JP7313026B2 - Residual chlorine meter and residual chlorine concentration measurement method - Google Patents

Residual chlorine meter and residual chlorine concentration measurement method Download PDF

Info

Publication number
JP7313026B2
JP7313026B2 JP2018158310A JP2018158310A JP7313026B2 JP 7313026 B2 JP7313026 B2 JP 7313026B2 JP 2018158310 A JP2018158310 A JP 2018158310A JP 2018158310 A JP2018158310 A JP 2018158310A JP 7313026 B2 JP7313026 B2 JP 7313026B2
Authority
JP
Japan
Prior art keywords
residual chlorine
voltage
pretreatment
electrode
working electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018158310A
Other languages
Japanese (ja)
Other versions
JP2020034286A (en
Inventor
悟 池田
哲 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanita Corp
Original Assignee
Tanita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanita Corp filed Critical Tanita Corp
Priority to JP2018158310A priority Critical patent/JP7313026B2/en
Priority to PCT/JP2019/033076 priority patent/WO2020045285A1/en
Publication of JP2020034286A publication Critical patent/JP2020034286A/en
Priority to JP2023109825A priority patent/JP2023118839A/en
Application granted granted Critical
Publication of JP7313026B2 publication Critical patent/JP7313026B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/38Cleaning of electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems

Description

本発明は、水道水等の被検液の残留塩素濃度を測定する残留塩素計および残留塩素濃度測定方法に関する。 The present invention relates to a residual chlorine meter and a residual chlorine concentration measuring method for measuring the residual chlorine concentration of test liquids such as tap water.

無試薬型残留塩素計としてガルバニ方式の残留塩素計が知られている。ガルバニ方式の残留塩素計では、白金電極または金電極を作用電極として用い、銀/塩化銀電極を参照電極として用い、両電極を水道水等の被検液に浸漬させ、両電極間の電圧に基づいて被検液の残留塩素濃度を測定する。ガルバニ方式の残留塩素計の測定原理は概ね次の通りである。すなわち、作用電極および参照電極を被検液に浸漬させると、酸化還元反応により電極間に電流が流れ、電極間に電位差が生じる。この電極間の電位差は、被検液の残留塩素濃度に応じて異なる。したがって、電極間の電位差(電圧)に基づいて被検液の残留塩素濃度を測定することができる。 A galvanic residual chlorine meter is known as a reagentless residual chlorine meter. In the galvanic residual chlorine meter, a platinum electrode or a gold electrode is used as a working electrode, and a silver/silver chloride electrode is used as a reference electrode. The measurement principle of the galvanic residual chlorine meter is generally as follows. That is, when the working electrode and the reference electrode are immersed in the test solution, a current flows between the electrodes due to oxidation-reduction reaction, and a potential difference is generated between the electrodes. The potential difference between the electrodes varies depending on the residual chlorine concentration of the test liquid. Therefore, the residual chlorine concentration of the sample liquid can be measured based on the potential difference (voltage) between the electrodes.

また、無試薬型の他の方式の残留塩素計としてポーラログラフ方式の残留塩素計が知られている。ポーラログラフ方式の残留塩素計も、多くの場合、ガルバニ方式の残留塩素計と同様に、白金電極または金電極を作用電極として用い、銀/塩化銀電極を対極として用い、両電極を水道水等の被検液に浸漬させて被検液の残留塩素濃度の測定を行う。しかしながら、ポーラログラフ方式の残留塩素計では、ガルバニ方式の残留塩素計とは異なり、電極間に電圧を印加し、その状態で、電極間の電流値に基づいて被検液の残留塩素濃度を測定する。ポーラログラフ方式の残留塩素計の測定原理は概ね次の通りである。すなわち、作用電極および対極を被検液に浸漬させ、電極間に電圧を印加する。この印加電圧をマイナス方向に大きくしていくと、還元反応が進行し、電極間を流れる電流が増加していく。ところが、印加電圧をマイナス方向にさらに大きくしていくと、印加電圧を変化させても電極間を流れる電流が変化しなくなる現象が生じる。引き続き印加電圧をマイナス方向に大きくしていくと、電極間を流れる電流が再び増加し始める。印加電圧を変化させても電極間を流れる電流が変化しなくなる現象が生じている状態では、被検液の残留塩素濃度に応じて定まる電極間の電流値を安定的に測定することができる。したがって、上記現象が生じる電圧値を有する印加電圧を電極間に印加し、その状態で電極間の電流値を測定することにより、被検液の残留塩素濃度を精度よく測定することができる。 A polarographic residual chlorine meter is known as another type of residual chlorine meter that does not require a reagent. Similar to the galvanic residual chlorine meter, most polarographic residual chlorine meters use a platinum electrode or a gold electrode as the working electrode and a silver/silver chloride electrode as the counter electrode. However, in the polarographic residual chlorine meter, unlike the galvanic residual chlorine meter, a voltage is applied between the electrodes, and in this state, the residual chlorine concentration of the test solution is measured based on the current value between the electrodes. The measurement principle of the polarographic residual chlorine meter is generally as follows. That is, a working electrode and a counter electrode are immersed in a test solution, and a voltage is applied between the electrodes. As the applied voltage is increased in the negative direction, the reduction reaction proceeds and the current flowing between the electrodes increases. However, if the applied voltage is further increased in the negative direction, a phenomenon occurs in which the current flowing between the electrodes does not change even if the applied voltage is changed. As the applied voltage continues to increase in the negative direction, the current flowing between the electrodes begins to increase again. In a state in which the current flowing between the electrodes does not change even if the applied voltage is changed, the current value between the electrodes, which is determined according to the residual chlorine concentration of the test liquid, can be stably measured. Therefore, by applying an applied voltage having a voltage value that causes the above phenomenon between the electrodes and measuring the current value between the electrodes in this state, the residual chlorine concentration of the test liquid can be measured with high accuracy.

ところで、ガルバニ方式およびポーラログラフ方式のいずれの残留塩素計においても、残留塩素濃度の測定を行うことにより、酸化還元反応生成物等が作用電極に付着する。酸化還元反応生成物等が作用電極に付着すると、残留塩素濃度の測定精度が低下する。この残留塩素濃度の測定精度の低下を抑制する方法として、次に述べるような方法が知られている。 By the way, in both galvanic and polarographic residual chlorine meters, oxidation-reduction reaction products and the like adhere to the working electrode when the residual chlorine concentration is measured. If oxidation-reduction reaction products or the like adhere to the working electrode, the measurement accuracy of the residual chlorine concentration is lowered. The following method is known as a method for suppressing the decrease in measurement accuracy of the residual chlorine concentration.

すなわち、主にポータブルタイプのガルバニ方式の残留塩素計において、測定前に、柔らかい布やメラミンスポンジ等を用いて作用電極に付着した酸化還元反応生成物等を拭き取る方法が知られている。 That is, there is a known method of wiping off oxidation-reduction reaction products and the like adhering to the working electrode using a soft cloth, melamine sponge, or the like before measurement, mainly in portable galvanic residual chlorine meters.

また、主に、浄水場、用水処理施設等の水槽や配管等に取り付けて被検液の残留塩素濃度の連続測定を行うタイプのポーラログラフ方式の残留塩素計においては、容器内に研磨用ビーズを収容し、その容器内に臨むように作用電極を配置し、作用電極をモーター等を用いて円運動させることにより、または容器内に被検液を流し込むことにより、作用電極を研磨用ビーズで研磨する方法が知られている(下記の特許文献1を参照)。 Further, in a polarographic residual chlorine meter of the type that is mainly attached to water tanks, pipes, etc. of water purification plants, industrial water treatment facilities, etc., and continuously measures the residual chlorine concentration of a test solution, there is known a method in which polishing beads are housed in a container, a working electrode is arranged so as to face the container, and the working electrode is polished with the polishing beads by circularly moving the working electrode using a motor or the like or by pouring the test solution into the container (see Patent Document 1 below). .

特開2015-117939号公報JP 2015-117939 A

しかしながら、上記方法には、次のような問題がある。 However, the above method has the following problems.

まず、メラミンスポンジ等で作用電極に付着した酸化還元反応生成物等を拭き取る方法については、利用者は、測定前に作用電極を拭く作業を行わなければならず、手間がかかるという問題がある。 First, the method of wiping off oxidation-reduction reaction products and the like adhering to the working electrode with a melamine sponge or the like has the problem that the user has to wipe the working electrode before measurement, which is troublesome.

次に、研磨用ビーズで作用電極を研磨する方法については、その方法を実現するために、作用電極をモーターで円運動させるための装置や、研磨用ビーズを収容した容器へ被検液を導いて当該容器内に被検液を流し込ませる装置等、大がかりな装置が必要となり、残留塩素計の大型化、複雑化または価格の上昇を招くという問題がある。 Next, regarding the method of polishing the working electrode with polishing beads, in order to realize this method, a large-scale device is required, such as a device for circularly moving the working electrode with a motor, or a device for introducing a test solution into a container containing polishing beads and causing the test solution to flow into the container.

本発明は例えば上述したような問題に鑑みなされたものであり、本発明の課題は、酸化還元反応生成物等が作用電極に付着することに起因する残留塩素濃度の測定精度の低下を、利用者に手間をかけることなく、かつ残留塩素計の大型化、複雑化または高価格化を招くことなく抑制することができる残留塩素計および残留塩素濃度測定方法を提供することにある。 The present invention has been made in view of the above-described problems, for example, and an object of the present invention is to provide a residual chlorine meter and a residual chlorine concentration measuring method that can suppress the decrease in the measurement accuracy of the residual chlorine concentration due to the adhesion of oxidation-reduction reaction products and the like to the working electrode without requiring trouble for the user and without increasing the size, complexity, or cost of the residual chlorine meter.

上記課題を解決するために、本発明の残留塩素計は、作用電極である第1の電極と、参照電極または対極である第2の電極とを被検液に浸漬させ、第1の電極と第2の電極との間の電圧に基づいて被検液の残留塩素濃度を測定する測定部と、第1の電極と第2の電極との間に前処理電圧を印加する前処理部と、前処理電圧の印加後、前処理電圧の印加を停止し、その後、被検液の残留塩素濃度の測定を行うように測定部および前処理部を制御する制御部とを備えていることを特徴とする。 In order to solve the above problems, the residual chlorine meter of the present invention has a first electrode that is a working electrode and a second electrode that is a reference electrode or a counter electrode immersed in a test solution, a measurement part that measures the residual chlorine concentration of the test solution based on the voltage between the first electrode and the second electrode, a pretreatment part that applies a pretreatment voltage between the first electrode and the second electrode, and after applying the pretreatment voltage, the application of the pretreatment voltage is stopped, and then the residual chlorine concentration of the test solution. and a control unit that controls the measurement unit and the preprocessing unit so that the measurement is performed.

本発明の残留塩素計によれば、前処理電圧を第1の電極と第2の電極との間に印加することで、前回またはそれよりも前に行った残留塩素濃度の測定により第1の電極に付着した酸化還元反応生成物等の少なくとも一部を除去することができる。そして、前処理電圧の印加を終えた後に残留塩素濃度の測定を行うことで、酸化還元反応生成物等の第1の電極への付着に起因する残留塩素濃度の測定精度の低下を抑制することができる。したがって、測定前にメラミンスポンジ等で作用電極に付着した酸化還元反応生成物等を拭き取る作業をなくすことができる。また、研磨用ビーズで作用電極を研磨するための大がかりな装置を不要とすることができる。 According to the residual chlorine meter of the present invention, by applying a pretreatment voltage between the first electrode and the second electrode, it is possible to remove at least part of the oxidation-reduction reaction products and the like attached to the first electrode due to the measurement of the residual chlorine concentration performed last time or earlier. Then, by measuring the residual chlorine concentration after finishing the application of the pretreatment voltage, it is possible to suppress the decrease in the measurement accuracy of the residual chlorine concentration due to the adhesion of oxidation-reduction reaction products and the like to the first electrode. Therefore, it is possible to eliminate the work of wiping off oxidation-reduction reaction products and the like adhering to the working electrode with a melamine sponge or the like before measurement. In addition, it is possible to eliminate the need for a large-scale device for polishing the working electrode with polishing beads.

上記本発明の残留塩素計において、前処理部は前処理電圧を掃引する構成としてもよい。前処理電圧を掃引することにより、直流の前処理電圧を印加する場合と比較して、被検液の残留塩素濃度の測定精度を安定させることができる。 In the residual chlorine meter of the present invention, the pretreatment section may sweep the pretreatment voltage. By sweeping the pretreatment voltage, it is possible to stabilize the measurement accuracy of the residual chlorine concentration of the test liquid as compared with the case of applying a DC pretreatment voltage.

また、上記本発明の残留塩素計において、前処理部は、前処理電圧を、0Vを中心にプラス側の振幅とマイナス側の振幅とが互いに等しくなるように掃引する構成としてもよい。この構成により、前処理部または制御部を構成する電気回路の設計が複雑化することを防止することができる。 Further, in the residual chlorine meter of the present invention, the pretreatment section may sweep the pretreatment voltage around 0 V so that the amplitude on the positive side and the amplitude on the negative side are equal to each other. With this configuration, it is possible to prevent the design of the electric circuit that constitutes the preprocessing section or the control section from becoming complicated.

また、上記本発明の残留塩素計において、前処理部は、前処理電圧を一定の速度で掃引する構成としてもよい。この構成によっても、前処理部または制御部を構成する電気回路の設計が複雑化することを防止することができる。 Further, in the residual chlorine meter of the present invention, the pretreatment section may be configured to sweep the pretreatment voltage at a constant speed. Also with this configuration, it is possible to prevent the design of the electric circuit that constitutes the preprocessing section or the control section from becoming complicated.

また、上記本発明の残留塩素計において、制御部は、前処理電圧の印加後における測定部による残留塩素濃度の測定回数が所定回数以上であるか否かを判断し、当該測定回数が所定回数以上であるときには、測定部による次の残留塩素濃度の測定の前に前処理電圧の印加を行い、当該測定回数が所定回数未満であるときには、測定部による次の残留塩素濃度の測定の前に前処理電圧の印加を行わないように前処理部を制御する構成としてもよい。この構成によれば、前処理電圧の印加を行う頻度を下げることができる。したがって、酸化還元反応生成物等が第1の電極に付着することに起因する残留塩素濃度の測定精度の低下を抑制しつつも、測定作業を迅速化させることができ、かつ消費電力を削減することができる。 Further, in the residual chlorine meter of the present invention, the control unit may determine whether or not the number of measurements of the residual chlorine concentration by the measurement unit after applying the pretreatment voltage is a predetermined number or more, and when the number of measurements is the predetermined number or more, apply the pretreatment voltage before the next measurement of the residual chlorine concentration by the measurement unit, and when the number of measurements is less than the predetermined number, control the pretreatment unit so that the pretreatment voltage is not applied before the next measurement of the residual chlorine concentration by the measurement unit. According to this configuration, the frequency of applying the pretreatment voltage can be reduced. Therefore, it is possible to speed up the measurement work and reduce the power consumption while suppressing the decrease in the measurement accuracy of the residual chlorine concentration caused by the oxidation-reduction reaction products and the like adhering to the first electrode.

また、上記本発明の残留塩素計において、制御部は、前処理電圧の印加が行われてからの経過時間が所定時間以上であるか否かを判断し、当該経過時間が所定時間以上であるときには、測定部による残留塩素濃度の測定の前に前処理電圧の印加を行い、当該経過時間が所定時間未満であるときには、測定部による残留塩素濃度の測定の前に前処理電圧の印加を行わないように前処理部を制御する構成としてもよい。この構成によっても、前処理電圧の印加を行う頻度を下げることができ、測定作業の迅速化および消費電力の削減を図ることができる。 Further, in the residual chlorine meter of the present invention, the control unit may determine whether or not the elapsed time from the application of the pretreatment voltage is equal to or longer than a predetermined time, and when the elapsed time is equal to or longer than the predetermined time, the pretreatment voltage is applied before the residual chlorine concentration is measured by the measurement unit, and when the elapsed time is less than the predetermined time, the pretreatment voltage is not applied before the residual chlorine concentration is measured by the measurement unit. This configuration also makes it possible to reduce the frequency of applying the pretreatment voltage, thereby speeding up the measurement work and reducing power consumption.

また、上記課題を解決するために、本発明の残留塩素濃度測定方法は、作用電極である第1の電極と、参照電極または対極である第2の電極とを被検液に浸漬させ、第1の電極と第2の電極との間の電圧に基づいて被検液の残留塩素濃度を測定する残留塩素濃度測定方法であって、第1の電極と第2の電極との間に前処理電圧を印加する前処理工程と、前処理工程における前処理電圧の印加が停止した後に、第1の電極と第2の電極との間の電圧に基づいて被検液の残留塩素濃度を測定する測定工程とを備えていることを特徴とする。 In order to solve the above-mentioned problems, the residual chlorine concentration measuring method of the present invention is a residual chlorine concentration measuring method in which a first electrode that is a working electrode and a second electrode that is a reference electrode or a counter electrode are immersed in a test solution, and the residual chlorine concentration of the test solution is measured based on the voltage between the first electrode and the second electrode. and a measuring step of measuring the residual chlorine concentration of the test liquid based on the voltage between the first electrode and the second electrode.

本発明の残留塩素濃度測定方法によれば、上述した本発明の残留塩素計と同様に、第1の電極に付着した酸化還元反応生成物等の少なくとも一部を除去することができ、酸化還元反応生成物等の第1の電極への付着に起因する残留塩素濃度の測定精度の低下を抑制することができる。 According to the residual chlorine concentration measuring method of the present invention, as in the residual chlorine meter of the present invention described above, it is possible to remove at least a part of the oxidation-reduction reaction products and the like adhering to the first electrode, and it is possible to suppress the decrease in the measurement accuracy of the residual chlorine concentration due to the adhesion of the oxidation-reduction reaction products and the like to the first electrode.

また、上記本発明の残留塩素濃度測定方法の前処理工程において、前処理電圧を掃引することとしてもよい。これにより、直流の前処理電圧を印加する場合と比較して、被検液の残留塩素濃度の測定精度を安定させることができる。 Further, in the pretreatment step of the residual chlorine concentration measuring method of the present invention, the pretreatment voltage may be swept. This makes it possible to stabilize the measurement accuracy of the residual chlorine concentration of the sample liquid as compared with the case of applying a DC pretreatment voltage.

また、上記本発明の残留塩素濃度測定方法の前処理工程において、前処理電圧を、0Vを中心にプラス側の振幅とマイナス側の振幅とが互いに等しくなるように掃引することとしてもよい。また、上記本発明の残留塩素濃度測定方法の前処理工程において、前処理電圧を一定の速度で掃引することとしてもよい。これらの各構成によれば、前処理工程において前処理電圧を印加するための電気回路の設計が複雑化することを防止することができる。 Further, in the pretreatment step of the residual chlorine concentration measuring method of the present invention, the pretreatment voltage may be swept around 0 V so that the amplitude on the positive side and the amplitude on the negative side are equal to each other. Further, in the pretreatment step of the residual chlorine concentration measuring method of the present invention, the pretreatment voltage may be swept at a constant speed. According to each of these configurations, it is possible to prevent the design of the electric circuit for applying the pretreatment voltage in the pretreatment process from becoming complicated.

本発明によれば、酸化還元反応生成物等が作用電極に付着することに起因する残留塩素濃度の測定精度の低下を、利用者に手間をかけることなく、かつ残留塩素計の大型化、複雑化または高価格化を招くことなく抑制することができる。 According to the present invention, it is possible to suppress the decrease in the measurement accuracy of the residual chlorine concentration due to the adhesion of oxidation-reduction reaction products and the like to the working electrode without requiring trouble for the user, and without incurring an increase in the size, complexity, or price of the residual chlorine meter.

本発明の第1の実施形態の残留塩素計の構成を示すブロック図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram which shows the structure of the residual chlorine meter of the 1st Embodiment of this invention. 本発明の第1の実施形態の残留塩素計を示す外観図である。BRIEF DESCRIPTION OF THE DRAWINGS It is an external view which shows the residual chlorine meter of the 1st Embodiment of this invention. 本発明の第1の実施形態の残留塩素計の動作を示すフローチャートである。It is a flow chart which shows operation of a residual chlorine meter of a 1st embodiment of the present invention. 本発明の第1の実施形態の残留塩素計における前処理電圧の波形を示す波形図である。FIG. 4 is a waveform diagram showing the waveform of the pretreatment voltage in the residual chlorine meter of the first embodiment of the present invention; 本発明の第1の実施形態の残留塩素計における前処理電圧を示すボルタモグラムである。It is a voltammogram which shows the pretreatment voltage in the residual chlorine meter of the 1st Embodiment of this invention. (A)擦り拭きも前処理電圧の印加も行わなかった場合、および(B)擦り拭きを行った場合のそれぞれにつき、残留塩素計の作用電極と参照電極との間の被検液浸漬時の電圧を示すグラフである。Fig. 10 is a graph showing the voltage between the working electrode and the reference electrode of the residual chlorine meter when immersed in the test solution, for (A) when neither wiping nor application of pretreatment voltage was performed, and (B) when wiping was performed. (A)擦り拭きも前処理電圧の印加も行わなかった場合、および(B)前処理電圧の印加を行った場合のそれぞれにつき、残留塩素計の作用電極と参照電極との間の被検液浸漬時の電圧を示すグラフである。2 is a graph showing the voltage between the working electrode and the reference electrode of the residual chlorine meter when immersed in the test solution, for (A) when neither wiping nor application of the pretreatment voltage was performed, and (B) when the pretreatment voltage was applied. 測定後に研磨処理も前処理電圧の印加も行わなかった場合、測定後に研磨処理を行った場合、および測定後に前処理電圧の印加を行った場合のそれぞれにつき、残留塩素計の作用電極の表面分析結果を示す表である。4 is a table showing the surface analysis results of the working electrode of the residual chlorine meter for each of cases where neither polishing treatment nor application of pretreatment voltage was performed after measurement, when polishing treatment was performed after measurement, and when pretreatment voltage was applied after measurement. (A)擦り拭きを行ってから測定した場合、および(B)前処理電圧の印加を行ってから測定した場合のそれぞれにつき、残留塩素計の作用電極と参照電極との間の被検液浸漬時の電圧の経時変化を示すグラフである。2 is a graph showing changes over time in the voltage between the working electrode and the reference electrode of the residual chlorine meter when immersed in the test solution, for (A) the measurement after rubbing and (B) the measurement after applying the pretreatment voltage. (A)前処理電圧を掃引した場合、(B)前処理電圧としてプラスの直流電圧を印加した場合、および(C)前処理電圧としてマイナスの直流電圧を印加した場合のそれぞれにつき、残留塩素計の作用電極と参照電極との間の被検液浸漬時の電圧を示すグラフである。4 is a graph showing the voltage between the working electrode and the reference electrode of the residual chlorine meter when the test solution is immersed in (A) when the pretreatment voltage is swept, (B) when a positive DC voltage is applied as the pretreatment voltage, and (C) when a negative DC voltage is applied as the pretreatment voltage. 本発明の第2の実施形態の残留塩素計の動作を示すフローチャートである。It is a flowchart which shows operation|movement of the residual chlorine meter of the 2nd Embodiment of this invention. 本発明の第1または第2の実施形態の残留塩素計における前処理電圧波形の変形例を示す波形図である。FIG. 5 is a waveform diagram showing a modification of the pretreatment voltage waveform in the residual chlorine meter of the first or second embodiment of the present invention;

(第1の実施形態)
まず、本発明の第1の実施形態の残留塩素計1について説明する。図1は残留塩素計1の構成を示している。図2は残留塩素計1の外観を示している。図1に示すように、残留塩素計1は、水道水等の被検液Eの残留塩素濃度を測定する装置である。残留塩素計1は残留塩素濃度の測定方式としてガルバニ方式を採用している。残留塩素計1は、作用電極2、参照電極3、処理回路4および電源回路5を備えている。さらに、残留塩素計1は、図2に示すように、筐体6、操作ボタン7および表示部8を備えている。
(First embodiment)
First, the residual chlorine meter 1 of the first embodiment of the present invention will be explained. FIG. 1 shows the configuration of a residual chlorine meter 1. As shown in FIG. FIG. 2 shows the appearance of the residual chlorine meter 1. As shown in FIG. As shown in FIG. 1, a residual chlorine meter 1 is a device for measuring the residual chlorine concentration of a test liquid E such as tap water. The residual chlorine meter 1 employs a galvanic system as a method for measuring the residual chlorine concentration. A residual chlorine meter 1 includes a working electrode 2 , a reference electrode 3 , a processing circuit 4 and a power supply circuit 5 . Furthermore, the residual chlorine meter 1 includes a housing 6, operation buttons 7, and a display section 8, as shown in FIG.

図2において、筐体6は全体的に見て上下方向に細長い形状を有し、その上側部分は大略直方体状に形成されている。また、筐体6の下側部分は、上側部分の幅および厚さのそれぞれの寸法と比較して小さい径寸法を有する円筒状に形成されている。作用電極2および参照電極3は筐体6の下端部に取り付けられ、操作ボタン7および表示部8は筐体6の上側部分に取り付けられている。また、処理回路4および電源回路5は筐体6の上側部分の内部に収容されている。さらに、筐体6の上側部分には電池収容部(図示せず)が設けられ、電池収容部内には電池9が収容されている。なお、残留塩素計1の電源は電池に限定されない。 In FIG. 2, the housing 6 has a vertically elongated shape when viewed as a whole, and its upper portion is formed in a substantially rectangular parallelepiped shape. In addition, the lower portion of the housing 6 is formed in a cylindrical shape having a smaller diameter than the width and thickness of the upper portion. The working electrode 2 and the reference electrode 3 are attached to the lower end portion of the housing 6 , and the operation buttons 7 and the display section 8 are attached to the upper portion of the housing 6 . Also, the processing circuit 4 and the power supply circuit 5 are accommodated inside the upper portion of the housing 6 . Further, a battery housing portion (not shown) is provided in the upper portion of the housing 6, and a battery 9 is housed in the battery housing portion. In addition, the power supply of the residual chlorine meter 1 is not limited to a battery.

作用電極2は白金電極または金電極等であり、例えば線状に形成されている。なお、作用電極2をディスク状に形成してもよい。参照電極3は銀/塩化銀電極等であり、線状に形成されている。また、参照電極3の電位は基準電位に設定されている。本実施形態において基準電位は0Vである。 The working electrode 2 is a platinum electrode, a gold electrode, or the like, and is formed in a linear shape, for example. In addition, the working electrode 2 may be formed in a disc shape. The reference electrode 3 is a silver/silver chloride electrode or the like, and is formed linearly. Also, the potential of the reference electrode 3 is set to the reference potential. In this embodiment, the reference potential is 0V.

処理回路4は、前処理部としての前処理電圧印加回路11、測定部としての測定回路12、切換器13、制御部としてのマイクロコントローラー14、および記憶回路15を備えている。 The processing circuit 4 includes a pretreatment voltage application circuit 11 as a pretreatment section, a measurement circuit 12 as a measurement section, a switch 13, a microcontroller 14 as a control section, and a memory circuit 15 .

前処理電圧印加回路11は、作用電極2と参照電極3との間に前処理電圧を印加する回路である。後述するように、残留塩素計1は、被検液Eの残留塩素濃度の測定を行う前に作用電極2と参照電極3との間に電圧を印加する。この測定前に電圧を印加する処理が「前処理」であり、この処理で印加する電圧が「前処理電圧」である。また、前処理電圧印加回路11は前処理電圧を掃引する機能を有している。 The pretreatment voltage application circuit 11 is a circuit that applies a pretreatment voltage between the working electrode 2 and the reference electrode 3 . As will be described later, the residual chlorine meter 1 applies a voltage between the working electrode 2 and the reference electrode 3 before measuring the residual chlorine concentration of the test liquid E. FIG. The process of applying a voltage before this measurement is the "pretreatment", and the voltage applied in this process is the "pretreatment voltage". Further, the pretreatment voltage application circuit 11 has a function of sweeping the pretreatment voltage.

測定回路12は、作用電極2と参照電極3との間の電圧に基づき、被検液Eの残留塩素濃度を測定する回路である。例えば、測定回路12は、作用電極2と参照電極3との間の電圧をアナログーデジタル変換し、デジタル化された電圧値に対応する残留塩素濃度値を、電極間の電圧値と残留塩素濃度値との対応関係が予め記録されたデータテーブルを参照する方法、または所定の計算式等により演算する方法により特定する。そして、測定回路12は、特定した残留塩素濃度値をマイクロコントローラー14へ出力する。 The measurement circuit 12 is a circuit that measures the residual chlorine concentration of the test liquid E based on the voltage between the working electrode 2 and the reference electrode 3 . For example, the measurement circuit 12 analog-to-digital converts the voltage between the working electrode 2 and the reference electrode 3, and specifies the residual chlorine concentration value corresponding to the digitized voltage value by referring to a data table in which the correspondence relationship between the voltage value between the electrodes and the residual chlorine concentration value is recorded in advance, or by a method of calculating using a predetermined formula or the like. The measuring circuit 12 then outputs the specified residual chlorine concentration value to the microcontroller 14 .

切換器13は、作用電極2と参照電極3との間へ前処理電圧を印加する経路と、作用電極2と参照電極3との間の電圧に基づいて残留塩素濃度を測定する経路とを切り換える回路である。具体的には、切換器13において、接点aと接点cとが接続されたとき、前処理電圧印加回路11から作用電極2と参照電極3との間へ前処理電圧を印加する経路が形成される。一方、切換器13において、接点bと接点cとが接続されたとき、測定回路12により作用電極2と参照電極3との間の電圧に基づいて残留塩素濃度を測定する経路が形成される。 The switch 13 is a circuit that switches between a path for applying a pretreatment voltage between the working electrode 2 and the reference electrode 3 and a path for measuring the residual chlorine concentration based on the voltage between the working electrode 2 and the reference electrode 3. Specifically, when the contact a and the contact c are connected in the switch 13, a path for applying the pretreatment voltage from the pretreatment voltage application circuit 11 to the working electrode 2 and the reference electrode 3 is formed. On the other hand, when the switch 13 connects the contact b and the contact c, the measurement circuit 12 forms a path for measuring the residual chlorine concentration based on the voltage between the working electrode 2 and the reference electrode 3 .

マイクロコントローラー14は、前処理電圧印加回路11、測定回路12、および切換器13を制御する装置であり、演算処理回路等を有している。マイクロコントローラー14は、切換器13へ切換制御信号を出力し、切換器13において、接点aと接点cとが接続された状態と、接点bと接点cとが接続された状態とを切り換えることができる。また、マイクロコントローラー14は、前処理制御信号を前処理電圧印加回路11へ出力し、前処理電圧の出力を開始させることができる。また、マイクロコントローラー14は、測定制御信号を測定回路12へ出力し、残留塩素濃度の測定を開始させることができる。また、マイクロコントローラー14は、利用者により操作ボタン7が押下されたときに、それに応じて前処理を開始し、前処理を終えた後、測定処理を行う。また、マイクロコントローラー14は、残留塩素濃度の測定結果を表示部8に表示させることができる。表示部8は例えば液晶ディスプレイである。記憶回路15は、半導体記憶素子を備えており、マイクロコントローラー14による処理に用いられるデータ等を記憶する。 The microcontroller 14 is a device for controlling the pretreatment voltage application circuit 11, the measurement circuit 12, and the switch 13, and has an arithmetic processing circuit and the like. The microcontroller 14 outputs a switching control signal to the switch 13, and the switch 13 can switch between a state in which the contacts a and c are connected and a state in which the contacts b and c are connected. The microcontroller 14 can also output a pretreatment control signal to the pretreatment voltage application circuit 11 to start outputting the pretreatment voltage. The microcontroller 14 can also output a measurement control signal to the measurement circuit 12 to initiate measurement of the residual chlorine concentration. Further, when the operation button 7 is pressed by the user, the microcontroller 14 starts preprocessing in response to the depression, and performs measurement processing after finishing the preprocessing. Further, the microcontroller 14 can cause the display unit 8 to display the measurement result of the residual chlorine concentration. The display unit 8 is, for example, a liquid crystal display. The memory circuit 15 includes a semiconductor memory element and stores data and the like used for processing by the microcontroller 14 .

電源回路5は、電池9から得た電力を、前処理電圧印加回路11、測定回路12、切換器13、マイクロコントローラー14、記憶回路15、操作ボタン7の回路および表示部8へ供給する回路である。 The power supply circuit 5 is a circuit that supplies power obtained from the battery 9 to the pretreatment voltage application circuit 11 , the measurement circuit 12 , the switch 13 , the microcontroller 14 , the memory circuit 15 , the circuits of the operation buttons 7 and the display section 8 .

図3は残留塩素計1の動作を示している。被検液Eの残留塩素濃度の測定を行う際に、利用者は、残留塩素計1の下端部を被検液E中に入れ、作用電極2および参照電極3を被検液Eに浸漬させる。そして、利用者は、作用電極2および参照電極3が被検液Eに浸かった状態で、操作ボタン7を押下する。 FIG. 3 shows the operation of the residual chlorine meter 1. FIG. When measuring the residual chlorine concentration of the test liquid E, the user puts the lower end of the residual chlorine meter 1 into the test liquid E, and immerses the working electrode 2 and the reference electrode 3 in the test liquid E. Then, the user presses the operation button 7 while the working electrode 2 and the reference electrode 3 are immersed in the sample liquid E.

残留塩素計1のマイクロコントローラー14は、図3中のステップS1に示すように、操作ボタン7の押下を検知する(ステップS1:YES)。続いて、マイクロコントローラー14は、切換制御信号を切換器13へ出力し、切換器13の接点aと接点cとを接続する。続いて、マイクロコントローラー14は、前処理制御信号を前処理電圧印加回路11へ出力し、前処理電圧の出力を開始させる。これにより、前処理電圧の作用電極2と参照電極3との間への印加が開始される(ステップS2:前処理工程)。 The microcontroller 14 of the residual chlorine meter 1 detects pressing of the operation button 7 as shown in step S1 in FIG. 3 (step S1: YES). Subsequently, the microcontroller 14 outputs a switching control signal to the switch 13 to connect the contacts a and c of the switch 13 . Subsequently, the microcontroller 14 outputs a pretreatment control signal to the pretreatment voltage applying circuit 11 to start outputting the pretreatment voltage. This starts the application of the pretreatment voltage between the working electrode 2 and the reference electrode 3 (step S2: pretreatment step).

ここで、図4は前処理電圧の波形を示している。また、図5は前処理電圧のボルタモグラムを示している。前処理電圧印加回路11は、例えば図4および図5に示すように、前処理電圧を掃引する。すなわち、前処理電圧印加回路11は、前処理電圧を、0Vを中心にプラス側の振幅とマイナス側の振幅とが互いに等しくなるように掃引する。本実施形態では、例えば、前処理電圧のプラス側のピーク値が1.5Vであり、マイナス側のピーク値が-1.5Vである。また、前処理電圧印加回路11は、前処理電圧を一定の速度で掃引する。本実施形態では、例えば、前処理電圧の掃引速度は0.5V/秒である。このように、前処理電圧を、0Vを中心にプラス側の振幅とマイナス側の振幅とが互いに等しくなるように掃引することにより、または、前処理電圧を一定の速度で掃引することにより、前処理電圧印加回路11の設計が複雑化することを防止することができる。 Here, FIG. 4 shows the waveform of the pretreatment voltage. Also, FIG. 5 shows a voltammogram of the pretreatment voltage. The pretreatment voltage applying circuit 11 sweeps the pretreatment voltage as shown in FIGS. 4 and 5, for example. That is, the pretreatment voltage application circuit 11 sweeps the pretreatment voltage around 0 V so that the amplitude on the positive side and the amplitude on the negative side are equal to each other. In this embodiment, for example, the pretreatment voltage has a positive peak value of 1.5V and a negative peak value of -1.5V. Also, the pretreatment voltage applying circuit 11 sweeps the pretreatment voltage at a constant speed. In this embodiment, for example, the sweep rate of the pretreatment voltage is 0.5 V/sec. In this way, by sweeping the pretreatment voltage so that the amplitude on the positive side and the amplitude on the negative side are equal to each other around 0 V, or by sweeping the pretreatment voltage at a constant speed, the design of the pretreatment voltage applying circuit 11 can be prevented from becoming complicated.

また、前処理電圧印加回路11は、前処理電圧を一定のパターンで掃引する。本実施形態における前処理電圧のパターンは次の通りである。すなわち、図4に示すように、前処理電圧の開始時の電圧値は0Vである。続いて、前処理電圧は、0Vから0.5V/秒の速度で3秒間増加する。この結果、前処理電圧の電圧値は1.5Vに達する。続いて、前処理電圧は、1.5Vから0.5V/秒の速度で6秒間減少する。この結果、前処理電圧の電圧値は-1.5Vに達する。続いて、前処理電圧は、-1.5Vから0.5V/秒の速度で3秒間増加する。この結果、前処理電圧の電圧値は0Vになる。前処理電圧印加回路11は、このようなパターンで前処理電圧を12秒間掃引した後、前処理電圧の出力を停止する。その結果、前処理電圧の波形は、三角波の1周期分に相当する波形となる。 Further, the pretreatment voltage applying circuit 11 sweeps the pretreatment voltage in a constant pattern. The pattern of the pretreatment voltage in this embodiment is as follows. That is, as shown in FIG. 4, the voltage value at the start of the pretreatment voltage is 0V. Subsequently, the pretreatment voltage is increased from 0 V at a rate of 0.5 V/s for 3 seconds. As a result, the voltage value of the pretreatment voltage reaches 1.5V. Subsequently, the pretreatment voltage is decreased from 1.5 V at a rate of 0.5 V/s for 6 seconds. As a result, the voltage value of the pretreatment voltage reaches -1.5V. Subsequently, the pretreatment voltage is increased from -1.5 V at a rate of 0.5 V/s for 3 seconds. As a result, the voltage value of the pretreatment voltage becomes 0V. After sweeping the pretreatment voltage in this pattern for 12 seconds, the pretreatment voltage application circuit 11 stops outputting the pretreatment voltage. As a result, the waveform of the pretreatment voltage becomes a waveform corresponding to one cycle of the triangular wave.

前処理電圧の出力が停止された後、マイクロコントローラー14は、切換制御信号を切換器13へ出力し、切換器13の接点bと接点cとを接続する。続いて、マイクロコントローラー14は、測定制御信号を測定回路12へ出力し、被検液Eの残留塩素濃度の測定を開始させる。測定回路12は、作用電極2と参照電極3との間の電圧に基づいて被検液Eの残留塩素濃度を測定し、測定した残留塩素濃度値をマイクロコントローラー14へ出力する(ステップS3:測定工程)。 After the output of the pretreatment voltage is stopped, the microcontroller 14 outputs a switching control signal to the switching device 13 to connect the contact b and the contact c of the switching device 13 . Subsequently, the microcontroller 14 outputs a measurement control signal to the measurement circuit 12 to start measuring the residual chlorine concentration of the sample liquid E. FIG. The measurement circuit 12 measures the residual chlorine concentration of the test liquid E based on the voltage between the working electrode 2 and the reference electrode 3, and outputs the measured residual chlorine concentration value to the microcontroller 14 (step S3: measurement step).

続いて、マイクロコントローラー14は、測定回路12による残留塩素濃度の測定結果を表示部8に表示する(ステップS4)。 Subsequently, the microcontroller 14 displays the measurement result of the residual chlorine concentration by the measurement circuit 12 on the display section 8 (step S4).

本発明の第1の実施形態の残留塩素計1によれば、前処理電圧を作用電極2と参照電極3との間に印加することで、前回またはそれよりも前に行った残留塩素濃度の測定により作用電極2に付着した酸化還元反応生成物等の少なくとも一部を除去することができる。そして、前処理電圧の印加を終えた後に残留塩素濃度の測定を行うことで、酸化還元反応生成物等の作用電極2への付着に起因する残留塩素濃度の測定精度の低下を抑制することができる。残留塩素計1のこの作用効果は、以下に述べるいくつかの実験により確認された。 According to the residual chlorine meter 1 of the first embodiment of the present invention, by applying a pretreatment voltage between the working electrode 2 and the reference electrode 3, it is possible to remove at least part of the oxidation-reduction reaction products and the like attached to the working electrode 2 due to the measurement of the residual chlorine concentration performed last time or earlier. Then, by measuring the residual chlorine concentration after finishing the application of the pretreatment voltage, it is possible to suppress the decrease in the measurement accuracy of the residual chlorine concentration due to the adhesion of oxidation-reduction reaction products and the like to the working electrode 2. This effect of the residual chlorine meter 1 was confirmed by several experiments described below.

(第1の実験)
まず、作用電極の擦り拭きも前処理電圧の印加も行わなかった場合、作用電極の擦り拭きを行った場合、および前処理電圧の印加を行った場合のそれぞれにつき、残留塩素計の作用電極と参照電極との間の被検液浸漬時の電圧を測定する実験を行った。この実験を「第1の実験」という。
(First experiment)
First, an experiment was conducted to measure the voltage between the working electrode of the residual chlorine meter and the reference electrode when immersed in the test solution, for each of the cases where the working electrode was neither rubbed nor the pretreatment voltage was applied, the working electrode was rubbed and the pretreatment voltage was applied, respectively. This experiment is called "first experiment".

第1の実験では、本発明の第1の実施形態の残留塩素計1と同じ作用電極、参照電極および測定回路を備え、作用電極と参照電極との間の電圧値を外部にデータとして出力することができる機能が設けられた実験用のガルバニ方式の残留塩素計を用いた。第1の実験を行うに当たり、このような残留塩素計であって、その作用電極および参照電極を例えば水道水等の被検液に十数秒間浸漬させた後、被検液から出し、そのまま1年程度放置しておいたものを6つ用意した。これら6つの残留塩素計を、残留塩素計M1~M6ということとする。さらに、第1の実験を行うに当たり、被検液として、純水、残留塩素濃度を約0.2mg/Lに調整した調整水、残留塩素濃度を約0.4mg/Lに調整した調整水、および残留塩素濃度を約0.8mg/Lに調整した調整水を用意した。そして、残留塩素計M1~M3を用いて、作用電極の擦り拭きも前処理電圧の印加も行わない場合における作用電極と参照電極との間の被検液浸漬時の電圧と、作用電極の擦り拭きを行った場合における作用電極と参照電極との間の被検液浸漬時の電圧とをそれぞれ測定した。また、残留塩素計M4~M6を用いて、作用電極の擦り拭きも前処理電圧の印加も行わない場合における作用電極と参照電極との間の被検液浸漬時の電圧と、前処理電圧を印加した場合における作用電極と参照電極との間の被検液浸漬時の電圧とをそれぞれ測定した。 In the first experiment, an experimental galvanic residual chlorine meter was used, which had the same working electrode, reference electrode, and measurement circuit as the residual chlorine meter 1 of the first embodiment of the present invention, and was provided with a function capable of outputting the voltage value between the working electrode and the reference electrode as data to the outside. In conducting the first experiment, six such residual chlorine meters were prepared, the working electrode and the reference electrode of which were immersed in a test solution such as tap water for about ten seconds, removed from the test solution, and left for about one year. These six residual chlorine meters are referred to as residual chlorine meters M1 to M6. Furthermore, in conducting the first experiment, pure water, regulated water with a residual chlorine concentration of about 0.2 mg/L, regulated water with a residual chlorine concentration of about 0.4 mg/L, and regulated water with a residual chlorine concentration of about 0.8 mg/L were prepared. Then, using the residual chlorine meters M1 to M3, the voltage between the working electrode and the reference electrode when immersed in the test solution when neither the working electrode is rubbed nor the pretreatment voltage is applied, and the voltage between the working electrode and the reference electrode when the working electrode is rubbed and immersed in the test solution were measured. Further, using residual chlorine meters M4 to M6, the voltage between the working electrode and the reference electrode when immersed in the test solution when neither the working electrode is rubbed nor the pretreatment voltage is applied, and the voltage when the working electrode and the reference electrode are immersed in the test solution when the pretreatment voltage is applied were measured.

第1の実験について、より具体的に説明する。まず、残留塩素計M1の作用電極および参照電極を被検液に浸漬させ、その状態で両電極間の電圧を測定する作業を、上記4種の被検液に対して順次に連続的に行った(工程1-1)。次に、残留塩素計M1の作用電極をメラミンスポンジ等で十分に擦り拭きした(工程1-2)。擦り拭きを終えた直後、残留塩素計M1の作用電極および参照電極を被検液に浸漬させ、その状態で両電極間の電圧を測定する作業を、上記4種の被検液に対して順次に連続的に行った(工程1-3)。次に、残留塩素計M2を用いて工程1-1から1-3までを行い、次に、残留塩素計M3を用いて工程1-1から1-3までを行った。 The first experiment will be described more specifically. First, the working electrode and the reference electrode of the residual chlorine meter M1 are immersed in the test solution, and the voltage between both electrodes is measured in that state, sequentially and continuously for the above four types of test solutions (step 1-1). Next, the working electrode of the residual chlorine meter M1 was thoroughly wiped with a melamine sponge or the like (step 1-2). Immediately after wiping, the working electrode and the reference electrode of the residual chlorine meter M1 are immersed in the test solution, and the voltage between both electrodes is measured in that state for the above four types of test solutions. Next, steps 1-1 to 1-3 were performed using the residual chlorine meter M2, and then steps 1-1 to 1-3 were performed using the residual chlorine meter M3.

また、残留塩素計M4の作用電極および参照電極を被検液に浸漬させ、その状態で両電極間の電圧を測定する作業を、上記4種の被検液に対して順次に連続的に行った(工程1-4)。次に、残留塩素計M4の作用電極および参照電極を上記4種の被検液のうちのいずれかに浸漬させ、その状態で、ポテンショスタット等の外部装置を用いて、残留塩素計M4の作用電極と参照電極との間に図4に示す掃引パターンの前処理電圧を印加した(工程1-5)。前処理電圧の印加を終えた直後、残留塩素計M4の作用電極および参照電極を被検液に浸漬させ、その状態で両電極間の電圧を測定する作業を、上記4種の被検液に対して順次に連続的に行った(工程1-6)。次に、残留塩素計M5を用いて工程1-4から1-6までを行い、次に、残留塩素計M6を用いて工程1-4から1-6までを行った。 In addition, the working electrode and the reference electrode of the residual chlorine meter M4 are immersed in the test liquid, and the voltage between both electrodes is measured in that state, and the above four types of test liquids are sequentially and continuously performed (step 1-4). Next, the working electrode and the reference electrode of the residual chlorine meter M4 were immersed in one of the above four types of test solutions, and in this state, an external device such as a potentiostat was used to apply a pretreatment voltage with a sweep pattern shown in FIG. 4 between the working electrode and the reference electrode of the residual chlorine meter M4 (step 1-5). Immediately after finishing the application of the pretreatment voltage, the working electrode and the reference electrode of the residual chlorine meter M4 were immersed in the test solution, and the voltage between both electrodes was measured in that state. Next, steps 1-4 to 1-6 were performed using the residual chlorine meter M5, and then steps 1-4 to 1-6 were performed using the residual chlorine meter M6.

なお、工程1-1から1-3までを3つの残留塩素計M1~M3を用いて3回行い、工程1-4から1-6までを3つの残留塩素計M4~M6を用いて3回行う理由は、実験の精度を確認するためである。 The reason for performing steps 1-1 to 1-3 three times using three residual chlorine meters M1 to M3 and performing steps 1-4 to 1-6 three times using three residual chlorine meters M4 to M6 is to confirm the accuracy of the experiment.

図6(A)は、工程1-1において得られた各残留塩素計M1~M3の作用電極と参照電極との間の電圧の測定結果を示している。これらは、作用電極の擦り拭きも前処理電圧の印加も行わなかった場合における各残留塩素計M1~M3の作用電極と参照電極との間の被検液浸漬時の電圧の測定結果である。また、図6(A)中の破線は、残留塩素計として許容される誤差範囲の上限に対応する、作用電極と参照電極との間の被検液浸漬時の電圧値(上限電圧値U)を示している。また、図6(A)中の二点鎖線は、残留塩素計として許容される誤差範囲の下限に対応する、作用電極と参照電極との間の被検液浸漬時の電圧値(下限電圧値L)を示している。なお、図6(B)、図7(A)および図7(B)にも、上限電圧値Uを示す破線と、下限電圧値Lを示す二点鎖線が描かれている。図6(A)を見るとわかる通り、残留塩素計M1~M3の作用電極と参照電極との間の電圧はいずれも、本実験で用いた4種の被検液の残留塩素濃度のすべてにおいて下限電圧値Lを下回っている。すなわち、作用電極の擦り拭きも前処理電圧の印加も行わないで被検液の残留塩素濃度を測定した場合には、残留塩素濃度の正しい測定結果が得られない。 FIG. 6A shows the measurement results of the voltage between the working electrode and the reference electrode of each of the residual chlorine meters M1 to M3 obtained in step 1-1. These are the measurement results of the voltage between the working electrode and the reference electrode of each of the residual chlorine meters M1 to M3 when the working electrode was not rubbed and the pretreatment voltage was not applied. The dashed line in FIG. 6(A) indicates the voltage value (upper limit voltage value U) between the working electrode and the reference electrode when immersed in the test solution, which corresponds to the upper limit of the error range allowed for the residual chlorine meter. In addition, the two-dot chain line in FIG. 6(A) indicates the voltage value (lower limit voltage value L) between the working electrode and the reference electrode when the test solution is immersed, which corresponds to the lower limit of the error range allowed for the residual chlorine meter. 6(B), 7(A), and 7(B) also show a dashed line indicating the upper limit voltage value U and a two-dot chain line indicating the lower limit voltage value L. FIG. As can be seen from FIG. 6(A), the voltages between the working electrodes and the reference electrodes of the residual chlorine meters M1 to M3 are all lower than the lower limit voltage value L for all the residual chlorine concentrations of the four types of test liquids used in this experiment. That is, when the residual chlorine concentration of the sample liquid is measured without rubbing the working electrode or applying the pretreatment voltage, the correct measurement result of the residual chlorine concentration cannot be obtained.

図6(B)は、工程1-3において得られた各残留塩素計M1~M3の作用電極と参照電極との間の電圧の測定結果を示している。これらは作用電極の擦り拭きを行った場合における各残留塩素計M1~M3の作用電極と参照電極との間の被検液浸漬時の電圧の測定結果である。図6(B)を見るとわかる通り、残留塩素計M1~M3の作用電極と参照電極との間の電圧はいずれも、本実験で用いた4種の被検液の残留塩素濃度のすべてにおいて下限電圧値L以上であり、かつ上限電圧値U以下である。すなわち、作用電極の擦り拭きを行ってから被検液の残留塩素濃度を測定した場合には、残留塩素濃度の正しい測定結果が得られる。 FIG. 6B shows the measurement results of the voltage between the working electrode and the reference electrode of each of the residual chlorine meters M1 to M3 obtained in step 1-3. These are the measurement results of the voltage between the working electrode and the reference electrode of each of the residual chlorine meters M1 to M3 when the working electrode was rubbed and immersed in the sample liquid. As can be seen from FIG. 6(B), the voltages between the working electrodes and the reference electrodes of the residual chlorine meters M1 to M3 are all at least the lower limit voltage value L and below the upper limit voltage value U at all of the residual chlorine concentrations of the four types of test liquids used in this experiment. That is, when the residual chlorine concentration of the test liquid is measured after the working electrode is rubbed, the correct measurement result of the residual chlorine concentration can be obtained.

そして、図6(A)と図6(B)とを比較するとわかる通り、作用電極の擦り拭きを行うことで、前回またはそれよりも前に行った残留塩素濃度の測定により作用電極に付着した酸化還元反応生成物等の少なくとも一部を除去することができ、擦り拭き後に残留塩素濃度の測定を行うことで、酸化還元反応生成物等の作用電極への付着に起因する残留塩素濃度の測定精度の低下を抑制することができる。 As can be seen from a comparison of FIGS. 6A and 6B, by rubbing the working electrode, it is possible to remove at least a portion of the redox reaction products and the like that adhered to the working electrode when the residual chlorine concentration was measured last time or before. By measuring the residual chlorine concentration after rubbing, it is possible to suppress a decrease in the measurement accuracy of the residual chlorine concentration due to the adhesion of the redox reaction products and the like to the working electrode.

図7(A)は、工程1-4において得られた各残留塩素計M4~M6の作用電極と参照電極との間の電圧の測定結果を示している。これらは作用電極の擦り拭きも前処理電圧の印加も行わなかった場合における各残留塩素計M4~M6の作用電極と参照電極との間の被検液浸漬時の電圧の測定結果である。図7(A)を見るとわかる通り、残留塩素計M4~M6の作用電極と参照電極との間の電圧はいずれも、本実験で用いた4種の被検液の残留塩素濃度のすべてにおいて下限電圧値Lを下回っている。すなわち、作用電極の擦り拭きも前処理電圧の印加も行わないで被検液の残留塩素濃度を測定した場合、残留塩素濃度の正しい測定結果が得られないことが、残留塩素計M4~M6のそれぞれについても確認された。 FIG. 7(A) shows the measurement results of the voltage between the working electrode and the reference electrode of each of the residual chlorine meters M4 to M6 obtained in step 1-4. These are the measurement results of the voltage between the working electrode and the reference electrode of each of the residual chlorine meters M4 to M6 when the working electrode was not rubbed and the pretreatment voltage was not applied. As can be seen from FIG. 7(A), the voltages between the working electrodes and the reference electrodes of the residual chlorine meters M4 to M6 are all below the lower limit voltage value L for all the residual chlorine concentrations of the four types of test liquids used in this experiment. That is, when the residual chlorine concentration of the test solution is measured without rubbing the working electrode or applying the pretreatment voltage, the correct measurement result of the residual chlorine concentration cannot be obtained. It was also confirmed for each of the residual chlorine meters M4 to M6.

図7(B)は、工程1-6において得られた各残留塩素計M4~M6の作用電極と参照電極との間の電圧の測定結果を示している。これらは前処理電圧を印加した場合における各残留塩素計M4~M6の作用電極と参照電極との間の被検液浸漬時の電圧の測定結果である。図7(B)を見るとわかる通り、残留塩素計M4~M6の作用電極と参照電極との間の電圧はいずれも、本実験で用いた4種の被検液の残留塩素濃度のすべてにおいて下限電圧値L以上であり、かつ上限電圧値U以下である。すなわち、前処理電圧を印加してから被検液の残留塩素濃度を測定した場合には、残留塩素濃度の正しい測定結果が得られる。 FIG. 7B shows the measurement results of the voltage between the working electrode and the reference electrode of each residual chlorine meter M4 to M6 obtained in step 1-6. These are the measurement results of the voltage between the working electrode and the reference electrode of each of the residual chlorine meters M4 to M6 when the pretreatment voltage is applied, when the test solution is immersed. As can be seen from FIG. 7(B), the voltages between the working electrodes and the reference electrodes of the residual chlorine meters M4 to M6 are all at least the lower limit voltage value L and below the upper limit voltage value U at all of the residual chlorine concentrations of the four types of test liquids used in this experiment. That is, when the residual chlorine concentration of the sample liquid is measured after the pretreatment voltage is applied, the correct measurement result of the residual chlorine concentration can be obtained.

そして、図7(A)と図7(B)とを比較するとわかる通り、作用電極と参照電圧との間に前処理電圧を印加することで、前回またはそれよりも前に行った残留塩素濃度の測定により作用電極に付着した酸化還元反応生成物等の少なくとも一部を除去することができ、前処理電圧の印加後に残留塩素濃度の測定を行うことで、酸化還元反応生成物等の作用電極への付着に起因する残留塩素濃度の測定精度の低下を抑制することができる。 7(A) and 7(B), by applying the pretreatment voltage between the working electrode and the reference voltage, it is possible to remove at least a part of the oxidation-reduction reaction products and the like attached to the working electrode as a result of the measurement of the residual chlorine concentration carried out previously or before. By measuring the residual chlorine concentration after the application of the pretreatment voltage, it is possible to suppress the decrease in the measurement accuracy of the residual chlorine concentration due to the adhesion of the oxidation-reduction reaction products and the like to the working electrode.

以上、第1の実験により、本発明の第1の実施形態の残留塩素計1において、作用電極2と参照電極3との間に前処理電圧を印加した後に被検液Eの残留塩素濃度の測定を行うことで、作用電極2の擦り拭きを行った後に被検液Eの残留塩素濃度の測定する場合と同程度に、残留塩素濃度の測定精度の低下を抑制することができることが確認された。 As described above, in the first experiment, it was confirmed that, in the residual chlorine meter 1 of the first embodiment of the present invention, by measuring the residual chlorine concentration of the test liquid E after applying the pretreatment voltage between the working electrode 2 and the reference electrode 3, it was possible to suppress the decrease in the measurement accuracy of the residual chlorine concentration to the same extent as when measuring the residual chlorine concentration of the test liquid E after rubbing the working electrode 2.

本発明の第1の実施形態の残留塩素計1によれば、被検液Eの残留塩素濃度の測定前に、作用電極2と参照電極3との間に前処理電圧を印加することで、酸化還元反応生成物等が作用電極2に付着することに起因する残留塩素濃度の測定精度の低下を抑制することができる。したがって、測定前に柔らかい布やメラミンスポンジ等で作用電極2に付着した酸化還元反応生成物等を拭き取る作業をなくすことができる。また、研磨用ビーズで作用電極2を研磨するために、作用電極2をモーターで円運動させる装置や、研磨用ビーズを収容した容器に被検液Eを流し込ませる装置等の大がかりな装置が不要となり、残留塩素計1の大型化、複雑化および高価格化を防止することができる。 According to the residual chlorine meter 1 of the first embodiment of the present invention, by applying a pretreatment voltage between the working electrode 2 and the reference electrode 3 before measuring the residual chlorine concentration of the test liquid E, it is possible to suppress a decrease in the measurement accuracy of the residual chlorine concentration due to adhesion of redox reaction products and the like to the working electrode 2. Therefore, it is possible to eliminate the work of wiping off oxidation-reduction reaction products and the like adhering to the working electrode 2 with a soft cloth, melamine sponge, or the like before measurement. In addition, in order to polish the working electrode 2 with the polishing beads, a large-scale device such as a device for circularly moving the working electrode 2 with a motor or a device for pouring the sample liquid E into a container containing the polishing beads is not required, and the residual chlorine meter 1 can be prevented from becoming larger, more complicated, and more expensive.

(作用電極の表面分析)
参考までに、作用電極の研磨処理も前処理電圧の印加も行わなかった場合、作用電極の研磨処理を行った場合、および前処理電圧の印加を行った場合のそれぞれにつき、作用電極の表面分析結果を示す。表面分析の手法として、X線光電分光法(XPS)を採用した。
(Surface analysis of working electrode)
For reference, the results of surface analysis of the working electrode are shown for each of cases in which neither polishing treatment of the working electrode nor application of pretreatment voltage was performed, polishing treatment of the working electrode was performed, and application of pretreatment voltage was performed. X-ray photoelectric spectroscopy (XPS) was adopted as a technique for surface analysis.

具体的には、本発明の第1の実施形態の残留塩素計1と同じ作用電極(白金電極を採用)、参照電極および測定回路を備えた実験用のガルバニ方式の残留塩素計であって、その作用電極および参照電極を例えば水道水等の被検液に十数秒間浸漬させた後、被検液から出し、そのまま1年程度放置しておいたものを3つ用意した。これら3つの残留塩素計を残留塩素計M11~M13ということとする。そして、残留塩素計M11については、作用電極および参照電極を水道水に十数秒間浸漬させた後、作用電極の研磨処理も、作用電極と参照電極との間への前処理電圧の印加も行わずに作用電極の表面分析を行った。また、残留塩素計M12については、作用電極および参照電極を水道水に十数秒間浸漬させた後、研磨剤(ダイヤモンドペースト)を用いて作用電極を研磨する処理(研磨処理)を行い、その直後に作用電極の表面分析を行った。また、残留塩素計M13については、作用電極および参照電極を水道水に十数秒間浸漬させ、浸漬中に作用電極と参照電極との間に、図4に示す掃引パターンの前処理電圧を印加し、浸漬を終えた直後に作用電極の表面分析を行った。 Specifically, three experimental galvanic residual chlorine meters having the same working electrode (platinum electrode), reference electrode, and measurement circuit as the residual chlorine meter 1 of the first embodiment of the present invention were prepared by immersing the working electrode and the reference electrode in a test solution such as tap water for ten seconds or so, taking them out of the test solution, and leaving them for about one year. These three residual chlorine meters are referred to as residual chlorine meters M11 to M13. Then, for the residual chlorine meter M11, after the working electrode and the reference electrode were immersed in tap water for ten seconds or so, the surface of the working electrode was analyzed without polishing the working electrode or applying a pretreatment voltage between the working electrode and the reference electrode. In addition, for the residual chlorine meter M12, after the working electrode and the reference electrode were immersed in tap water for 10 seconds or so, the working electrode was polished using an abrasive (diamond paste) (polishing treatment), and immediately after that, the surface of the working electrode was analyzed. In addition, for the residual chlorine meter M13, the working electrode and the reference electrode were immersed in tap water for ten seconds or so, a pretreatment voltage with a sweep pattern shown in FIG. 4 was applied between the working electrode and the reference electrode during immersion, and the surface of the working electrode was analyzed immediately after immersion.

図8は各残留塩素計M11~M13の作用電極の表面分析の結果を示している。図8からわかる通り、残留塩素計M11の作用電極の表面における白金(Pt)の割合は11.1%であるのに対し、残留塩素計M12の作用電極の表面における白金の割合は36.3%である。すなわち、残留塩素計M12の作用電極の表面における白金の割合の方が、残留塩素計M11の作用電極の表面における白金の割合よりも大きい。これは、作用電極に研磨処理を施したことにより、作用電極の表面に付着した酸化還元反応生成物等の一部が除去されたことを意味する。 FIG. 8 shows the results of surface analysis of the working electrodes of the residual chlorine meters M11 to M13. As can be seen from FIG. 8, the ratio of platinum (Pt) on the surface of the working electrode of the residual chlorine meter M11 is 11.1%, while the ratio of platinum on the surface of the working electrode of the residual chlorine meter M12 is 36.3%. That is, the proportion of platinum on the surface of the working electrode of the residual chlorine meter M12 is greater than the proportion of platinum on the surface of the working electrode of the residual chlorine meter M11. This means that part of the redox reaction products and the like adhering to the surface of the working electrode was removed by subjecting the working electrode to the polishing treatment.

また、図8からわかる通り、残留塩素計M11の作用電極の表面における白金の割合は11.1%であるのに対し、残留塩素計M13の作用電極の表面における白金の割合は22.4%である。すなわち、残留塩素計M13の作用電極の表面における白金の割合の方が、残留塩素計M11の作用電極の表面における白金の割合よりも大きい。これは、作用電極と参照電極との間に前処理電圧を印加したことにより、作用電極の表面に付着した酸化還元反応生成物等の一部が除去されたことを意味する。 As can be seen from FIG. 8, the ratio of platinum on the surface of the working electrode of the residual chlorine meter M11 is 11.1%, while the ratio of platinum on the surface of the working electrode of the residual chlorine meter M13 is 22.4%. That is, the proportion of platinum on the surface of the working electrode of the residual chlorine meter M13 is greater than the proportion of platinum on the surface of the working electrode of the residual chlorine meter M11. This means that the application of the pretreatment voltage between the working electrode and the reference electrode partially removed redox reaction products and the like attached to the surface of the working electrode.

また、図8からわかる通り、残留塩素計M13の作用電極の表面における白金の割合は、残留塩素計M12の作用電極の表面における白金の割合に近い。これは、残留塩素計の作用電極に対して研磨処理を施すことにより得られる酸化還元反応生成物等の除去効果に近い効果が、残留塩素計の作用電極と参照電極との間に前処理電圧を印加することによって得られることを意味する。 Further, as can be seen from FIG. 8, the ratio of platinum on the surface of the working electrode of the residual chlorine meter M13 is close to the ratio of platinum on the surface of the working electrode of the residual chlorine meter M12. This means that an effect similar to the effect of removing redox reaction products and the like obtained by polishing the working electrode of a residual chlorine meter can be obtained by applying a pretreatment voltage between the working electrode and the reference electrode of the residual chlorine meter.

(第2の実験)
次に、作用電極の擦り拭きを行った残留塩素計、および作用電極と参照電極との間に前処理電圧を印加した残留塩素計のそれぞれにつき、作用電極と参照電極との間の被検液浸漬時の電圧を所定の時間間隔を置いて複数回測定する実験を行った。この実験を「第2の実験」という。
(Second experiment)
Next, an experiment was conducted in which the voltage between the working electrode and the reference electrode when immersed in the test solution was measured multiple times at predetermined time intervals for each of the residual chlorine meter in which the working electrode was rubbed and the residual chlorine meter in which a pretreatment voltage was applied between the working electrode and the reference electrode. This experiment is called "second experiment".

第2の実験では、第1の実験と同様に、本発明の第1の実施形態の残留塩素計1と同じ作用電極、参照電極および測定回路を備え、作用電極と参照電極との間の電圧値を外部にデータとして出力することができる機能が設けられた実験用のガルバニ方式の残留塩素計を用いた。第2の実験を行うに当たり、このような残留塩素計であって、その作用電極および参照電極を例えば水道水等の被検液に十数秒間浸漬させた後、被検液から出し、そのまま1年程度放置しておいたものを10個用意した。これら10個の残留塩素計を、残留塩素計M21~M30ということとする。さらに、第2の実験を行うに当たり、被検液として、残留塩素濃度を約0.2mg/Lに調整した調整水、残留塩素濃度を約0.4mg/Lに調整した調整水、および残留塩素濃度を約0.8mg/Lに調整した調整水を用意した。そして、残留塩素計M21~M25を用いて、作用電極の擦り拭きを行った後の作用電極と参照電極との間の被検液浸漬時の電圧を所定の時間間隔を置いて複数回測定した。また、残留塩素計M26~M30を用いて、前処理電圧を印加した後の作用電極と参照電極との間の被検液浸漬時の電圧を所定の時間間隔を置いて複数回測定した。 In the second experiment, as in the first experiment, an experimental galvanic residual chlorine meter was used, which had the same working electrode, reference electrode, and measurement circuit as the residual chlorine meter 1 of the first embodiment of the present invention, and was provided with a function capable of outputting the voltage value between the working electrode and the reference electrode as data to the outside. In conducting the second experiment, 10 such residual chlorine meters were prepared, the working electrode and the reference electrode of which were immersed in a test liquid such as tap water for about ten seconds, removed from the test liquid, and left for about one year. These ten residual chlorine meters are referred to as residual chlorine meters M21 to M30. Furthermore, in conducting the second experiment, conditioned water with a residual chlorine concentration of about 0.2 mg/L, conditioned water with a residual chlorine concentration of about 0.4 mg/L, and regulated water with a residual chlorine concentration of about 0.8 mg/L were prepared. Then, using residual chlorine meters M21 to M25, the voltage between the working electrode and the reference electrode after the working electrode was rubbed and immersed in the test solution was measured multiple times at predetermined time intervals. In addition, using residual chlorine meters M26 to M30, the voltage between the working electrode and the reference electrode after the pretreatment voltage was applied and the electrode being immersed in the test solution was measured multiple times at predetermined time intervals.

第2の実験について、より具体的に説明する。まず、残留塩素計M21の作用電極をメラミンスポンジ等で十分に擦り拭きした(工程2-1)。擦り拭きを終えた直後、残留塩素計M21の作用電極および参照電極を被検液に浸漬させ、その状態で両電極間の電圧を測定する作業を、上記3種の被検液に対して順次に連続的に行った(工程2-2)。次に、残留塩素計M21を直ちに被検液から出して大気中に放置した(工程2-3)。次に、同日中に、残留塩素計M22~M25を用いて、工程2-1から工程2-3までをそれぞれ順次連続的に行った。次に、残留塩素計M21~M25を用いて工程2-1を行った日から1日、7日、14日、21日および28日経過したそれぞれの日に、残留塩素計M21~M25を用いて工程2-2および2-3のみをそれぞれ順次に連続的に行った。 The second experiment will be described more specifically. First, the working electrode of the residual chlorine meter M21 was thoroughly wiped with a melamine sponge or the like (step 2-1). Immediately after wiping, the working electrode and reference electrode of the residual chlorine meter M21 are immersed in the test solution, and the voltage between both electrodes is measured in that state for the above three types of test solutions. Next, the residual chlorine meter M21 was immediately removed from the liquid to be tested and left in the atmosphere (step 2-3). Next, on the same day, using residual chlorine meters M22 to M25, Steps 2-1 to 2-3 were sequentially and continuously performed. Next, 1 day, 7 days, 14 days, 21 days and 28 days after the day when step 2-1 was performed using the residual chlorine meters M21 to M25, only steps 2-2 and 2-3 were sequentially and continuously performed using the residual chlorine meters M21 to M25.

また、残留塩素計M26の作用電極および参照電極を上記3種の被検液のうちのいずれかに浸漬させ、その状態で、ポテンショスタット等の外部装置を用いて、残留塩素計M26の作用電極と参照電極との間に、図4に示す掃引パターンの前処理電圧を印加した(工程2-4)。前処理電圧の印加を終えた直後、残留塩素計M26の作用電極および参照電極を被検液に浸漬させ、その状態で両電極間の電圧を測定する作業を、上記3種の被検液に対して順次に連続的に行った(工程2-5)。次に、残留塩素計M26を直ちに被検液から出して大気中に放置した(工程2-6)。次に、同日中に、残留塩素計M27~M30を用いて、工程2-4から工程2-6までをそれぞれ順次連続的に行った。次に、残留塩素計M26~M30を用いて工程2-4を行った日から1日、7日、14日、21日および28日経過したそれぞれの日に、残留塩素計M26~M30を用いて工程2-5および2-6のみをそれぞれ順次に連続的に行った。 In addition, the working electrode and the reference electrode of the residual chlorine meter M26 were immersed in one of the three types of test liquids, and in that state, an external device such as a potentiostat was used to apply a pretreatment voltage with a sweep pattern shown in FIG. 4 between the working electrode and the reference electrode of the residual chlorine meter M26 (step 2-4). Immediately after finishing the application of the pretreatment voltage, the working electrode and the reference electrode of the residual chlorine meter M26 were immersed in the test solution, and the voltage between both electrodes was measured in that state. Next, the residual chlorine meter M26 was immediately taken out of the liquid to be tested and left in the atmosphere (step 2-6). Next, on the same day, using residual chlorine meters M27 to M30, Steps 2-4 to 2-6 were sequentially and continuously performed. Next, 1 day, 7 days, 14 days, 21 days and 28 days after the day when step 2-4 was performed using the residual chlorine meters M26 to M30, only steps 2-5 and 2-6 were sequentially and continuously performed using the residual chlorine meters M26 to M30.

図9(A)は、工程2-2において得られた残留塩素計M21~M25のそれぞれの作用電極と参照電極との間の被検液浸漬時の電圧の平均値を、経過日数ごと、かつ被検液の残留塩素濃度ごとに算出し、それら平均値の経過日数に応じた変化を描いたものである。また、図9(B)は、工程2-5において得られた残留塩素計M26~M30のそれぞれの作用電極と参照電極との間の被検液浸漬時の電圧の平均値を、経過日数ごと、かつ被検液の残留塩素濃度ごとに算出し、それら平均値の経過日数に応じた変化を描いたものである。また、図9(A)および(B)中の二点鎖線は、残留塩素計として許容される誤差範囲の下限に対応する、作用電極と参照電極との間の被検液浸漬時の電圧値(下限電圧値La、Lb、Lc)を残留塩素濃度ごとに示している。下限電圧値Laは、残留塩素濃度が約0.2mg/Lの被検液に作用電極および参照電極が浸漬されたときの下限電圧値である。下限電圧値Lbは、残留塩素濃度が約0.4mg/Lの被検液に作用電極および参照電極が浸漬されたときの下限電圧値である。下限電圧値Lcは、残留塩素濃度が約0.8mg/Lの被検液に作用電極および参照電極が浸漬されたときの下限電圧値である。 FIG. 9A shows the average value of the voltage between the working electrode and the reference electrode of each of the residual chlorine meters M21 to M25 obtained in step 2-2 when immersed in the test solution, calculated for each elapsed day and for each residual chlorine concentration of the test solution, and shows the change in the average value according to the elapsed days. In addition, FIG. 9B shows the average value of the voltage between the working electrode and the reference electrode of each of the residual chlorine meters M26 to M30 obtained in step 2-5 when immersed in the test solution, calculated for each elapsed day and for each residual chlorine concentration of the test solution, and shows the change in the average value according to the elapsed days. The two-dot chain lines in FIGS. 9A and 9B indicate the voltage values (lower limit voltage values La, Lb, and Lc) between the working electrode and the reference electrode when the working electrode and the reference electrode are immersed in the test solution, corresponding to the lower limit of the error range allowed for the residual chlorine meter, for each residual chlorine concentration. The lower limit voltage value La is the lower limit voltage value when the working electrode and the reference electrode are immersed in a test solution having a residual chlorine concentration of about 0.2 mg/L. The lower limit voltage value Lb is the lower limit voltage value when the working electrode and the reference electrode are immersed in a test solution having a residual chlorine concentration of about 0.4 mg/L. The lower limit voltage value Lc is the lower limit voltage value when the working electrode and the reference electrode are immersed in a test solution having a residual chlorine concentration of about 0.8 mg/L.

図9(A)を見るとわかる通り、作用電極の擦り拭きを行った残留塩素計M21~M25は、第2の実験の開始日に作用電極および参照電極を被検液に浸漬させた後、1日経過しただけで、作用電極と参照電極との間の被検液浸漬時の電圧が、すべての残留塩素濃度につき、それぞれの下限電圧値La、Lb、Lcを下回っている。一方、図9(B)を見るとわかる通り、作用電極と参照電極との間に前処理電圧を印加した残留塩素計M26~M30は、第2の実験の開始日に作用電極および参照電極を被検液に浸漬させた後、21日に経過した時点において、作用電極と参照電極との間の被検液浸漬時の電圧が、すべての残留塩素濃度につき、それぞれの下限電圧値La、Lb、Lc以上である。そして、図9(A)と図9(B)とを比較するとわかる通り、残留塩素計の作用電極と参照電極との間に前処理電圧を印加する方が、残留塩素計の作用電極の擦り拭きを行うよりも、酸化還元反応生成物等が作用電極に付着することに起因する残留塩素濃度の測定精度の低下を抑制する効果の持続時間が長い。 As can be seen from FIG. 9A, in the residual chlorine meters M21 to M25 whose working electrodes were wiped off, the voltage between the working electrode and the reference electrode during immersion in the test solution fell below the respective lower limit voltage values La, Lb, and Lc for all residual chlorine concentrations just one day after the working electrode and the reference electrode were immersed in the test solution on the start day of the second experiment. On the other hand, as can be seen from FIG. 9B, in the residual chlorine meters M26 to M30 in which a pretreatment voltage was applied between the working electrode and the reference electrode, the working electrode and the reference electrode were immersed in the test solution on the start day of the second experiment, and after 21 days had passed, the voltage between the working electrode and the reference electrode during immersion in the test solution was equal to or higher than the lower limit voltage values La, Lb, and Lc for all residual chlorine concentrations. As can be seen from a comparison of FIGS. 9(A) and 9(B), applying a pretreatment voltage between the working electrode and the reference electrode of the residual chlorine meter lasts longer than rubbing the working electrode of the residual chlorine meter to suppress the reduction in measurement accuracy of the residual chlorine concentration due to adhesion of oxidation-reduction reaction products and the like to the working electrode.

以上、第2の実験により、本発明の第1の実施形態の残留塩素計1において、作用電極2と参照電極3との間に前処理電圧を印加することで、酸化還元反応生成物等が作用電極2に付着することに起因する残留塩素濃度の測定精度の低下を抑制する効果を、長時間持続させることができることが確認された。 As described above, in the second experiment, it was confirmed that, in the residual chlorine meter 1 of the first embodiment of the present invention, by applying the pretreatment voltage between the working electrode 2 and the reference electrode 3, the effect of suppressing the decrease in measurement accuracy of the residual chlorine concentration caused by the adhesion of oxidation-reduction reaction products and the like to the working electrode 2 can be maintained for a long time.

(第3の実験)
次に、前処理電圧を掃引した場合、前処理電圧としてプラスの直流電圧を印加した場合、および前処理電圧としてマイナスの直流電圧を印加した場合のそれぞれにつき、残留塩素計の作用電極と参照電極との間の被検液浸漬時の電圧を測定する実験を行った。この実験を「第3の実験」という。
(Third experiment)
Next, an experiment was conducted to measure the voltage between the working electrode and the reference electrode of the residual chlorine meter when the test solution was immersed in each of the cases of sweeping the pretreatment voltage, applying a positive DC voltage as the pretreatment voltage, and applying a negative DC voltage as the pretreatment voltage. This experiment is called "third experiment".

第3の実験では、第1の実験と同様に、本発明の第1の実施形態の残留塩素計1と同じ作用電極、参照電極および測定回路を備え、作用電極と参照電極との間の電圧値を外部にデータとして出力することができる機能が設けられた実験用のガルバニ方式の残留塩素計を用いた。第3の実験を行うに当たり、このような残留塩素計であって、その作用電極および参照電極を例えば水道水等の被検液に十数秒間浸漬させた後、被検液から出し、そのまま1年程度放置しておいたものを9個用意した。これら9個の残留塩素計を、残留塩素計M41~M49ということとする。さらに、第3の実験を行うに当たり、被検液として、純水、残留塩素濃度を約0.3mg/Lに調整した調整水、および残留塩素濃度を約0.9mg/Lに調整した調整水を用意した。そして、残留塩素計M41~M43を用いて、前処理電圧を掃引した場合における作用電極と参照電極との間の被検液浸漬時の電圧を測定した。また、残留塩素計M44~M46を用いて、前処理電圧としてプラスの直流電圧を印加した場合における作用電極と参照電極との間の被検液浸漬時の電圧を測定した。また、残留塩素計M47~M49を用いて、前処理電圧としてマイナスの直流電圧を印加した場合における作用電極と参照電極との間の被検液浸漬時の電圧を測定した。 In the third experiment, as in the first experiment, an experimental galvanic residual chlorine meter was used, which had the same working electrode, reference electrode, and measurement circuit as the residual chlorine meter 1 of the first embodiment of the present invention, and was provided with a function capable of outputting the voltage value between the working electrode and the reference electrode as data to the outside. In conducting the third experiment, nine such residual chlorine meters were prepared in which the working electrode and the reference electrode were immersed in a test solution such as tap water for about ten seconds, removed from the test solution, and left for about one year. These nine residual chlorine meters are referred to as residual chlorine meters M41 to M49. Furthermore, in conducting the third experiment, pure water, regulated water with a residual chlorine concentration of about 0.3 mg/L, and regulated water with a residual chlorine concentration of about 0.9 mg/L were prepared as liquids to be tested. Then, using residual chlorine meters M41 to M43, the voltage between the working electrode and the reference electrode when the pretreatment voltage was swept was measured during immersion in the test solution. In addition, using residual chlorine meters M44 to M46, the voltage between the working electrode and the reference electrode during immersion in the test solution was measured when a positive DC voltage was applied as the pretreatment voltage. In addition, using residual chlorine meters M47 to M49, the voltage between the working electrode and the reference electrode during immersion in the test solution was measured when a negative DC voltage was applied as the pretreatment voltage.

第3の実験について、より具体的に説明する。まず、残留塩素計M41の作用電極および参照電極を上記3種の被検液のうちのいずれかに浸漬させ、その状態で、ポテンショスタット等の外部装置を用いて、残留塩素計M41の作用電極と参照電極との間に図4に示す掃引パターンの前処理電圧を印加した(工程3-1)。この前処理電圧のプラス側のピーク値は1.5Vとし、マイナス側のピーク値は-1.5Vとし、印加時間は12秒とした。前処理電圧の印加を終えた直後、残留塩素計M41の作用電極および参照電極を被検液に浸漬させ、その状態で両電極間の電圧を測定する作業を、上記3種の被検液に対して順次に連続的に行った(工程3-2)。次に、残留塩素計M42を用いて工程3-1および3-2を行い、次に、残留塩素計M43を用いて工程3-1および3-2を行った。 The third experiment will be described more specifically. First, the working electrode and the reference electrode of the residual chlorine meter M41 were immersed in one of the above three test liquids, and in this state, an external device such as a potentiostat was used to apply a pretreatment voltage with a sweep pattern shown in FIG. 4 between the working electrode and the reference electrode of the residual chlorine meter M41 (step 3-1). The positive side peak value of this pretreatment voltage was 1.5 V, the negative side peak value was -1.5 V, and the application time was 12 seconds. Immediately after finishing the application of the pretreatment voltage, the working electrode and the reference electrode of the residual chlorine meter M41 were immersed in the test solution, and in that state, the operation of measuring the voltage between both electrodes was continuously performed for the above three types of test solutions (step 3-2). Next, steps 3-1 and 3-2 were performed using the residual chlorine meter M42, and then steps 3-1 and 3-2 were performed using the residual chlorine meter M43.

また、残留塩素計M44の作用電極および参照電極を上記3種の被検液のうちのいずれかに浸漬させ、その状態で、ポテンショスタット等の外部装置を用いて、残留塩素計M44の作用電極と参照電極との間に前処理電圧として1.5Vの直流電圧を12秒間印加した(工程3-3)。前処理電圧の印加を終えた直後、残留塩素計M44の作用電極および参照電極を被検液に浸漬させ、その状態で両電極間の電圧を測定する作業を、上記3種の被検液に対して順次に連続的に行った(工程3-4)。次に、残留塩素計M45を用いて工程3-3および3-4を行い、次に、残留塩素計M46を用いて工程3-3および3-4を行った。 In addition, the working electrode and the reference electrode of the residual chlorine meter M44 were immersed in one of the above three types of test liquids, and in that state, an external device such as a potentiostat was used to apply a DC voltage of 1.5 V as a pretreatment voltage between the working electrode and the reference electrode of the residual chlorine meter M44 for 12 seconds (step 3-3). Immediately after finishing the application of the pretreatment voltage, the working electrode and the reference electrode of the residual chlorine meter M44 were immersed in the test solution, and the voltage between the two electrodes was measured in that state. Next, steps 3-3 and 3-4 were performed using the residual chlorine meter M45, and then steps 3-3 and 3-4 were performed using the residual chlorine meter M46.

また、残留塩素計M47の作用電極および参照電極を上記3種の被検液のうちのいずれかに浸漬させ、その状態で、ポテンショスタット等の外部装置を用いて、残留塩素計M47の作用電極と参照電極との間に前処理電圧としてー1.5Vの直流電圧を12秒間印加した(工程3-5)。前処理電圧の印加を終えた直後、残留塩素計M47の作用電極および参照電極を被検液に浸漬させ、その状態で両電極間の電圧を測定する作業を、上記3種の被検液に対して順次に連続的に行った(工程3-6)。次に、残留塩素計M48を用いて工程3-5および3-6を行い、次に、残留塩素計M49を用いて工程3-5および3-6を行った。 In addition, the working electrode and the reference electrode of the residual chlorine meter M47 were immersed in one of the above three types of test liquids, and in this state, using an external device such as a potentiostat, a DC voltage of -1.5 V was applied as a pretreatment voltage between the working electrode and the reference electrode of the residual chlorine meter M47 for 12 seconds (step 3-5). Immediately after finishing the application of the pretreatment voltage, the working electrode and the reference electrode of the residual chlorine meter M47 were immersed in the test solution, and in that state, the operation of measuring the voltage between both electrodes was sequentially and continuously performed for the above three types of test solutions (step 3-6). Next, steps 3-5 and 3-6 were performed using a residual chlorine meter M48, and then steps 3-5 and 3-6 were performed using a residual chlorine meter M49.

図10(A)は、工程3-2において得られた各残留塩素計M41~M43の作用電極と参照電極との間の被検液浸漬時の電圧の測定結果を示している。これらは、前処理電圧を掃引した場合における残留塩素計の作用電極と参照電極との間の被検液浸漬時の電圧の測定結果である。また、図10(A)中の破線は、残留塩素計として許容される誤差範囲の上限に対応する、作用電極と参照電極との間の被検液浸漬時の電圧値(上限電圧値U)を示している。また、図10(A)中の二点鎖線は、残留塩素計として許容される誤差範囲の下限に対応する、作用電極と参照電極との間の被検液浸漬時の電圧値(下限電圧値L)を示している。また、図10(A)中の一点鎖線は、上限電圧値Uと下限電圧値Lとのちょうど中間の電圧値を示している。なお、図10(B)および図10(C)にも、上限電圧値Uを示す破線、下限電圧値Lを示す二点鎖線、および上限電圧値Uと下限電圧値Lとのちょうど中間を示す一点鎖線が描かれている。図10(A)を見るとわかる通り、残留塩素計M41~M43の作用電極と参照電極との間の電圧はいずれも、本実験で用いた3種の被検液の残留塩素濃度のすべてにおいて、下限電圧値L以上であり、かつ上限電圧値U以下である。さらに、残留塩素計M41~M43の作用電極と参照電極との間の電圧のほとんどは、下限電圧値Lと上限電圧値Uとのちょうど中間の付近に集まっている。 FIG. 10(A) shows the measurement results of the voltage between the working electrode and the reference electrode of each of the residual chlorine meters M41 to M43 obtained in step 3-2 when the test solution is immersed. These are the measurement results of the voltage between the working electrode and the reference electrode of the residual chlorine meter when the pretreatment voltage is swept, when the test solution is immersed. The dashed line in FIG. 10(A) indicates the voltage value (upper limit voltage value U) between the working electrode and the reference electrode when immersed in the test solution, which corresponds to the upper limit of the error range allowed for the residual chlorine meter. In addition, the two-dot chain line in FIG. 10(A) indicates the voltage value (lower limit voltage value L) between the working electrode and the reference electrode when the test solution is immersed, which corresponds to the lower limit of the error range allowed for the residual chlorine meter. 10A indicates a voltage value exactly intermediate between the upper limit voltage value U and the lower limit voltage value L. In FIG. Also in FIGS. 10B and 10C, a dashed line indicating the upper limit voltage value U, a two-dot chain line indicating the lower limit voltage value L, and a dashed-dotted line indicating exactly between the upper limit voltage value U and the lower limit voltage value L are drawn. As can be seen from FIG. 10(A), the voltages between the working electrodes and the reference electrodes of the residual chlorine meters M41 to M43 are all the lower limit voltage value L or higher and the upper limit voltage value U or lower for all of the residual chlorine concentrations of the three test liquids used in this experiment. Furthermore, most of the voltages between the working electrodes and the reference electrodes of the residual chlorine meters M41 to M43 are concentrated near the middle between the lower limit voltage value L and the upper limit voltage value U.

また、図10(B)は、工程3-4において得られた各残留塩素計M44~M46の作用電極と参照電極との間の被検液浸漬時の電圧の測定結果を示している。これらは、前処理電圧としてプラスの直流電圧を印加した場合における残留塩素計の作用電極と参照電極との間の被検液浸漬時の電圧の測定結果である。図10(B)を見るとわかる通り、残留塩素計M44~M46の作用電極と参照電極との間の電圧はいずれも、本実験で用いた3種の被検液の残留塩素濃度のすべてにおいて、下限電圧値L以上であり、かつ上限電圧値U以下である。しかしながら、残留塩素計M44~M46の作用電極と参照電極との間の電圧の一部は、下限電圧値Lと上限電圧値Uとのちょうど中間よりも低く、下限電圧値Lに接近した値となっている。 FIG. 10(B) shows the measurement results of the voltage between the working electrode and the reference electrode of each of the residual chlorine meters M44 to M46 obtained in step 3-4 when the sample liquid is immersed. These are the measurement results of the voltage between the working electrode and the reference electrode of the residual chlorine meter when the test solution is immersed, when a positive DC voltage is applied as the pretreatment voltage. As can be seen from FIG. 10(B), the voltages between the working electrodes and the reference electrodes of the residual chlorine meters M44 to M46 are all equal to or higher than the lower limit voltage value L and equal to or lower than the upper limit voltage value U for all of the residual chlorine concentrations of the three test liquids used in this experiment. However, some of the voltages between the working electrodes and the reference electrodes of the residual chlorine meters M44 to M46 are lower than exactly midway between the lower limit voltage value L and the upper limit voltage value U and are close to the lower limit voltage value L.

また、図10(C)は、工程3-6において得られた各残留塩素計M47~M49の作用電極と参照電極との間の被検液浸漬時の電圧の測定結果を示している。これらは、前処理電圧としてマイナスの直流電圧を印加した場合における残留塩素計の作用電極と参照電極との間の被検液浸漬時の電圧の測定結果である。図10(C)を見るとわかる通り、残留塩素計M47~M49の作用電極と参照電極との間の電圧の一部は上限電圧値Uを超えている。 FIG. 10(C) shows the measurement result of the voltage between the working electrode and the reference electrode of each of the residual chlorine meters M47 to M49 obtained in step 3-6 when the sample liquid is immersed. These are the measurement results of the voltage between the working electrode and the reference electrode of the residual chlorine meter during immersion in the test solution when a negative DC voltage is applied as the pretreatment voltage. As can be seen from FIG. 10(C), part of the voltage between the working electrode and the reference electrode of the residual chlorine meters M47 to M49 exceeds the upper limit voltage value U.

図10(A)ないし(C)を比較することにより、次のことがわかる。すなわち、前処理電圧を掃引した場合には、被検液の残留塩素濃度の測定時における残留塩素計の作用電極と参照電極との間の電圧のばらつきが小さく、当該電圧が上限電圧値Uと下限電圧値Lとの間において安定する。一方、直流の前処理電圧を印加した場合には、被検液の残留塩素濃度の測定時における残留塩素計の作用電極と参照電極との間の電圧のばらつきが大きく、当該電圧が不安定であり、当該電圧が上限電圧値Uと下限電圧値Lとの間から逸脱する場合がある。 A comparison of FIGS. 10A to 10C reveals the following. That is, when the pretreatment voltage is swept, the variation in the voltage between the working electrode and the reference electrode of the residual chlorine meter when measuring the residual chlorine concentration of the test solution is small, and the voltage is stable between the upper limit voltage value U and the lower limit voltage value L. On the other hand, when a DC pretreatment voltage is applied, the variation in voltage between the working electrode and the reference electrode of the residual chlorine meter during measurement of the residual chlorine concentration of the test solution is large, the voltage is unstable, and the voltage may deviate from between the upper limit voltage value U and the lower limit voltage value L.

以上、第3の実験により、本発明の第1の実施形態の残留塩素計1のように、前処理電圧を掃引することによって、被検液Eの残留塩素濃度の測定精度をより向上させることができることが確認された。 As described above, according to the third experiment, by sweeping the pretreatment voltage as in the residual chlorine meter 1 of the first embodiment of the present invention, it was confirmed that the measurement accuracy of the residual chlorine concentration of the test liquid E can be further improved.

(第2の実施形態)
次に、本発明の第2の実施形態の残留塩素計について説明する。上述した本発明の第1の実施形態の残留塩素計1は、被検液Eの残留塩素濃度の測定を1回行うごとに、測定前の前処理電圧の印加を行う。これに対し、本発明の第2の実施形態の残留塩素計は、被検液Eの残留塩素濃度の測定を2回以上の所定回数行うごとに、測定前の前処理電圧の印加を1回行う。
(Second embodiment)
Next, a residual chlorine meter according to a second embodiment of the present invention will be described. The residual chlorine meter 1 of the first embodiment of the present invention described above applies a pretreatment voltage before measurement each time the residual chlorine concentration of the test liquid E is measured. On the other hand, in the residual chlorine meter of the second embodiment of the present invention, the pretreatment voltage before measurement is applied once every time the measurement of the residual chlorine concentration of the test liquid E is performed a predetermined number of times (2 or more).

第2の実施形態の残留塩素計のハードウェア構成は、図1に示す第1の実施形態の残留塩素計1のハードウェア構成と同じである。また、第2の実施形態の残留塩素計のマイクロコントローラー14には、残留塩素濃度の測定回数に基づいて前処理電圧の印加を制御する機能が追加されている。すなわち、第2の実施形態の残留塩素計のマイクロコントローラー14は、前処理電圧の印加後における残留塩素濃度の測定回数が所定回数以上であるか否かを判断し、当該測定回数が所定回数以上であるときには、次の残留塩素濃度の測定の前に前処理電圧の印加を行い、当該測定回数が所定回数未満であるときには、次の残留塩素濃度の測定の前に前処理電圧の印加を行わないように前処理電圧印加回路11を制御する。また、第2の実施形態の残留塩素計の記憶回路15には、前処理電圧の印加後における残留塩素濃度の測定回数を示すカウント値である測定回数値が記憶されている。なお、本実施形態において測定回数値の初期値は0である。 The hardware configuration of the residual chlorine meter of the second embodiment is the same as the hardware configuration of the residual chlorine meter 1 of the first embodiment shown in FIG. Further, the microcontroller 14 of the residual chlorine meter of the second embodiment is added with a function of controlling the application of the pretreatment voltage based on the number of measurements of the residual chlorine concentration. That is, the microcontroller 14 of the residual chlorine meter of the second embodiment determines whether or not the number of measurements of the residual chlorine concentration after the application of the pretreatment voltage is a predetermined number or more. When the number of measurements is the predetermined number or more, the pretreatment voltage is applied before the next measurement of the residual chlorine concentration. Further, the memory circuit 15 of the residual chlorine meter of the second embodiment stores a measurement count value, which is a count value indicating the number of measurements of the residual chlorine concentration after the application of the pretreatment voltage. Note that the initial value of the number of measurements is 0 in this embodiment.

図11は、本発明の第2の実施形態の残留塩素計の動作を示している。図11において、利用者が作用電極2および参照電極3を被検液Eに浸漬させ、操作ボタン7を押下したとき、マイクロコントローラー14は操作ボタン7の押下を検知し(ステップS11:YES)、続いて、測定回数値を記憶回路15から読み出す(ステップS12)。続いて、マイクロコントローラー14は、読み出した測定回数値が、予め設定された回数基準値以上であるか否かを判断する(ステップS13)。回数基準値は例えば2以上であり、予め設定されている。なお、回数基準値を利用者が任意に設定できるようにしてもよい。 FIG. 11 shows the operation of the residual chlorine meter of the second embodiment of the invention. In FIG. 11, when the user immerses the working electrode 2 and the reference electrode 3 in the test solution E and presses the operation button 7, the microcontroller 14 detects the pressing of the operation button 7 (step S11: YES), and then reads out the number of measurements from the memory circuit 15 (step S12). Subsequently, the microcontroller 14 determines whether or not the read measurement count value is greater than or equal to a preset count reference value (step S13). The frequency reference value is, for example, 2 or more and is set in advance. It should be noted that the user may arbitrarily set the frequency reference value.

この判断の結果、測定回数値が上記回数基準値以上である場合には(ステップS13:YES)、マイクロコントローラー14は測定回数値を初期値に設定する(ステップS14)。続いて、マイクロコントローラー14は、切換器13を制御して切換器13の接点aと接点cとを接続し、続いて、前処理電圧印加回路11を制御して、前処理電圧の作用電極2と参照電極3との間への印加を開始させる(ステップS15:前処理工程)。前処理電圧印加回路11は、マイクロコントローラー14の制御に従い、前処理電圧の出力を開始し、図4に示す掃引パターンで前処理電圧を12秒間掃引した後、前処理電圧の印加を停止する。 As a result of this determination, if the measurement count value is equal to or greater than the reference count value (step S13: YES), the microcontroller 14 sets the measurement count value to an initial value (step S14). Subsequently, the microcontroller 14 controls the switch 13 to connect the contact a and the contact c of the switch 13, and then controls the pretreatment voltage application circuit 11 to start applying the pretreatment voltage between the working electrode 2 and the reference electrode 3 (step S15: pretreatment step). Under the control of the microcontroller 14, the pretreatment voltage application circuit 11 starts outputting the pretreatment voltage, sweeps the pretreatment voltage for 12 seconds according to the sweep pattern shown in FIG. 4, and then stops applying the pretreatment voltage.

前処理電圧の出力が停止された後、マイクロコントローラー14は、切換器13を制御して切換器13の接点bと接点cとを接続し、続いて、測定回路12を制御して、被検液Eの残留塩素濃度の測定を開始させる。測定回路12は被検液Eの残留塩素濃度を測定し、測定した残留塩素濃度値をマイクロコントローラー14へ出力する(ステップS16:測定工程)。 After the output of the pretreatment voltage is stopped, the microcontroller 14 controls the switch 13 to connect the contact b and the contact c of the switch 13, and then controls the measurement circuit 12 to start measuring the residual chlorine concentration of the test liquid E. The measurement circuit 12 measures the residual chlorine concentration of the test liquid E, and outputs the measured residual chlorine concentration value to the microcontroller 14 (step S16: measurement step).

一方、ステップS13における判断の結果、測定回数値が上記回数基準値以上でない場合には(ステップS13:NO)、マイクロコントローラー14は、測定回数値を初期値に設定する処理および前処理電圧を印加する制御を行わずに、直ちに、切換器13の接点bと接点cとを接続し、測定回路12による被検液Eの残留塩素濃度の測定を開始させる。測定回路12は被検液Eの残留塩素濃度を測定し、測定した残留塩素濃度値をマイクロコントローラー14へ出力する(ステップS16:測定工程)。 On the other hand, as a result of the determination in step S13, if the number of measurements is not equal to or greater than the standard number of measurements (step S13: NO), the microcontroller 14 immediately connects the contact b and the contact c of the switch 13 without performing the process of setting the number of measurements to the initial value and the control of applying the pretreatment voltage, and causes the measurement circuit 12 to start measuring the residual chlorine concentration of the test liquid E. The measurement circuit 12 measures the residual chlorine concentration of the test liquid E, and outputs the measured residual chlorine concentration value to the microcontroller 14 (step S16: measurement step).

続いて、マイクロコントローラー14は、測定回路12から出力された残留塩素濃度の測定結果を表示部8に表示する(ステップS17)。続いて、マイクロコントローラー14は、記憶回路15に記憶された測定回数値を1増加させる(ステップS18)。 Subsequently, the microcontroller 14 displays the measurement result of the residual chlorine concentration output from the measurement circuit 12 on the display section 8 (step S17). Subsequently, the microcontroller 14 increases the number of measurements stored in the storage circuit 15 by 1 (step S18).

本発明の第2の実施形態の残留塩素計において、例えば、上記回数基準値が5に設定されており、前処理電圧の印加が行われてから、残留塩素濃度の測定が6回実施された場合、まず、当該前処理電圧の印加の直後に1回目の残留塩素濃度測定が行われるので、1回目の残留塩素濃度測定の直前に前処理電圧の印加が行われたこととなる。次に、2回目、3回目、4回目および5回目の各残留塩素濃度測定の直前には前処理電圧の印加は行われない。次に、6回目の残留塩素濃度測定の直前に前処理電圧の印加が行われる。 In the residual chlorine meter of the second embodiment of the present invention, for example, when the reference number of times is set to 5 and the measurement of the residual chlorine concentration is performed six times after the application of the pretreatment voltage, the first measurement of the residual chlorine concentration is performed immediately after the application of the pretreatment voltage, so the application of the pretreatment voltage is performed immediately before the first measurement of the residual chlorine concentration. Next, the pretreatment voltage is not applied immediately before the second, third, fourth and fifth residual chlorine concentration measurements. Next, the pretreatment voltage is applied immediately before the sixth residual chlorine concentration measurement.

本発明の第2の実施形態の残留塩素計によれば、前処理電圧の印加が行われる頻度が低くなるので、酸化還元反応生成物等が作用電極2に付着することに起因する残留塩素濃度の測定精度の低下の抑制を図りつつも、測定作業を迅速化させることができ、かつ消費電力を削減して電池9の寿命を長くすることができる。 According to the residual chlorine meter of the second embodiment of the present invention, since the pretreatment voltage is applied less frequently, it is possible to speed up the measurement operation while suppressing deterioration in the measurement accuracy of the residual chlorine concentration due to the adhesion of oxidation-reduction reaction products and the like to the working electrode 2, as well as to reduce power consumption and extend the life of the battery 9.

なお、上記各実施形態では、図4に示すような三角波の前処理電圧を印加する場合を例にあげたが、前処理電圧の位相、掃引速度、ピーク値の大きさ、周期数、印加時間、波形等は限定されない。例えば図12の(A)、(B)または(C)に示すように、前処理電圧の位相(掃引を開始する電圧および掃引を終了する電圧)を変更してもよい。また、上記各実施形態では、前処理電圧の掃引速度を0.5V/秒としたが、前処理電圧の掃引速度をこれよりも遅くしてもよいし、速くしてもよい。また、上記各実施形態では、前処理電圧のプラス側のピーク値を1.5Vとし、マイナス側のピーク値を-1.5Vとしたが、各ピーク値は適宜調整することができる。また、上記各実施形態では、波形の1周期分の前処理電圧を印加することとしたが、波形の2周期分以上の前処理電圧を印加してもよい。また、前処理電圧の波形をサイン波にしてもよい。 In each of the above embodiments, the case of applying a triangular wave pretreatment voltage as shown in FIG. 4 was taken as an example, but the phase, sweep speed, magnitude of peak value, number of cycles, application time, waveform, etc. of the pretreatment voltage are not limited. For example, as shown in (A), (B), or (C) of FIG. 12, the phases of the pretreatment voltages (sweep start voltage and sweep end voltage) may be changed. In each of the above embodiments, the sweep speed of the pretreatment voltage was set to 0.5 V/sec, but the sweep speed of the pretreatment voltage may be slower or faster than this. In each of the above-described embodiments, the positive peak value of the pretreatment voltage is 1.5 V and the negative peak value is −1.5 V, but each peak value can be adjusted as appropriate. In each of the above embodiments, the pretreatment voltage for one cycle of the waveform is applied, but the pretreatment voltage for two or more cycles of the waveform may be applied. Also, the waveform of the pretreatment voltage may be a sine wave.

また、前処理電圧をプラスまたはマイナスの直流電圧としてもよい。先に図10を用いて検討したように、直流の前処理電圧を印加する場合には、前処理電圧を掃引する場合と比較して残留塩素濃度の測定時における残留塩素計の作用電極と参照電極との間の電圧が不安定になることがあるが、前処理電圧を印加せず、かつ作用電極の擦り拭きも行わない場合と比較すると、残留塩素濃度の測定精度の低下を抑制することができる。 Also, the pretreatment voltage may be a positive or negative DC voltage. As discussed above with reference to FIG. 10, when a DC pretreatment voltage is applied, the voltage between the working electrode and the reference electrode of the residual chlorine meter may become unstable when measuring the residual chlorine concentration compared to when the pretreatment voltage is swept.

また、上記各実施形態では、前処理電圧の印加から残留塩素濃度の測定へ自動的に移行する場合を例にあげたが、前処理電圧の印加から残留塩素濃度の測定へ手動で移行するようにしてもよい。また、利用者の操作に従い、前処理電圧の印加のみを行えるようにしてもよい。 Further, in each of the above embodiments, the case where the application of the pretreatment voltage is automatically shifted to the measurement of the residual chlorine concentration is taken as an example, but the application of the pretreatment voltage may be manually transferred to the measurement of the residual chlorine concentration. Alternatively, only the application of the pretreatment voltage may be performed according to the user's operation.

また、残留塩素濃度の測定を行う際に、測定回路12により作用電極2と参照電極3との間にバイアス電圧を印加するようにしてもよい。なお、このバイアス電圧は、ポーラログラフ方式の残留塩素計において残留塩素濃度を測定するために印加する電圧とは異なるものである。 Also, when measuring the residual chlorine concentration, the measuring circuit 12 may apply a bias voltage between the working electrode 2 and the reference electrode 3 . This bias voltage is different from the voltage applied to measure the residual chlorine concentration in the polarographic residual chlorine meter.

また、上記実施形態では、本発明を、図2に示すようなポータブルタイプの残留塩素計に適用する場合を例にあげたが、本発明は、例えば、作用電極および参照電極を水道水の配管や貯水槽に固定し、配管内を流れ、または貯水槽内に貯留された水道水の残留塩素濃度を周期的に測定するような据え置きタイプの残留塩素計にも適用することができる。 In the above-described embodiment, the case of applying the present invention to a portable type residual chlorine meter as shown in FIG. 2 was taken as an example, but the present invention can also be applied to, for example, a stationary residual chlorine meter in which a working electrode and a reference electrode are fixed to a tap water pipe or a water tank, and the residual chlorine concentration of tap water flowing through the pipe or stored in the water tank is periodically measured.

また、上記第2の実施形態の残留塩素計において、前処理電圧の印加を行うか否かを前処理電圧印加後における残留塩素濃度の測定回数に基づいて判断するに当たり、その判断の基準となる回数基準値を、前処理電圧印加後に実際に行われた残留塩素濃度の測定により得られた測定値に基づいて変化させてもよい。例えば、残留塩素濃度の測定により得られた測定値が大きく(残留塩素濃度が濃く)なるに応じて回数基準値を減少させ、残留塩素濃度の測定により得られた測定値が小さく(残留塩素濃度が薄く)なるに応じて回数基準値を増加させてもよい。これにより、残留塩素濃度によって酸化還元反応生成物等の電極への付着のし易さが変わることを考慮に入れて、前処理電圧の印加を行う適切なタイミングを決定することができる。 Further, in the residual chlorine meter of the second embodiment, in determining whether or not to apply the pretreatment voltage based on the number of measurements of the residual chlorine concentration after the application of the pretreatment voltage, the reference number of times, which is the basis for the determination, may be changed based on the measured value obtained by actually measuring the residual chlorine concentration after the application of the pretreatment voltage. For example, the reference number of times may be decreased as the measured value obtained by measuring the residual chlorine concentration increases (the residual chlorine concentration increases), and the reference number of times may be increased as the measured value obtained by measuring the residual chlorine concentration decreases (the residual chlorine concentration decreases). As a result, it is possible to determine the appropriate timing for applying the pretreatment voltage, taking into consideration that the easiness of adhesion of oxidation-reduction reaction products and the like to the electrode changes depending on the residual chlorine concentration.

また、上記第2の実施形態の残留塩素計は、前処理電圧の印加を行うか否かを、前処理電圧印加後における残留塩素濃度の測定回数に基づいて判断する。しかしながら、本発明はこれに限らない。前処理電圧の印加を行うか否かを、前処理電圧の印加が行われてからの経過時間に基づいて判断してもよい。この場合、マイクロコントローラー14は、前処理電圧の印加が行われてからの経過時間が所定の基準時間以上であるか否かを判断し、当該経過時間が基準時間以上であるときには、測定回路12による残留塩素濃度の測定の前に前処理電圧の印加を行い、当該経過時間が基準時間未満であるときには、測定回路12による残留塩素濃度の測定の前に前処理電圧の印加を行わないように前処理電圧印加回路11を制御する。図9(B)に示すように、前処理電圧の印加時から21日を経過した時点において、作用電極と参照電極との間の被検液浸漬時の電圧はそれぞれ、残留塩素濃度の正しい測定結果が得られる下限値La、Lb、Lc以上である。したがって、上記基準時間を例えば21日に設定することにより、酸化還元反応生成物等が作用電極に付着することに起因する残留塩素濃度の測定精度の低下の抑制を図りつつ、前処理電圧の印加を行う頻度を下げることができる。 Further, the residual chlorine meter of the second embodiment determines whether or not to apply the pretreatment voltage based on the number of measurements of the residual chlorine concentration after application of the pretreatment voltage. However, the present invention is not limited to this. Whether or not to apply the pretreatment voltage may be determined based on the elapsed time from the application of the pretreatment voltage. In this case, the microcontroller 14 determines whether or not the elapsed time from the application of the pretreatment voltage is equal to or longer than a predetermined reference time. When the elapsed time is equal to or longer than the reference time, the pretreatment voltage is applied before the measurement circuit 12 measures the residual chlorine concentration. As shown in FIG. 9B, when 21 days have passed since the application of the pretreatment voltage, the voltage between the working electrode and the reference electrode when immersed in the test solution is equal to or higher than the lower limits La, Lb, and Lc at which correct measurement results of the residual chlorine concentration can be obtained. Therefore, by setting the reference time to, for example, 21 days, it is possible to reduce the frequency of applying the pretreatment voltage while suppressing a decrease in the measurement accuracy of the residual chlorine concentration due to the adhesion of oxidation-reduction reaction products and the like to the working electrode.

また、このような残留塩素計において、前処理電圧の印加を行うか否かを前処理電圧の印加が行われてからの経過時間に基づいて判断するに当たり、その判断の基準となる基準時間を、前処理電圧印加後に実際に行われた残留塩素濃度の測定により得られた測定値に基づいて変化させてもよい。例えば、残留塩素濃度の測定により得られた測定値が大きくなるに応じて基準時間を短くし、残留塩素濃度の測定により得られた測定値が小さくなるに応じて基準時間を長くしてもよい。これにより、残留塩素濃度によって酸化還元反応生成物等の電極への付着のし易さが変わることを考慮に入れて、前処理電圧の印加を行う適切なタイミングを決定することができる。 Further, in such a residual chlorine meter, when determining whether or not to apply the pretreatment voltage based on the elapsed time after the application of the pretreatment voltage, the reference time that is the basis for the judgment may be changed based on the measured value obtained by actually measuring the residual chlorine concentration after the application of the pretreatment voltage. For example, the reference time may be shortened as the measured value obtained by measuring the residual chlorine concentration increases, and the reference time may be lengthened as the measured value obtained by measuring the residual chlorine concentration decreases. As a result, it is possible to determine the appropriate timing for applying the pretreatment voltage, taking into consideration that the easiness of adhesion of oxidation-reduction reaction products and the like to the electrode changes depending on the residual chlorine concentration.

また、上記第2の実施形態の残留塩素計において、前処理電圧の印加を行うか否かを、前処理電圧印加後における残留塩素濃度の測定回数および前処理電圧の印加が行われてからの経過時間の双方に基づいて判断してもよい。例えば、残留塩素計のマイクロコントローラー14は、前処理電圧の印加が行われてから、残留塩素濃度の測定回数が回数基準値以上となること、および経過時間が所定の基準時間以上となることのいずれか一方の条件が成立する場合には前処理電圧の印加を行うと判断する。これにより、残留塩素計の実際の使用状態を考慮して、前処理電圧の印加を行う適切なタイミングを決定することができる。 Further, in the residual chlorine meter of the second embodiment, whether or not to apply the pretreatment voltage may be determined based on both the number of measurements of the residual chlorine concentration after the application of the pretreatment voltage and the elapsed time since the application of the pretreatment voltage. For example, the microcontroller 14 of the residual chlorine meter determines that the pretreatment voltage is to be applied when either the number of times the residual chlorine concentration is measured after the application of the pretreatment voltage is equal to or greater than the number reference value or the elapsed time is equal to or greater than a predetermined reference time. This makes it possible to determine the appropriate timing for applying the pretreatment voltage in consideration of the actual usage of the residual chlorine meter.

また、本発明は、請求の範囲および明細書全体から読み取ることのできる発明の要旨または思想に反しない範囲で適宜変更可能であり、そのような変更を伴う残留塩素計および残留塩素濃度測定方法もまた本発明の技術思想に含まれる。 In addition, the present invention can be modified as appropriate within the scope not contrary to the gist or idea of the invention that can be read from the scope of claims and the entire specification, and the residual chlorine meter and residual chlorine concentration measuring method involving such modifications are also included in the technical concept of the present invention.

1 残留塩素計
2 作用電極(第1の電極)
3 参照電極(第2の電極)
4 処理回路
5 電源回路
11 前処理電圧印加回路(前処理部)
12 測定回路(測定部)
13 切換器
14 マイクロコントローラー(制御部)
1 residual chlorine meter 2 working electrode (first electrode)
3 reference electrode (second electrode)
4 processing circuit 5 power supply circuit 11 pretreatment voltage application circuit (pretreatment section)
12 measurement circuit (measurement part)
13 switch 14 microcontroller (control unit)

Claims (6)

作用電極である第1の電極と、参照電極または対極である第2の電極とを被検液に浸漬させ、前記第1の電極と前記第2の電極との間の電圧に基づいて前記被検液の残留塩素濃度を測定する測定部と、
前記第1の電極と前記第2の電極との間に前処理電圧を印加する前処理部と、
前記前処理電圧の印加後、前記前処理電圧の印加を停止し、その後、前記被検液の残留塩素濃度の測定を行うように前記測定部および前記前処理部を制御する制御部とを備え、
前記前処理部は、前記前処理電圧の波形が三角波となるように前記前処理電圧を一定の速度で掃引することを特徴とする残留塩素計。
a first electrode that is a working electrode and a second electrode that is a reference electrode or a counter electrode are immersed in a test liquid, and a measurement unit that measures the residual chlorine concentration of the test liquid based on the voltage between the first electrode and the second electrode;
a pretreatment unit that applies a pretreatment voltage between the first electrode and the second electrode;
After applying the pretreatment voltage, the application of the pretreatment voltage is stopped, and then the residual chlorine concentration of the test solution is measured. A control unit that controls the measurement unit and the pretreatment unit,
The residual chlorine meter , wherein the pretreatment section sweeps the pretreatment voltage at a constant speed so that the waveform of the pretreatment voltage becomes a triangular wave .
前記前処理部は、前記前処理電圧を、0Vを中心にプラス側の振幅とマイナス側の振幅とが互いに等しくなるように掃引することを特徴とする請求項に記載の残留塩素計。 2. The residual chlorine meter according to claim 1 , wherein the pretreatment section sweeps the pretreatment voltage around 0 V such that the amplitude on the plus side and the amplitude on the minus side are equal to each other. 前記制御部は、前記前処理電圧の印加後における前記測定部による残留塩素濃度の測定回数が所定回数以上であるか否かを判断し、前記測定回数が前記所定回数以上であるときには、前記測定部による次の残留塩素濃度の測定の前に前記前処理電圧の印加を行い、前記測定回数が前記所定回数未満であるときには、前記測定部による次の残留塩素濃度の測定の前に前記前処理電圧の印加を行わないように前記前処理部を制御することを特徴とする請求項1または2に記載の残留塩素計。 3. The control unit determines whether or not the number of measurements of the residual chlorine concentration by the measuring unit after applying the pretreatment voltage is a predetermined number or more, and when the number of measurements is the predetermined number or more, the pretreatment voltage is applied before the next measurement of the residual chlorine concentration by the measurement unit, and when the number of measurements is less than the predetermined number, the control unit controls the pretreatment unit so that the pretreatment voltage is not applied before the next measurement of the residual chlorine concentration by the measurement unit. Residual chlorine meter described in. 前記制御部は、前記前処理電圧の印加が行われてからの経過時間が所定時間以上であるか否かを判断し、前記経過時間が前記所定時間以上であるときには、前記測定部による残留塩素濃度の測定の前に前記前処理電圧の印加を行い、前記経過時間が前記所定時間未満であるときには、前記測定部による残留塩素濃度の測定の前に前記前処理電圧の印加を行わないように前記前処理部を制御することを特徴とする請求項1ないしのいずれかに記載の残留塩素計。 4. The residual chlorine meter according to any one of claims 1 to 3 , wherein the control unit determines whether or not the elapsed time from the application of the pretreatment voltage is equal to or longer than a predetermined time, and controls the pretreatment unit so that when the elapsed time is equal to or longer than the predetermined time, the pretreatment voltage is applied before the residual chlorine concentration is measured by the measurement unit, and when the elapsed time is less than the predetermined time, the pretreatment voltage is not applied before the residual chlorine concentration is measured by the measurement unit. 作用電極である第1の電極と、参照電極または対極である第2の電極とを被検液に浸漬させ、前記第1の電極と前記第2の電極との間の電圧に基づいて前記被検液の残留塩素濃度を測定する残留塩素濃度測定方法であって、
前記第1の電極と前記第2の電極との間に前処理電圧を印加する前処理工程と、
前記前処理工程における前記前処理電圧の印加が停止した後に、前記第1の電極と前記第2の電極との間の電圧に基づいて前記被検液の残留塩素濃度を測定する測定工程とを備え、
前記前処理工程において、前記前処理電圧の波形が三角波となるように前記前処理電圧を一定の速度で掃引することを特徴とする残留塩素濃度測定方法。
A first electrode that is a working electrode and a second electrode that is a reference electrode or a counter electrode are immersed in a test solution, and the residual chlorine concentration of the test solution is measured based on the voltage between the first electrode and the second electrode.
a pretreatment step of applying a pretreatment voltage between the first electrode and the second electrode;
a measuring step of measuring the residual chlorine concentration of the test solution based on the voltage between the first electrode and the second electrode after the application of the pretreatment voltage in the pretreatment step is stopped;
A residual chlorine concentration measuring method, wherein in the pretreatment step, the pretreatment voltage is swept at a constant speed so that the waveform of the pretreatment voltage is a triangular wave .
前記前処理工程において、前記前処理電圧を、0Vを中心にプラス側の振幅とマイナス側の振幅とが互いに等しくなるように掃引することを特徴とする請求項に記載の残留塩素濃度測定方法。 6. The residual chlorine concentration measuring method according to claim 5 , wherein, in said pretreatment step, said pretreatment voltage is swept around 0 V such that the amplitude on the plus side and the amplitude on the minus side are equal to each other.
JP2018158310A 2018-08-27 2018-08-27 Residual chlorine meter and residual chlorine concentration measurement method Active JP7313026B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018158310A JP7313026B2 (en) 2018-08-27 2018-08-27 Residual chlorine meter and residual chlorine concentration measurement method
PCT/JP2019/033076 WO2020045285A1 (en) 2018-08-27 2019-08-23 Residual chlorine meter, and method for measuring residual chlorine concentration
JP2023109825A JP2023118839A (en) 2018-08-27 2023-07-04 Residual chlorine meter and method for measuring residual chlorine concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018158310A JP7313026B2 (en) 2018-08-27 2018-08-27 Residual chlorine meter and residual chlorine concentration measurement method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023109825A Division JP2023118839A (en) 2018-08-27 2023-07-04 Residual chlorine meter and method for measuring residual chlorine concentration

Publications (2)

Publication Number Publication Date
JP2020034286A JP2020034286A (en) 2020-03-05
JP7313026B2 true JP7313026B2 (en) 2023-07-24

Family

ID=69644257

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018158310A Active JP7313026B2 (en) 2018-08-27 2018-08-27 Residual chlorine meter and residual chlorine concentration measurement method
JP2023109825A Pending JP2023118839A (en) 2018-08-27 2023-07-04 Residual chlorine meter and method for measuring residual chlorine concentration

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023109825A Pending JP2023118839A (en) 2018-08-27 2023-07-04 Residual chlorine meter and method for measuring residual chlorine concentration

Country Status (2)

Country Link
JP (2) JP7313026B2 (en)
WO (1) WO2020045285A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7455249B1 (en) 2023-02-27 2024-03-25 住友化学株式会社 Electrochemical measurement method, electrochemical measurement device, and program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002350422A (en) 2001-05-28 2002-12-04 Ntt Power & Building Facilities Inc Residual chlorine control system
US20030019748A1 (en) 2001-06-19 2003-01-30 Elena Viltchinskaia Method and apparatus for stripping voltammetric and potent iometric detection and measurement of contamination in liquids
JP2005127763A (en) 2003-10-22 2005-05-19 Tanita Corp Residual chlorine meter
JP2006138650A (en) 2004-11-10 2006-06-01 Yazaki Corp Liquid concentration measuring device
JP2017053746A (en) 2015-09-10 2017-03-16 東亜ディーケーケー株式会社 Residual chlorine measurement device and residual chlorine measurement method
CN107604324A (en) 2017-09-20 2018-01-19 北京科技大学 A kind of hydrogen terminal diamond surface electrochemical repair method for ion transducer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3917297B2 (en) * 1998-05-26 2007-05-23 株式会社タクミナ Residual chlorine meter and liquid sterilizer using this residual chlorine meter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002350422A (en) 2001-05-28 2002-12-04 Ntt Power & Building Facilities Inc Residual chlorine control system
US20030019748A1 (en) 2001-06-19 2003-01-30 Elena Viltchinskaia Method and apparatus for stripping voltammetric and potent iometric detection and measurement of contamination in liquids
JP2005127763A (en) 2003-10-22 2005-05-19 Tanita Corp Residual chlorine meter
JP2006138650A (en) 2004-11-10 2006-06-01 Yazaki Corp Liquid concentration measuring device
JP2017053746A (en) 2015-09-10 2017-03-16 東亜ディーケーケー株式会社 Residual chlorine measurement device and residual chlorine measurement method
CN107604324A (en) 2017-09-20 2018-01-19 北京科技大学 A kind of hydrogen terminal diamond surface electrochemical repair method for ion transducer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
東亜ディーケーケー株式会社,ポータブル残留塩素計,カタログ,2011年,No.RC3-LB15803,第13頁,第32-33頁,[online], [令和5年1月12日検索], インターネット <URL: https://www.measuring.jp/pdfdoc/sui0404t.pdf>

Also Published As

Publication number Publication date
JP2023118839A (en) 2023-08-25
WO2020045285A1 (en) 2020-03-05
JP2020034286A (en) 2020-03-05

Similar Documents

Publication Publication Date Title
JP2023118839A (en) Residual chlorine meter and method for measuring residual chlorine concentration
Xie et al. A novel dual-impedance-analysis EQCM system—investigation of bovine serum albumin adsorption on gold and platinum electrode surfaces
JP2012127943A (en) Method and device for measuring heavy metal ions
JP4022609B2 (en) Cleaning device for rod electrode
WO2008030585A1 (en) Measuring conductivity of a liquid
JPH03188371A (en) Method and apparatus for dynamic analysis of precious metal
JP3390154B2 (en) Residual chlorine meter and water purification device using it
JP7302556B2 (en) measuring device
JPH01502695A (en) Kay. Fischer's method for cleaning the indicator electrode of a water titrator and an apparatus for carrying out the method
JP3215435U (en) Redox potential measuring device with electrode cleaning mechanism
CN212321499U (en) PH meter that facilitates use
JP4365086B2 (en) Concentration measuring device and concentration measuring method
JP2001141692A (en) Apparatus for measuring concentration of residual chlorine
JP2022114416A (en) Electrochemical measurement device and electrochemical measurement method
JP2002005862A (en) Circuit for measuring salinity concentration
JPS628050A (en) Method and apparatus for measuring concentration of oxidizable substance in liquid to be inspected
JPH10185871A (en) Method for cleaning electrode of residual chlorine meter, and residual chlorine meter
KR100927848B1 (en) The platinum black plating way that used an electrode sensor re-platinum daecheyong nonferrous metals
CN218382521U (en) Acidity meter for detecting acidity of disinfectant
JP2005331337A (en) Oxidation-reduction current measuring device and cleaning method of the oxidation-reduction current measuring device
JPH07248303A (en) Electrode-liquid property measuring instrument and method thereof
JP2004144662A (en) Apparatus and method for measuring oxidation-reduction current
JPH11118756A (en) Oxidation reduction potential-measuring device
JPH0827297B2 (en) Cleaning solution for probe for probe card and cleaning apparatus using the same
JP2020034408A (en) Electrochemical measurement device and method for cleaning the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230124

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230704

R150 Certificate of patent or registration of utility model

Ref document number: 7313026

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150