JP7316343B2 - パターン分解を通してデータ変換を推論するためのシステムおよび方法 - Google Patents
パターン分解を通してデータ変換を推論するためのシステムおよび方法 Download PDFInfo
- Publication number
- JP7316343B2 JP7316343B2 JP2021191062A JP2021191062A JP7316343B2 JP 7316343 B2 JP7316343 B2 JP 7316343B2 JP 2021191062 A JP2021191062 A JP 2021191062A JP 2021191062 A JP2021191062 A JP 2021191062A JP 7316343 B2 JP7316343 B2 JP 7316343B2
- Authority
- JP
- Japan
- Prior art keywords
- data
- pipeline
- hub
- input
- dataflow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/40—Transformation of program code
- G06F8/41—Compilation
- G06F8/43—Checking; Contextual analysis
- G06F8/433—Dependency analysis; Data or control flow analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/10—File systems; File servers
- G06F16/14—Details of searching files based on file metadata
- G06F16/144—Query formulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/21—Design, administration or maintenance of databases
- G06F16/211—Schema design and management
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/23—Updating
- G06F16/2308—Concurrency control
- G06F16/2315—Optimistic concurrency control
- G06F16/2322—Optimistic concurrency control using timestamps
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/23—Updating
- G06F16/2358—Change logging, detection, and notification
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/25—Integrating or interfacing systems involving database management systems
- G06F16/254—Extract, transform and load [ETL] procedures, e.g. ETL data flows in data warehouses
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/40—Information retrieval; Database structures therefor; File system structures therefor of multimedia data, e.g. slideshows comprising image and additional audio data
- G06F16/43—Querying
- G06F16/435—Filtering based on additional data, e.g. user or group profiles
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/18—Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/042—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
- G06F3/0428—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means by sensing at the edges of the touch surface the interruption of optical paths, e.g. an illumination plane, parallel to the touch surface which may be virtual
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/048—Interaction techniques based on graphical user interfaces [GUI]
- G06F3/0481—Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
- G06F3/0482—Interaction with lists of selectable items, e.g. menus
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0628—Interfaces specially adapted for storage systems making use of a particular technique
- G06F3/0646—Horizontal data movement in storage systems, i.e. moving data in between storage devices or systems
- G06F3/0647—Migration mechanisms
- G06F3/0649—Lifecycle management
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F40/00—Handling natural language data
- G06F40/30—Semantic analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/10—Requirements analysis; Specification techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/30—Creation or generation of source code
- G06F8/34—Graphical or visual programming
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/40—Transformation of program code
- G06F8/41—Compilation
- G06F8/44—Encoding
- G06F8/445—Exploiting fine grain parallelism, i.e. parallelism at instruction level
- G06F8/4452—Software pipelining
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computing arrangements using knowledge-based models
- G06N5/02—Knowledge representation; Symbolic representation
- G06N5/022—Knowledge engineering; Knowledge acquisition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computing arrangements using knowledge-based models
- G06N5/04—Inference or reasoning models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computing arrangements using knowledge-based models
- G06N5/04—Inference or reasoning models
- G06N5/046—Forward inferencing; Production systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0637—Strategic management or analysis, e.g. setting a goal or target of an organisation; Planning actions based on goals; Analysis or evaluation of effectiveness of goals
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5061—Partitioning or combining of resources
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Software Systems (AREA)
- Databases & Information Systems (AREA)
- Mathematical Physics (AREA)
- Business, Economics & Management (AREA)
- Human Resources & Organizations (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Computing Systems (AREA)
- Computational Linguistics (AREA)
- Strategic Management (AREA)
- Economics (AREA)
- Entrepreneurship & Innovation (AREA)
- Educational Administration (AREA)
- Human Computer Interaction (AREA)
- Operations Research (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Optimization (AREA)
- Mathematical Analysis (AREA)
- Computational Mathematics (AREA)
- Marketing (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- Quality & Reliability (AREA)
- Development Economics (AREA)
- Multimedia (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Medical Informatics (AREA)
- Library & Information Science (AREA)
- Game Theory and Decision Science (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Evolutionary Biology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Probability & Statistics with Applications (AREA)
Description
本特許文献の開示の一部には、著作権保護の対象となるものが含まれている。著作権者は、この特許文献または特許開示の何者かによる複製が、特許商標庁の特許ファイルまたは記録にある限り、それに対して異議を唱えないが、そうでなければ、いかなる場合もすべての著作権を留保する。
本願は、2016年8月22日に出願され「SYSTEM AND METHOD FOR AUTOMATED MAPPING OF DATA TYPES BETWEEN CLOUD AND DATABASE SERVICES」と題された米国仮特許出願第
62/378,143号、2016年8月22日に出願され「SYSTEM AND METHOD FOR DYNAMIC, INCREMENTAL RECOMMENDATIONS WITHIN REAL-TIME VISUAL SIMULATION」と題され
た米国仮特許出願第62/378,146号、2016年8月22日に出願され「SYSTEM
AND METHOD FOR INFERENCING OF DATA TRANSFORMATIONS THROUGH PATTERN DECOMPOSITION」と題された米国仮特許出願第62/378,147号、2016年8月22日に出願
され「SYSTEM AND METHOD FOR ONTOLOGY INDUCTION THROUGH STATISTICAL PROFILING AND
REFERENCE SCHEMA MATCHING」と題された米国仮特許出願第62/378,150号、2016年8月22日に出願され「SYSTEM AND METHOD FOR METADATA-DRIVEN EXTERNAL INTERFACE GENERATION OF APPLICATION PROGRAMMING INTERFACES」と題された米国仮特許出
願第62/378,151号、および、2016年8月22日に出願され「SYSTEM AND METHOD FOR DYNAMIC LINEAGE TRACKING AND RECONSTRUCTION OF COMPLEX BUSINESS ENTITIES WITH HIGH-LEVEL POLICIES」と題された米国仮特許出願第62/378,152号に
基づく優先権を主張し、上記出願各々を本明細書に引用により援用する。
本発明の実施形態は、概して各種ソースから得たデータを統合する方法に関し、具体的にはパターン分解を通してデータ変換を推論することに関する。
現代のコンピューティング環境の多くは、大量のデータをさまざまなタイプのソフトウェアアプリケーション間で共有する機能を必要とする。しかしながら、分散アプリケーションは、たとえばサポートされるそれぞれのデータ型またはそれぞれの実行環境の相違のために、その構成が大幅に異なっている場合がある。アプリケーションの構成は、たとえば、そのアプリケーションプログラミングインターフェイス、ランタイム環境、デプロイ手法、ライフサイクル管理、またはセキュリティ管理に応じて異なり得る。
各種実施形態に従い、本明細書では、データの流れ(データフロー(dataflow)、DF)の管理および複合データフローソフトウェアアプリケーション(データフローアプリケーション、パイプライン)の構築に使用される機械学習(machine learning:ML、データフロー機械学習、DFML)を活用する、データ統合またはその他のコンピューティング環境において使用されるシステム(データ人工知能(Artificial Intelligence)システ
ム、データAIシステム)について説明する。ある実施形態に従うと、本システムは、ソフトウェアアプリケーションのデータフローの関数分解から特定されたパターンに基づいて、入力データに対するアクションおよび変換をレコメンドするためのサービスを提供することができ、これは、後のアプリケーションにおいて上記データフローに可能な変換を判定することを含む。データフローは、データの変換、述語、およびデータに適用されるビジネスルールを記述するモデルと、データフロー内で使用される属性とに分解することができる。
これまでの説明は、他の実施形態およびその特徴とともに、明細書および請求項を含む以下の記載ならびに添付の図面を参照することによって明らかになるであろう。以下の記載では、説明を目的とする具体的な詳細事項が、本発明のさまざまな実施形態の十分な理解を得るために記載されている。しかしながら、さまざまな実施形態はこれらの具体的な詳細事項なしで実施できることは明らかであろう。明細書および請求項を含む以下の記載ならびに添付の図面は、限定することを意図したものではない。
各種実施形態に従い、本明細書では、データの流れ(データフロー、DF)の管理およ
び複合データフローソフトウェアアプリケーション(データフローアプリケーション、パイプライン)の構築に使用される機械学習(ML、データフロー機械学習、DFML)を
活用する、データ統合またはその他のコンピューティング環境において使用されるシステム(データ人工知能システム、データAIシステム)について説明する。
境を提供するグラフィカルユーザインターフェイスと、ソフトウェア開発コンポーネントとを含み得る。これは、入力HUBからアクセスされたデータに対するセマンティックアクションの実行のために、当該データに対応付けられた意味またはセマンティクスの理解に基づいてリアルタイムレコメンデーションを提供することを含む。
(このデータはどのようにして取得/処理されたか)、セキュリティ(誰がこのデータの責任者だったか)、分類(このデータは何に関連するデータか)、影響力(impact)(このデータがビジネスにどれほどの影響があるか)、保持時間(retention)(このデータ
はどれだけの時間存続すべきか)、および有効性(このデータは解析/処理のために除外
される/含まれるべきか否か)である。よって、これらはライフサイクルの決定およびデータフローのレコメンデーションにおいて使用することができる。
たは利用することができる。
ポートし、また、リアルタイムデータ解析のためにリアルタイムデータストリームに対して作業することができるパイプラインまたはアプリケーションの構築もサポートする。パイプラインの設計変更に伴うデータの再処理は、デプロイされたパイプラインのアップグレードのローリングを通して処理することができる。ある実施形態に従うと、パイプラインは、異なるバッチレイヤおよびリアルタイムレイヤ内のリアルタイムデータとバッチデータの処理に対応することができるLambdaアプリケーションとして提供することができる。
であり、セマンティックビジネス型として機能することができ、データコンポーネントとして格納される、たとえばHUB内のテーブルである。データセットまたはエンティティは、属性たとえばテーブル内のカラム、および、データ型たとえばストリングまたは整数とともに、その他のデータセットまたはエンティティとの関係を有することができる。ある実施形態に従うと、当該システムは、たとえばエンリッチ化、準備、変換、モデルトレーニング、またはスコアリング動作中、すべてのタイプのデータ(たとえば構造化、半構造化、または非構造化データ)の、スキーマに依存しない処理をサポートする。
トの動作をサポートすることができ、データフローアプリケーション(たとえばパイプライン、Lambdaアプリケーション)によるデータの連続処理に基づいてレコメンデーションを提供することにより、たとえば、既存のたとえばパイプラインの修正をレコメンドして処理中のデータを活用することができる。データAIサブシステムは、入力データの量を解析し連続的にドメインナレッジモデルをアップデートすることができる。データフローアプリケーション(たとえばパイプライン)の処理中、たとえばパイプラインの各段は、データAIサブシステムが提供するレコメンドされた代案または選択肢に基づいて、アップデートされたドメインモデルおよびユーザからの入力を処理することにより、たとえば、レコメンドされたセマンティックアクションを受容または拒否することができる。
ンポーネントであり、データフローアプリケーション(たとえばパイプライン、Lambdaアプリケーション)の設計、作成、モニタリング、および管理に関連するイベントをコーディネートする。たとえば、イベントコーディネータは、HUBからデータ(たとえば既知のデータ型に従う新たなデータ)のパブリッシュされた通知を受信し、このHUBからのデータを正規化し、正規化したデータを、サブスクライバのセットに対し、たとえばパイプラインまたはその他の下流のコンシューマによる使用のために、提供する。また、イベントコーディネータは、システム内の状態トランザクションの通知を、一時スライスの作成およびスキーマ進化を含む、系統トラッキングまたはロギングに使用するために、受信することもできる。
カルユーザインターフェイスを提供することにより、セマンティックアクションのパイプラインとしてのLambdaアプリケーションまたはパイプラインのライフサイクルをユーザが作成、モニタリング、および管理できるようにする、設計時システムツール。たとえばパイプラインやLambdaアプリケーションをユーザが設計できるようにするグラフィカルユーザインターフェイス(UI、GUI)またはスタジオ。
)が、HUB内のデータセットまたはエンティティに対し、別のエンティティへのプロジェクションのために実行できるアクション。セマンティックアクションは、データセット入力を受信しデータセット出力を生成できる異なるモデルまたはHUBに使用可能な高次関数として機能する。セマンティックアクションはマッピングを含み得る。セマンティックアクションは、たとえばパイプラインまたはLambdaアプリケーションの一部としてのデータの処理に応じて、たとえばデータAIサブシステムによって連続的にアップデート可能なマッピングを含み得る。
ティティと別の(たとえばターゲット)データセットまたはエンティティとの間のセマンティックアクションのリコメンドされるマッピングである。たとえば、データAIサブシステムはサービスとして自動マッピングを提供することができる。自動マッピングは、HUBに対応付けられたメタデータまたはデータ入力の機械学習解析に基づいて、メタデータ、スキーマ、およびデータセットの統計プロファイリングにより駆動することができる。
ばその入力および出力)におけるパイプラインたとえばLambdaアプリケーションを検証し、パイプラインを永続化(persist)し、パイプライン、Lambdaアプリケーションを実行
のためにシステムに(たとえばSparkクラスタに)デプロイすることを制御し、その後、
アプリケーションのライフサイクルまたは状態の管理に使用できる、設計時システムコンポーネント。
し、例としてパイプライン、Lambdaアプリケーションの実行に使用される、実行時システムコンポーネント。マルチテナント環境において、計算レイヤ内のノードは、テナントに対して、これらのテナントによるパイプラインまたはLambdaアプリケーションの実行において使用されるために、割り当てることができる。
まなコンポーネント間で共有できるようにする、キューまたはその他論理ストレージを提供する実行時システムコンポーネント、たとえばKafka環境。マルチテナント環境におい
て、スケーラブルI/Oレイヤは複数のテナント間で共有できる。
を取り込むこと。
図1は、ある実施形態に係る、データフロー人工知能を提供するためのシステムを示す図である。
ン解析処理システム(on-line analytical processing system:OLAP))を含み得る。このような例において、たとえばデータ管理システム等のソースが提供するデータは、構造化データであっても半構造化データであってもよい。
の出力ターゲット187を含み得る。このシステムが提供するデータ出力は、出力HUB
においてアクセス可能なデータフローアプリケーション(たとえばパイプライン、Lambdaアプリケーション)のために生成することができる。
クラウドサービス、Big Data Discoveryクラウドサービス、およびBusiness Intelligenceクラウドサービスを含み得る。
きる。
力(I/O)レイヤ174と、分散処理システムまたは計算レイヤ176とを含み得る。実行時において(たとえば1つ以上の入力HUB110からデータがインジェストされたときに)、イベントのためにエッジレイヤがデータを受けることができる。このイベントによってデータは生成される。
、データをデータレイクにサンプリングしその後このデータを出力HUBに出力することができる。分散処理システムは、データを起動して処理するためにスケーラブル入出力レイヤと通信することができる。
先に述べたように、ある実施形態に従うと、このシステムは、イベント駆動型アーキテクチャ(EDA)コンポーネントまたはイベントコーディネータを含み得る。これは、設計時システムと実行時システムとの間で動作することにより、データフローアプリケーション(たとえばパイプライン、Lambdaアプリケーション)の設計、作成、モニタリング、および管理に関連するイベントを調整する。
マによって、システムのさまざまなコンポーネントに伝達することができる。たとえば、例として外部データ212(たとえばS3、OSCS、またはOGGデータ)等のデータおよび/またはイベント、または、グラフィカルユーザインターフェイス214(たとえばブラウザまたはDFML UI)からの入力は、イベントコーディネータを介して、その他のコンポーネント、たとえば上述のアプリケーション実行時216、データレイク、システムHUB、データAIサブシステム、アプリケーション設計サービス、および/またはインジェスト220、パブリッシュ230、スケジューリング240、またはその他
のコンポーネントに、伝達することができる。
ある実施形態に従うと、イベントタイプは、システムにとって重要なイベントの状態変化を規定する。それはたとえば、HUBの作成、データフローアプリケーションたとえばパイプライン、Lambdaアプリケーションの修正、データセットまたはエンティティのためのデータのインジェスト、またはターゲットHUBに対するデータのパブリッシュ等である。データフォーマットの一例と、さまざまなイベントタイプの例を、以下と表2に示す。
ある実施形態に従うと、イベンティングエンティティは、イベントのパブリッシャおよび/またはサブスクライバであってもよい。たとえば、イベンティングエンティティは、1つ以上のイベントをパブリッシュするために登録することができる、および/または1つ以上のイベントのコンシューマとなることができる。これは、パブリッシュに対するアクノレッジを通知または送信しサブスクライブされたイベントの処理を委任するのに使用される、エンドポイントまたはコールバックURLの登録を含む。イベンティングエンティティの例は、メタデータサービス、インジェストサービス、システムHUBアーティファクト、およびパイプライン、Lambdaアプリケーションを含み得る。データフォーマットの一例と、さまざまなイベンティングエンティティの例を、以下と表3に示す。
ある実施形態に従うと、イベントは、パブリッシャとして登録されたイベンティングエンティティに対応付けられたイベントタイプのインスタンスであり、サブスクライバ(イベンティングエンティティ)を有し得る。たとえば、メタデータサービスは、パブリッシュのためにHUB作成イベントを登録することができ、このイベント用のイベントインスタンス(作成したHUB1つ当たり1つのインスタンス)のうち1つ以上をパブリッシュすることができる。さまざまなイベントの例が表4に示される。
ある実施形態に従うと、以下の例は、イベントタイプの作成、パブリッシュイベントの登録、サブスクライバの登録、イベントのパブリッシュ、イベントタイプの取得、イベントタイプのためのパブリッシャの取得、およびイベントタイプのためのサブスクライバの取得を示す。
ム内のイベントをパブリッシュまたはサブスクライブすることができる。たとえばインジェストサービス、メタデータサービス、およびアプリケーション設計サービス等のサービスエンドポイントは、アクノレッジ、通知、エラー、または処理のためにスタティックなエンドポイントとともに、パブリッシュまたはサブスクライブイベントであってもよい。DFMLアーティファクト(たとえばDFMLEntity, DFMLLambdaApp, DFMLHub)も、イベンティングオブジェクトとして登録することができ、これらのタイプのインスタンスは、イベンティングオブジェクトとしての登録なしでイベントをパブリッシュまたはサブスクライブすることができる。
アーキテクチャは、実際のURLを、DFMLアーティファクトインスタンスURLを置換することによって導き出す。たとえば、notificationEndpointURLが、http://den00tnk:9021/<publisherURL>/notificationとして登録され、メッセージの一部として特定され
たパブリッシャURLがhubs/1234/entities/3456である場合、通知のために呼び出され
るURLは、http://den00tnk:9021/ hubs/1234/entities/3456 /notificationであろう
。POSTはUUID、たとえば「185cb819-7599-475b-99a7-65e0bd2ab947」を返す。
ある実施形態に従うと、パブリッシュイベントは次のように登録できる。
ある実施形態に従うと、サブスクライバは次のように登録できる。
、たとえば「1d542da1-e18e-4590-82c0-7fe1c55c5bc8」を返す。
ある実施形態に従うと、イベントは以下のようにパブリッシュすることができる。
パブリッシュするイベンティングオブジェクトのインスタンスをチェックするために使用される。また、パブリッシャURLは、サブスクライバがメッセージの処理に成功したときに通知URLを導き出すために使用される。このパブリッシュは、パブリッシュされたイベントの一部であったメッセージ本体を返す。
ある実施形態に従うと、イベントタイプは以下のように求めることができる。
ある実施形態に従うと、イベントタイプ用のサブスクライバは以下のように求めることができる。
先に述べたように、各種実施形態に従うと、本システムは、データのフロー(データフロー、DF)の管理および複合データフローソフトウェアアプリケーション(たとえばデータフローアプリケーション、パイプライン、Lambdaアプリケーション)の構築に用いられる機械学習(ML、データフロー機械学習、DFML)を活用する、データ統合またはその他のコンピューティング環境で使用することができる。
図3に示すように、ある実施形態に従うと、DFMLデータフロー260の処理は、インジェストステップ262を含む複数のステップを含み得る。インジェストステッにおいて、データを、さまざまなソース、たとえばSalesforce(SFDC)、S3、またはDBaaSから、インジェストすることができる。
除、標準化、またはエンリッチ化することによって準備することができる。
示されている複数のソース282からのコンテンツを、OSCS(Oracle Storage Cloud
Service)内のいくつかのファイルとともに取り込んで、この情報を、所望のコンテンツの解析に使用できるようにブレンドし、ターゲットキューブおよびディメンションを導き出し、ブレンドしたコンテンツをターゲット構造にマッピングし、このコンテンツがディメンションモデルとともにオラクル・ビジネス・インテリジェンス・クラウドサービス(Oracle Business Intelligence Cloud Service:BICS)環境で使用できるようにすることであり、これは、インジェスト、変換266A/266B、モデル、オーケストレート292、およびデプロイ294ステップを含む。
さらに調査することができる。これは、統合フローにおいて後にレコメンデーションを導き出すのに役立ち得る。
することができる。
ある実施形態に従うと、アダプタは、さまざまなエンドポイントへの接続およびさまざまなエンドポイントからのデータのインジェストを可能にし、アプリケーションまたはソースタイプに固有である。
ある実施形態に従うと、本システムは、データに対して実行できる可能ないくつかのアクションの中から最も関連性が高いものを予測/示唆する専門フィルタリングシステムとして動作するレコメンデーションエンジンまたはナレッジサービスを含み得る。
ある実施形態に従うと、本システムは、ビジネス型分類と関数型分類とにカテゴライズできる分類サービスを提供する。各々について以下でさらに説明する。
ある実施形態に従うと、エンティティのビジネス型はその表現型(phenotype)である
。エンティティ内の個々の属性の観測可能な特性は、エンティティのビジネス型の特定において、定義と同様に重要である。分類アルゴリズムは、データセットまたはエンティティの概略的定義を使用するが、データを用いて構築したモデルを利用してデータセットまたはエンティティのビジネス型を分類することもできる。
:RDD)として読み出すことができる。このデータセットは、この例では、アカウントデータセット391、イベントデータセット392、コンタクトデータセット393、リストデータセット394、およびユーザデータセット395を含む。
シードの一部として、回帰モデルをデータセットまたはエンティティデータを用いて構築し、属性統計(最小値、最大値、平均値、または確率密度)を計算する。
図8に示すように、ある実施形態に従うと、たとえばSpark環境430内で実行する場合、Spark MLlib統計を用いて、ナレッジグラフに属性プロパティとして追加されたカラム統計を計算することができる。計算したカラム統計を、他のデータセットまたはエンティティメタデータとともに用いて、その回帰モデルが分類の新たなエンティティのテストにおいて使用されるエンティティを、ショートリストに入れることができる。
、この情報を、インジェストの一部として利用できる他のメタデータとともに用いて、作成する。
おいて有用である。新たなエンティティのために生成された一組のグラフ述語を用いて、新たなエンティティのテストおよび分類のために、候補エンティティモデルをショートリストに入れる。
ある実施形態に従うと、エンティティの関数型はその遺伝子型(genotype)である。関数型は、それを通して変換アクションが規定されるインターフェイスとして説明することもできる。たとえば、結合変換またはフィルタは、この場合はリレーショナルエンティティ等の関数型で規定される。要約すると、すべての変換は、パラメータとしての関数型で規定される。
図13に示す一例としての関数型分類470の階層に示すように、ある実施形態に従うと、レベルは、たとえばそのディメンションおよびレベル属性によって規定することができる。
図14に示す一例としての関数型分類480の階層に示すように、ある実施形態に従うと、キューブは、たとえばその測定属性および次元によって規定することができる。
図15に示すように、この例500において、ある実施形態に従うと、変換関数は関数型で規定することができる。ビジネスエンティティ(ビジネス型)は関数型としてアノテートされ、これは、デフォルトで、複合ビジネス型は関数型「エンティティ」であることを含む。
図17に示すように、ある実施形態に従うと、レコメンデーションエンジンは、ビジネス型で規定された一組のアクションであるレコメンデーションを生成する。各アクションは、データセットに対する変換を適用することを要求する指令である。
トしたデータセットまたはエンティティのビジネス型を特定する。エンティティに対するレコメンデーションは、同様のエンティティ(ビジネス型)に適用された変換に基づいて、または、ターゲットエンティティ演繹/マッピング部に関連して行うことができる。
先に述べたように、ある実施形態に従うと、データレイクは、システムHUBまたはその他のコンポーネントからの情報のパーシステンスのリポジトリを提供する。
図18に示すように、ある実施形態に従うと、データレイクは、1つ以上のデータアクセスAPI540、キャッシュ542、およびパーシステンスストア544に対応付けることができる。これらは共に動作することにより、正規化されているインジェストされたデータを、複数のパイプライン552、554、556で使用するために受ける。
れた第2のデータセンター566に対応付けることができる。
ある実施形態に従うと、パイプラインは、インジェストされたデータに対して実行すべき変換または処理を規定する。処理済みのデータは、データレイクに格納されてもよく、または、たとえばDBCSのような別のエンドポイントに対してパブリッシュされてもよい。
図21に示すように、ある実施形態に従うと、パイプラインコンパイラ582は、設計環境570と実行環境580との間で動作する。これは、1つ以上のパイプラインメタデータ572およびDSL、たとえばJava(登録商標) DSL574、JSON DSL576、Scala DSL578を受け取ることと、実行環境で使用される出力を、たとえばSparkアプリケーション584および/またはSQLステートメント586として与えることとを含む。
図22に示すように、ある実施形態に従うと、パイプライン588はパイプラインステップのリスト含む。異なる種類のパイプラインステップは、このパイプライン内で実行できる異なる種類の動作を表している。各パイプラインステップは、一般的にパイプラインステップパラメータによって記述される、複数の入力データセットと複数の出力データセットとを含み得る。パイプライン内における動作の処理順序は、前のパイプラインステップからの出力パイプラインステップパラメータを、次のパイプラインステップに結合することによって規定される。このようにして、パイプラインステップと、パイプラインステップパラメータ間の関係とが、有向非巡回グラフ(directed acyclic graph:DAG)を形成する。
図23に示す一例としてのデータパイプライン600に示されるように、ある実施形態に従うと、データパイプラインはデータ変換を実行する。パイプライン内におけるデータの流れは、パイプラインステップパラメータの結合として表される。さまざまな種類のパイプラインステップが、異なる変換動作のためにサポートされる。これはたとえば、エンティティ(データをデータレイクから取り出す、または処理済みのデータをデータレイク/他のHBUに対してパブリッシュする)、および結合(複数のソースの融合)を含む。
図24に示す一例としてのデータパイプライン610に示されるように、ある実施形態に従うと、データパイプラインP1は、別のデータパイプラインP2で再使用することができる。
、ある実施形態に従うと、オーケストレーションパイプラインを使用した場合、パイプラインステップを用いて、オーケストレーションフロー全体において実行する必要があるタスクまたはジョブを表すことができる。オーケストレーションパイプライン内のパイプラインステップはすべて、1つの入力パイプラインステップパラメータと1つの出力パイプラインステップパラメータとを有するものとする。タスク間の実行依存性は、パイプラインステップパラメータ間の結合として表すことができる。
ションパイプラインの場合、下にある実行エンジン内、またはたとえばOozie等のワークフロースケジュールコンポーネント内で実行するために生成することができる。
ある実施形態に従うと、コーディネーションファブリックまたはファブリックコントローラは、フレームワークコンポーネント(サービスプロバイダ)をデプロイし管理するのに必要なツールと、(ユーザ設計)アプリケーションとを提供し、アプリケーションの実行とリソース要求/割当を管理し、統合フレームワーク(メッセージングバス)を提供することにより、各種コンポーネント間のやり取りを容易にする。
れている複数のノードとの間のインタラクションを調整する。
ある実施形態に従うと、オンプレミスエージェントは、ローカルデータへのアクセスを
容易にし、かつ、限られたやり方で、分散型パイプライン実行を容易にする。オンプレミスエージェントは、たとえばクラウドDIサービスと通信するようにプロビジョニングおよび構成され、データアクセスおよび遠隔パイプライン実行要求を処理する。
図30は、ある実施形態に係るデータフロープロセスを示す図である。
ある実施形態に従うと、このシステムは、1つ以上のデータソースまたはターゲット(本明細書においていくつかの実施形態ではHUBと呼ぶ)間における、複合データ構造、データセット、またはエンティティの自動マッピングのサポートを提供することができる。自動マッピングは、メタデータ、スキーマ、およびデータセットの統計プロファイリングによって駆動することができる。自動マッピングを使用することにより、入力HUBに対応付けられたソースデータセットまたはエンティティを、ターゲットデータセットまた
はエンティティに、またはその逆にマッピングすることにより、1つ以上の出力HUBで使用されるフォーマットまたは組織(プロジェクション)で準備された出力データを生成することができる。
ることができる。
ある実施形態に従うと、自動マッピング機能は数学的に定義することができ、エンティティ集合Eは次のように定義される。
目的は、eiとejとの間の類似度の確率が最大になるjを見出すことである。
ングのための有力候補セットを素早く発見する。候補セットは関連性が高いセットである必要があるので、特別なインデックスおよびクエリを用いてこれを実現することができる。この特別なインデックスは、エンティティのすべての属性が格納されすべてがN-gramのコンビネーションでトークン化されている特別なサーチフィールドを取り入れる。クエリ時に、サーチクエリビルダモジュールは、たとえばレーベンシュタイン距離に基づいてファジーサーチ特徴を活用することにより、所定のエンティティのエンティティ名と属性名との両方を用いて特別なクエリを構成し、サーチブースト機能を活用することにより、結果を、ストリング類似度という点における関連性によってソートする。
図31に示すように、ある実施形態に従うと、システムファサード701および自動マップAPI702により、データフローアプリケーションたとえばパイプラインまたはLambdaアプリケーションを、ソフトウェア開発コンポーネントたとえばLambda Studioから
受けることができる。パーサ704は、アプリケーションのJSONファイルを処理し、属性名およびデータ型を含むエンティティ名および形状を抽出する。
較し、抽出された特徴に基づいて、データセットまたはエンティティの類似度のスコアを求める。特徴抽出714は、各属性についてランダムにサンプリングされたデータの統計プロファイル、データ型、およびメタデータを含む。
動マップサービスは、データフローアプリケーションたとえばパイプラインまたはLambdaアプリケーション設計中に、ユーザがどのステージにいるかに基づいて、レコメンデーションを動的に提示する。サービスは、ユーザの過去の活動に基づいて、継続的にレコメンデーションを提供しユーザをガイドすることができる。
タAIシステム724、および特徴抽出735に送られる。結果は、合成736、モデル723に従う最終信頼度マージおよびランキング739に使用され、レコメンデーションおよび関連信頼度740に与えられる。
図33は、ある実施形態に係る、ソーススキーマとターゲットスキーマとの間のマッピングの一例を示す図である。
図35は、ある実施形態に係る、自動化されたデータ型のマッピングを提供するプロセスを示す図である。
ステップ746において、機械学習プロセスを適用することにより、アクセスされたデータ内のデータのカテゴリを判別する。
ある実施形態に従うと、このシステムは、(本明細書においていくつかの実施形態ではLambda Studioと呼ぶ)ソフトウェア開発コンポーネントと、上記システムで使用される
視覚環境を提供する(本明細書においていくつかの実施形態ではパイプラインエディタまたはLambda Studio IDEと呼ぶ)グラフィカルユーザインターフェイスとを含み得る。こ
れは、入力HUBからアクセスされたデータに対するセマンティックアクションの実行のために、当該データに対応付けられた意味またはセマンティクスの理解に基づいてリアルタイムレコメンデーションを提供することを含む。
レスポンスは、アクセスされたデータに対して有効にされ、データの分類に基づいて特定された、1つ以上のセマンティックアクションを示す。
エディタまたはLambda Studio IDE)750を提供することができる。これは、出力HU
Bへのプロジェクションのために入力データを処理するまたは入力データの処理をシミュレートする際に使用するレコメンデーションセマンティックアクションを表示することができる。
ある実施形態に従うと、このシステムは、ソフトウェアアプリケーションのデータフローの関数分解から特定されたパターンに基づいて、入力データに対するアクションおよび変換をレコメンドするためのサービスを提供することができ、これは、後のアプリケーションにおいて上記データフローに可能な変換を判定することを含む。データフローは、データの変換、述語、およびデータに適用されるビジネスルールを記述するモデルと、データフロー内で使用される属性とに分解することができる。
解802およびレコメンデーション804を提供するために使用することができる。たとえば、このシステムは、データフローアプリケーションたとえばパイプライン、Lambdaアプリケーションのデータフローの関数分解から特定されたパターン/テンプレートに基づいて、データに対するアクションおよび変換をレコメンドするためのサービスを提供することができる、すなわち、データフローの関数分解を通して、後のアプリケーションにおいてデータフローに可能な変換を判定するためのパターンを観察することができる。
、コンテキストがリッチな規範データフロー設計レコメンデーションを生成することができる。これらのレコメンデーションは、モデルから推論されたパターンに基づいていてもよく、各レコメンデーションは、アプリケーションのためのデータに対して実行できるセマンティックアクションに対応し得る。
換をレコメンド、またはフィルタリングまたは結合のために述語における1つ以上の属性を使用)。
アプリケーションは、トップレベルデータフロー変換を表す。
ルートノードにリゾルブすることができる。
ある実施形態に従うと、このシステムは、スキーマ定義のオントロジー解析を実行することにより、このスキーマに対応付けられたデータおよびデータセットまたはエンティティのタイプを判別し、エンティティとそれらの属性との関係に基づいて規定されたオントロジーを含むリファレンススキーマからモデルを生成またはアップデートすることができる。1つ以上のスキーマを含むリファレンスHUBを用いてデータフローを解析し、さらに、分類する、または、たとえば入力データの変換、エンリッチ化、フィルタリング、もしくはクロスエンティティデータ融合等の、レコメンデーションを行うことができる。
グ付け、比較、分類、そうでなければ評価に使用することができ、データAIシステムが使用する適切なルールを作成する。
データルールは、プロファイリングされたデータメトリクスに関して規定され、ビジネ
ス型要素の性質を記述する(たとえば、UOM、ROIまたは通貨の種類は、そのデータプロファイルとともにビジネス型要素として規定できる)。
型システム(関数およびビジネス)は、メタデータハーベスティングおよびデータサンプリングを通して導出されたルールに基づいて規定される。
ステップ867において、生成した1つ以上のルールに基づいて関数型システムを生成する。
ある実施形態に従うと、このシステムは、(本明細書においていくつかの実施形態では
他言語関数インターフェイスと呼ぶ)プログラマティックインターフェイスを提供する。このインターフェイスにより、ユーザまたは第三者は、サービス、関数型およびビジネス
型、セマンティックアクション、ならびに関数型およびビジネス型に基づくパターンまたは予め定められた複合データフローを、宣言的に規定することにより、システムの機能を拡張することができる。
ンデーションエンジン912に提供することができる。
してフレームワークを拡張することが可能になる。このインターフェイスにより、サービス、サービスのネイティブなタイプ、サービスによって実現されるセマンティックアクションを、特にサービスの一部として利用できる予め規定されたアルゴリズムを抽出するタイプ付きパラメータ、パターンまたはテンプレートとともに、登録することができる。
ある実施形態に従うと、このシステムはデータガバナンス機能を提供することができる。これはたとえば、特定のスナップショットに時間的に関連するデータのスライスごとの、履歴情報(特定のデータはどこから来たデータか)、系統(このデータはどのようにして取得/処理されたか)、セキュリティ(誰がこのデータの責任者だったか)、分類(このデータは何に関連するデータか)、影響力(このデータがビジネスにどれほどの影響があるか)、保持時間(このデータはどれだけの時間存続すべきか)、および有効性(このデータは解析/処理のために除外される/含まれるべきか否か)である。これらは、ライ
フサイクルの決定およびデータフローのレコメンデーションにおいて使用することができる。
つ以上の追加のトピックス960、962に対してパブリッシュ970され、その後、この例ではDBCS環境等の1つ以上の出力HUBでターゲットエンドポイント(たとえばテーブル)に対してパブリッシュされることができる。
る。
ある実施形態に従うと、上記系統トラッキングに基づくデータライフサイクル管理は、いくつかの機能エリアに向けられている。これらのエリアのうちのいくつかは、ユーザによって構成されることができ(アクセスコントロール、保持時間、有効性)、いくつかは導出され(履歴情報、系統)、それ以外は機械学習アルゴリズムを使用する(分類、影響力)。たとえば、データ管理は、サンプルデータ(インジェストされたデータから定期的にサンプリング)にも、ユーザ規定アプリケーションによる処理のために取得されたデータにも、適用される。データライフサイクル管理のいくつかの側面は、インジェストされたデータすなわちストリーミングデータおよびバッチデータ(リファレンスおよびインクリメンタル)のカテゴリ全体にわたって同様である。インクリメンタルデータの場合、DFMLは、スケジュールされたログ収集イベント駆動型方法を用いてデータの一時スライスを取得し以下の機能をカバーするアプリケーションインスタンス全体にわたるスライスの割当を管理する。
ステップ984において、サンプリングされたデータおよびアクセスされたデータについて、一時スライスを特定する。
ばBDP、SFDCおよびS3等のデータソースを使用することによりデータのソースまたはターゲットとして機能することを示しているが、本明細書に記載の実施形態は、同様のタイプの機能を提供するその他のタイプの製品およびデータソースとともに使用することもできる。
Claims (6)
- データ統合またはその他のコンピューティング環境で使用される方法であって、
プロセッサを含むコンピュータが、ソフトウェアアプリケーションを作成するための設計時システムを提供するステップを含み、前記設計時システムは、
関数データ型を含む、ソフトウェアアプリケーションのデータフローの処理に対応付けられたメタデータを格納するナレッジソースと、
対応付けられた属性を有する入力および出力データセットの仕様を含む、前記ソフトウェアアプリケーションに対応付けられたデータフローを表示するためのグラフィカルユーザインターフェイスとを含み、
データフローは、1つ以上の入力データセットに対して動作してデータを1つ以上の出力データセットに変換して出力するアクションに対応付けられており、前記方法はさらに、
前記コンピュータが、前記ナレッジソースと前記ナレッジソース内のメタデータとを参照することにより、特定の入力データセットと特定のデータフローとに対応付けられたソフトウェアアプリケーションについて、前記特定の入力データセットおよび前記特定のデータフローに対応付けられた変換のパターンを特定するステップと、
前記コンピュータが、特定された前記変換のパターンに基づいて、前記設計時システムで使用する、修正されたデータフローに組み込むための1つ以上のデータ変換のレコメンデーションを提供するステップとを含み、前記レコメンデーションは、前記特定の入力データセットと出力データセットとに対して有効にされる1つ以上のセマンティックアクションを決定し前記グラフィカルユーザインターフェイス内に表示することを含む、方法。 - 前記特定の入力データセットは、入力HUBにおいて提供およびアクセスされ、前記特定のデータフローは、前記入力HUBにおいてアクセスされたデータを、出力HUBにおける前記出力データセットに伝達するまたは格納するために変換するように動作する、請求項1に記載の方法。
- 前記特定の入力データセットと前記出力データセットとに対して有効にされる前記1つ以上のセマンティックアクションを決定し前記グラフィカルユーザインターフェイス内に表示することを含む、前記修正されたデータフローに組み込むための1つ以上のデータ変換のレコメンデーションは、前記入力HUBにおける前記データにアクセスするときに動的に実行される、請求項2に記載の方法。
- 前記方法は、クラウドまたはクラウドベースのコンピューティング環境で実行される、請求項1~3のいずれか1項に記載の方法。
- データ統合またはその他のコンピューティング環境で使用される入力データに対するアクションおよび変換のレコメンデーションを提供するためのシステムであって、前記システムは、
プロセッサを含むコンピュータと、ソフトウェアアプリケーションを作成するための設計時システムとを備え、前記設計時システムは、
関数データ型を含む、ソフトウェアアプリケーションのデータフローの処理に対応付けられたメタデータを格納するナレッジソースと、
対応付けられた属性を有する入力および出力データセットの仕様を含む、前記ソフトウェアアプリケーションに対応付けられたデータフローを表示するためのグラフィカルユーザインターフェイスとを含み、
データフローは、1つ以上の入力データセットに対して動作してデータを1つ以上の出力データセットに変換して出力するアクションに対応付けられており、
前記システムは、前記ナレッジソースと前記ナレッジソース内のメタデータとを参照することにより、特定の入力データセットと特定のデータフローとに対応付けられたソフトウェアアプリケーションについて、前記特定の入力データセットおよび前記特定のデータフローに対応付けられた変換のパターンを特定し、
前記システムは、特定された前記変換のパターンに基づいて、修正されたデータフローに組み込むための1つ以上のデータ変換のレコメンデーションを決定して表示し、前記レコメンデーションは、前記特定の入力データセットと出力データセットとに対して有効にされる1つ以上のセマンティックアクションを決定し前記グラフィカルユーザインターフェイス内に表示することを含む、システム。 - 1つ以上のコンピュータに請求項1~4のいずれか1項に記載の方法を実行させるコンピュータ読取可能なプログラム。
Applications Claiming Priority (14)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662378147P | 2016-08-22 | 2016-08-22 | |
US201662378150P | 2016-08-22 | 2016-08-22 | |
US201662378146P | 2016-08-22 | 2016-08-22 | |
US201662378152P | 2016-08-22 | 2016-08-22 | |
US201662378151P | 2016-08-22 | 2016-08-22 | |
US201662378143P | 2016-08-22 | 2016-08-22 | |
US62/378,152 | 2016-08-22 | ||
US62/378,147 | 2016-08-22 | ||
US62/378,150 | 2016-08-22 | ||
US62/378,146 | 2016-08-22 | ||
US62/378,143 | 2016-08-22 | ||
US62/378,151 | 2016-08-22 | ||
PCT/US2017/048044 WO2018039251A1 (en) | 2016-08-22 | 2017-08-22 | System and method for inferencing of data transformations through pattern decomposition |
JP2018543165A JP6985279B2 (ja) | 2016-08-22 | 2017-08-22 | パターン分解を通してデータ変換を推論するためのシステムおよび方法 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018543165A Division JP6985279B2 (ja) | 2016-08-22 | 2017-08-22 | パターン分解を通してデータ変換を推論するためのシステムおよび方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022028864A JP2022028864A (ja) | 2022-02-16 |
JP7316343B2 true JP7316343B2 (ja) | 2023-07-27 |
Family
ID=59746364
Family Applications (14)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018543082A Active JP7030707B2 (ja) | 2016-08-22 | 2017-08-22 | アプリケーションプログラミングインターフェイスのメタデータ駆動型外部インターフェイス生成ためのシステムおよび方法 |
JP2018543176A Active JP6991150B2 (ja) | 2016-08-22 | 2017-08-22 | リアルタイム視覚シミュレーション内における動的インクリメンタルレコメンデーションのためのシステムおよび方法 |
JP2018543085A Active JP7034924B2 (ja) | 2016-08-22 | 2017-08-22 | 動的系統トラッキング、再構成、およびライフサイクル管理のためのシステムおよび方法 |
JP2018543165A Active JP6985279B2 (ja) | 2016-08-22 | 2017-08-22 | パターン分解を通してデータ変換を推論するためのシステムおよび方法 |
JP2018543097A Active JP7002459B2 (ja) | 2016-08-22 | 2017-08-22 | 統計プロファイリングおよびリファレンススキーママッチングによるオントロジー帰納のためのシステムおよび方法 |
JP2018543103A Active JP6990186B2 (ja) | 2016-08-22 | 2017-08-22 | データフロー環境で使用されるデータ型の自動マッピングシステムおよび方法 |
JP2021191062A Active JP7316343B2 (ja) | 2016-08-22 | 2021-11-25 | パターン分解を通してデータ変換を推論するためのシステムおよび方法 |
JP2021197005A Active JP7333374B2 (ja) | 2016-08-22 | 2021-12-03 | データフロー環境で使用されるデータ型の自動マッピングシステムおよび方法 |
JP2021198486A Active JP7324827B2 (ja) | 2016-08-22 | 2021-12-07 | リアルタイム視覚シミュレーション内における動的インクリメンタルレコメンデーションのためのシステムおよび方法 |
JP2021212280A Pending JP2022050489A (ja) | 2016-08-22 | 2021-12-27 | 統計プロファイリングおよびリファレンススキーママッチングによるオントロジー帰納のためのシステムおよび方法 |
JP2022025435A Active JP7344327B2 (ja) | 2016-08-22 | 2022-02-22 | アプリケーションプログラミングインターフェイスのメタデータ駆動型外部インターフェイス生成ためのシステムおよび方法 |
JP2022031862A Pending JP2022084675A (ja) | 2016-08-22 | 2022-03-02 | 動的系統トラッキング、再構成、およびライフサイクル管理のためのシステムおよび方法 |
JP2023136262A Pending JP2023166448A (ja) | 2016-08-22 | 2023-08-24 | 統計プロファイリングおよびリファレンススキーママッチングによるオントロジー帰納のためのシステムおよび方法 |
JP2024016373A Pending JP2024054219A (ja) | 2016-08-22 | 2024-02-06 | 動的系統トラッキング、再構成、およびライフサイクル管理のためのシステムおよび方法 |
Family Applications Before (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018543082A Active JP7030707B2 (ja) | 2016-08-22 | 2017-08-22 | アプリケーションプログラミングインターフェイスのメタデータ駆動型外部インターフェイス生成ためのシステムおよび方法 |
JP2018543176A Active JP6991150B2 (ja) | 2016-08-22 | 2017-08-22 | リアルタイム視覚シミュレーション内における動的インクリメンタルレコメンデーションのためのシステムおよび方法 |
JP2018543085A Active JP7034924B2 (ja) | 2016-08-22 | 2017-08-22 | 動的系統トラッキング、再構成、およびライフサイクル管理のためのシステムおよび方法 |
JP2018543165A Active JP6985279B2 (ja) | 2016-08-22 | 2017-08-22 | パターン分解を通してデータ変換を推論するためのシステムおよび方法 |
JP2018543097A Active JP7002459B2 (ja) | 2016-08-22 | 2017-08-22 | 統計プロファイリングおよびリファレンススキーママッチングによるオントロジー帰納のためのシステムおよび方法 |
JP2018543103A Active JP6990186B2 (ja) | 2016-08-22 | 2017-08-22 | データフロー環境で使用されるデータ型の自動マッピングシステムおよび方法 |
Family Applications After (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021197005A Active JP7333374B2 (ja) | 2016-08-22 | 2021-12-03 | データフロー環境で使用されるデータ型の自動マッピングシステムおよび方法 |
JP2021198486A Active JP7324827B2 (ja) | 2016-08-22 | 2021-12-07 | リアルタイム視覚シミュレーション内における動的インクリメンタルレコメンデーションのためのシステムおよび方法 |
JP2021212280A Pending JP2022050489A (ja) | 2016-08-22 | 2021-12-27 | 統計プロファイリングおよびリファレンススキーママッチングによるオントロジー帰納のためのシステムおよび方法 |
JP2022025435A Active JP7344327B2 (ja) | 2016-08-22 | 2022-02-22 | アプリケーションプログラミングインターフェイスのメタデータ駆動型外部インターフェイス生成ためのシステムおよび方法 |
JP2022031862A Pending JP2022084675A (ja) | 2016-08-22 | 2022-03-02 | 動的系統トラッキング、再構成、およびライフサイクル管理のためのシステムおよび方法 |
JP2023136262A Pending JP2023166448A (ja) | 2016-08-22 | 2023-08-24 | 統計プロファイリングおよびリファレンススキーママッチングによるオントロジー帰納のためのシステムおよび方法 |
JP2024016373A Pending JP2024054219A (ja) | 2016-08-22 | 2024-02-06 | 動的系統トラッキング、再構成、およびライフサイクル管理のためのシステムおよび方法 |
Country Status (5)
Country | Link |
---|---|
US (12) | US10776086B2 (ja) |
EP (6) | EP3475887B1 (ja) |
JP (14) | JP7030707B2 (ja) |
CN (6) | CN108701258B (ja) |
WO (6) | WO2018039266A1 (ja) |
Families Citing this family (189)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10452625B2 (en) * | 2016-06-30 | 2019-10-22 | Global Ids, Inc. | Data lineage analysis |
EP3475887B1 (en) | 2016-08-22 | 2023-07-19 | Oracle International Corporation | System and method for dynamic lineage tracking, reconstruction, and lifecycle management |
US10523662B2 (en) * | 2016-09-16 | 2019-12-31 | Sap Se | In-memory database advanced programming model |
US10042739B2 (en) * | 2016-09-29 | 2018-08-07 | International Business Machines Corporation | Real-time analytics of machine generated instrumentation data |
KR102432104B1 (ko) * | 2016-11-09 | 2022-08-11 | 아브 이니티오 테크놀로지 엘엘시 | 데이터 요소 간의 관계를 결정하기 위한 시스템 및 방법 |
US10503478B2 (en) * | 2017-02-14 | 2019-12-10 | Hcl Technologies Limited | System and method for guiding a user in a software development lifecycle using machine learning |
US10503908B1 (en) * | 2017-04-04 | 2019-12-10 | Kenna Security, Inc. | Vulnerability assessment based on machine inference |
US20180342092A1 (en) * | 2017-05-26 | 2018-11-29 | International Business Machines Corporation | Cognitive integrated image classification and annotation |
US10620612B2 (en) | 2017-06-08 | 2020-04-14 | Rockwell Automation Technologies, Inc. | Predictive maintenance and process supervision using a scalable industrial analytics platform |
US10764204B2 (en) * | 2017-06-22 | 2020-09-01 | Sap Se | Cloud extensibility framework |
US10891114B2 (en) | 2017-08-17 | 2021-01-12 | Tibco Software Inc. | Interpreter for interpreting a data model algorithm and creating a data schema |
US11138157B2 (en) * | 2017-08-30 | 2021-10-05 | Jpmorgan Chase Bank, N.A. | System and method for identifying business logic and data lineage with machine learning |
US11748653B2 (en) * | 2017-10-05 | 2023-09-05 | DataRobot, Inc. | Machine learning abstraction |
US11100425B2 (en) * | 2017-10-31 | 2021-08-24 | International Business Machines Corporation | Facilitating data-driven mapping discovery |
US11663517B2 (en) * | 2017-11-03 | 2023-05-30 | Salesforce, Inc. | Automatic machine learning model generation |
US10853131B2 (en) * | 2017-11-20 | 2020-12-01 | Salesforce.Com, Inc. | Dataflow life cycles |
US11568003B2 (en) | 2017-12-15 | 2023-01-31 | Google Llc | Refined search with machine learning |
US10783013B2 (en) | 2017-12-15 | 2020-09-22 | Google Llc | Task-related sorting, application discovery, and unified bookmarking for application managers |
US10846109B2 (en) * | 2017-12-20 | 2020-11-24 | Google Llc | Suggesting actions based on machine learning |
US10789509B2 (en) * | 2018-01-24 | 2020-09-29 | WeR.AI, Inc. | Systems and methods for generating machine learning applications |
US11281673B2 (en) * | 2018-02-08 | 2022-03-22 | Parallel Wireless, Inc. | Data pipeline for scalable analytics and management |
US11741080B2 (en) * | 2018-02-22 | 2023-08-29 | Flowfinity Wireless, Inc. | Dynamic data editor for data analysis system |
CN108595552B (zh) * | 2018-04-10 | 2022-09-27 | 平安科技(深圳)有限公司 | 数据立方体发布方法、装置、电子设备和存储介质 |
US11295375B1 (en) * | 2018-04-26 | 2022-04-05 | Cuspera Inc. | Machine learning based computer platform, computer-implemented method, and computer program product for finding right-fit technology solutions for business needs |
JP7015207B2 (ja) * | 2018-04-27 | 2022-02-02 | 株式会社日立製作所 | ビジュアルプログラミングツールを用いてフローを作成することを支援する装置および方法 |
GB201808065D0 (en) * | 2018-05-17 | 2018-07-04 | Quorso Uk Ltd | Control network, system and method |
US20190354599A1 (en) * | 2018-05-21 | 2019-11-21 | Microsoft Technology Licensing, Llc | Ai model canvas |
US11249960B2 (en) * | 2018-06-11 | 2022-02-15 | International Business Machines Corporation | Transforming data for a target schema |
US10628282B2 (en) * | 2018-06-28 | 2020-04-21 | International Business Machines Corporation | Generating semantic flow graphs representing computer programs |
EP3594822A1 (en) * | 2018-07-13 | 2020-01-15 | Accenture Global Solutions Limited | Intelligent data ingestion system and method for governance and security |
US11321338B2 (en) * | 2018-07-13 | 2022-05-03 | Accenture Global Solutions Limited | Intelligent data ingestion system and method for governance and security |
US10740209B2 (en) * | 2018-08-20 | 2020-08-11 | International Business Machines Corporation | Tracking missing data using provenance traces and data simulation |
CN109039942B (zh) * | 2018-08-29 | 2022-08-12 | 南京优速网络科技有限公司 | 一种基于深度强化学习的网络负载均衡系统及均衡方法 |
US11567963B2 (en) * | 2018-08-31 | 2023-01-31 | Mindbridge Analytics Inc. | Method and apparatus for shaping data using signature recognition |
US11500914B2 (en) | 2018-09-05 | 2022-11-15 | International Business Machines Corporation | Query recommendation to locate an application programming interface |
US11556733B2 (en) * | 2018-10-18 | 2023-01-17 | Oracle International Corporation | System and method for auto-completion of ICS flow using artificial intelligence/machine learning |
CN109446463B (zh) * | 2018-10-31 | 2021-02-02 | 北京科技大学 | 一种基于Web的数值模拟预加载可视化方法及系统 |
US10750360B2 (en) * | 2018-11-07 | 2020-08-18 | Phacil, Llc | Central software system and method |
US11823073B2 (en) * | 2018-11-14 | 2023-11-21 | Sap Se | Declarative debriefing for predictive pipeline |
US10445170B1 (en) | 2018-11-21 | 2019-10-15 | Fmr Llc | Data lineage identification and change impact prediction in a distributed computing environment |
US10579372B1 (en) * | 2018-12-08 | 2020-03-03 | Fujitsu Limited | Metadata-based API attribute extraction |
US11334472B2 (en) * | 2018-12-14 | 2022-05-17 | NextWorld, LLC | Automated testing for metadata-driven custom applications |
US11556838B2 (en) * | 2019-01-09 | 2023-01-17 | Sap Se | Efficient data relationship mining using machine learning |
CN109803018B (zh) * | 2019-01-24 | 2022-06-03 | 云南电网有限责任公司信息中心 | 一种基于Mesos和YARN结合的DCOS云管理平台 |
JP6827611B2 (ja) * | 2019-01-28 | 2021-02-10 | 三菱電機株式会社 | 開発支援装置、開発支援システム、及び、開発支援方法 |
US11501185B2 (en) * | 2019-01-30 | 2022-11-15 | Walmart Apollo, Llc | System and method for real-time modeling inference pipeline |
CN109634562A (zh) * | 2019-01-30 | 2019-04-16 | 广州影子科技有限公司 | 需求管理方法和需求管理系统 |
US11010237B2 (en) * | 2019-02-08 | 2021-05-18 | Accenture Global Solutions Limited | Method and system for detecting and preventing an imminent failure in a target system |
US11403541B2 (en) | 2019-02-14 | 2022-08-02 | Rockwell Automation Technologies, Inc. | AI extensions and intelligent model validation for an industrial digital twin |
CN109669732B (zh) * | 2019-02-14 | 2024-05-17 | 深圳力维智联技术有限公司 | 一种外扩功能系统及外扩功能硬件的驱动加载方法 |
CN110008288B (zh) * | 2019-02-19 | 2021-06-29 | 武汉烽火技术服务有限公司 | 用于网络故障分析的知识图谱库的构建方法及其应用 |
WO2020172650A1 (en) * | 2019-02-23 | 2020-08-27 | Paat, Inc. | Computer systems and methods for database schema transformations |
US11263554B2 (en) * | 2019-03-04 | 2022-03-01 | Walmart Apollo, Llc | Systems and methods for a machine learning framework |
US11914606B2 (en) | 2019-03-04 | 2024-02-27 | Walmart Apollo, Llc | Systems and methods for a machine learning framework |
CN110059073B (zh) * | 2019-03-18 | 2021-04-06 | 浙江工业大学 | 基于子图同构的web数据自动可视化方法 |
CN110008121B (zh) * | 2019-03-19 | 2022-07-12 | 合肥中科类脑智能技术有限公司 | 一种个性化测试系统及其测试方法 |
US11086298B2 (en) * | 2019-04-15 | 2021-08-10 | Rockwell Automation Technologies, Inc. | Smart gateway platform for industrial internet of things |
US11803798B2 (en) | 2019-04-18 | 2023-10-31 | Oracle International Corporation | System and method for automatic generation of extract, transform, load (ETL) asserts |
CN113508374A (zh) * | 2019-04-30 | 2021-10-15 | 甲骨文国际公司 | 在分析应用环境中进行saas/paas资源使用和分配的系统和方法 |
US20200356575A1 (en) * | 2019-05-06 | 2020-11-12 | Oracle International Corporation | System and method for customization in an analytic applications environment |
US11636393B2 (en) * | 2019-05-07 | 2023-04-25 | Cerebri AI Inc. | Predictive, machine-learning, time-series computer models suitable for sparse training sets |
CN111984738B (zh) * | 2019-05-23 | 2024-06-14 | 杭州海康威视数字技术股份有限公司 | 数据关联方法、装置、设备及存储介质 |
CN110297869B (zh) * | 2019-05-30 | 2022-11-25 | 北京百度网讯科技有限公司 | 一种ai数据仓库平台及操作方法 |
EP3751361A1 (en) * | 2019-06-13 | 2020-12-16 | ABB Schweiz AG | System for action indication determination |
US11501011B2 (en) * | 2019-06-25 | 2022-11-15 | Jpmorgan Chase Bank, N.A. | Method for defining policy across information model exposed via an application programming interface |
JP6737944B1 (ja) * | 2019-07-16 | 2020-08-12 | 株式会社神戸製鋼所 | 機械学習方法、機械学習装置、機械学習プログラム、通信方法、及び成膜装置 |
JP2021017649A (ja) * | 2019-07-16 | 2021-02-15 | 株式会社神戸製鋼所 | 機械学習方法、機械学習装置、機械学習プログラム、通信方法、及び成膜装置 |
WO2021010413A1 (ja) * | 2019-07-16 | 2021-01-21 | 株式会社神戸製鋼所 | 機械学習方法、機械学習装置、機械学習プログラム、通信方法、及び成膜装置 |
US10635657B1 (en) | 2019-07-18 | 2020-04-28 | Capital One Services, Llc | Data transfer and resource management system |
US11341514B2 (en) | 2019-07-26 | 2022-05-24 | EMC IP Holding Company LLC | Determining user retention values using machine learning and heuristic techniques |
CN110704543A (zh) * | 2019-08-19 | 2020-01-17 | 上海机电工程研究所 | 多类型多平台信息数据自适应融合系统及方法 |
WO2021041052A1 (en) * | 2019-08-29 | 2021-03-04 | Siemens Aktiengesellschaft | Conversational design bot for system design |
CN112445894A (zh) * | 2019-09-05 | 2021-03-05 | 美商讯能集思智能科技股份有限公司台湾分公司 | 基于人工智能的商务智能系统及其分析方法 |
US10776686B1 (en) * | 2019-09-09 | 2020-09-15 | Iterate Studio, Inc. | Container architecture for modular machine learning |
US11435726B2 (en) | 2019-09-30 | 2022-09-06 | Rockwell Automation Technologies, Inc. | Contextualization of industrial data at the device level |
US11841699B2 (en) | 2019-09-30 | 2023-12-12 | Rockwell Automation Technologies, Inc. | Artificial intelligence channel for industrial automation |
CN110909531B (zh) * | 2019-10-18 | 2024-03-22 | 平安科技(深圳)有限公司 | 信息安全的甄别方法、装置、设备及存储介质 |
US12111840B2 (en) | 2019-10-22 | 2024-10-08 | Honeywell International Inc. | Methods, apparatuses, and systems for data mapping |
US11640282B2 (en) * | 2019-10-24 | 2023-05-02 | Here Global B.V. | Method, apparatus, and system for providing a broker for data modeling and code generation |
US11860769B1 (en) * | 2019-12-04 | 2024-01-02 | Amazon Technologies, Inc. | Automatic test maintenance leveraging machine learning algorithms |
CN111061767B (zh) * | 2019-12-10 | 2023-05-05 | 美林数据技术股份有限公司 | 一种基于内存计算与sql计算的数据处理方法 |
EP4058900B1 (en) * | 2019-12-16 | 2023-11-15 | Google LLC | Systems and methods for generation and application of schema-agnostic query templates |
US11763217B2 (en) | 2019-12-20 | 2023-09-19 | Iterate Studio, Inc. | Dynamic feature loading |
US11249462B2 (en) | 2020-01-06 | 2022-02-15 | Rockwell Automation Technologies, Inc. | Industrial data services platform |
US11947505B2 (en) * | 2020-01-08 | 2024-04-02 | Jpmorgan Chase Bank , N.A. | Systems and methods for tracking data lineage and record lifecycle using distributed ledgers |
US11567965B2 (en) * | 2020-01-23 | 2023-01-31 | Microstrategy Incorporated | Enhanced preparation and integration of data sets |
US11443264B2 (en) | 2020-01-29 | 2022-09-13 | Accenture Global Solutions Limited | Agnostic augmentation of a customer relationship management application |
US10902011B1 (en) | 2020-01-31 | 2021-01-26 | Capital One Services, Llc | Systems and methods for context development |
US10848451B1 (en) | 2020-01-31 | 2020-11-24 | Capital One Services, Llc | Systems and methods for context development |
US11238354B2 (en) | 2020-02-03 | 2022-02-01 | Kaskada, Inc. | Event-based feature engineering |
US11354596B2 (en) * | 2020-02-03 | 2022-06-07 | Kaskada, Inc. | Machine learning feature engineering |
CN111368021A (zh) * | 2020-02-25 | 2020-07-03 | 同盾控股有限公司 | 基于知识网络的智能决策方法及装置、终端、存储介质 |
US11157467B2 (en) | 2020-02-25 | 2021-10-26 | International Business Machines Corporation | Reducing response time for queries directed to domain-specific knowledge graph using property graph schema optimization |
CN111311104B (zh) * | 2020-02-27 | 2023-08-25 | 第四范式(北京)技术有限公司 | 一种配置文件的推荐方法、装置及系统 |
US11210285B2 (en) * | 2020-03-06 | 2021-12-28 | Ab Initio Technology Llc | Generation of optimized logic from a schema |
US11055262B1 (en) * | 2020-03-09 | 2021-07-06 | Snowflake Inc. | Extensible streams on data sources |
US11983189B2 (en) * | 2020-03-27 | 2024-05-14 | At&T Intellectual Property I, L.P. | Data pipeline controller |
US11269597B2 (en) * | 2020-03-31 | 2022-03-08 | Sap Se | Real-time code recommendations using machine learning and reinforcement learning |
US11204953B2 (en) | 2020-04-20 | 2021-12-21 | International Business Machines Corporation | Generation of lineage data subset based upon business role |
US11662882B2 (en) | 2020-04-22 | 2023-05-30 | StreamSets, Inc. | User-interface driven creation and distribution of computer applications |
US11392960B2 (en) * | 2020-04-24 | 2022-07-19 | Accenture Global Solutions Limited | Agnostic customer relationship management with agent hub and browser overlay |
US11481785B2 (en) | 2020-04-24 | 2022-10-25 | Accenture Global Solutions Limited | Agnostic customer relationship management with browser overlay and campaign management portal |
US11423210B2 (en) * | 2020-04-28 | 2022-08-23 | Mirata Software, LLC | System and method for dynamically defining digital forms |
US11301444B2 (en) | 2020-04-30 | 2022-04-12 | International Business Machines Corporation | Methods and systems for data traceability and provenance |
CN111563133A (zh) * | 2020-05-06 | 2020-08-21 | 支付宝(杭州)信息技术有限公司 | 一种基于实体关系进行数据融合的方法及系统 |
US11681721B2 (en) * | 2020-05-08 | 2023-06-20 | Jpmorgan Chase Bank, N.A. | Systems and methods for spark lineage data capture |
CN111708520B (zh) * | 2020-06-16 | 2023-08-29 | 北京百度网讯科技有限公司 | 应用构建方法、装置、电子设备及存储介质 |
US11726459B2 (en) | 2020-06-18 | 2023-08-15 | Rockwell Automation Technologies, Inc. | Industrial automation control program generation from computer-aided design |
CN111782184B (zh) | 2020-06-30 | 2022-01-07 | 北京百度网讯科技有限公司 | 执行定制化人工智能生产线的装置和方法、设备和介质 |
CN111797154A (zh) * | 2020-07-03 | 2020-10-20 | 紫光云技术有限公司 | 一种基于json的实时抽取方法 |
US11853680B2 (en) * | 2020-07-06 | 2023-12-26 | Synopsys, Inc. | Incremental routing based pin assignment |
US11848980B2 (en) * | 2020-07-09 | 2023-12-19 | Boray Data Technology Co. Ltd. | Distributed pipeline configuration in a distributed computing system |
CN111736744B (zh) * | 2020-07-22 | 2020-11-24 | 成都新希望金融信息有限公司 | 一种基于dsl的监控预警计算子系统 |
US11989254B2 (en) * | 2020-09-10 | 2024-05-21 | Taboola.Com Ltd. | Semantic meaning association to components of digital content |
US11709806B2 (en) * | 2020-09-24 | 2023-07-25 | Microsoft Technology Licensing, Llc | Gradient flows in dataset space |
US11609904B2 (en) | 2020-09-25 | 2023-03-21 | Oracle International Corporation | System and method for extensibility in an analytic applications environment |
US11748354B2 (en) * | 2020-09-27 | 2023-09-05 | International Business Machines Corporation | Data shape confidence |
JP2022059247A (ja) * | 2020-10-01 | 2022-04-13 | 富士フイルムビジネスイノベーション株式会社 | 情報処理装置及びプログラム |
WO2022076680A1 (en) | 2020-10-09 | 2022-04-14 | Ezapi Llc | Natural language processing of api specifications for automatic artifact generation |
US11301269B1 (en) * | 2020-10-14 | 2022-04-12 | UiPath, Inc. | Determining sequences of interactions, process extraction, and robot generation using artificial intelligence / machine learning models |
CN112256755A (zh) * | 2020-10-20 | 2021-01-22 | 中电科新型智慧城市研究院有限公司福州分公司 | 一种基于深度学习的学生异常行为分析方法 |
CN113626694A (zh) * | 2020-10-29 | 2021-11-09 | 胡培培 | 基于大数据的应用程序推送系统 |
US20220138616A1 (en) * | 2020-10-30 | 2022-05-05 | International Business Machines Corporation | Scalable discovery of leaders from dynamic combinatorial search space using incremental pipeline growth approach |
US11880693B2 (en) | 2020-11-05 | 2024-01-23 | Bank Of America Corporation | System for automatically generating electronic artifacts using extended functionality |
US11271987B1 (en) * | 2020-11-26 | 2022-03-08 | Digital.Ai Software, Inc. | Universal webhook connectivity via multi-step HTTP transformation |
US11928080B2 (en) * | 2020-12-08 | 2024-03-12 | Electronics And Telecommunications Research Institute | Method of interoperability for data hubs based on active metadata management |
CN112528083B (zh) * | 2020-12-10 | 2022-09-30 | 天津(滨海)人工智能军民融合创新中心 | 一种基于分布式语义模板分发的消息定制方法 |
KR102282699B1 (ko) | 2020-12-24 | 2021-07-28 | 쿠팡 주식회사 | 분산 메시징 시스템을 이용한 데이터 처리 시스템 및 그 정보 처리 방법 |
CN112835583B (zh) * | 2021-01-12 | 2024-08-13 | 京东方科技集团股份有限公司 | 深度学习模型打包方法、装置、设备和介质 |
US11917026B2 (en) | 2021-01-28 | 2024-02-27 | Mutara, Inc. | Dynamic mapping and integration via a meta-model definitional platform |
EP4036711A1 (en) * | 2021-01-29 | 2022-08-03 | Mitac Information Technology Corp. | Visualization system based on artificial intelligence inference and method thereof |
WO2022167102A1 (en) * | 2021-02-05 | 2022-08-11 | NEC Laboratories Europe GmbH | A method and system for knowledge-based process support |
CN112836130B (zh) * | 2021-02-20 | 2023-02-03 | 四川省人工智能研究院(宜宾) | 一种基于联邦学习的上下文感知推荐系统及方法 |
US11556514B2 (en) | 2021-02-24 | 2023-01-17 | International Business Machines Corporation | Semantic data type classification in rectangular datasets |
US11741177B2 (en) | 2021-03-03 | 2023-08-29 | International Business Machines Corporation | Entity validation of a content originator |
US12072915B2 (en) | 2021-03-12 | 2024-08-27 | Hcl Technologies Limited | Method and system for providing profile based data access through semantic domain layer |
CN113111245B (zh) * | 2021-03-15 | 2023-06-20 | 成都七柱智慧科技有限公司 | 实现多维数据质量校验的高校主数据治理系统及方法 |
US20220292422A1 (en) * | 2021-03-15 | 2022-09-15 | Leadership Connect, Inc. | Advanced search engine for federal spend and user interface for the same |
US11928572B2 (en) * | 2021-03-31 | 2024-03-12 | aixplain, Inc. | Machine learning model generator |
US20220317985A1 (en) * | 2021-04-02 | 2022-10-06 | Fujitsu Limited | Machine learning model for recommending software |
CN113114685B (zh) * | 2021-04-14 | 2021-11-02 | 北京滴普科技有限公司 | 一种支撑多数据源安全融合的安全沙箱系统 |
US11567739B2 (en) | 2021-04-15 | 2023-01-31 | Red Hat, Inc. | Simplifying creation and publishing of schemas while building applications |
US11929901B2 (en) * | 2021-04-22 | 2024-03-12 | Salesforce, Inc. | Infrastructure-agnostic performance of computation sequences |
US11675838B2 (en) * | 2021-05-11 | 2023-06-13 | International Business Machines Corporation | Automatically completing a pipeline graph in an internet of things network |
US11675690B2 (en) * | 2021-06-09 | 2023-06-13 | Capital One Services, Llc | Lineage-driven source code generation for building, testing, deploying, and maintaining data marts and data pipelines |
US11810381B2 (en) | 2021-06-10 | 2023-11-07 | International Business Machines Corporation | Automatic rule prediction and generation for document classification and validation |
US11902398B2 (en) * | 2021-06-22 | 2024-02-13 | Bizdata Inc. | System and method to integrate data from one application to another application |
US11748395B2 (en) | 2021-06-25 | 2023-09-05 | Science Applications International Corporation | Developing object ontologies and data usage models using machine learning |
CN113535810B (zh) * | 2021-06-25 | 2024-02-27 | 杨粤湘 | 一种交通违法对象的挖掘方法、装置、设备及介质 |
CN113721901B (zh) * | 2021-06-25 | 2024-07-12 | 国网安徽省电力有限公司 | 一种低代码的财务数据分析可视化引擎 |
US11803448B1 (en) | 2021-06-29 | 2023-10-31 | Amazon Technologies, Inc. | Faster restart of task nodes using periodic checkpointing of data sources |
CN113342550A (zh) * | 2021-06-29 | 2021-09-03 | 安徽容知日新科技股份有限公司 | 一种数据处理方法、系统、计算设备及存储介质 |
US11782889B2 (en) * | 2021-06-30 | 2023-10-10 | Collibra Belgium Bv | Systems and methods for continuous data profiling |
US11836120B2 (en) | 2021-07-23 | 2023-12-05 | Oracle International Corporation | Machine learning techniques for schema mapping |
US11677810B2 (en) * | 2021-07-23 | 2023-06-13 | International Business Machines Corporation | Configuration tool for deploying an application on a server |
US11995096B2 (en) * | 2021-08-25 | 2024-05-28 | Red Hat, Inc. | Creation of message serializer for event streaming platform |
US12106105B2 (en) | 2021-09-23 | 2024-10-01 | International Business Machines Corporation | Automatic generation of convergent data mappings for branches in an integration workflow |
US20230147424A1 (en) * | 2021-11-11 | 2023-05-11 | Sigma Computing, Inc. | Live editing editable tables |
CN113791742B (zh) * | 2021-11-18 | 2022-03-25 | 南湖实验室 | 一种高性能的数据湖系统及数据存储方法 |
EP4420010A1 (en) * | 2021-11-23 | 2024-08-28 | Kebotix, Inc. | Techniques for combined data and execution driven pipeline |
US20230185777A1 (en) * | 2021-12-09 | 2023-06-15 | Intuit Inc. | No-code rules engine to build near real-time data projections from disparate data sources |
CN118302754A (zh) * | 2021-12-21 | 2024-07-05 | 维萨国际服务协会 | 用于数据控制器平台的系统、方法和计算机程序产品 |
CN114048260B (zh) * | 2022-01-12 | 2022-09-09 | 南湖实验室 | 一种数据湖与关系型数据库互联的方法 |
US11880336B2 (en) * | 2022-03-10 | 2024-01-23 | International Business Machines Corporation | Tracking techniques for generated data |
US11900085B2 (en) * | 2022-03-11 | 2024-02-13 | Microsoft Technology Licensing, Llc | System and method for semantic aware data science |
CN114627968B (zh) * | 2022-03-18 | 2023-10-20 | 四川大学华西医院 | 一种多模态组学数据管理系统 |
US12056159B2 (en) | 2022-03-31 | 2024-08-06 | Insight Direct Usa, Inc. | Dimension and fact table creation using templates |
US12056143B2 (en) | 2022-03-31 | 2024-08-06 | Insight Direct Usa, Inc. | Data processing with integrated metadata generation and storage |
CN114911809B (zh) * | 2022-05-12 | 2024-10-08 | 北京火山引擎科技有限公司 | 一种数据处理方法及装置 |
US20230367967A1 (en) * | 2022-05-16 | 2023-11-16 | Jpmorgan Chase Bank, N.A. | System and method for interpreting stuctured and unstructured content to facilitate tailored transactions |
US11907241B2 (en) | 2022-06-17 | 2024-02-20 | Hewlett Packard Enterprise Development Lp | Data recommender using lineage to propagate value indicators |
US20230409654A1 (en) * | 2022-06-21 | 2023-12-21 | Microsoft Technology Licensing, Llc | On-Device Artificial Intelligence Processing In-Browser |
US12013838B2 (en) * | 2022-06-30 | 2024-06-18 | Fractal Analytics Private Limited | System and method for automated data integration |
US11968279B1 (en) | 2022-06-30 | 2024-04-23 | Amazon Technologies, Inc. | Data streaming service with virtualized broker clusters |
US12061600B2 (en) | 2022-07-14 | 2024-08-13 | International Business Machines Corporation | API management for batch processing |
CN115374108B (zh) * | 2022-07-22 | 2023-06-20 | 北京三维天地科技股份有限公司 | 一种基于知识图谱技术的数据标准生成与自动映射方法 |
CN115145587B (zh) * | 2022-07-22 | 2024-08-02 | 中国农业银行股份有限公司 | 一种产品参数校验方法、装置、电子设备及存储介质 |
US11907692B2 (en) * | 2022-07-25 | 2024-02-20 | Bank Of America Corporation | System and method for retrieval and generation of graphical user interface depicting of graphics associated with rules-based data management |
US20240086416A1 (en) * | 2022-09-09 | 2024-03-14 | Honeywell International Inc. | Methods and systems for integrating external systems of records with final report |
CN115328458B (zh) * | 2022-10-12 | 2023-02-03 | 共道网络科技有限公司 | 一种业务应用开发方法及装置 |
US20240126775A1 (en) * | 2022-10-14 | 2024-04-18 | Oracle International Corporation | System and method for automatically enriching datasets with system knowledge data |
US11902177B1 (en) | 2022-10-14 | 2024-02-13 | Bank Of America Corporation | System for artificial intelligence-based engine for generating recommendations for resource allocation |
WO2024089768A1 (ja) * | 2022-10-25 | 2024-05-02 | 日本電信電話株式会社 | 情報処理装置、情報処理方法、およびプログラム |
US20240176766A1 (en) * | 2022-11-30 | 2024-05-30 | Sap Se | Dynamic modeling using profiles |
US11733984B1 (en) | 2023-03-21 | 2023-08-22 | Citibank, N.A. | Generating a platform-agnostic data pipeline via a low code transformation layer systems and methods |
US12118338B1 (en) | 2023-03-21 | 2024-10-15 | Citibank, N.A. | Facilitating updates to data pipelines using modularly-generated platform- agnostic data pipeline portions systems and methods |
CN116501972B (zh) * | 2023-05-06 | 2024-01-05 | 广州市巨应信息科技有限公司 | 基于大数据在线服务的内容推送方法及ai智能推送系统 |
CN117610892B (zh) * | 2024-01-23 | 2024-04-02 | 中国电子科技集团公司第二十八研究所 | 一种面向任务基于本体的数据需求分解和匹配方法、系统 |
CN117664090B (zh) * | 2024-01-31 | 2024-03-29 | 三亚市林业科学研究院 | 一种用于林业调查的野外测绘装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140344210A1 (en) | 2013-05-17 | 2014-11-20 | Oracle International Corporation | Use of projector and selector component types for etl map design |
WO2016049460A1 (en) | 2014-09-26 | 2016-03-31 | Oracle International Corporation | Declarative language and visualization system for recommended data transformations and repairs |
US20160188701A1 (en) | 2014-12-31 | 2016-06-30 | Zephyr Health, Inc. | File recognition system and method |
Family Cites Families (132)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3700561A (en) | 1969-08-11 | 1972-10-24 | Pabst Brewing Co | Recovery of enzymes |
US3715718A (en) | 1970-08-11 | 1973-02-06 | Sundstrand Data Control | Ground proximity warning system utilizing radio and barometric altimeter combination |
US5291500A (en) | 1990-05-22 | 1994-03-01 | International Business Machines Corporation | Eight-sample look-ahead for coded signal processing channels |
US5996072A (en) | 1997-01-27 | 1999-11-30 | Micron Electronics, Inc. | Method for preserving and displaying text on a PC BIOS boot screen |
US6237021B1 (en) | 1998-09-25 | 2001-05-22 | Complex Data Technologies, Inc. | Method and apparatus for the efficient processing of data-intensive applications |
US6370573B1 (en) | 1999-08-31 | 2002-04-09 | Accenture Llp | System, method and article of manufacture for managing an environment of a development architecture framework |
US20070150330A1 (en) | 1999-12-30 | 2007-06-28 | Mcgoveran David O | Rules-based method and system for managing emergent and dynamic processes |
WO2002046916A2 (en) | 2000-10-20 | 2002-06-13 | Polexis, Inc. | Extensible information system (xis) |
US20030172368A1 (en) * | 2001-12-26 | 2003-09-11 | Elizabeth Alumbaugh | System and method for autonomously generating heterogeneous data source interoperability bridges based on semantic modeling derived from self adapting ontology |
US6973459B1 (en) | 2002-05-10 | 2005-12-06 | Oracle International Corporation | Adaptive Bayes Network data mining modeling |
US20040025167A1 (en) | 2002-06-07 | 2004-02-05 | Grow John Darwin | Software, method and system for data connectivity and integration having transformation and exchange infrastructure |
US20040083199A1 (en) * | 2002-08-07 | 2004-04-29 | Govindugari Diwakar R. | Method and architecture for data transformation, normalization, profiling, cleansing and validation |
WO2004021186A2 (en) | 2002-08-29 | 2004-03-11 | Sap Aktiengesellschaft | Rapid application integration |
US7353299B2 (en) * | 2003-05-29 | 2008-04-01 | International Business Machines Corporation | Method and apparatus for managing autonomous third party data transfers |
US7162473B2 (en) | 2003-06-26 | 2007-01-09 | Microsoft Corporation | Method and system for usage analyzer that determines user accessed sources, indexes data subsets, and associated metadata, processing implicit queries based on potential interest to users |
US7890540B2 (en) * | 2003-07-22 | 2011-02-15 | Sap Ag | Browsing meta data for an enterprise service framework |
JP4451624B2 (ja) | 2003-08-19 | 2010-04-14 | 富士通株式会社 | 情報体系対応付け装置および対応付け方法 |
US20050228808A1 (en) * | 2003-08-27 | 2005-10-13 | Ascential Software Corporation | Real time data integration services for health care information data integration |
US20060069717A1 (en) * | 2003-08-27 | 2006-03-30 | Ascential Software Corporation | Security service for a services oriented architecture in a data integration platform |
US20050223109A1 (en) * | 2003-08-27 | 2005-10-06 | Ascential Software Corporation | Data integration through a services oriented architecture |
US8060553B2 (en) | 2003-08-27 | 2011-11-15 | International Business Machines Corporation | Service oriented architecture for a transformation function in a data integration platform |
US20050262189A1 (en) | 2003-08-27 | 2005-11-24 | Ascential Software Corporation | Server-side application programming interface for a real time data integration service |
US7814142B2 (en) | 2003-08-27 | 2010-10-12 | International Business Machines Corporation | User interface service for a services oriented architecture in a data integration platform |
US20050234969A1 (en) | 2003-08-27 | 2005-10-20 | Ascential Software Corporation | Services oriented architecture for handling metadata in a data integration platform |
US20080288889A1 (en) | 2004-02-20 | 2008-11-20 | Herbert Dennis Hunt | Data visualization application |
US7213022B2 (en) | 2004-04-29 | 2007-05-01 | Filenet Corporation | Enterprise content management network-attached system |
US20050262075A1 (en) | 2004-05-21 | 2005-11-24 | Bea Systems, Inc. | Systems and methods for collaboration shared state management |
US7827205B2 (en) | 2004-05-27 | 2010-11-02 | International Business Machines Corporation | Bi-directional data mapping tool |
US7536406B2 (en) * | 2004-06-23 | 2009-05-19 | Microsoft Corporation | Impact analysis in an object model |
CA2579803A1 (en) | 2004-08-31 | 2006-03-09 | Nathan Bobbin | User interfaces for data integration systems |
JP2008511928A (ja) * | 2004-08-31 | 2008-04-17 | インターナショナル・ビジネス・マシーンズ・コーポレーション | メタデータの管理 |
US20060235714A1 (en) | 2005-01-14 | 2006-10-19 | Adinolfi Ronald E | Enabling flexible scalable delivery of on demand datasets |
US20060235715A1 (en) | 2005-01-14 | 2006-10-19 | Abrams Carl E | Sharable multi-tenant reference data utility and methods of operation of same |
DE602005017939D1 (de) | 2005-01-27 | 2010-01-07 | Thomson Licensing | Detektionssystem für filmmarkierungen |
WO2006089092A2 (en) | 2005-02-16 | 2006-08-24 | Ziyad Dahbour | Hierarchal data management |
US7565663B2 (en) * | 2005-02-28 | 2009-07-21 | Microsoft Corporation | Automated data organization |
JP2006350464A (ja) | 2005-06-13 | 2006-12-28 | Nec Corp | データ収集システム、データ抽出サーバ、データ収集方法及びデータ収集プログラム |
US7849049B2 (en) | 2005-07-05 | 2010-12-07 | Clarabridge, Inc. | Schema and ETL tools for structured and unstructured data |
US7779017B2 (en) * | 2006-01-12 | 2010-08-17 | Microsoft Corporation | Employing abstract pipeline component connections to maintain data flow |
US20080040181A1 (en) * | 2006-04-07 | 2008-02-14 | The University Of Utah Research Foundation | Managing provenance for an evolutionary workflow process in a collaborative environment |
WO2007127956A2 (en) * | 2006-04-28 | 2007-11-08 | Business Objects, S.A. | Apparatus and method for merging metadata within a repository |
WO2008018080A2 (en) | 2006-08-11 | 2008-02-14 | Bizwheel Ltd. | Smart integration engine and metadata-oriented architecture for automatic eii and business integration |
US8365137B2 (en) | 2006-08-29 | 2013-01-29 | Wave Semiconductor, Inc. | Systems and methods using an invocation model of process expression |
US7984368B2 (en) | 2006-09-01 | 2011-07-19 | Samsung Electronics Co., Ltd. | Method and system for increasing decoder throughput |
US7624075B2 (en) | 2006-09-15 | 2009-11-24 | Microsoft Corporation | Transformation of modular finite state transducers |
US7925659B2 (en) | 2006-10-09 | 2011-04-12 | Sap Ag | Business process change analysis and test case adaptation based on change detection |
US20080109283A1 (en) * | 2006-11-03 | 2008-05-08 | Business Objects, S.A. | Apparatus and method for mixing business intelligence and business process workflows |
US9015301B2 (en) * | 2007-01-05 | 2015-04-21 | Digital Doors, Inc. | Information infrastructure management tools with extractor, secure storage, content analysis and classification and method therefor |
US9430552B2 (en) | 2007-03-16 | 2016-08-30 | Microsoft Technology Licensing, Llc | View maintenance rules for an update pipeline of an object-relational mapping (ORM) platform |
CN101290620A (zh) * | 2007-04-18 | 2008-10-22 | 中国传媒大学 | 一种基于数字对象的媒体资产处理方法及系统 |
CN101094173A (zh) * | 2007-06-28 | 2007-12-26 | 上海交通大学 | 分布式异构环境下的数据交换集成系统 |
CN100542178C (zh) * | 2007-07-05 | 2009-09-16 | 上海交通大学 | 基于数据流技术的多源异构数据集成系统 |
US20090089078A1 (en) | 2007-09-28 | 2009-04-02 | Great-Circle Technologies, Inc. | Bundling of automated work flow |
US8856313B2 (en) | 2007-11-13 | 2014-10-07 | International Business Machines Corporation | Systems and methods for using provenance information for data retention in stream-processing |
JP5643654B2 (ja) * | 2008-02-26 | 2014-12-17 | アビニシオ テクノロジー エルエルシー | データ関連性のグラフ表現 |
US20090293059A1 (en) | 2008-05-20 | 2009-11-26 | Microsoft Corporation | Automatically connecting items of workflow in a computer program |
US20090319544A1 (en) | 2008-06-20 | 2009-12-24 | Griffin James R | Facilitating integration of different computer data systems |
US20110047056A1 (en) * | 2008-10-11 | 2011-02-24 | Stephen Overman | Continuous measurement and independent verification of the quality of data and processes used to value structured derivative information products |
US8060857B2 (en) | 2009-01-31 | 2011-11-15 | Ted J. Biggerstaff | Automated partitioning of a computation for parallel or other high capability architecture |
JP2011108085A (ja) | 2009-11-19 | 2011-06-02 | Nippon Hoso Kyokai <Nhk> | 知識構築装置およびプログラム |
JP5427640B2 (ja) * | 2010-02-22 | 2014-02-26 | 日本電信電話株式会社 | 決定木生成装置、決定木生成方法、及びプログラム |
US8812436B2 (en) | 2010-05-04 | 2014-08-19 | Symantec Corporation | Schedule based data lifecycle management |
US8799299B2 (en) | 2010-05-27 | 2014-08-05 | Microsoft Corporation | Schema contracts for data integration |
CN101930362B (zh) * | 2010-08-06 | 2013-04-24 | 中国科学院软件研究所 | 一种ttcn语言与数据描述语言的集成方法 |
US9263102B2 (en) | 2010-09-28 | 2016-02-16 | SanDisk Technologies, Inc. | Apparatus, system, and method for data transformations within a data storage device |
US20120090035A1 (en) | 2010-10-12 | 2012-04-12 | Synergetics Incorporated | System and Tool for Logistics Data Management on Secured Smart Mobile Devices |
WO2012051389A1 (en) * | 2010-10-15 | 2012-04-19 | Expressor Software | Method and system for developing data integration applications with reusable semantic types to represent and process application data |
US20120117015A1 (en) * | 2010-11-05 | 2012-05-10 | Nokia Corporation | Method and apparatus for providing rule-based recommendations |
US8484255B2 (en) * | 2010-12-03 | 2013-07-09 | Sap Ag | Automatic conversion of multidimentional schema entities |
CN102135905B (zh) * | 2011-03-17 | 2014-04-02 | 清华大学 | 基于用户定制的本体匹配系统及方法 |
FR2973188B1 (fr) * | 2011-03-25 | 2013-04-19 | Qosmos | Procede et dispositif d'extraction de donnees |
US8898104B2 (en) * | 2011-07-26 | 2014-11-25 | International Business Machines Corporation | Auto-mapping between source and target models using statistical and ontology techniques |
US20130067182A1 (en) * | 2011-09-09 | 2013-03-14 | Onzo Limited | Data processing method and system |
US9813491B2 (en) | 2011-10-20 | 2017-11-07 | Oracle International Corporation | Highly available network filer with automatic load balancing and performance adjustment |
US9430114B1 (en) | 2011-11-03 | 2016-08-30 | Pervasive Software | Data transformation system, graphical mapping tool, and method for creating a schema map |
US20130246334A1 (en) | 2011-12-27 | 2013-09-19 | Mcafee, Inc. | System and method for providing data protection workflows in a network environment |
JP2013143039A (ja) | 2012-01-11 | 2013-07-22 | Canon Inc | 頻出パターン抽出装置、頻出パターン抽出方法、及びプログラム |
US20130235760A1 (en) | 2012-03-08 | 2013-09-12 | Qualcomm Incorporated | Systems and methods for establishing a connection setup through relays |
WO2013181588A2 (en) | 2012-06-01 | 2013-12-05 | Staples, Inc. | Defining and mapping application interface semantics |
US9659042B2 (en) | 2012-06-12 | 2017-05-23 | Accenture Global Services Limited | Data lineage tracking |
JP6338579B2 (ja) | 2012-07-24 | 2018-06-06 | アビニシオ テクノロジー エルエルシー | データモデルにおけるエンティティのマッピング |
US9110983B2 (en) * | 2012-08-17 | 2015-08-18 | Intel Corporation | Traversing data utilizing data relationships |
ITMI20121603A1 (it) | 2012-09-25 | 2014-03-26 | Copan Italia Spa | Dispositivo e metodo per il prelievo ed il trasferimento di campioni di materiale biologico |
CA2886043A1 (en) | 2012-09-26 | 2014-04-03 | Kemira Oyj | Absorbent materials, products including absorbent materials, compositions, and methods of making absorbent materials |
US10318635B2 (en) | 2012-09-28 | 2019-06-11 | Cerner Innovation, Inc. | Automated mapping of service codes in healthcare systems |
US9734220B2 (en) | 2012-12-04 | 2017-08-15 | Planet Os Inc. | Spatio-temporal data processing systems and methods |
US10649424B2 (en) * | 2013-03-04 | 2020-05-12 | Fisher-Rosemount Systems, Inc. | Distributed industrial performance monitoring and analytics |
US20140279622A1 (en) | 2013-03-08 | 2014-09-18 | Sudhakar Bharadwaj | System and method for semantic processing of personalized social data and generating probability models of personal context to generate recommendations in searching applications |
US10740358B2 (en) | 2013-04-11 | 2020-08-11 | Oracle International Corporation | Knowledge-intensive data processing system |
US9734195B1 (en) | 2013-05-16 | 2017-08-15 | Veritas Technologies Llc | Automated data flow tracking |
US10073867B2 (en) | 2013-05-17 | 2018-09-11 | Oracle International Corporation | System and method for code generation from a directed acyclic graph using knowledge modules |
US10216814B2 (en) | 2013-05-17 | 2019-02-26 | Oracle International Corporation | Supporting combination of flow based ETL and entity relationship based ETL |
CN103246745B (zh) | 2013-05-22 | 2016-03-09 | 中国工商银行股份有限公司 | 一种基于数据仓库的数据处理装置及方法 |
US9594849B1 (en) | 2013-06-21 | 2017-03-14 | EMC IP Holding Company LLC | Hypothesis-centric data preparation in data analytics |
US9948571B2 (en) * | 2013-06-28 | 2018-04-17 | Oracle International Corporation | System and method for cloud connection pool |
CN103345514B (zh) * | 2013-07-09 | 2016-06-08 | 焦点科技股份有限公司 | 大数据环境下的流式数据处理方法 |
CN103473305A (zh) * | 2013-09-10 | 2013-12-25 | 北京思特奇信息技术股份有限公司 | 一种在统计分析中进行决策流程展示的方法及系统 |
IN2013MU03382A (ja) | 2013-10-25 | 2015-07-17 | Tata Consultancy Services Ltd | |
CN103559081B (zh) | 2013-11-01 | 2017-11-07 | 贝壳网际(北京)安全技术有限公司 | 移动终端工作模式的推荐方法、装置和移动终端 |
US9600554B2 (en) | 2014-03-25 | 2017-03-21 | AtScale, Inc. | Interpreting relational database statements using a virtual multidimensional data model |
US9280340B2 (en) * | 2014-04-01 | 2016-03-08 | International Business Machines Corporation | Dynamically building an unstructured information management architecture (UIMA) pipeline |
US10877955B2 (en) * | 2014-04-29 | 2020-12-29 | Microsoft Technology Licensing, Llc | Using lineage to infer data quality issues |
CN105279145B (zh) * | 2014-05-27 | 2018-01-09 | 王楠 | 一种计算机语义工程系统 |
US10705877B2 (en) * | 2014-05-29 | 2020-07-07 | Ab Initio Technology Llc | Workload automation and data lineage analysis |
CN104035751B (zh) * | 2014-06-20 | 2016-10-12 | 深圳市腾讯计算机系统有限公司 | 基于多图形处理器的数据并行处理方法及装置 |
WO2016033493A1 (en) | 2014-08-29 | 2016-03-03 | Akana, Inc. | Dynamic ontology schema generation and asset management for standards for exchanging data |
US10976907B2 (en) | 2014-09-26 | 2021-04-13 | Oracle International Corporation | Declarative external data source importation, exportation, and metadata reflection utilizing http and HDFS protocols |
US10210246B2 (en) | 2014-09-26 | 2019-02-19 | Oracle International Corporation | Techniques for similarity analysis and data enrichment using knowledge sources |
US9396051B2 (en) * | 2014-10-06 | 2016-07-19 | Oracle International Corporation | Integration application building tool |
US10560583B2 (en) | 2014-11-01 | 2020-02-11 | Somos, Inc. | Toll-free numbers metadata tagging, analysis and reporting |
US10684998B2 (en) * | 2014-11-21 | 2020-06-16 | Microsoft Technology Licensing, Llc | Automatic schema mismatch detection |
US10459881B2 (en) * | 2015-02-27 | 2019-10-29 | Podium Data, Inc. | Data management platform using metadata repository |
US10296501B1 (en) * | 2015-03-31 | 2019-05-21 | EMC IP Holding Company LLC | Lineage-based veracity for data repositories |
US10515097B2 (en) * | 2015-04-06 | 2019-12-24 | EMC IP Holding Company LLC | Analytics platform for scalable distributed computations |
US10536357B2 (en) * | 2015-06-05 | 2020-01-14 | Cisco Technology, Inc. | Late data detection in data center |
CA3001304C (en) * | 2015-06-05 | 2021-10-19 | C3 Iot, Inc. | Systems, methods, and devices for an enterprise internet-of-things application development platform |
US10242713B2 (en) | 2015-10-13 | 2019-03-26 | Richard A. ROTHSCHILD | System and method for using, processing, and displaying biometric data |
US11175910B2 (en) * | 2015-12-22 | 2021-11-16 | Opera Solutions Usa, Llc | System and method for code and data versioning in computerized data modeling and analysis |
US10268753B2 (en) * | 2015-12-22 | 2019-04-23 | Opera Solutions Usa, Llc | System and method for optimized query execution in computerized data modeling and analysis |
CA3009641A1 (en) * | 2015-12-22 | 2017-06-29 | Opera Solutions U.S.A., Llc | System and method for rapid development and deployment of reusable analytic code for use in computerized data modeling and analysis |
US20170195253A1 (en) | 2015-12-31 | 2017-07-06 | Fortinet, Inc. | Flexible pipeline architecture for multi-table flow processing |
US10599612B1 (en) * | 2016-01-28 | 2020-03-24 | Jpmorgan Chase Bank, N.A. | Method and system for federated context collaboration service |
US10599701B2 (en) | 2016-02-11 | 2020-03-24 | Ebay Inc. | Semantic category classification |
US10298020B2 (en) | 2016-03-15 | 2019-05-21 | General Electric Company | Rotor synchronization of cross-compound systems on turning gear |
US11379416B1 (en) * | 2016-03-17 | 2022-07-05 | Jpmorgan Chase Bank, N.A. | Systems and methods for common data ingestion |
JP6896759B2 (ja) * | 2016-03-23 | 2021-06-30 | フォグホーン システムズ, インコーポレイテッドFoghorn Systems, Inc. | リアルタイムデータフロープログラミングにおけるパターン駆動型反応の合成 |
US10353911B2 (en) * | 2016-06-19 | 2019-07-16 | Data.World, Inc. | Computerized tools to discover, form, and analyze dataset interrelations among a system of networked collaborative datasets |
US10438013B2 (en) * | 2016-06-19 | 2019-10-08 | Data.World, Inc. | Platform management of integrated access of public and privately-accessible datasets utilizing federated query generation and query schema rewriting optimization |
US10135705B2 (en) * | 2016-06-30 | 2018-11-20 | Rockwell Automation Technologies, Inc. | Industrial internet of things data pipeline for a data lake |
EP3475887B1 (en) | 2016-08-22 | 2023-07-19 | Oracle International Corporation | System and method for dynamic lineage tracking, reconstruction, and lifecycle management |
US10372761B2 (en) * | 2016-12-28 | 2019-08-06 | Sap Se | Auto-discovery of data lineage in large computer systems |
US11334593B2 (en) * | 2020-08-05 | 2022-05-17 | International Business Machines Corporation | Automated ETL workflow generation |
-
2017
- 2017-08-22 EP EP17761679.4A patent/EP3475887B1/en active Active
- 2017-08-22 JP JP2018543082A patent/JP7030707B2/ja active Active
- 2017-08-22 WO PCT/US2017/048065 patent/WO2018039266A1/en unknown
- 2017-08-22 WO PCT/US2017/048037 patent/WO2018039245A1/en unknown
- 2017-08-22 JP JP2018543176A patent/JP6991150B2/ja active Active
- 2017-08-22 WO PCT/US2017/048044 patent/WO2018039251A1/en active Application Filing
- 2017-08-22 CN CN201780012429.4A patent/CN108701258B/zh active Active
- 2017-08-22 US US15/683,563 patent/US10776086B2/en active Active
- 2017-08-22 US US15/683,554 patent/US10620923B2/en active Active
- 2017-08-22 EP EP17761166.2A patent/EP3500980A1/en not_active Ceased
- 2017-08-22 CN CN201780012420.3A patent/CN108701256B/zh active Active
- 2017-08-22 US US15/683,556 patent/US10705812B2/en active Active
- 2017-08-22 EP EP17761673.7A patent/EP3475884B1/en active Active
- 2017-08-22 CN CN201780012423.7A patent/CN108701257B/zh active Active
- 2017-08-22 CN CN201780012418.6A patent/CN108713205B/zh active Active
- 2017-08-22 EP EP17761678.6A patent/EP3475886A1/en active Pending
- 2017-08-22 WO PCT/US2017/048061 patent/WO2018039264A1/en unknown
- 2017-08-22 JP JP2018543085A patent/JP7034924B2/ja active Active
- 2017-08-22 US US15/683,567 patent/US11347482B2/en active Active
- 2017-08-22 EP EP17761674.5A patent/EP3475885B1/en active Active
- 2017-08-22 JP JP2018543165A patent/JP6985279B2/ja active Active
- 2017-08-22 CN CN201780012417.1A patent/CN108701254B/zh active Active
- 2017-08-22 WO PCT/US2017/048033 patent/WO2018039241A1/en unknown
- 2017-08-22 US US15/683,551 patent/US11137987B2/en active Active
- 2017-08-22 US US15/683,559 patent/US10620924B2/en active Active
- 2017-08-22 CN CN201780012419.0A patent/CN108701255B/zh active Active
- 2017-08-22 EP EP17761978.0A patent/EP3475888A1/en active Pending
- 2017-08-22 JP JP2018543097A patent/JP7002459B2/ja active Active
- 2017-08-22 WO PCT/US2017/048051 patent/WO2018039257A1/en unknown
- 2017-08-22 JP JP2018543103A patent/JP6990186B2/ja active Active
-
2020
- 2020-04-10 US US16/845,734 patent/US11537369B2/en active Active
- 2020-04-10 US US16/845,738 patent/US11537370B2/en active Active
- 2020-07-06 US US16/921,533 patent/US11526338B2/en active Active
- 2020-09-02 US US17/010,665 patent/US11537371B2/en active Active
-
2021
- 2021-09-30 US US17/490,186 patent/US20220066753A1/en active Pending
- 2021-11-25 JP JP2021191062A patent/JP7316343B2/ja active Active
- 2021-12-03 JP JP2021197005A patent/JP7333374B2/ja active Active
- 2021-12-07 JP JP2021198486A patent/JP7324827B2/ja active Active
- 2021-12-27 JP JP2021212280A patent/JP2022050489A/ja active Pending
-
2022
- 2022-02-22 JP JP2022025435A patent/JP7344327B2/ja active Active
- 2022-03-02 JP JP2022031862A patent/JP2022084675A/ja active Pending
- 2022-05-06 US US17/738,774 patent/US20220269491A1/en active Pending
-
2023
- 2023-08-24 JP JP2023136262A patent/JP2023166448A/ja active Pending
-
2024
- 2024-02-06 JP JP2024016373A patent/JP2024054219A/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140344210A1 (en) | 2013-05-17 | 2014-11-20 | Oracle International Corporation | Use of projector and selector component types for etl map design |
WO2016049460A1 (en) | 2014-09-26 | 2016-03-31 | Oracle International Corporation | Declarative language and visualization system for recommended data transformations and repairs |
US20160188701A1 (en) | 2014-12-31 | 2016-06-30 | Zephyr Health, Inc. | File recognition system and method |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7316343B2 (ja) | パターン分解を通してデータ変換を推論するためのシステムおよび方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211130 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230110 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230324 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230620 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230714 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7316343 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |