JP7313306B2 - Dismantling method of heat exchanger - Google Patents

Dismantling method of heat exchanger Download PDF

Info

Publication number
JP7313306B2
JP7313306B2 JP2020056436A JP2020056436A JP7313306B2 JP 7313306 B2 JP7313306 B2 JP 7313306B2 JP 2020056436 A JP2020056436 A JP 2020056436A JP 2020056436 A JP2020056436 A JP 2020056436A JP 7313306 B2 JP7313306 B2 JP 7313306B2
Authority
JP
Japan
Prior art keywords
tube
tube sheet
heat exchanger
straight pipe
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020056436A
Other languages
Japanese (ja)
Other versions
JP2021156702A (en
Inventor
裕貴 西川
準平 中山
リーダー パー
バーナーソン トーマス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=77918175&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP7313306(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2020056436A priority Critical patent/JP7313306B2/en
Priority to TW110110852A priority patent/TW202147340A/en
Priority to KR1020210039208A priority patent/KR20210120893A/en
Priority to CA3113330A priority patent/CA3113330A1/en
Publication of JP2021156702A publication Critical patent/JP2021156702A/en
Application granted granted Critical
Publication of JP7313306B2 publication Critical patent/JP7313306B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D1/00Details of nuclear power plant
    • G21D1/003Nuclear facilities decommissioning arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D21/00Machines or devices for shearing or cutting tubes
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/001Decontamination of contaminated objects, apparatus, clothes, food; Preventing contamination thereof
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/18Safety or protection arrangements; Arrangements for preventing malfunction for removing contaminants, e.g. for degassing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Plasma & Fusion (AREA)
  • Processing Of Solid Wastes (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、熱交換器の解体方法に関する。 The present invention relates to a dismantling method for a heat exchanger.

原子力施設の設備更新や廃止措置では、老朽化したタンクや熱交換器のような機器が撤去される。これらの機器には放射性物質が付着している。この放射性物質が付着している部分を取り除き、放射性物質が付着していない部分あるいは放射性物質の付着量がわずかであり除染可能な部分を金属原料等として再利用すれば、放射性廃棄物の低減を図ることができる。 Refurbishment and decommissioning of nuclear facilities involve the removal of obsolete equipment such as tanks and heat exchangers. Radioactive materials adhere to these devices. It is possible to reduce the amount of radioactive waste by removing the portion to which the radioactive substance is attached and reusing the portion to which the radioactive substance is not attached or the portion to which the amount of the radioactive substance attached is small and which can be decontaminated as a metal raw material or the like.

熱交換器の場合、管板に固定されている伝熱管及び水室の内部に放射性物質が付着していることがある。一方、管板には放射性物質が表面にのみ付着しており、容易に除去可能である。この場合、伝熱管を撤去すれば、管板を再利用することが可能となる。 In the case of a heat exchanger, radioactive substances may adhere to the heat transfer tubes fixed to the tube plate and the inside of the water chamber. On the other hand, the tube sheet has radioactive substances attached only to its surface and can be easily removed. In this case, the tube sheet can be reused by removing the heat transfer tubes.

伝熱管を撤去する方法として、伝熱管の円弧部を除去した後、伝熱管の直線部と管板との接続を切断し、伝熱管の直線部を、その延在方向に沿って熱交換器の胴部から引き抜く熱交換器の解体方法が公知である(特開2014-59149号公報参照)。 As a method for removing the heat transfer tubes, after removing the circular arc portion of the heat transfer tube, disconnecting the straight portion of the heat transfer tube and the tube plate, and pulling the straight portion of the heat transfer tube from the body of the heat exchanger along its extending direction.

上記公報に記載の熱交換器では、伝熱管は、円弧部と、円弧部の両端から延びる直線部を有しており、複数の管支持板に挿通支持され、管板を介して胴部に固定されている。上記公報に記載の熱交換器の解体方法では、以下の手順によりこの伝熱管を撤去する。まず、伝熱管の円弧部及び管板に固定されている直線部の管板側端部を切断する。この切断により残された伝熱管は直線部のみが管支持板に真っ直ぐ挿通支持され、熱交換器の胴部の軸方向に沿って移動可能な状態となる。そして、伝熱管円弧部が除去された側から、この直線部を、その延在方向(上記軸方向)に沿って胴部から直線状のまま引き抜く。 In the heat exchanger described in the above publication, each heat transfer tube has an arc portion and linear portions extending from both ends of the arc portion, is inserted through and supported by a plurality of tube support plates, and is fixed to the body portion via the tube plates. In the heat exchanger dismantling method described in the above publication, the heat transfer tubes are removed according to the following procedure. First, the circular arc portion of the heat transfer tube and the tube sheet side end portion of the linear portion fixed to the tube sheet are cut. Only the straight portions of the heat transfer tubes left by this cutting are straightly inserted into and supported by the tube support plates, and are movable along the axial direction of the body of the heat exchanger. Then, from the side where the arc portion of the heat transfer tube is removed, the linear portion is pulled out from the trunk portion along the extending direction (the axial direction) while remaining linear.

特開2014-59149号公報JP 2014-59149 A

上記公報に記載の熱交換器の解体方法では、管板に固定されている伝熱管の直線部の管板側端部を切断する。通常熱交換器は複数の伝熱管を有するため、個々の伝熱管を切断していかねばならず、手間がかかり易く作業中の被ばく量を十分に低減することが難しい。 In the heat exchanger dismantling method described in the above publication, the tube sheet side ends of the straight portions of the heat transfer tubes fixed to the tube sheet are cut. Since a heat exchanger usually has a plurality of heat transfer tubes, it is necessary to cut each heat transfer tube.

また、上記公報に記載の熱交換器の解体方法では、管板内に伝熱管が残る。管板を再利用する場合、管板を溶融炉で溶解し、加工して製品にするが、管板に伝熱管が残った状態で管板を再利用すると、伝熱管内面に放射性物質が付着している場合、汚染した再利用製品となる。管板と伝熱管の材質が異なる場合、そのまま溶融すると材質が混在し、再利用製品の品質が低下するおそれがある。 Further, in the heat exchanger dismantling method described in the above publication, the heat transfer tubes remain in the tube sheet. When reusing a tube sheet, the tube sheet is melted in a melting furnace and processed into a product. However, if the tube sheet is reused with the heat transfer tubes remaining on the tube sheet, radioactive substances adhering to the inner surface of the heat transfer tubes will result in a contaminated recycled product. If the tube sheet and the heat transfer tube are made of different materials, if they are melted as they are, the materials may be mixed and the quality of the recycled product may deteriorate.

本発明は、上述のような事情に基づいてなされたものであり、作業性に優れ被ばく量をさらに低減できるとともに、管板を金属材料として容易に再利用できる熱交換器の解体方法の提供を目的とする。 The present invention has been made based on the circumstances described above, and aims to provide a heat exchanger dismantling method that is excellent in workability, can further reduce the amount of radiation exposure, and can easily reuse the tube sheet as a metal material.

本発明の一態様に係る熱交換器の解体方法は、伝熱管と、この伝熱管を固定する管板と、上記伝熱管及び管板を格納する円筒状の胴部とを備え、原子力施設で使用される熱交換器の解体方法であって、上記伝熱管が、円弧部と、この円弧部の両端からそれぞれ上記胴部の中心軸に対して平行に延び、上記管板をその表面から裏面に向かって貫通する直管部とを有し、上記直管部が、上記管板の裏面側で上記管板に溶接されており、上記伝熱管の円弧部を除去する工程と、上記管板をその表面に平行に輪切りにすることで、上記直管部の上記管板への溶接部分を除去する工程と、上記円弧部除去工程及び上記溶接部分除去工程後に、上記直管部を引き抜く工程とを備える。 A method for dismantling a heat exchanger according to an aspect of the present invention is a method for dismantling a heat exchanger for use in a nuclear power facility, comprising heat transfer tubes, a tube sheet for fixing the heat transfer tubes, and a cylindrical body section for housing the heat transfer tubes and the tube sheet, wherein the heat transfer tubes have an arc section and a straight tube section extending from both ends of the arc section in parallel to the central axis of the body section and penetrating the tube sheet from the front surface to the back surface thereof, and the straight tube section is the back surface of the tube sheet. a step of removing the arc portion of the heat transfer tube that is welded to the tube sheet at the side thereof; a step of cutting the tube sheet into rings parallel to the surface thereof to remove the weld portion of the straight pipe portion to the tube sheet; and a step of pulling out the straight pipe portion after the arc portion removing step and the weld portion removing step.

当該熱交換器の解体方法では、管板を平行に輪切りすることで、直管部の管板への溶接部分を除去する。このため、伝熱管の本数に関わらず一度の切断で全ての直管部を移動可能な状態とできる。また、当該熱交換器の解体方法では、上記溶接部分除去工程後に、直管部を引き抜くので、管板内の直管部も同時に引き抜かれる。このため、直管部を引き抜いた管板をそのまま金属材料として再利用することができる。従って、当該熱交換器の解体方法は、作業性に優れ被ばく量をさらに低減できるとともに、管板を金属材料として容易に再利用できる。 In the dismantling method of the heat exchanger, the tube sheet is sliced in parallel to remove the welded portion of the straight tube portion to the tube sheet. Therefore, regardless of the number of heat transfer tubes, all the straight tube sections can be made movable by cutting once. In addition, in the heat exchanger dismantling method, since the straight pipe portion is pulled out after the welded portion removing step, the straight pipe portion in the tube sheet is also pulled out at the same time. Therefore, the tube sheet from which the straight tube portion is pulled out can be reused as it is as a metal material. Therefore, the heat exchanger dismantling method is excellent in workability and can further reduce the amount of radiation exposure, and the tube sheet can be easily reused as a metal material.

上記引抜工程で、上記管板の裏面側から引き抜くとよい。管板から円弧部側に延びる直管部は一般に比較的長い。このように上記引抜工程で上記直管部を上記管板の裏面側から引き抜くことで、直管部が最後まで管板で支持されるため、長い直管部を安定して引き抜くことが可能となる。 In the drawing step, the tube sheet may be drawn from the back surface side. The straight pipe section extending from the tube sheet toward the arc section is generally relatively long. By pulling out the straight pipe portion from the back surface side of the tube sheet in the pulling step, the straight pipe portion is supported by the tube sheet to the end, so that the long straight pipe portion can be stably pulled out.

上記直管部が、上記管板の貫通部分で拡径されて上記管板に密着されており、上記溶接部分除去工程後に、上記直管部の拡径部分を処理する工程をさらに備えるとよい。施工時の拡管加工等により伝熱管が管板に強く密着している場合、溶接部分を除去するのみでは、容易に直管部の引き抜きを行えないおそれがある。このように直管部が管板の貫通部分で拡径されて管板に密着されている場合にあっては、溶接部分除去工程後に、上記直管部の拡径部分を処理する工程を備えることで、容易に直管部を引き抜くことが可能となる。 The straight pipe portion is expanded in diameter at the penetrating portion of the tube sheet and is in close contact with the tube sheet, and a step of processing the enlarged diameter portion of the straight pipe portion may be further included after the welded portion removing step. If the heat transfer tubes are strongly adhered to the tube sheet due to tube expansion or the like during construction, it may not be possible to easily pull out the straight tube portion simply by removing the welded portion. In the case where the diameter of the straight pipe portion is expanded at the penetrating portion of the tube sheet and is in close contact with the tube sheet as described above, the step of processing the enlarged diameter portion of the straight pipe portion is provided after the step of removing the welded portion, so that the straight pipe portion can be easily pulled out.

上記拡径部分処理工程を、上記直管部の管壁の切削により行うとよい。このように上記拡径部分処理工程を、上記直管部の管壁の切削により行うことで、確実に管板と伝熱管との密着部分を除去できるので、さらに容易に直管部を引き抜くことが可能となる。 The diameter-enlarged portion treatment step is preferably performed by cutting the pipe wall of the straight pipe portion. By performing the diameter-expansion portion processing step by cutting the tube wall of the straight pipe portion in this way, it is possible to reliably remove the portion where the tube sheet and the heat transfer tube adhere to each other, so that the straight pipe portion can be pulled out more easily.

上記拡径部分処理工程を、上記直管部と上記管板との密着力の緩和により行うとよい。このように上記拡径部分処理工程を、上記直管部と上記管板との密着力の緩和により行うことで、直管部の引き抜きとともに拡径部分を除去できるので、作業性が高められる。 It is preferable that the diameter-enlarged portion treatment step is performed by reducing the adhesion force between the straight pipe portion and the tube sheet. By performing the enlarged diameter portion treatment step in this manner by reducing the adhesion force between the straight pipe portion and the tube sheet, the straight pipe portion can be pulled out and the enlarged diameter portion can be removed, thereby improving workability.

上記密着力の緩和方法として、上記直管部の管壁の一部を上記管板の板厚方向に切除する方法を用いるとよい。このように上記密着力の緩和方法に上記直管部の管壁の一部を上記管板の板厚方向に切除する方法を用いることで、比較的少ない切除量で直管部を容易に引き抜くことが可能となる。従って、切除時に生じる放射性物質が付着した塵量を抑えられるので、被ばく量をさらに低減できる。 As a method for reducing the adhesion force, it is preferable to use a method of cutting a portion of the tube wall of the straight tube portion in the plate thickness direction of the tube sheet. In this way, by using a method of removing part of the tube wall of the straight pipe portion in the plate thickness direction of the tube sheet as the method for reducing the adhesion force, the straight pipe portion can be easily pulled out with a relatively small amount of removal. Therefore, the amount of dust attached with radioactive substances generated during excision can be suppressed, so that the amount of radiation exposure can be further reduced.

上記密着力の緩和方法として、少なくとも上記管板の加熱及び冷却を行う方法を用いるとよい。このように上記密着力の緩和方法に少なくとも上記管板の加熱及び冷却を行う方法を用いることで、伝熱管の切削を伴わずに直管部を引き抜くことが可能となる。 At least a method of heating and cooling the tube sheet may be used as a method of relaxing the adhesion force. By using at least the method of heating and cooling the tube sheet as the method of relaxing the adhesion force, it is possible to pull out the straight tube portion without cutting the heat transfer tube.

以上説明したように、本発明の熱交換器の解体方法は、作業性に優れ被ばく量をさらに低減できるとともに、管板を金属材料として容易に再利用できる。 As described above, the heat exchanger dismantling method of the present invention is excellent in workability, can further reduce the amount of radiation exposure, and can easily reuse the tube sheet as a metal material.

図1は、本発明の一実施形態に係る熱交換器の解体方法を示すフロー図である。FIG. 1 is a flowchart showing a heat exchanger dismantling method according to one embodiment of the present invention. 図2は、図1の熱交換器の解体方法で解体する熱交換器を示す模式的断面図である。FIG. 2 is a schematic cross-sectional view showing a heat exchanger to be dismantled by the heat exchanger dismantling method of FIG. 図3は、図2のIII部分の模式的拡大断面図である。3 is a schematic enlarged cross-sectional view of the III portion of FIG. 2. FIG. 図4は、熱交換器の頭部を除去した状態を示す模式図である。FIG. 4 is a schematic diagram showing a state in which the head of the heat exchanger is removed. 図5は、熱交換器の円弧部を除去した状態を示す模式図である。FIG. 5 is a schematic diagram showing a state in which the arc portion of the heat exchanger is removed. 図6は、熱交換器の管板を輪切りにした状態を示す模式図である。FIG. 6 is a schematic diagram showing a state in which the tube sheet of the heat exchanger is sliced. 図7は、拡径部分を切削により処理する方法の一例を説明する模式的断面図である。FIG. 7 is a schematic cross-sectional view illustrating an example of a method of processing the enlarged diameter portion by cutting. 図8は、拡径部分を密着力の緩和により処理する方法の一例を説明する模式的上面図である。FIG. 8 is a schematic top view for explaining an example of a method of treating the expanded diameter portion by relaxing adhesion.

以下、本発明の実施の形態について適宜図面を参照しつつ詳説する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with appropriate reference to the drawings.

図1に示す熱交換器の解体方法は、原子力施設で使用される熱交換器の解体方法であって、円弧部除去工程S1と、溶接部分除去工程S2と、拡径部分処理工程S3と、引抜工程S4とを備える。 The heat exchanger dismantling method shown in FIG. 1 is a heat exchanger dismantling method used in a nuclear power facility, and includes an arc portion removing step S1, a welded portion removing step S2, a diameter expanding portion processing step S3, and a drawing step S4.

<熱交換器>
図2に、当該熱交換器の解体方法で解体する熱交換器1の構成を示す。熱交換器1は、複数の伝熱管10と、この伝熱管10を固定する管板20と、伝熱管10及び管板20を格納する円筒状の胴部30とを備える。
<Heat exchanger>
FIG. 2 shows the configuration of the heat exchanger 1 to be dismantled by the heat exchanger dismantling method. The heat exchanger 1 includes a plurality of heat transfer tubes 10 , a tube sheet 20 fixing the heat transfer tubes 10 , and a cylindrical body 30 housing the heat transfer tubes 10 and the tube sheet 20 .

(伝熱管)
伝熱管10は、円弧部11と、この円弧部11の両端からそれぞれ胴部30の中心軸に対して平行に延びる直管部12とを有する。複数の伝熱管10は、図2に示すように、楔止め金具13や管支持板14により胴部30内の位置を制御されている。ただし、伝熱管10は楔止め金具13や管支持板14に固定されているわけではなく、伝熱管10が移動可能に保持されている。
(Heat transfer tube)
The heat transfer tube 10 has an arc portion 11 and straight pipe portions 12 extending parallel to the central axis of the body portion 30 from both ends of the arc portion 11 . As shown in FIG. 2, the heat transfer tubes 10 are controlled in position within the body 30 by wedging fittings 13 and tube support plates 14 . However, the heat transfer tubes 10 are not fixed to the wedge fittings 13 or the tube support plates 14, but are held movably.

(管板)
管板20は、直管部12の円弧部11とは反対側の端部を固定するための板である。管板20は、胴部30の下端部にその表面が胴部30の中心軸と直交するように配置されており、胴部30を上下に区画している。
(tube plate)
The tube sheet 20 is a plate for fixing the end portion of the straight pipe portion 12 opposite to the arc portion 11 . The tube sheet 20 is arranged at the lower end of the body portion 30 so that its surface is perpendicular to the central axis of the body portion 30 and divides the body portion 30 into upper and lower parts.

直管部12は、図3に示すように、管板20をその表面20aから裏面20bに向かって貫通している。直管部12は、管板20の裏面側で管板20に溶接されている(図3の溶接部分21)。また、直管部12は、管板20の貫通部分で拡径された拡径部分12aを有し、この拡径部分12aにより管板20に密着されている。 As shown in FIG. 3, the straight tube portion 12 penetrates the tube sheet 20 from its surface 20a toward its back surface 20b. The straight pipe portion 12 is welded to the tube sheet 20 on the back side of the tube sheet 20 (welded portion 21 in FIG. 3). Further, the straight pipe portion 12 has an enlarged diameter portion 12a that is enlarged in diameter at a portion that penetrates the tube sheet 20, and is in close contact with the tube sheet 20 by this enlarged diameter portion 12a.

(胴部)
胴部30は、管板20で上下に区画されており、その下部には冷却材が供給及び排出される水室31が設けられている。また、胴部30は、管板20で区画された上部に伝熱管10を浸漬するように被冷却材(例えば水)を供給できるように構成されている。
(torso)
The body portion 30 is vertically partitioned by the tube sheet 20, and a water chamber 31 is provided in the lower portion thereof to supply and discharge a coolant. Further, the body portion 30 is configured to be able to supply a material to be cooled (for example, water) so that the heat transfer tubes 10 are immersed in the upper portion defined by the tube sheet 20 .

(動作)
熱交換器1には、原子炉で加熱された高温の1次冷却材が水室31に供給される。この1次冷却材は伝熱管10の内部を流れて水室31に戻され、水室31から排出される。
(motion)
In the heat exchanger 1 , the high-temperature primary coolant heated in the nuclear reactor is supplied to the water chamber 31 . This primary coolant flows inside the heat transfer tubes 10 and is returned to the water chamber 31 and discharged from the water chamber 31 .

このとき、伝熱管10の周囲は被冷却材で満たされており、この被冷却材でと熱交換を行うこととなる。従って、排出される1次冷却材は、温度が下がっている。この低温になった1次冷却材は再び原子炉で加熱され、水室31へ供給されることとなる。 At this time, the periphery of the heat transfer tube 10 is filled with the material to be cooled, and heat is exchanged with this material to be cooled. Therefore, the temperature of the discharged primary coolant is lowered. This low-temperature primary coolant is heated again in the reactor and supplied to the water chamber 31 .

一方、熱交換により加熱された被冷却材は、熱交換器1から取り出され、その熱エネルギーを利用される。 On the other hand, the material to be cooled heated by heat exchange is taken out from the heat exchanger 1 and its thermal energy is utilized.

原子力施設において熱交換器1はこのように使用されるので、伝熱管10や水室31の内部を放射性物質が通過する可能性がある。従って、放射性物質は伝熱管10や水室31の内部に主に含まれ、他の部分には含まれないか、含まれていても微量である可能性が高い。 Since the heat exchanger 1 is used in this manner in a nuclear facility, radioactive substances may pass through the inside of the heat transfer tubes 10 and the water chamber 31 . Therefore, there is a high possibility that the radioactive substance is mainly contained in the heat transfer tube 10 and the water chamber 31 and is not contained in other parts, or is contained in a very small amount even if it is contained.

以下、これを踏まえて、当該熱交換器の解体方法の各工程について説明する。 Based on this, each step of the heat exchanger dismantling method will be described below.

<円弧部除去工程>
円弧部除去工程S1では、伝熱管10の円弧部11を除去する。
<Arc part removal process>
In the arc portion removing step S1, the arc portion 11 of the heat transfer tube 10 is removed.

具体的には、以下の手順による。まず、熱交換器1の頭部をカッター等により切断することで除去する。この際、図4に示すように、伝熱管10は、切断することなく残す。伝熱管10に切れ目が生じない限り、放射性物質が外部に露出する可能性は低いため、切断部分を密閉する必要はない。 Specifically, the procedure is as follows. First, the head of the heat exchanger 1 is removed by cutting it with a cutter or the like. At this time, as shown in FIG. 4, the heat transfer tubes 10 are left without being cut. As long as the heat transfer tube 10 is not cut, there is little possibility that the radioactive material will be exposed to the outside, so the cut portion need not be sealed.

次に、円弧部11を除去する。円弧部11を除去すると、伝熱管10の内部が露出するため、放射性物質が外部に排出されるおそれがある。従って、この円弧部11は放射性物質の漏出を防止できる解体室内で行われる。なお、以降の工程は、伝熱管10の内部が露出した状態で行われるため、解体完了まで解体室内で行われる。 Next, the arc portion 11 is removed. When the circular arc portion 11 is removed, the inside of the heat transfer tube 10 is exposed, so there is a risk that radioactive substances may be discharged to the outside. Therefore, this arc section 11 is carried out in a dismantling chamber that can prevent leakage of radioactive substances. Since the subsequent steps are performed with the inside of the heat transfer tube 10 exposed, they are performed in the dismantling chamber until the dismantling is completed.

円弧部11の除去は、例えば公知の手法により行うことができる。例えば胴部30の円弧部11周辺を取り囲む部分を除去し、円弧部11を露出させた後、カッターやレーザー等の切断機で切断し回収する。回収した円弧部11は、放射性物質が付着しているため、放射性物質として廃棄される。 The arc portion 11 can be removed, for example, by a known technique. For example, after removing the portion surrounding the circumference of the circular arc portion 11 of the trunk portion 30 to expose the circular arc portion 11, the circular arc portion 11 is cut by a cutting machine such as a cutter or a laser and recovered. Since the collected arcuate portion 11 has a radioactive substance attached thereto, it is discarded as a radioactive substance.

これにより図5に示すように、熱交換器1は、管板20に複数の直管部12のみが林立する状態にまで解体される。 As a result, as shown in FIG. 5, the heat exchanger 1 is dismantled to a state where only the plurality of straight pipe portions 12 stand on the tube sheet 20 .

<溶接部分除去工程>
溶接部分除去工程S2では、管板20をその表面に平行に輪切りにすることで、直管部12の管板20への溶接部分21を除去する。
<Welded part removal process>
In the welded portion removing step S2, the welded portion 21 of the straight pipe portion 12 to the tube sheet 20 is removed by slicing the tube sheet 20 parallel to its surface.

具体的には、例えば図3の切断位置Cで、例えば鋸刃式の切断機で切断する。 Specifically, for example, at the cutting position C in FIG.

切断位置Cとしては、特に限定されるものではない。輪切りにされ除去された溶接部分21を含む管板除去部を再利用する場合は、切断位置Cは管板20の表面側に近い方が、直管部12を貫通させる際の摩擦抵抗が減るため好ましい。 The cutting position C is not particularly limited. When reusing the tube sheet removed portion including the welded portion 21 that has been sliced and removed, it is preferable that the cutting position C be closer to the surface side of the tube sheet 20 because the frictional resistance when the straight tube portion 12 is penetrated is reduced.

これに対し、管板除去部を再利用しない場合は、切断位置Cは管板20の裏面側に近い方が、再利用される管板20の量を確保できるため好ましい。 On the other hand, when the tube sheet removed portion is not to be reused, it is preferable that the cutting position C be closer to the back side of the tube sheet 20 because the amount of the tube sheet 20 to be reused can be secured.

なお、この輪切りにより、管板除去部は水室31とともに一体的に除去され、図6に示すように、溶接部分を除去された管板20(以下、この溶接部分を除去された管板を継続して「管板」という)と直管部12とが残る。 By this cross-slicing, the removed part of the tube sheet is removed together with the water chamber 31, and as shown in FIG.

<拡径部分処理工程>
拡径部分処理工程S3では、溶接部分除去工程S2後に、直管部12の拡径部分12aを処理する。
<Diameter expansion part treatment process>
In the enlarged diameter portion treatment step S3, the enlarged diameter portion 12a of the straight pipe portion 12 is treated after the welded portion removing step S2.

拡径部分12aを処理することなく、直管部12を引き抜くことも可能であるが、図3に示す直管部12のように施工時の拡管加工等により伝熱管10が管板20に強く密着している場合、溶接部分21を除去するのみでは、容易に直管部12の引き抜きを行えないおそれがある。このように直管部12が管板20の貫通部分で拡径されて管板20に密着されている場合にあっては、溶接部分除去工程S2後に、直管部12の拡径部分12aを処理する工程を備えることで、容易に直管部12を引き抜くことが可能となる。 Although it is possible to pull out the straight pipe portion 12 without processing the enlarged diameter portion 12a, if the heat transfer tube 10 is strongly adhered to the tube sheet 20 due to the pipe expansion process or the like during construction as in the case of the straight pipe portion 12 shown in FIG. When the diameter of the straight pipe portion 12 is expanded at the penetrating portion of the tube sheet 20 and is in close contact with the tube sheet 20 as described above, the straight pipe portion 12 can be easily pulled out by providing a step of processing the diameter-enlarged portion 12a of the straight pipe portion 12 after the welded portion removing step S2.

拡径部分12aを処理する方法としては、切削による方法、密着力の緩和による方法等を挙げることができる。 Examples of the method for processing the expanded diameter portion 12a include a method by cutting, a method by relaxing adhesion force, and the like.

(切削による方法)
切削による方法では、拡径部分処理工程S3を直管部12の管壁の切削により行う。
(Method by cutting)
In the cutting method, the diameter-enlarged portion processing step S<b>3 is performed by cutting the pipe wall of the straight pipe portion 12 .

具体的には、例えば図7に示すドリルDのような切削機により管板20の裏面側から拡径部分12aを削り取る。ドリルDに拡径部分12aの外径と同等もしくはわずかに大きい径のものを用いることで、拡径部分12aを削り落とすことが可能である。図7では、ドリルDを用いているが、他の研削機、例えばリーマー等を用いても同様に機能する。なお、拡径部分12aの全てを切削する必要はなく、直管部12を容易に引き抜くことが可能となる範囲でよい。この場合、管板20内に残留する直管部12は、引抜工程S4で管板20から引き抜かれる。 Specifically, for example, the enlarged diameter portion 12a is scraped off from the back side of the tube sheet 20 with a cutting machine such as a drill D shown in FIG. By using a drill D with a diameter equal to or slightly larger than the outer diameter of the enlarged diameter portion 12a, it is possible to cut off the enlarged diameter portion 12a. Although the drill D is used in FIG. 7, other grinders such as reamers can be used in the same way. It should be noted that it is not necessary to cut the entire diameter-enlarged portion 12a, and it is sufficient that the straight pipe portion 12 can be easily pulled out. In this case, the straight pipe portion 12 remaining in the tube sheet 20 is pulled out from the tube sheet 20 in the pulling step S4.

このように拡径部分処理工程S3を、直管部12の管壁の切削により行うことで、確実に管板20と伝熱管10との密着部分を除去できるので、さらに容易に直管部12を引き抜くことが可能となる。 By performing the diameter-enlarging portion processing step S3 by cutting the tube wall of the straight pipe portion 12 in this way, the portion of the tight contact between the tube sheet 20 and the heat transfer tube 10 can be reliably removed, so that the straight pipe portion 12 can be pulled out more easily.

(密着力の緩和による方法)
この方法では、拡径部分処理工程S3を、直管部12と管板20との密着力の緩和により行う。この方法では、直管部12と管板20との密着力を緩和した後に、後述する引抜工程S4で直管部12の引き抜きとともに拡径部分12aを除去できる。このため作業性が高められる。
(Method by relaxation of adhesion force)
In this method, the diameter-expansion portion processing step S3 is performed by relaxing the adhesion force between the straight pipe portion 12 and the tube sheet 20 . In this method, after the adhesion force between the straight pipe portion 12 and the tube sheet 20 is relaxed, the straight pipe portion 12 is pulled out and the enlarged diameter portion 12a can be removed in the pulling step S4, which will be described later. Therefore, workability is enhanced.

上記密着力の緩和方法として、直管部12の管壁の一部を管板20の板厚方向に切除する方法を用いるとよい。 As a method for reducing the adhesion force, a method of cutting a portion of the tube wall of the straight tube portion 12 in the plate thickness direction of the tube sheet 20 may be used.

具体的には、図8に示すように、断面がC字状となるように直管部12の管壁の一部を管板20の板厚方向に切除する。つまり、切除後において、直管部12の管壁はその一部に管板20の板厚方向に延びる間隙Sを有する。拡径部分12aをこの間隙Sを狭めるように変形させることにより拡径部分12aの径を小さくすることができる。これにより直管部12と管板20との密着力を緩和できる。 Specifically, as shown in FIG. 8, a portion of the tube wall of the straight tube portion 12 is cut in the plate thickness direction of the tube sheet 20 so that the cross section is C-shaped. That is, after cutting, the pipe wall of the straight pipe portion 12 has a gap S extending in the plate thickness direction of the tube sheet 20 in a part thereof. By deforming the enlarged diameter portion 12a so as to narrow the gap S, the diameter of the enlarged diameter portion 12a can be reduced. As a result, the adhesion force between the straight pipe portion 12 and the tube sheet 20 can be relaxed.

この間隙Sは、例えば公知のスロッター加工により行うことができる。なお、スロッター加工を行う際、直管部12の管壁のみを切除してもよいが、図8に示すように管板20の一部も合わせて切除するとよい。管板20の一部も合わせて切断することで、確実に直管部12の管壁の一部に間隙Sを設けることができる。 This gap S can be formed, for example, by a known slotter process. When slotting, only the tube wall of the straight tube portion 12 may be removed, but as shown in FIG. 8, part of the tube sheet 20 may also be removed. By cutting a portion of the tube sheet 20 as well, the gap S can be reliably provided in a portion of the tube wall of the straight tube portion 12 .

このように上記密着力の緩和方法に直管部12の管壁の一部を管板20の板厚方向に切除する方法を用いることで、比較的少ない切除量で直管部12を容易に引き抜くことが可能となる。従って、切除時に生じる放射性物質が付着している粉塵量を抑えられるので、被ばく量をさらに低減できる。 By using the method of removing part of the tube wall of the straight tube portion 12 in the plate thickness direction of the tube sheet 20 as the method for relaxing the adhesion force, the straight tube portion 12 can be easily pulled out with a relatively small amount of removal. Therefore, it is possible to reduce the amount of dust attached with radioactive substances generated during excision, thereby further reducing the amount of radiation exposure.

また、他の上記密着力の緩和方法として、少なくとも管板20の加熱及び冷却を行う方法を用いるとよい。 Further, as another method for relaxing the adhesion force, at least a method of heating and cooling the tube sheet 20 may be used.

この方法では、管板20のみ又は管板20及び拡径部分12aを加熱及び冷却を行うことで、熱膨張率の違いを利用して密着力の緩和を図る。この場合、加熱及び冷却は急速に行うことが好ましく、特に冷却を急速に行うことが好ましい。急冷することで、密着力の緩和が進み易くなる。また、加熱及び冷却は複数回おこなってもよい。 In this method, by heating and cooling only the tube sheet 20 or the tube sheet 20 and the enlarged diameter portion 12a, the difference in the coefficient of thermal expansion is used to reduce the adhesion force. In this case, rapid heating and cooling are preferred, and rapid cooling is particularly preferred. The quenching facilitates relaxation of adhesion. Also, heating and cooling may be performed multiple times.

このように上記密着力の緩和方法に少なくとも管板20の加熱及び冷却を行う方法を用いることで、伝熱管10の切削を伴わずに直管部12を引き抜くことが可能となる。 By using at least a method of heating and cooling the tube sheet 20 as the method of relaxing the adhesion force, the straight tube portion 12 can be pulled out without cutting the heat transfer tube 10 .

<引抜工程>
引抜工程S4では、円弧部除去工程S1、溶接部分除去工程S2及び拡径部分処理工程S3後に、直管部12を引き抜く。
<Extraction process>
In the drawing step S4, the straight pipe portion 12 is drawn after the circular arc portion removing step S1, the welded portion removing step S2, and the enlarged diameter portion processing step S3.

具体的には、管板20から複数の直管部12を1本ずつ引き抜いていく。直管部12は、管板20及び管支持板14に支えられ、管板20に対して垂直となる方向に姿勢が維持されているので、比較的容易に引き抜くことができる。 Specifically, the plurality of straight pipe portions 12 are pulled out one by one from the tube sheet 20 . Since the straight tube portion 12 is supported by the tube sheet 20 and the tube support plate 14 and maintained in a direction perpendicular to the tube sheet 20, it can be pulled out relatively easily.

ここで、管板20は、直管部12が中心軸に垂直方向に動かない程度に支えているが、管支持板14は直管部12を動かない程度にまで固定するものではない。また、直管部12は一般に比較的長い。直管部12を表面側から引き抜くと、まず直管部12は管板20から離脱することとなる。そうすると、直管部12は管支持板14のみを通って引き抜かれることとなるが、管支持板14は直管部12を中心軸に垂直方向に動かない程度に固定するものではないため、直管部12の姿勢を保ち難く、直管部12が管支持板14に引っかかり易い。 Here, the tube plate 20 supports the straight tube portion 12 to such an extent that it does not move in the direction perpendicular to the central axis, but the tube support plate 14 does not fix the straight tube portion 12 to such an extent that it does not move. Also, the straight pipe section 12 is generally relatively long. When the straight pipe portion 12 is pulled out from the surface side, the straight pipe portion 12 is first separated from the tube sheet 20 . Then, the straight tube portion 12 is pulled out only through the tube support plate 14. However, since the tube support plate 14 does not fix the straight tube portion 12 to such an extent that it does not move vertically about the central axis, it is difficult to maintain the straight tube portion 12 in its posture, and the straight tube portion 12 is easily caught on the tube support plate 14.例文帳に追加

このため、引抜工程S4で、管板20の裏面側から引き抜くとよい。このように引抜工程S4で直管部12を管板20の裏面側から引き抜くことで、直管部12が最後まで管板20で支持されるため、長い直管部12を安定して引き抜くことが可能となる。 Therefore, it is preferable to pull out the tube sheet 20 from the back surface side in the pulling step S4. By pulling out the straight pipe part 12 from the back side of the tube sheet 20 in the pulling step S4 in this way, the straight tube part 12 is supported by the tube sheet 20 to the end, so that the long straight pipe part 12 can be stably pulled out.

回収した直管部12は、放射性物質が付着しているため、放射性物質として廃棄される。一方、直管部12が引き抜かれた管板20には、放射性物質が付着していたとしても物理的に除去することが容易であるため、そのまま金属材料として再利用することができる。 Since the recovered straight pipe portion 12 is contaminated with radioactive substances, it is discarded as a radioactive substance. On the other hand, even if a radioactive substance adheres to the tube sheet 20 from which the straight tube portion 12 has been pulled out, it can be reused as it is as a metal material because it can be physically removed easily.

<その他>
管板除去部を再利用する場合は、当該熱交換器の解体方法は、管板除去部から直管部12の貫通部分を除去する工程を備えるとよい。管板除去部から直管部12の貫通部分の除去は、拡径部分処理工程S3と同様の手法を用いて行うことができる。
<Others>
When the tube sheet removed portion is reused, the dismantling method of the heat exchanger preferably includes a step of removing the penetrating portion of the straight tube portion 12 from the tube sheet removed portion. The removal of the penetrating portion of the straight pipe portion 12 from the tube sheet removal portion can be performed using the same technique as in the diameter-enlarged portion processing step S3.

<利点>
当該熱交換器の解体方法では、管板20を平行に輪切りすることで、直管部12の管板20への溶接部分21を除去する。このため、伝熱管10の本数に関わらず一度の切断で全ての直管部12を移動可能な状態とできる。また、当該熱交換器の解体方法では、溶接部分除去工程S2後に、直管部12を引き抜くので、管板20内の直管部12も同時に引き抜かれる。このため、直管部12を引き抜いた管板20をそのまま金属材料として再利用することができる。従って、当該熱交換器の解体方法は、作業性に優れ、かつ管板20を金属材料として容易に再利用できる。
<Advantages>
In the dismantling method of the heat exchanger, the tube sheet 20 is sliced in parallel to remove the welded portion 21 of the straight tube portion 12 to the tube sheet 20 . Therefore, regardless of the number of heat transfer tubes 10, all the straight tube sections 12 can be made movable by cutting once. Further, in the heat exchanger dismantling method, the straight pipe portion 12 is pulled out after the welded portion removing step S2, so the straight pipe portion 12 in the tube sheet 20 is also pulled out at the same time. Therefore, the tube sheet 20 from which the straight pipe portion 12 is pulled out can be reused as it is as a metal material. Therefore, the dismantling method of the heat exchanger is excellent in workability, and the tube sheet 20 can be easily reused as a metal material.

[その他の実施形態]
なお、本発明は、上記実施形態に限定されるものではない。
[Other embodiments]
In addition, this invention is not limited to the said embodiment.

上記実施形態では、拡径部分処理工程を備える場合を説明したが、この工程は必須の工程ではなく、例えば拡径部分を有さない伝熱管が用いられている場合など省略することができる。 In the above-described embodiment, a case in which the expanded diameter portion treatment step is provided has been described, but this step is not an essential step and can be omitted, for example, when a heat transfer tube that does not have an enlarged diameter portion is used.

上記実施形態では、円弧部除去工程と溶接部分除去工程とをこの順に行う場合を説明したが、これらの工程は逆順に、つまり溶接部分除去工程後に円弧部除去工程を行うことも可能である。なお、逆順に行う場合にあっては、円弧部除去工程の後、つまり最後に引抜工程を行うこととなる。 In the above embodiment, the arc part removing process and the welded part removing process are performed in this order, but these processes can be reversed, that is, the arc part removing process can be performed after the welded part removing process. In addition, when performing in reverse order, the extraction process is performed after the circular arc part removal process, that is, at the end.

本発明の熱交換器の解体方法は、作業性に優れ被ばく量をさらに低減できるとともに、管板を金属材料として容易に再利用できる。 The dismantling method of the heat exchanger of the present invention is excellent in workability, can further reduce the amount of radiation exposure, and can easily reuse the tube sheet as a metal material.

1 熱交換器
10 伝熱管
11 円弧部
12 直管部
12a 拡径部分
13 楔止め金具
14 管支持板
20 管板
20a 表面
20b 裏面
21 溶接部分
30 胴部
31 水室
C 切断位置
D ドリル
S 間隙
1 Heat exchanger 10 Heat transfer tube 11 Arc part 12 Straight tube part 12a Expanded diameter part 13 Wedge fitting 14 Tube support plate 20 Tube sheet 20a Front surface 20b Back surface 21 Welding part 30 Body part 31 Water chamber C Cutting position D Drill S Gap

Claims (7)

伝熱管と、この伝熱管を固定する管板と、上記伝熱管及び管板を格納する円筒状の胴部とを備え、原子力施設で使用される熱交換器の解体方法であって、
上記伝熱管が、円弧部と、この円弧部の両端からそれぞれ上記胴部の中心軸に対して平行に延び、上記管板をその表面から裏面に向かって貫通する直管部とを有し、上記直管部が、上記管板の裏面側で上記管板に溶接されており、
上記伝熱管の円弧部を除去する工程と、
上記管板をその表面に平行に輪切りにすることで、上記直管部の上記管板への溶接部分を除去する工程と、
上記円弧部除去工程及び上記溶接部分除去工程後に、上記直管部を引き抜く工程と
を備える熱交換器の解体方法。
A dismantling method for a heat exchanger used in a nuclear facility, comprising a heat transfer tube, a tube sheet for fixing the heat transfer tube, and a cylindrical body portion for storing the heat transfer tube and the tube sheet, comprising:
The heat transfer tube has an arc portion and a straight pipe portion that extends from both ends of the arc portion in parallel with the central axis of the body portion and penetrates the tube sheet from the front surface to the back surface, and the straight pipe portion is welded to the tube sheet on the back surface side of the tube sheet.
A step of removing the arc portion of the heat transfer tube;
removing the welded portion of the straight tube portion to the tube sheet by slicing the tube sheet parallel to its surface;
A method for dismantling a heat exchanger, comprising: a step of pulling out the straight pipe portion after the step of removing the arc portion and the step of removing the welded portion.
上記引抜工程で、上記直管部を上記管板の裏面側から引き抜く請求項1に記載の熱交換器の解体方法。 2. The method for dismantling a heat exchanger according to claim 1, wherein in the drawing step, the straight pipe portion is drawn from the back side of the tube sheet. 上記直管部が、上記管板の貫通部分で拡径されて上記管板に密着されており、
上記溶接部分処理工程後に、上記直管部の拡径部分を処理する工程をさらに備える請求項1又は請求項2に記載の熱交換器の解体方法。
The straight pipe portion has a diameter expanded at a portion penetrating the tube sheet and is in close contact with the tube sheet,
3. The heat exchanger dismantling method according to claim 1, further comprising a step of treating the enlarged diameter portion of the straight pipe portion after the welding portion treatment step.
上記拡径部分処理工程を、上記直管部の管壁の切削により行う請求項3に記載の熱交換器の解体方法。 4. The method for dismantling a heat exchanger according to claim 3, wherein the diameter-enlarging portion processing step is performed by cutting the pipe wall of the straight pipe portion. 上記拡径部分処理工程を、上記直管部と上記管板との密着力の緩和により行う請求項3に記載の熱交換器の解体方法。 4. The method for dismantling a heat exchanger according to claim 3, wherein the diameter-enlarged portion processing step is performed by reducing adhesion between the straight pipe portion and the tube sheet. 上記密着力の緩和方法として、上記直管部の管壁の一部を上記管板の板厚方向に切除する方法を用いる請求項5に記載の熱交換器の解体方法。 6. The heat exchanger dismantling method according to claim 5, wherein a part of the tube wall of the straight tube portion is cut away in the plate thickness direction of the tube sheet as a method for reducing the adhesion force. 上記密着力の緩和方法として、少なくとも上記管板の加熱及び冷却を行う方法を用いる請求項5に記載の熱交換器の解体方法。
6. The method for dismantling a heat exchanger according to claim 5, wherein at least the method of heating and cooling the tube sheet is used as the method of relaxing the adhesion force.
JP2020056436A 2020-03-26 2020-03-26 Dismantling method of heat exchanger Active JP7313306B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020056436A JP7313306B2 (en) 2020-03-26 2020-03-26 Dismantling method of heat exchanger
TW110110852A TW202147340A (en) 2020-03-26 2021-03-25 Dismantling method of heat exchanger
KR1020210039208A KR20210120893A (en) 2020-03-26 2021-03-26 Dismantling method of heat exchanger
CA3113330A CA3113330A1 (en) 2020-03-26 2021-03-26 Dismantling method of heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020056436A JP7313306B2 (en) 2020-03-26 2020-03-26 Dismantling method of heat exchanger

Publications (2)

Publication Number Publication Date
JP2021156702A JP2021156702A (en) 2021-10-07
JP7313306B2 true JP7313306B2 (en) 2023-07-24

Family

ID=77918175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020056436A Active JP7313306B2 (en) 2020-03-26 2020-03-26 Dismantling method of heat exchanger

Country Status (4)

Country Link
JP (1) JP7313306B2 (en)
KR (1) KR20210120893A (en)
CA (1) CA3113330A1 (en)
TW (1) TW202147340A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014055747A (en) 2012-09-13 2014-03-27 Mitsubishi Heavy Ind Ltd Heat exchanger tube plate cutting method
JP2014059149A (en) 2012-09-14 2014-04-03 Mitsubishi Heavy Ind Ltd Dismantling method for heat exchanger
JP2014106048A (en) 2012-11-26 2014-06-09 Mitsubishi Heavy Ind Ltd Dismantlement method of steam generator
JP6092600B2 (en) 2012-12-03 2017-03-08 株式会社イシダ X-ray inspection equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718531B2 (en) * 1985-03-20 1995-03-06 北海道電力株式会社 How to remove the heat transfer tube
DE3742876A1 (en) * 1987-12-17 1989-06-29 Siemens Ag METHOD AND ARRANGEMENT FOR THE RENEWAL OF A VERTICAL STEAM GENERATOR, ESPECIALLY IN NUCLEAR POWER PLANTS
JPH0692600A (en) * 1992-09-16 1994-04-05 Yoshifuji Tekkosho:Kk Drawing device for heat exchanger tube
DE19541501A1 (en) * 1995-11-07 1997-05-15 Siemens Ag Method and device for disposing of a nuclear steam generator
EP2731298A1 (en) 2012-11-07 2014-05-14 Siemens Aktiengesellschaft Communications system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014055747A (en) 2012-09-13 2014-03-27 Mitsubishi Heavy Ind Ltd Heat exchanger tube plate cutting method
JP2014059149A (en) 2012-09-14 2014-04-03 Mitsubishi Heavy Ind Ltd Dismantling method for heat exchanger
JP2014106048A (en) 2012-11-26 2014-06-09 Mitsubishi Heavy Ind Ltd Dismantlement method of steam generator
JP6092600B2 (en) 2012-12-03 2017-03-08 株式会社イシダ X-ray inspection equipment

Also Published As

Publication number Publication date
TW202147340A (en) 2021-12-16
KR20210120893A (en) 2021-10-07
JP2021156702A (en) 2021-10-07
CA3113330A1 (en) 2021-09-26

Similar Documents

Publication Publication Date Title
EP0112612B1 (en) Repairing degraded tubes of steam generators
CA2727492C (en) Method for removal of pressure tubes and calandria tubes from a nuclear reactor
US4739916A (en) Sleeve repair of degraded nuclear steam generator tubes
US6247231B1 (en) Method for repairing heat exchanger tubing through partial tube replacement
JP6773463B2 (en) Chemical decontamination method for pressurized water nuclear power plant
JP7313306B2 (en) Dismantling method of heat exchanger
JPH05157487A (en) Method of exchanging tube of straight tube type heat exchanger
Keogh et al. Laser cutting and welding tools for use in-bore on EU-DEMO service pipes
CN111418025A (en) Calandria insert disassembly and removal tool and method
KR101842356B1 (en) Maintenance method for welding part of small pipe for nuclear reactor
JP2007118058A (en) Method and apparatus for improving residual stress in pipe body
JP6990097B2 (en) Liquid metal sodium recovery method and recovery device
JP6076697B2 (en) Steam generator transportation method
US11835226B2 (en) Method of disassembling steam generator
JPH04232899A (en) Method for plugging pipe of straight-pipe type heat exchanger and use of this method
WO2012067039A1 (en) Hole drilling device, and method
CA2735109A1 (en) Calandria tube joint
KR102357318B1 (en) Apparatus for cutting inner heat pipe in steam generator in nuclear power plant
EP4151905A1 (en) Method for dismantling steam generator
JPH03113398A (en) Disconnection processing method for radiation contaminated heat exchanger or the like
JP5762039B2 (en) Heat exchanger dismantling method
JP2022550787A (en) Method for decontaminating gas-containing metal parts using laser irradiation in liquid media
JPH05185257A (en) Welding device for repairing small diameter pipe
JPS6069597A (en) Nuclear reactor
JPS63143221A (en) Improvement of residual stress in double metal tube or the like

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230711

R150 Certificate of patent or registration of utility model

Ref document number: 7313306

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150