を有する構造)
本実施形態では、端子30、分岐コネクタ41および延長コネクタ52のうち2種以上を組み合わせてもよく、また、端子30、分岐コネクタ41および延長コネクタ52のうち1種以上を複数用いてもよい。
(Structure with multiple connection members)
In this embodiment, two or more of the terminals 30, the branch connectors 41 and the extension connectors 52 may be combined, and one or more of the terminals 30, the branch connectors 41 and the extension connectors 52 may be used in plurality.

例えば、図7に示すように、上述の被覆電線である第1被覆電線1を用い、第1被覆電線1と、分岐線としての他の被覆電線である第2被覆電線40と、分岐コネクタ41と、端子30、30´を備えた、端子付き分岐被覆電線6を構成することができる。この端子付き分岐被覆電線6では、分岐コネクタ41の第1圧着部42で、第1被覆電線1に形成されている粗面化領域2が圧着固定されるとともに、分岐コネクタ41の第2圧着部43が第2被覆電線40の皮剥ぎした一端に圧着固定される。他方で、上述の第1被覆電線1の一方の端に粗面化領域2´が形成され、この粗面化領域2´に端子30が圧着固定される。また、上述の第1被覆電線1の他方の端に粗面化領域2´´が形成され、この粗面化領域2´´に端子30´が圧着固定される。 For example, as shown in FIG. 7, using the first covered electric wire 1 which is the above-described covered electric wire, the first covered electric wire 1, the second covered electric wire 40 which is another covered electric wire as a branch wire, and the branch connector 41 , a terminal-equipped covered covered electric wire 6 having terminals 30 and 30' can be constructed. In this terminal-attached covered branch wire 6 , the roughened region 2 formed in the first covered wire 1 is crimped and fixed at the first crimping portion 42 of the branch connector 41 , and the second crimping portion of the branch connector 41 is crimped and fixed. 43 is crimped and fixed to the stripped end of the second coated wire 40 . On the other hand, a roughened region 2' is formed at one end of the above-described first covered wire 1, and a terminal 30 is crimped and fixed to this roughened region 2'. A roughened region 2'' is formed at the other end of the first coated wire 1, and a terminal 30' is crimped and fixed to the roughened region 2''.

また、図8に示すように、上述の被覆電線である第1被覆電線1を用い、第1被覆電線1と、分岐線としての他の被覆電線である第2被覆電線40と、分岐コネクタ41と、第1被覆電線1を延長する補線である別の被覆電線である第3被覆電線50、50´と、延長コネクタ52、52´とを備えた、補線付き分岐被覆電線7を構成することもできる。この補線付き分岐被覆電線7では、分岐コネクタ41の第1圧着部42で、第1被覆電線1に形成されている粗面化領域2が圧着固定されるとともに、分岐コネクタ41の第2圧着部43で、第2被覆電線40の皮剥ぎした一端が圧着固定される。他方で、上述の第1被覆電線1の一方の端に粗面化領域2´が形成され、この延長コネクタ52の第3圧着部53で、第1被覆電線1に形成されている粗面化領域2´が圧着固定されるとともに、延長コネクタ52の第4圧着部54に第3被覆電線50の皮剥ぎした一端が圧着固定される。また、上述の第1被覆電線1の他方の端に粗面化領域2´´が形成され、この延長コネクタ52´の第3圧着部53´で、第1被覆電線1に形成されている粗面化領域2´´が圧着固定されるとともに、延長コネクタ52´の第4圧着部54´に第3被覆電線50´の皮剥ぎした一端が圧着固定される。 Further, as shown in FIG. 8, the first covered electric wire 1 which is the above-described covered electric wire is used, the first covered electric wire 1, the second covered electric wire 40 which is another covered electric wire as a branch wire, and the branch connector 41. , third covered electric wires 50, 50', which are additional covered electric wires extending from the first covered electric wire 1, and extension connectors 52, 52'. You can also In this covered branched electric wire 7 with supplementary wires, the roughened region 2 formed in the first covered electric wire 1 is crimped and fixed at the first crimping portion 42 of the branch connector 41 , and the second crimping of the branch connector 41 is performed. At the portion 43, the stripped end of the second coated wire 40 is crimped and fixed. On the other hand, a roughened area 2' is formed at one end of the first covered wire 1, and the roughened area formed on the first covered wire 1 is formed at the third crimping portion 53 of the extension connector 52. While the region 2 ′ is crimped and fixed, the peeled one end of the third coated wire 50 is crimped and fixed to the fourth crimp portion 54 of the extension connector 52 . A roughened region 2'' is formed at the other end of the first covered wire 1, and the roughened region 2'' formed on the first covered wire 1 is formed at the third crimping portion 53' of the extension connector 52'. The flattened region 2'' is crimped and fixed, and the stripped end of the third coated wire 50' is crimped and fixed to the fourth crimp portion 54' of the extension connector 52'.

次に、本発明の実施例を説明するが、本発明はその趣旨を超えない限り、これらの例に限定されるものではない。 Examples of the present invention will now be described, but the present invention is not limited to these examples as long as the gist of the present invention is not exceeded.

(1)撚線導体および被覆電線の作製
[本発明例1]
アルミニウム系素線として、素線径1.6mmの丸線(素線扁平率=1)の材料種A1070、調質記号H11(0.2%耐力(表中には「耐力」と記載):50(N))の純アルミニウム導体線を19本用い、1本の中心導体線の周囲に6本の素線を撚り合わせて内層アルミニウム系素線を形成し、その周囲に、12本の素線を撚り合わせて外層アルミニウム系素線(最外層アルミニウム系素線)を形成して、1+6+12の撚り構造を有する撚線導体を作製した。このとき、外層アルミニウム系素線は、隣接している内層アルミニウム系素線と逆方向に撚り合わせた(逆巻き)。この撚線の全体について、圧縮率(撚線圧縮率)が2%となる力で圧縮を施し、圧縮撚線導体を得た。得られた圧縮撚線導体の撚線断面積(撚線導体の横断面積)は38mmである。
(1) Preparation of stranded conductor and covered electric wire [Invention example 1]
As an aluminum-based wire, a round wire with a wire diameter of 1.6 mm (wire flatness = 1), material type A1070, temper symbol H11 (0.2% yield strength (described as “yield strength” in the table): Using 19 pure aluminum conductor wires of 50 (N)), six strands are twisted around one central conductor wire to form an inner layer aluminum-based strand, and 12 strands are wound around it. The wires were twisted together to form an outer layer aluminum-based element wire (outermost layer aluminum-based element wire) to produce a stranded conductor having a 1+6+12 twist structure. At this time, the outer layer aluminum-based strands were twisted together in the opposite direction to the adjacent inner layer aluminum-based strands (reverse winding). The entire stranded wire was compressed with a force that gave a compression rate (twisted wire compression rate) of 2% to obtain a compressed stranded conductor. The stranded cross-sectional area (cross-sectional area of the stranded conductor) of the resulting compressed stranded conductor is 38 mm 2 .

この撚線導体の端から50mmの範囲について、素線直径0.6mm、素線密度1本/mmのステンレスブラシを用い、撚線導体の粗面化領域を形成する部分に位置する最外層のアルミニウム系素線の外周面に対して、5Nの負荷荷重を作用させたステンレスブラシを、撚線導体の長手方向Eに沿って5回移動させる(擦る)ことで、撚線導体の最外層に位置する外層アルミニウム系素線の表面部分に、撚線導体の長手方向Eに沿った寸法Zが50mmの粗面化領域を形成した。形成された粗面化領域について、キーエンス製VK-X250を用いて、撚線導体の最外層に位置する外層アルミニウム系素線の1本のうち、撚線導体の外面を構成している素線表面について、素線の線径の3分の1の長さを一辺とした正方形の領域を基準面としたときの算術平均高さ(Sa)を倍率400倍で測定したところ、9.7μmであった。 A stainless steel brush with a strand diameter of 0.6 mm and a strand density of 1/mm 2 is used in a range of 50 mm from the end of the stranded conductor, and the outermost layer located in the part where the roughened area of the stranded conductor is formed The outermost layer of the stranded conductor is moved (rubbed) five times along the longitudinal direction E of the stranded conductor with a stainless steel brush to which a load of 5 N is applied to the outer peripheral surface of the aluminum-based strand. A roughened region having a dimension Z of 50 mm along the longitudinal direction E of the stranded conductor was formed on the surface portion of the outer layer aluminum-based strand located at . For the formed roughened region, using Keyence's VK-X250, one of the outer layer aluminum-based strands located in the outermost layer of the stranded conductor, the strand constituting the outer surface of the stranded conductor Regarding the surface, the arithmetic mean height (Sa) was measured at a magnification of 400 when a square area having a side length of 1/3 of the wire diameter of the wire as a reference plane was 9.7 μm. there were.

また、この撚線導体について、倒立金属顕微鏡(装置名GX71、OLYMPUS社製)を用いて長手方向断面を観察するとともに、得られる画像から、内層側領域にある第1単位断面部123のアスペクト比について、5個のサンプル断面についての平均値を求めたところ、4.5と求められた。また、外層側領域にある第2単位断面部124のアスペクト比について、5個のサンプル断面についての平均値を求めたところ、4.0と求められた。また、内層側領域にある第1単位断面部123のアスペクト比と、外層側領域にある第2単位断面部124のアスペクト比の単純平均は、4.25と求められた。さらに、第1単位断面部123と、この第1単位断面部123との長手方向の重なり割合が最も大きい第2単位断面部124aについて、第1単位断面部123の長手方向寸法Xの35%に相当する寸法0.35Xに対する、第1単位断面部123の長手方向中心位置P1から第2単位断面部124aの長手方向中心位置P2までの寸法dの割合(d/0.35X)を求めたところ、0.9と求められた。 In addition, the longitudinal section of this stranded conductor was observed using an inverted metallurgical microscope (equipment name: GX71, manufactured by OLYMPUS). , the average value of five sample cross sections was found to be 4.5. Further, when the average value of the five sample cross sections was calculated for the aspect ratio of the second unit cross section 124 in the outer layer side region, it was found to be 4.0. A simple average of the aspect ratio of the first unit cross section 123 in the inner layer side region and the aspect ratio of the second unit cross section 124 in the outer layer side region was found to be 4.25. Furthermore, for the first unit cross-section portion 123 and the second unit cross-section portion 124a having the largest longitudinal overlap ratio with this first unit cross-section portion 123, 35% of the longitudinal dimension X1 of the first unit cross-section portion 123 The ratio (d/0.35X 1 ) of the dimension d from the longitudinal center position P1 of the first unit cross section 123 to the longitudinal center position P2 of the second unit cross section 124a to the dimension 0.35X 1 corresponding to When asked, it was found to be 0.9.

また、この撚線導体について、倒立金属顕微鏡(装置名GX71、OLYMPUS社製)を用いて撚線導体の長手方向に垂直な断面を観察するとともに、得られる画像から、最外層に位置する外層アルミニウム系素線の最小線径L1に対する最大線径L2の比を求めたところ、素線ごとの算術平均で1.1と求められた。 In addition, for this stranded conductor, a cross section perpendicular to the longitudinal direction of the stranded conductor was observed using an inverted metallurgical microscope (device name GX71, manufactured by OLYMPUS). When the ratio of the maximum wire diameter L2 to the minimum wire diameter L1 of the system wire was obtained, the arithmetic mean for each wire was found to be 1.1.

この撚線導体に接続するアルミニウム系端子として、純アルミニウム端子の内表面と外表面に、それぞれ、厚さ3μmのニッケル層と厚さ10μmのスズ層を上記順序で積層させた表面被覆を形成させたアルミニウム系端子を用いた。このアルミニウム系端子の導体圧着部位の長手方向寸法は8mmである。このアルミニウム系端子内に、撚線導体の粗面化領域を差し込み、減面率5~15%となる圧着領域の面積が、撚線導体の断面積の1~2倍となるような圧着条件にて、かしめにより撚線導体をアルミニウム系端子に圧着した。 As an aluminum-based terminal to be connected to this stranded conductor, a surface coating is formed by laminating a nickel layer with a thickness of 3 μm and a tin layer with a thickness of 10 μm in the above order on the inner surface and the outer surface of a pure aluminum terminal, respectively. An aluminum-based terminal was used. The longitudinal dimension of the conductor crimping portion of this aluminum-based terminal is 8 mm. Crimping conditions such that the roughened area of the stranded conductor is inserted into the aluminum-based terminal, and the area of the crimped area where the area reduction rate is 5 to 15% is 1 to 2 times the cross-sectional area of the stranded conductor. , the stranded wire conductor was crimped to the aluminum-based terminal by crimping.

[本発明例2~11および比較例1~3]
表1の記載に基づいて条件を調整した以外は本発明例1と同様にして、粗面化領域の形成された圧縮撚線導体を得た。得られた圧縮撚線導体の粗面化領域の算術平均高さ(Sa)、前記寸法0.35Xに対する前記寸法dの割合(d/0.35X)、最外層アルミニウム系素線の最小線径に対する最大線径の比(L2/L1比)の測定結果を、表1に示す。
[Invention Examples 2 to 11 and Comparative Examples 1 to 3]
A compressed stranded conductor having a roughened region was obtained in the same manner as in Inventive Example 1, except that the conditions were adjusted based on the description in Table 1. The arithmetic mean height (Sa) of the roughened region of the obtained compressed stranded conductor, the ratio of the dimension d to the dimension 0.35X 1 (d/0.35X 1 ), the minimum of the outermost aluminum-based strand Table 1 shows the measurement results of the ratio of the maximum wire diameter to the wire diameter (L2/L1 ratio).

また、本発明例3において得られた圧縮撚線導体について、倒立金属顕微鏡(装置名GX71、OLYMPUS社製)を用いて観察される長手方向断面の顕微鏡写真を、図9に示す。 FIG. 9 shows a photomicrograph of a longitudinal section of the compressed stranded conductor obtained in Inventive Example 3, observed using an inverted metallographic microscope (device name: GX71, manufactured by OLYMPUS).

Figure 0007316838000001
Figure 0007316838000001

(2)曲げ癖を付けるのに必要な力に関する評価
得られた撚線導体に、厚さ2.0mmの架橋ポリエチレンからなる絶縁被覆と、厚さ1.5mmの塩化ビニルからなるシースを設けた被覆電線1について、曲げ癖を付けるのに必要な力を評価した。評価対象となる被覆電線1について、図10(a)に示されるように一端を固定用冶具8に固定した後、50~109mmの半径を有する円筒形の巻き付け冶具9を、巻き付け冶具9の円筒形の中心軸が、被覆電線1の中心軸に対して、上面投影図で見て直角に交差するような位置関係になるように配置するとともに、巻き付け冶具9が被覆電線1を上側から押さえるように固定して設けた。次に、巻き付け冶具9から0.5m離れた位置で、被覆電線1に下側から0.1[N]~10[N]の範囲の荷重を掛け、図10(b)に示されるように、被覆電線1が巻き付け冶具9に巻き付けるように曲げ癖を付け、曲げ癖を付けた部分における除荷後の曲率半径を測定した。測定される曲率半径の値に応じて、曲率半径が110mmになるように荷重を調整し、被覆電線1に曲げ癖を付けて除荷した後の曲率半径を再度測定することで、曲率半径110mmの曲げ癖を付けるときに必要となる荷重を求めた。その結果について、以下の基準で評価した。結果を表2に示す。
◎:半径110mmの曲率の曲げ癖を付けるために必要な荷重が、前記撚線導体の横断面積をα[mm]としたときに、0.010α[N]以下である
〇:半径110mmの曲率の曲げ癖を付けるために必要な荷重が、前記撚線導体の横断面積をα[mm]としたときに、0.010α[N]超0.025α[N]以下である
×:半径110mmの曲率の曲げ癖を付けるために必要な荷重が、前記撚線導体の横断面積をα[mm]としたときに、0.025α[N]超である
(2) Evaluation of the force required to impart a bending habit The resulting stranded conductor was provided with an insulating coating made of crosslinked polyethylene with a thickness of 2.0 mm and a sheath made of vinyl chloride with a thickness of 1.5 mm. The coated electric wire 1 was evaluated for the force required to form a bend. After fixing one end of the coated electric wire 1 to be evaluated to a fixing jig 8 as shown in FIG. The center axis of the shape intersects the center axis of the insulated wire 1 at a right angle when viewed from the top projection view, and the winding jig 9 presses the insulated wire 1 from above. It was fixed to the Next, at a position 0.5 m away from the winding jig 9, a load in the range of 0.1 [N] to 10 [N] is applied to the coated wire 1 from below, and as shown in FIG. , the covered electric wire 1 was bent so as to be wound around the winding jig 9, and the radius of curvature of the bent portion after unloading was measured. According to the value of the curvature radius to be measured, the load is adjusted so that the curvature radius becomes 110 mm. We found the load required to create a bending habit. The results were evaluated according to the following criteria. Table 2 shows the results.
◎: The load required to impart a bending habit with a radius of curvature of 110 mm is 0.010 α [N] or less, where α [mm 2 ] is the cross-sectional area of the stranded conductor. A load required to impart a bending habit of curvature is more than 0.010α[N] and not more than 0.025α[N] when the cross-sectional area of the stranded conductor is α[mm 2 ] ×: Radius A load required to impart a bending habit with a curvature of 110 mm is greater than 0.025α[N], where α[mm 2 ] is the cross-sectional area of the stranded conductor.

(3)撚線導体を構成する素線間における抵抗のばらつきに関する評価
アルミニウム系端子に圧着された撚線導体について、アルミニウム系端子への圧着を保つように撚線導体の撚りを解いて素線ごとに分けた後、全ての素線とアルミニウム系端子との間の電気抵抗値を、3560ACミリオームハイテスタ(HIOKI社製)を用いて4端子抵抗測定法にて測定し、測定した電気抵抗値から、電線部分の抵抗値を除いた電気抵抗値の平均値と標準偏差を算出して、下記基準で評価した。結果を表2に示す。
(3) Evaluation of variations in resistance between strands that make up a stranded conductor For a stranded conductor crimped to an aluminum-based terminal, the twisted conductor was untwisted to maintain crimping to the aluminum-based terminal. After dividing into each, the electrical resistance value between all the wires and the aluminum-based terminal was measured by a 4-terminal resistance measurement method using a 3560 AC milliohm high tester (manufactured by Hioki), and the measured electrical resistance value Then, the average value and standard deviation of the electrical resistance values excluding the resistance value of the electric wire portion were calculated and evaluated according to the following criteria. Table 2 shows the results.

ここで、全ての素線とアルミニウム系端子間の電気抵抗値の標準偏差が平均値の10%以内であったものを、使用初期において接続部材との接続信頼性が優れていると判定して「◎」とし、全ての素線とアルミニウム系端子間の電気抵抗値の標準偏差が平均値の10%超25%以内であったものを、使用初期において接続部材との接続信頼性が良好であると判定して「○」とした。他方で、全ての素線とアルミニウム系端子間の電気抵抗値の標準偏差が平均値の25%超であったものを、使用初期において接続部材との接続信頼性が劣る(不可)と判定して「×」とした。 Here, when the standard deviation of the electrical resistance values between all the wires and the aluminum-based terminal was within 10% of the average value, it was determined that the connection reliability with the connection member was excellent in the initial period of use. "A" indicates that the standard deviation of the electrical resistance value between all the wires and the aluminum-based terminal is more than 10% and within 25% of the average value, and the connection reliability with the connection member is good at the initial stage of use. It was judged that there was, and it was set as "○". On the other hand, if the standard deviation of the electrical resistance values between all the wires and the aluminum-based terminal exceeded 25% of the average value, it was determined that the connection reliability with the connection member was inferior (impossible) in the initial period of use. and "x".

(4)総合判定評価方法
曲げ癖を付けるのに必要な力に関する評価結果と、素線間における抵抗のばらつきに関する評価結果に基づく総合判定について、以下の評価基準により判定した。結果を表2に示す。
(4) Comprehensive Judgment Evaluation Method Comprehensive judgment based on the evaluation results regarding the force required to impart the bending habit and the evaluation results regarding the variation in resistance between strands was evaluated according to the following evaluation criteria. Table 2 shows the results.

ここで、曲げ癖を付けるのに必要な力に関する評価結果と、素線間における抵抗のばらつきに関する評価結果がいずれも「◎」評価であったものを、曲げ癖の付け易さと、接続部材との間での高い接続信頼性の両方において優れていると判定して「◎」とした。また、曲げ癖を付けるのに必要な力に関する評価結果と、素線間における抵抗のばらつきに関する評価結果がいずれも「○」評価以上であり、かつ、いずれかの評価結果が「◎」評価であったものを、曲げ癖の付け易さと、接続部材との間での高い接続信頼性の両方において良好であると判定して「○」とした。他方で、曲げ癖を付けるのに必要な力に関する評価結果と、素線間における抵抗のばらつきに関する評価結果のいずれかで「×」評価であったものを、曲げ癖の付け易さと、接続部材との間での高い接続信頼性の少なくともいずれかにおいて劣る(不可)と判定して「×」とした。 Here, the evaluation results regarding the force required to create the bending habit and the evaluation results regarding the resistance variation between the strands were both evaluated as "⊚", and the easiness of creating the bending habit and the connection member. It was judged to be excellent in both high connection reliability between and was evaluated as "⊚". In addition, both the evaluation results regarding the force required to impart the bending habit and the evaluation results regarding the variation in resistance between the wires were "○" or higher, and one of the evaluation results was "◎". Those that did not have a tendency to bend were judged to be good in terms of both easiness of bending and high reliability of connection with the connection member, and were evaluated as "good". On the other hand, those evaluated as "x" in either the evaluation result regarding the force required to form the bending habit or the evaluation result regarding the resistance variation between the wires were evaluated as the ease of forming the bending habit and the connecting member. It was judged to be inferior (impossible) in at least one of the high connection reliability between and and was set as "x".

Figure 0007316838000002
Figure 0007316838000002

表1~2から明らかなように、0.2%耐力が50~120MPaであるアルミニウム系素線を用いるとともに、アルミニウム系素線の単位断面部のアスペクト比の平均値が4.2~13.0の範囲となる撚線導体(本発明例1~11)では、曲げ癖を付けるのに必要な力に関する評価結果と、素線間における抵抗のばらつきに関する評価結果がいずれも「○」評価以上であり、かつ、いずれかの評価結果が「◎」評価であったため、曲げ癖の付け易さと、接続部材との間での高い接続信頼性の両方において良好であることが分かった。 As is clear from Tables 1 and 2, aluminum-based wires having a 0.2% proof stress of 50 to 120 MPa were used, and the average aspect ratio of the unit cross-sectional portion of the aluminum-based wires was 4.2 to 13.5. In the stranded conductors in the range of 0 (Examples 1 to 11 of the present invention), both the evaluation results regarding the force required to create a bending habit and the evaluation results regarding the variation in resistance between strands were "○" or higher. In addition, since one of the evaluation results was "⊚" evaluation, it was found that both the ease of forming a bending habit and the high connection reliability with the connection member were good.

他方で、アルミニウム系素線の単位断面部のアスペクト比の平均値が2.5と小さい比較例1の撚線導体では、素線間における抵抗のばらつきに関する評価結果は「〇」であったものの、曲げ癖を付けるのに必要な力に関する評価結果が「×」であり、曲げ癖の付け易さにおいて劣るものであった。また、アルミニウム系素線の単位断面部のアスペクト比の平均値が19.5と大きい比較例2の撚線導体では、曲げ癖を付けるのに必要な力に関する評価結果は「〇」であったものの、素線間における抵抗のばらつきに関する評価結果が「×」であり、接続部材との間での接続信頼性において劣るものであった。また、撚線導体を構成するアルミニウム系素線の0.2%耐力が275MPaと大きい比較例3の撚線導体では、素線間における抵抗のばらつきに関する評価結果は「〇」であったものの、曲げ癖を付けるのに必要な力に関する評価結果が「×」であり、曲げ癖の付け易さにおいて劣るものであった。 On the other hand, in the stranded conductor of Comparative Example 1 in which the average value of the aspect ratio of the unit cross section of the aluminum-based strands was as small as 2.5, the evaluation result regarding the variation in resistance between the strands was "O". , the evaluation result of the force required to form the bending habit was "x", indicating that the ease of forming the bending habit was inferior. In addition, in the stranded conductor of Comparative Example 2, in which the average value of the aspect ratio of the unit cross-sectional portion of the aluminum-based strands is as large as 19.5, the evaluation result regarding the force required to impart the bending habit was "◯". However, the evaluation result regarding the variation in resistance between the strands was "x", and the connection reliability with the connection member was inferior. In addition, in the stranded conductor of Comparative Example 3, the 0.2% yield strength of the aluminum-based strands constituting the stranded conductor was as large as 275 MPa, and although the evaluation result regarding the variation in resistance between strands was "O", The evaluation result for the force required to form the bending habit was "x", indicating that the ease of forming the bending habit was inferior.

上記結果より、0.2%耐力が50~120MPaであるアルミニウム系素線を用いるとともに、アルミニウム系素線の単位断面部のアスペクト比の平均値が4.2~13.0の範囲となる撚線導体(本発明例1~11)では、比較例1~3の撚線導体と比較して、曲げ癖の付け易さと、接続部材との間での高い接続信頼性の両方において良好であることが分かった。 From the above results, an aluminum-based wire having a 0.2% proof stress of 50 to 120 MPa is used, and the average aspect ratio of the unit cross-sectional portion of the aluminum-based wire is in the range of 4.2 to 13.0. Compared to the stranded conductors of Comparative Examples 1 to 3, the wire conductors (Examples 1 to 11 of the present invention) are good in both ease of bending and high connection reliability with the connection member. I found out.

1 被覆電線
2 粗面化領域
3 端子付き被覆電線
4 分岐被覆電線
5 補線付き被覆電線
6 端子付き分岐被覆電線
7 補線付き分岐被覆電線
8 固定用冶具
9 巻き付け冶具
10 撚線導体
11 中心導体線
12 外周素線
13 絶縁被覆
14 シース
15 内層側領域
16 外層側領域
30 端子
31 内部空間
32 係止部
40 第2被覆電線
41 分岐コネクタ
42 第1圧着部
43 第2圧着部
50 第3被覆電線
52 延長コネクタ
53 第3圧着部
54 第4圧着部
121 内層アルミニウム系素線
122 外層アルミニウム系素線
123 第1単位断面部
124、124a、124b 第2単位断面部
126 最外層アルミニウム系素線
C 仮想中間線
D 径方向
E 長手方向
O 仮想中心線
P1 第1単位断面部の長手方向中心位置
P2 第2単位断面部の長手方向中心位置
W 単位断面部の径方向寸法
X 単位断面部の長手方向寸法
Z 粗面化領域の長手方向寸法
L1 最小線径直径
L2 最大線径直径
d 第1単位断面部の長手方向中心位置から第2単位断面部の長手方向中心位置までの寸法
r 撚線導体の半径
Reference Signs List 1 Covered wire 2 Roughened region 3 Covered wire with terminal 4 Covered branch wire 5 Covered wire with auxiliary wire 6 Covered branch wire with terminal 7 Covered branch wire with auxiliary wire 8 Fixing jig 9 Winding jig 10 Twisted wire conductor 11 Central conductor Wire 12 Peripheral wire 13 Insulating coating 14 Sheath 15 Inner layer side area 16 Outer layer side area 30 Terminal 31 Internal space 32 Locking portion 40 Second covered wire 41 Branch connector 42 First crimping portion 43 Second crimping portion 50 Third covered wire 52 Extension connector 53 Third crimp portion 54 Fourth crimp portion 121 Inner layer aluminum-based wire 122 Outer layer aluminum-based wire 123 First unit cross-sectional portions 124, 124a, 124b Second unit cross-sectional portion 126 Outermost layer aluminum-based wire C Virtual Intermediate line D Radial direction E Longitudinal direction O Imaginary center line P1 Longitudinal center position of the first unit cross section P2 Longitudinal center position of the second unit cross section W Radial dimension of the unit cross section X Longitudinal dimension of the unit cross section Z Lengthwise dimension of roughened region L1 Minimum wire diameter L2 Maximum wire diameter d Dimension from the longitudinal center position of the first unit cross section to the longitudinal center position of the second unit cross section r Radius of stranded conductor

Claims (7)

アルミニウム系素線からなる中心導体線の周りに複数の層を形成するように複数のアルミニウム系素線を撚り合わせて形成してなる撚線導体であって、
前記複数の層のうち隣接した層にそれぞれ位置するアルミニウム系素線同士の撚り方向が、互いに交差する方向に配置され、
前記アルミニウム系素線の0.2%耐力が50~120MPaであり、
前記中心導体線の仮想中心線を含む前記撚線導体の長手方向断面で見て、前記複数の層に位置するアルミニウム系素線は、前記撚線導体の径方向寸法に対する長手方向寸法の比であるアスペクト比の平均値が4.2~13.0の範囲である単位断面部を有
前記撚線導体の長手方向断面で見て、前記撚線導体の半径の50%に相当する位置を結んだ2本の仮想中間線を境界線として、前記長手方向断面を、前記2本の仮想中間線で区画された撚線導体の内層側領域と、前記2本の仮想中間線のそれぞれと前記撚線導体の外周面とで区画された撚線導体の外層側領域とに区分するとき、前記内層側領域に位置するアルミニウム系素線の前記単位断面部のアスペクト比の平均値が、前記外層側領域に位置するアルミニウム系素線の前記単位断面部のアスペクト比の平均値よりも大きい、撚線導体。
A stranded conductor formed by twisting a plurality of aluminum-based wires so as to form a plurality of layers around a central conductor wire made of an aluminum-based wire,
The twist directions of the aluminum-based wires located in adjacent layers among the plurality of layers are arranged in directions that intersect each other,
The 0.2% yield strength of the aluminum-based wire is 50 to 120 MPa,
When viewed in a longitudinal cross-section of the stranded conductor including the virtual center line of the central conductor wire, the aluminum-based strands located in the plurality of layers have a longitudinal dimension with respect to a radial dimension of the stranded conductor. Having a unit cross section with an average aspect ratio in the range of 4.2 to 13.0,
When viewed in the longitudinal section of the stranded conductor, two imaginary intermediate lines connecting positions corresponding to 50% of the radius of the stranded conductor are used as boundary lines, and the longitudinal section is defined by the two imaginary lines. When dividing into an inner layer side area of the stranded conductor partitioned by the intermediate line and an outer layer side area of the stranded conductor partitioned by each of the two virtual intermediate lines and the outer peripheral surface of the stranded conductor, The average value of the aspect ratios of the unit cross-sectional portions of the aluminum-based wires located in the inner layer side region is larger than the average value of the aspect ratios of the unit cross-sectional portions of the aluminum-based wires located in the outer layer side region. Stranded conductor.
前記撚線導体の長手方向断面で見て、前記複数の層を形成する前記複数のアルミニウム系素線のうち、前記撚線導体の径方向内外で隣接する2層にそれぞれ位置するアルミニウム系素線同士は、径方向内側に位置するアルミニウム系素線の1つの第1単位断面部に対して、径方向外側に位置するアルミニウム系素線の2つ以上の第2単位断面部が重なり合う位置関係にあり、かつ、前記2つ以上の第2単位断面部のうち、前記第1単位断面部との長手方向の重なり割合が最も大きい第2単位断面部の長手方向中心位置が、前記第1単位断面部の長手方向中心位置から、前記第1単位断面部の長手方向寸法の35%に相当する寸法の範囲内にある、請求項に記載の撚線導体。 Among the plurality of aluminum-based strands forming the plurality of layers, the aluminum-based strands are located in two layers adjacent to each other in the radial direction of the stranded conductor when viewed in a cross section in the longitudinal direction of the stranded conductor. The positional relationship is such that two or more second unit cross-sectional portions of the aluminum-based wire positioned radially outward overlap one first unit cross-sectional portion of the aluminum-based wire positioned radially inward. and, of the two or more second unit cross sections, the longitudinal center position of the second unit cross section having the largest longitudinal overlap ratio with the first unit cross section is the first unit cross section. 2. The stranded conductor according to claim 1 , which is within a dimension range corresponding to 35% of the longitudinal dimension of said first unit cross section from the longitudinal center position of said portion. 前記撚線導体は、接続部材が圧着される被圧着部分の外周面を形成する、最外層に位置する最外層アルミニウム系素線の表面部分に、算術平均高さ(Sa)が0.4μm以上500μm以下の粗面化領域を有する、請求項1または2に記載の撚線導体。 The stranded conductor has an arithmetic mean height (Sa) of 0.4 μm or more on the surface portion of the outermost aluminum-based strand located in the outermost layer, which forms the outer peripheral surface of the crimped portion to which the connection member is crimped. 3. The stranded conductor according to claim 1, having a roughened area of 500 [mu]m or less. 前記最外層アルミニウム系素線は、丸線または扁平線であり、かつ前記被圧着部分の最小線径に対する最大線径の比が、平均で1.1以上2.0以下である、請求項に記載の撚線導体。 4. The outermost layer aluminum-based wire is a round wire or a flat wire, and the ratio of the maximum wire diameter to the minimum wire diameter of the crimped portion is 1.1 or more and 2.0 or less on average. A stranded conductor as described in . 円筒形の巻き付け冶具に対し、前記撚線導体に荷重を負荷して巻き付けてから除荷したときに、前記撚線導体に曲率半径110mmの曲げ癖を付けるのに必要な荷重が、前記撚線導体の横断面積をα[mm]としたときに、0.025α[N]以下である、請求項1からのいずれか1項に記載の撚線導体。 When a load is applied to the stranded wire conductor to a cylindrical winding jig, the stranded wire is wound and then unloaded, the load required to give the stranded wire a bending habit with a curvature radius of 110 mm is the stranded wire The stranded conductor according to any one of claims 1 to 4 , wherein the cross-sectional area of the conductor is 0.025α[N] or less when α[mm 2 ]. 請求項1からのいずれか1項に記載の撚線導体と、
前記撚線導体の外周面に形成された絶縁被覆とを有する被覆電線。
A stranded conductor according to any one of claims 1 to 5 ;
and an insulating coating formed on the outer peripheral surface of the stranded conductor.
請求項に記載の被覆電線と、前記被覆電線に圧着固定した接続部材とを有し、
前記アルミニウム系素線と前記接続部材との間における抵抗値の標準偏差σが、前記抵抗値の平均の25%以下である、接続部材付き被覆電線。
A covered electric wire according to claim 6 and a connection member crimped and fixed to the covered electric wire,
A covered wire with a connection member, wherein a standard deviation σ of resistance values between the aluminum-based wire and the connection member is 25% or less of an average of the resistance values.
JP2019095588A 2019-05-21 2019-05-21 Stranded conductors and coated wires Active JP7316838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019095588A JP7316838B2 (en) 2019-05-21 2019-05-21 Stranded conductors and coated wires

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019095588A JP7316838B2 (en) 2019-05-21 2019-05-21 Stranded conductors and coated wires

Publications (2)

Publication Number Publication Date
JP2020191223A JP2020191223A (en) 2020-11-26
JP7316838B2 true JP7316838B2 (en) 2023-07-28

Family

ID=73454673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019095588A Active JP7316838B2 (en) 2019-05-21 2019-05-21 Stranded conductors and coated wires

Country Status (1)

Country Link
JP (1) JP7316838B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016204739A (en) 2015-04-28 2016-12-08 株式会社オートネットワーク技術研究所 Aluminum alloy strand, aluminum alloy twisted wire and manufacturing method therefor, electric wire for automobile, and wire harness
WO2017086406A1 (en) 2015-11-17 2017-05-26 古河電気工業株式会社 Twisted wire conductor, and twisted wire conductor production method
JP2018009211A (en) 2016-07-13 2018-01-18 古河電気工業株式会社 Aluminum alloy wire material, aluminum alloy twisted wire, covered conductor and wire harness
JP2018056102A (en) 2016-09-30 2018-04-05 住友電気工業株式会社 Wire
JP2018070961A (en) 2016-10-31 2018-05-10 住友電気工業株式会社 Aluminum alloy wire, aluminum alloy twisted wire, coated electrical wire, and electrical wire with terminal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016204739A (en) 2015-04-28 2016-12-08 株式会社オートネットワーク技術研究所 Aluminum alloy strand, aluminum alloy twisted wire and manufacturing method therefor, electric wire for automobile, and wire harness
WO2017086406A1 (en) 2015-11-17 2017-05-26 古河電気工業株式会社 Twisted wire conductor, and twisted wire conductor production method
JP2018009211A (en) 2016-07-13 2018-01-18 古河電気工業株式会社 Aluminum alloy wire material, aluminum alloy twisted wire, covered conductor and wire harness
JP2018056102A (en) 2016-09-30 2018-04-05 住友電気工業株式会社 Wire
JP2018070961A (en) 2016-10-31 2018-05-10 住友電気工業株式会社 Aluminum alloy wire, aluminum alloy twisted wire, coated electrical wire, and electrical wire with terminal

Also Published As

Publication number Publication date
JP2020191223A (en) 2020-11-26

Similar Documents

Publication Publication Date Title
KR101710846B1 (en) Crimp terminal and crimp-terminal-fitted electrical wire
JP6114331B2 (en) Bending resistant wire and wire harness
US20110036613A1 (en) Electronic wire and method of manufacturing the same
JP5928305B2 (en) Shielded cable
JP6634396B2 (en) Aluminum composite stranded conductor, aluminum composite stranded electric wire and wire harness
JP2007317477A (en) Twisted-wire conductor
JP7316838B2 (en) Stranded conductors and coated wires
JP6775283B2 (en) Bending resistant wire and wire harness
JP7265324B2 (en) insulated wire, cable
JP7295698B2 (en) Twisted wire conductors, covered wires, covered wires with terminals, covered branch wires, covered wires with auxiliary wires, covered branch wires with terminals and covered branch wires with auxiliary wires
US10826201B2 (en) Conductive member
JP6713712B2 (en) Multi-core cable
JP6263053B2 (en) Cable strands and cables
JP4866545B2 (en) Cable and twisted cable
JP5531470B2 (en) Flat cable
JP2021157968A (en) Flat electric wire and method for manufacturing the same, flat electric wire comprising terminal and wire harness
JP7426902B2 (en) Electric wire with terminal and method for manufacturing electric wire with terminal
JP7242148B2 (en) Compression stranded conductors, insulated wires and wire harnesses
JP7393743B2 (en) Electric wires and electric wires with terminals
WO2022239853A1 (en) Wire conductor, insulated wire, and wire harness
JP2016212964A (en) Bending-resistant electric wire and wire harness
JP7254680B2 (en) Electric wire with terminal and manufacturing method thereof
JP7427637B2 (en) heat resistant wire
JP2007059113A (en) Electric wire for automobile
JPH0797456B2 (en) Method of manufacturing conductor for wiring

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230718

R151 Written notification of patent or utility model registration

Ref document number: 7316838

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151