JP7309482B2 - Lens device and imaging device - Google Patents

Lens device and imaging device Download PDF

Info

Publication number
JP7309482B2
JP7309482B2 JP2019124649A JP2019124649A JP7309482B2 JP 7309482 B2 JP7309482 B2 JP 7309482B2 JP 2019124649 A JP2019124649 A JP 2019124649A JP 2019124649 A JP2019124649 A JP 2019124649A JP 7309482 B2 JP7309482 B2 JP 7309482B2
Authority
JP
Japan
Prior art keywords
zoom
lens
distortion
conditional expression
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019124649A
Other languages
Japanese (ja)
Other versions
JP2021012234A (en
Inventor
秀樹 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2019124649A priority Critical patent/JP7309482B2/en
Priority to US16/906,258 priority patent/US11563896B2/en
Publication of JP2021012234A publication Critical patent/JP2021012234A/en
Priority to US18/067,936 priority patent/US20230120733A1/en
Application granted granted Critical
Publication of JP7309482B2 publication Critical patent/JP7309482B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/69Control of means for changing angle of the field of view, e.g. optical zoom objectives or electronic zooming
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/163Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/10Power-operated focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/66Remote control of cameras or camera parts, e.g. by remote control devices
    • H04N23/663Remote control of cameras or camera parts, e.g. by remote control devices for controlling interchangeable camera parts based on electronic image sensor signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/81Camera processing pipelines; Components thereof for suppressing or minimising disturbance in the image signal generation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0046Movement of one or more optical elements for zooming

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)
  • Lenses (AREA)
  • Structure And Mechanism Of Cameras (AREA)
  • Studio Devices (AREA)

Description

本発明は、デジタルカメラやデジタルビデオカメラ等の撮像装置に用いられるレンズ装置に関する。 The present invention relates to a lens device used in imaging devices such as digital cameras and digital video cameras.

歪曲収差補正等の画像処理を適切に行うには、レンズ装置の位置情報を撮像装置に正確に送信することが必要である。特にズームレンズの場合には、ズーム位置に応じて歪曲収差が大きく変化するため、ズーム位置の情報を高い精度で検出することが重要となる。特許文献1には、レンズの位置が変化した際に画像処理の非連続な変化を抑制するため、補正データを補完生成する方法が開示されている。 In order to appropriately perform image processing such as distortion aberration correction, it is necessary to accurately transmit the position information of the lens device to the imaging device. In particular, in the case of a zoom lens, since distortion changes greatly depending on the zoom position, it is important to detect information on the zoom position with high accuracy. Japanese Patent Application Laid-Open No. 2002-200003 discloses a method of complementing and generating correction data in order to suppress discontinuous changes in image processing when the position of the lens changes.

特開2013-123121号公報JP 2013-123121 A

しかしながら、特許文献1に開示された方法では、補正データの切り替えの際に遅延が発生するため、処理のズレや遅れが発生しやすい。また、カメラにおいて補正データの補完処理が必要であり、補完処理に非対応のカメラではその効果を得ることができない。 However, in the method disclosed in Patent Document 1, a delay occurs when switching the correction data, so that processing shifts and delays are likely to occur. In addition, the correction data needs to be complemented by the camera, and the effect cannot be obtained with a camera that does not support the complementation process.

一方、ズーム位置の検出分解能を高めるため、レンズ装置の内部に高分解能の検出装置を設けると、コストの増加および設置スペースの増大により、レンズ装置の高価格化および大型化を招く。 On the other hand, if a high-resolution detection device is provided inside the lens device in order to increase the detection resolution of the zoom position, the cost and installation space will increase, resulting in an increase in the price and size of the lens device.

そこで本発明は、低コストかつ小型で、ズーム位置の検出分解能を高めることが可能なレンズ装置および撮像装置を提供することを目的とする。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a lens device and an image pickup device which are low in cost and small in size and which can increase the detection resolution of the zoom position.

本発明の一側面としてのレンズ装置は、ズーミングのためにユーザが操作可能な操作部材と、前記操作部材の操作に応じてズーミングを行うズームレンズと、前記ズームレンズのズーム位置を検出する検出手段とを有し、歪曲量をDist(%)、広角端から望遠端までのズーム全域における前記検出手段の最大分割数をN、前記操作部材の総回転角をθ(度)、各ズーム位置における前記検出手段の最小分解能に相当する前記操作部材の回転角をΔθ(度)とするとき、
Dist<-8.0
なる条件式を満足するズーム範囲において、
(N*Δθ)/θ<0.50
なる条件式を満足する。
A lens device as one aspect of the present invention includes an operation member that can be operated by a user for zooming, a zoom lens that performs zooming according to the operation of the operation member, and detection means that detects the zoom position of the zoom lens. Dist (%) is the amount of distortion, N is the maximum division number of the detection means in the entire zoom range from the wide-angle end to the telephoto end, θ (degrees) is the total rotation angle of the operation member , and When the rotation angle of the operation member corresponding to the minimum resolution of the detection means is Δθ (degrees),
Dist<−8.0
In the zoom range that satisfies the following conditional expression,
(N*Δθ)/θ<0.50
satisfies the following conditional expression.

本発明の他の側面としての撮像装置は、撮像素子と前記レンズ装置とを有する。 An imaging device as another aspect of the present invention has an imaging device and the lens device.

本発明の他の目的及び特徴は、以下の実施形態において説明される。 Other objects and features of the invention are described in the following embodiments.

本発明によれば、低コストかつ小型で、ズーム位置の検出分解能を高めることが可能なレンズ装置および撮像装置を提供することができる。 According to the present invention, it is possible to provide a low-cost, compact lens device and imaging device capable of increasing the detection resolution of the zoom position.

各実施形態における撮像装置のブロック図である。1 is a block diagram of an imaging device according to each embodiment; FIG. 実施形態1におけるセンサ出力比と回転角比との関係を示すグラフである。4 is a graph showing the relationship between the sensor output ratio and the rotation angle ratio in Embodiment 1. FIG. 実施形態1におけるセンサ出力比とN*Δθ/θの値との関係を示すグラフである。4 is a graph showing the relationship between the sensor output ratio and the value of N*Δθ/θ in Embodiment 1. FIG. 実施形態1におけるセンサ出力比と歪曲量との関係を示すグラフである。4 is a graph showing the relationship between the sensor output ratio and the amount of distortion in Embodiment 1. FIG. 実施形態1におけるセンサ出力比と歪曲変化量との関係を示すグラフである。7 is a graph showing the relationship between the sensor output ratio and the amount of distortion change in Embodiment 1. FIG. 実施形態2におけるセンサ出力比と回転角比との関係を示すグラフである。9 is a graph showing the relationship between the sensor output ratio and the rotation angle ratio in Embodiment 2. FIG. 実施形態2におけるセンサ出力比とN*Δθ/θの値との関係を示すグラフである。9 is a graph showing the relationship between the sensor output ratio and the value of N*Δθ/θ in Embodiment 2. FIG. 実施形態2におけるセンサ出力比と歪曲量との関係を示すグラフである。9 is a graph showing the relationship between the sensor output ratio and the amount of distortion in Embodiment 2. FIG. 実施形態2におけるセンサ出力比と歪曲変化量との関係を示すグラフである。10 is a graph showing the relationship between the sensor output ratio and the amount of distortion change in Embodiment 2. FIG. 実施形態3におけるセンサ出力比と回転角比との関係を示すグラフである。10 is a graph showing the relationship between the sensor output ratio and the rotation angle ratio in Embodiment 3. FIG. 実施形態3におけるセンサ出力比とN*Δθ/θの値との関係を示すグラフである。10 is a graph showing the relationship between the sensor output ratio and the value of N*Δθ/θ in Embodiment 3. FIG. 実施形態3におけるセンサ出力比と歪曲量との関係を示すグラフである。10 is a graph showing the relationship between the sensor output ratio and the amount of distortion in Embodiment 3. FIG. 実施形態3におけるセンサ出力比と歪曲変化量との関係を示すグラフである。14 is a graph showing the relationship between the sensor output ratio and the amount of distortion change in Embodiment 3. FIG.

以下、本発明の実施形態について、図面を参照しながら詳細に説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

まず、本実施形態における撮像装置について説明する。図1は、撮像装置(撮像システム)300のブロック図である。撮像装置300は、撮像装置本体(カメラ本体)200と、撮像装置本体200に着脱可能なレンズ装置(交換レンズ)100とを備えて構成される。ただし本実施形態は、これに限定されるものではなく、撮像装置本体とレンズ装置とが一体的に構成された撮像装置にも適用可能である。 First, the imaging apparatus according to this embodiment will be described. FIG. 1 is a block diagram of an imaging device (imaging system) 300. As shown in FIG. The imaging device 300 includes an imaging device main body (camera main body) 200 and a lens device (interchangeable lens) 100 detachable from the imaging device main body 200 . However, the present embodiment is not limited to this, and can also be applied to an imaging device in which an imaging device main body and a lens device are integrally configured.

レンズ装置100は、ズームリング(操作部材)1、レンズユニット(撮像光学系)2、カム(駆動機構)3、ズーム位置検出センサ(検出手段)4、メモリ(記憶手段)5、レンズMPU(制御手段)6、および、レンズ通信部7を有する。撮像装置本体200は、カメラ通信部8、撮像素子9、カメラMPU(制御手段)10、表示装置11、および、メモリ(記憶手段)12を有する。 The lens device 100 includes a zoom ring (operation member) 1, a lens unit (imaging optical system) 2, a cam (drive mechanism) 3, a zoom position detection sensor (detection means) 4, a memory (storage means) 5, a lens MPU (control means) 6 and a lens communication unit 7. The imaging device main body 200 has a camera communication section 8 , an imaging device 9 , a camera MPU (control means) 10 , a display device 11 and a memory (storage means) 12 .

ズームリング1は、ズーミングのためにユーザが操作可能(マニュアル操作可能)な操作部材である。レンズユニット2は、撮像素子9の撮像面に物体像を形成するズームレンズである。ズームリング1の操作(回転操作)に応じて、レンズユニット2を構成するレンズの配置が変わりズーミングが行われる。レンズユニット2に含まれるレンズ2aは、ズーミングに際して光軸OAに沿った方向(光軸方向)に移動する。カム3は、ズームリング1の回転駆動をレンズ2aの直進駆動に変換するための駆動機構である。メモリ5は、レンズユニット2の収差補正情報を記憶している。 A zoom ring 1 is an operation member that can be operated (manually operated) by a user for zooming. The lens unit 2 is a zoom lens that forms an object image on the imaging surface of the imaging device 9 . Zooming is performed by changing the arrangement of the lenses constituting the lens unit 2 according to the operation (rotational operation) of the zoom ring 1 . A lens 2a included in the lens unit 2 moves in a direction along the optical axis OA (optical axis direction) during zooming. The cam 3 is a driving mechanism for converting rotational driving of the zoom ring 1 into rectilinear driving of the lens 2a. A memory 5 stores aberration correction information for the lens unit 2 .

レンズMPU6は、メモリ5から収差補正情報を取得し、レンズ通信部7およびカメラ通信部8を介してカメラMPU10に送信する。またレンズMPU6は、現在のズーム位置を示す情報を、レンズ通信部7およびカメラ通信部8を介してカメラMPU10に送信する。現在のズーム位置を示す情報は、ズーム位置を検出するズーム位置検出センサ4からの出力信号に基づいて決定され、現在のズーム位置が全ズーム範囲のうちいずれの位置であるかを示す情報である。 The lens MPU 6 acquires aberration correction information from the memory 5 and transmits it to the camera MPU 10 via the lens communication section 7 and the camera communication section 8 . The lens MPU 6 also transmits information indicating the current zoom position to the camera MPU 10 via the lens communication section 7 and the camera communication section 8 . The information indicating the current zoom position is determined based on the output signal from the zoom position detection sensor 4 that detects the zoom position, and is information indicating where the current zoom position is within the entire zoom range. .

ズーム位置検出センサ4は、レンズ2aの移動量(直進駆動量)を検出し、例えば、全ズーム範囲をN等分したときのいくつに相当するかを示す値に相当する信号を出力する。本実施形態では、ズームリング1の回転操作とズーム位置検出センサ4の出力信号との関係が所定の条件式を満足するように、カム3のカム溝の形状が設計されている。 The zoom position detection sensor 4 detects the movement amount (straight driving amount) of the lens 2a, and outputs a signal corresponding to, for example, a value indicating how many times the entire zoom range is divided into N equal parts. In this embodiment, the shape of the cam groove of the cam 3 is designed so that the relationship between the rotational operation of the zoom ring 1 and the output signal of the zoom position detection sensor 4 satisfies a predetermined conditional expression.

撮像素子9は、CMOSセンサやCCDセンサを有し、レンズユニット2を介して形成された光学像(被写体の像)を光電変換して画像データ(撮影画像)を出力する。カメラMPU10は、レンズMPU6から取得された収差補正情報のうち現在のズーム位置に対応する収差補正情報を用いて、撮影画像の収差を補正する。少なくとも、歪曲収差(以下、「歪曲収差」のことを単に「歪曲」ともいう)を補正する。そしてカメラMPU10は、補正後の画像を表示装置11に表示させ、または補正後の画像をメモリ12に記憶させる。 The imaging device 9 has a CMOS sensor or a CCD sensor, photoelectrically converts an optical image (object image) formed via the lens unit 2, and outputs image data (captured image). The camera MPU 10 uses the aberration correction information corresponding to the current zoom position among the aberration correction information acquired from the lens MPU 6 to correct the aberration of the captured image. At least, distortion (hereinafter, "distortion" may be simply referred to as "distortion") is corrected. The camera MPU 10 displays the corrected image on the display device 11 or stores the corrected image in the memory 12 .

次に、図2乃至図13を参照して、各実施形態におけるレンズ装置100について説明する。歪曲補正等の画像処理を適切に行うには、レンズ装置100におけるズーム位置を撮像装置本体200に正確に送信することが必要である。特に、ズームリング1を回転操作することによりカム3を介してレンズ2aが直接移動するように構成されている場合、ズームリング1の操作によってはズーム操作を高速または低速で行うことも可能である。ズーム操作を高速で行うこの際に、レンズ装置100のズーム位置(ズーム位置情報)の検出精度が不十分であって歪曲の変化が大きい場合、歪曲補正等の画像処理の補正値がスムーズに切り替わらず、特に動画撮影等において目立ちやすい。そこで本実施形態では、全ズーム範囲のうちズームレンズ2の歪曲の変化量が大きなズーム位置周辺において、ズームリング1の単位回転角あたりのズーム位置の検出分解能を適切に設定している。 Next, the lens device 100 according to each embodiment will be described with reference to FIGS. 2 to 13. FIG. In order to appropriately perform image processing such as distortion correction, it is necessary to accurately transmit the zoom position in the lens device 100 to the imaging device body 200 . In particular, when the lens 2a is directly moved via the cam 3 by rotating the zoom ring 1, it is possible to perform the zoom operation at high speed or low speed depending on the operation of the zoom ring 1. . When the zoom operation is performed at high speed, if the detection accuracy of the zoom position (zoom position information) of the lens device 100 is insufficient and the distortion changes greatly, the correction value for image processing such as distortion correction is not switched smoothly. It is easy to notice especially in video shooting. Therefore, in the present embodiment, the zoom position detection resolution per unit rotation angle of the zoom ring 1 is appropriately set around the zoom position where the amount of change in distortion of the zoom lens 2 is large in the entire zoom range.

図2は、実施形態1におけるズーム位置検出センサ4の最大分割数Nに対するズーム位置検出センサ4の出力値の比を示すセンサ出力比と、ズームリング1の総回転角に対するズームリング1の回転角を示す回転角比との関係を示すグラフである。図2において、横軸はセンサ出力比、縦軸は回転角比をそれぞれ示す。図2に示されるように、センサ出力比が0近傍の領域において、回転角比に対してセンサ出力比が大きくなっている。 FIG. 2 shows a sensor output ratio indicating the ratio of the output value of the zoom position detection sensor 4 to the maximum division number N of the zoom position detection sensor 4 and the rotation angle of the zoom ring 1 with respect to the total rotation angle of the zoom ring 1 in the first embodiment. is a graph showing a relationship with a rotation angle ratio. In FIG. 2, the horizontal axis indicates the sensor output ratio, and the vertical axis indicates the rotation angle ratio. As shown in FIG. 2, in a region where the sensor output ratio is close to 0, the sensor output ratio is larger than the rotation angle ratio.

図3は、実施形態1におけるセンサ出力比とN*Δθ/θの値との関係を示すグラフである。ここで、Nは広角端から望遠端までのズーム全域におけるズーム位置検出センサ4の最大分割数、θ(度)はズームリング1の総回転角、Δθ(度)は各ズーム位置におけるズーム位置検出センサ4の最小分解能に相当するズームリング1の回転角である。「*」は乗算を意味する。図3において、横軸はセンサ出力比、縦軸はN*Δθ/θの値をそれぞれ示す。 FIG. 3 is a graph showing the relationship between the sensor output ratio and the value of N*Δθ/θ in the first embodiment. where N is the maximum division number of the zoom position detection sensor 4 over the entire zoom range from the wide-angle end to the telephoto end, θ (degrees) is the total rotation angle of the zoom ring 1, and Δθ (degrees) is the zoom position detection at each zoom position. This is the rotation angle of the zoom ring 1 corresponding to the minimum resolution of the sensor 4. FIG. "*" means multiplication. In FIG. 3, the horizontal axis indicates the sensor output ratio, and the vertical axis indicates the value of N*Δθ/θ.

図4は、実施形態1におけるセンサ出力比と歪曲量Dist(%)との関係を示すグラフである。図4において、横軸はセンサ出力比、縦軸は歪曲量をそれぞれ示す。本実施形態のレンズ装置100は、以下の条件式(1)を満足する歪曲量Dist(%)を有するズーム範囲(ズーム位置)において、以下の条件式(2)を満足する。 FIG. 4 is a graph showing the relationship between the sensor output ratio and the amount of distortion Dist (%) in the first embodiment. In FIG. 4, the horizontal axis indicates the sensor output ratio, and the vertical axis indicates the amount of distortion. The lens device 100 of this embodiment satisfies the following conditional expression (2) in a zoom range (zoom position) having a distortion amount Dist(%) that satisfies the following conditional expression (1).

Dist<-8.0 …(1)
(N*Δθ)/θ<0.50 …(2)
条件式(1)、(2)は、歪曲収差の変化量が比較的大きくなりやすい負の歪曲収差の範囲において、ズーム位置の検出分解能を高くすることを示している。条件式(1)の範囲は、ズームレンズの広角端側であることが多い。
Dist<−8.0 (1)
(N*Δθ)/θ<0.50 (2)
Conditional expressions (1) and (2) indicate that the detection resolution of the zoom position should be increased in the range of negative distortion where the amount of change in distortion tends to be relatively large. The range of conditional expression (1) is often the wide-angle end side of the zoom lens.

条件式(1)は、歪曲量(%)を規定している。条件式(1)を満たすことで、負の歪曲収差をレンズ系のみで補正する必要がなくなる。このため、歪曲補正のために必要とされた、レンズ径の大きくなりやすい物体側に配置されるレンズの枚数を少なくすることができる。一方、条件式(1)の範囲に歪曲量を設定すると、歪曲量の絶対値が大きいため、ズーム操作時の歪曲の変化量も大きくなりやすい。条件式(2)は、ズーム位置検出センサ4の最小分解能に対応する回転角の関係を表している。条件式(2)を満足することで、回転角比とセンサ出力比との関係が比例関係である場合に対し、回転角あたりのセンサ出力比を増やす(検出分解能を高くする)ことが可能となり、ズーム位置を精度よく検出することができる。 Conditional expression (1) defines the amount of distortion (%). Satisfying conditional expression (1) eliminates the need to correct negative distortion only with the lens system. Therefore, it is possible to reduce the number of lenses arranged on the object side where the lens diameter tends to be large, which is required for distortion correction. On the other hand, if the amount of distortion is set within the range of conditional expression (1), the absolute value of the amount of distortion is large, so the amount of change in distortion during the zoom operation tends to be large. Conditional expression (2) expresses the relationship between the minimum resolution of the zoom position detection sensor 4 and the rotation angle. By satisfying the conditional expression (2), it becomes possible to increase the sensor output ratio per rotation angle (increase the detection resolution) as opposed to the case where the relationship between the rotation angle ratio and the sensor output ratio is proportional. , the zoom position can be detected with high accuracy.

図5は、センサ出力比と歪曲変化量との関係を示すグラフである。図5において、横軸はセンサ出力比、縦軸は歪曲変化量をそれぞれ示す。図5に示されるように、歪曲量の大きな領域で歪曲変化が小さく抑えられている。これにより、歪曲の変化が大きい条件でズーム操作を行った場合でも、歪曲補正等の画像処理の補正値を精度よくスムーズに切り替えることが可能となる。 FIG. 5 is a graph showing the relationship between the sensor output ratio and the amount of distortion change. In FIG. 5, the horizontal axis indicates the sensor output ratio, and the vertical axis indicates the amount of distortion change. As shown in FIG. 5, the distortion change is kept small in areas where the amount of distortion is large. As a result, even when the zoom operation is performed under the condition that the distortion changes greatly, it is possible to switch the correction value of image processing such as distortion correction smoothly and accurately.

好ましくは、以下の条件式(1a)を満足する歪曲量Dist(%)のズーム範囲において、以下の条件式(2a)を満足する。 Preferably, the following conditional expression (2a) is satisfied in the zoom range of the distortion amount Dist (%) that satisfies the following conditional expression (1a).

Dist<-9.0 …(1a)
(N*Δθ)/θ<0.45 …(2a)
より好ましくは、以下の条件式(1b)を満足する歪曲量Dist(%)のズーム範囲において、以下の条件式(2b)を満足する。
Dist<−9.0 (1a)
(N*Δθ)/θ<0.45 (2a)
More preferably, the following conditional expression (2b) is satisfied in the zoom range of the distortion amount Dist(%) that satisfies the following conditional expression (1b).

Dist<-10.0 …(1b)
(N*Δθ)/θ<0.40 …(2b)
本実施形態において、更に好ましくは、以下の条件式(3)~(5)の少なくとも一つを満足する。
Dist<−10.0 (1b)
(N*Δθ)/θ<0.40 (2b)
In this embodiment, more preferably, at least one of the following conditional expressions (3) to (5) is satisfied.

|DistA-DistB|<0.08 …(3)
N<1100 …(4)
θ>55 …(5)
条件式(3)において、ズーム位置検出センサ4の最小分解能に相当するズームリング1の操作前の歪曲量をDistA、操作後の歪曲量をDistBとしている。レンズ装置100では、ズーム全域において条件式(3)を満足する。条件式(3)は、ズーム位置検出センサ4の最小分解能あたりの歪曲の変化量を規定している。条件式(3)を満足することで、歪曲補正等の補正値が切り替わる際の変化量が小さくなり、ズームリング1の操作速度によらず、スムーズな収差補正を行うことが可能となる。条件式(3)の上限値を上回ると、このようなスムーズな収差補正を行うことが困難になるため好ましくない。
|DistA−DistB|<0.08 (3)
N<1100 (4)
θ>55 (5)
In conditional expression (3), the amount of distortion before operation of the zoom ring 1 corresponding to the minimum resolution of the zoom position detection sensor 4 is DistA, and the amount of distortion after operation is DistB. The lens device 100 satisfies conditional expression (3) over the entire zoom range. Conditional expression (3) defines the amount of distortion change per minimum resolution of the zoom position detection sensor 4 . By satisfying the conditional expression (3), the amount of change when the correction value for distortion correction or the like is switched becomes small, and smooth aberration correction can be performed regardless of the operation speed of the zoom ring 1 . Exceeding the upper limit of conditional expression (3) is not preferable because it becomes difficult to perform such smooth aberration correction.

条件式(4)は、広角端から望遠端におけるズーム位置検出センサ4の最大分割数Nを規定している。条件式(4)の上限値を上回ると、ズーム位置検出センサ4のコストアップや設置スペースの増大により、レンズ装置100の高価格化や大型化を招くため好ましくない。 Conditional expression (4) defines the maximum division number N of the zoom position detection sensor 4 from the wide-angle end to the telephoto end. Exceeding the upper limit of conditional expression (4) is not preferable because the cost of the zoom position detection sensor 4 increases and the installation space increases, leading to an increase in the price and size of the lens device 100 .

条件式(5)は、広角端から望遠端におけるズームリング1の総回転角を規定したものである。条件式(5)の下限値を下回ると、ズームリング1の総回転角が小さいため、ズームリング1の単位回転角の変化あたりのズーム位置の変化量が大きくなり、なめらかにズーミング操作することが困難となるため好ましくない。 Conditional expression (5) defines the total rotation angle of the zoom ring 1 from the wide-angle end to the telephoto end. If the lower limit of conditional expression (5) is not reached, the total rotation angle of the zoom ring 1 is small, so the amount of change in the zoom position per change in unit rotation angle of the zoom ring 1 increases, and zooming can be performed smoothly. It is not preferable because it becomes difficult.

好ましくは、条件式(3)~(5)の数値範囲はそれぞれ、以下の条件式(3a)~(5a)のように設定される。 Preferably, the numerical ranges of conditional expressions (3) to (5) are set as the following conditional expressions (3a) to (5a), respectively.

|DistA-DistB|<0.07 …(3a)
N<1050 …(4a)
θ>75 …(5a)
より好ましくは、条件式(3a)~(5a)の数値範囲はそれぞれ、以下の条件式(3b)~(5b)のように設定される。
|DistA−DistB|<0.07 (3a)
N<1050 (4a)
θ>75 (5a)
More preferably, the numerical ranges of the conditional expressions (3a) to (5a) are set as the following conditional expressions (3b) to (5b), respectively.

|DistA-DistB|<0.05 …(3b)
N<1010 …(4b)
θ>95 …(5b)
また好ましくは、以下の条件式(6)を満足する歪曲量Dist(%)のズーム範囲において、以下の条件式(7)を満足する。
|DistA−DistB|<0.05 (3b)
N<1010 (4b)
θ>95 (5b)
Moreover, preferably, the following conditional expression (7) is satisfied in the zoom range of the distortion amount Dist(%) that satisfies the following conditional expression (6).

Dist>4.0 …(6)
(N*Δθ)/θ<0.90 …(7)
条件式(6)は、歪曲量を規定している。条件式(6)を満たすことで、正の歪曲収差を許容した設計が可能となるため、特に望遠域においてレンズユニット(ズームレンズ)2の全長を短縮しやすく、各群の焦点距離を短縮した構成がとりやすくなる。一方、正の歪曲を画像処理で補正すると、画面周辺部に対して画面中心部を引き延ばすような処理を行うことが必要となるため、補正誤差があると目立ちやすい。
Dist>4.0 (6)
(N*Δθ)/θ<0.90 (7)
Conditional expression (6) defines the amount of distortion. Satisfying conditional expression (6) enables a design that allows for positive distortion, making it easier to shorten the total length of the lens unit (zoom lens) 2, especially in the telephoto range, and shorten the focal length of each group. Easier to configure. On the other hand, if positive distortion is corrected by image processing, it is necessary to perform a process of stretching the center of the screen with respect to the peripheral part of the screen.

条件式(7)は、ズーム位置検出センサ4の最小分解能に対応する回転角の関係を表している。条件式(7)を満足することで、回転角比とセンサ出力比との関係が比例関係である場合に対し、回転角あたりのセンサ出力比を増やしてズーム位置を精度よく検出できるようになり、歪曲補正などの画像処理(電子的な収差補正)を適切に行うことが可能となる。条件式(7)の上限値を上回ると、画像処理(電子的な収差補正)を適切に行うことが困難になるため好ましくない。 Conditional expression (7) expresses the relationship between the minimum resolution of the zoom position detection sensor 4 and the rotation angle. By satisfying the conditional expression (7), the zoom position can be accurately detected by increasing the sensor output ratio per rotation angle, as opposed to the case where the relationship between the rotation angle ratio and the sensor output ratio is proportional. , image processing (electronic aberration correction) such as distortion correction can be performed appropriately. If the upper limit of conditional expression (7) is exceeded, it becomes difficult to appropriately perform image processing (electronic aberration correction), which is not preferable.

図6は、実施形態2におけるセンサ出力比と回転角比との関係を示すグラフである。図7は、実施形態2におけるセンサ出力比とN*Δθ/θの値との関係を示すグラフである。図8は、実施形態2におけるセンサ出力比と歪曲量との関係を示すグラフである。図9は、実施形態2におけるセンサ出力比と歪曲変化量との関係を示すグラフである。 FIG. 6 is a graph showing the relationship between the sensor output ratio and the rotation angle ratio in the second embodiment. FIG. 7 is a graph showing the relationship between the sensor output ratio and the value of N*Δθ/θ in the second embodiment. FIG. 8 is a graph showing the relationship between the sensor output ratio and the amount of distortion in the second embodiment. FIG. 9 is a graph showing the relationship between the sensor output ratio and the amount of distortion change in the second embodiment.

図10は、実施形態3におけるセンサ出力比と回転角比との関係を示すグラフである。図11は、実施形態3におけるセンサ出力比とN*Δθ/θの値との関係を示すグラフである。図12は、実施形態3におけるセンサ出力比と歪曲量との関係を示すグラフである。図13は、実施形態3におけるセンサ出力比と歪曲変化量との関係を示すグラフである。 10 is a graph showing the relationship between the sensor output ratio and the rotation angle ratio in Embodiment 3. FIG. FIG. 11 is a graph showing the relationship between the sensor output ratio and the value of N*Δθ/θ in the third embodiment. FIG. 12 is a graph showing the relationship between the sensor output ratio and the amount of distortion in the third embodiment. FIG. 13 is a graph showing the relationship between the sensor output ratio and the amount of distortion change in the third embodiment.

表1乃至表3は、実施形態1乃至3のそれぞれのセンサ出力に対する、総回転角θ、歪曲量Dist、条件式(3)の値DistA-DistB、および、条件式(2)の値N*Δθ/θを示す。 Tables 1 to 3 show the total rotation angle θ, the amount of distortion Dist, the value DistA−DistB of conditional expression (3), and the value N* of conditional expression (2) for each of the sensor outputs of Embodiments 1 to 3. Δθ/θ is shown.

いずれの実施形態も、歪曲収差の変化量が比較的大きくなりやすい負の歪曲収差の範囲において、ズーム位置の検出分解能を高くすることを示している。 Each of the embodiments indicates that the detection resolution of the zoom position is increased in the range of negative distortion where the amount of change in distortion tends to be relatively large.

各実施形態によれば、低コストかつ小型で、ズーム位置の検出分解能を高めることが可能なレンズ装置および撮像装置を提供することができる。 According to each embodiment, it is possible to provide a lens device and an imaging device that are low in cost, small in size, and capable of increasing the detection resolution of the zoom position.

以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。 Although preferred embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and various modifications and changes are possible within the scope of the gist.

各実施形態において、メモリ5は、レンズユニット2の収差補正情報に代えて、例えばレンズユニット2の収差情報を記憶していてもよい。メモリ5に記憶されている情報が収差情報である場合、撮像装置本体200は、当該収差を低減するように撮像画像を補正することができる。 In each embodiment, the memory 5 may store aberration information of the lens unit 2 instead of the aberration correction information of the lens unit 2, for example. When the information stored in the memory 5 is aberration information, the imaging device main body 200 can correct the captured image so as to reduce the aberration.

1 ズームリング(操作部材)
2 レンズユニット(ズームレンズ)
4 ズーム位置検出センサ(検出手段)
100 レンズ装置
1 zoom ring (operation member)
2 lens unit (zoom lens)
4 zoom position detection sensor (detection means)
100 lens device

Claims (7)

ズーミングのためにユーザが操作可能な操作部材と、
前記操作部材の操作に応じてズーミングを行うズームレンズと、
前記ズームレンズのズーム位置を検出する検出手段と、を有し、
歪曲量をDist(%)、広角端から望遠端までのズーム全域における前記検出手段の最大分割数をN、前記操作部材の総回転角をθ(度)、各ズーム位置における前記検出手段の最小分解能に相当する前記操作部材の回転角をΔθ(度)とするとき、
Dist<-8.0
なる条件式を満足するズーム範囲において、
(N*Δθ)/θ<0.50
なる条件式を満足することを特徴とするレンズ装置。
an operating member operable by a user for zooming;
a zoom lens that performs zooming according to the operation of the operation member;
detection means for detecting the zoom position of the zoom lens;
Dist (%) is the amount of distortion, N is the maximum number of divisions of the detection means in the entire zoom range from the wide-angle end to the telephoto end, θ (degrees) is the total rotation angle of the operation member , and the minimum of the detection means at each zoom position is When the rotation angle of the operation member corresponding to the resolution is Δθ (degrees),
Dist<−8.0
In the zoom range that satisfies the following conditional expression,
(N*Δθ)/θ<0.50
A lens device characterized by satisfying the following conditional expression:
前記検出手段の前記最小分解能に相当する前記操作部材の操作前の歪曲量をDistA、操作後の歪曲量をDistBとするとき、前記ズーム全域において、
|DistA-DistB|<0.08
なる条件式を満足することを特徴とする請求項1に記載のレンズ装置。
Assuming that the amount of distortion before operation of the operation member corresponding to the minimum resolution of the detection means is DistA, and the amount of distortion after operation is DistB, in the entire zoom range,
|DistA−DistB|<0.08
2. The lens device according to claim 1, wherein the following conditional expression is satisfied.
前記検出手段の最大分割数Nは、
N<1100
なる条件式を満足することを特徴とする請求項1または2に記載のレンズ装置。
The maximum division number N of the detection means is
N<1100
3. The lens device according to claim 1, wherein the following conditional expression is satisfied.
前記総回転角θは、
θ>55
なる条件式を満足することを特徴とする請求項1乃至3のいずれか一項に記載のレンズ装置。
The total rotation angle θ is
θ>55
4. The lens device according to any one of claims 1 to 3, wherein the following conditional expression is satisfied.
歪曲量Distが
Dist>4.0
なる条件式を満足するズーム範囲において、
(N*Δθ)/θ<0.90
なる条件式を満足することを特徴とする請求項1乃至4のいずれか一項に記載のレンズ装置。
Distortion amount Dist > 4.0
In the zoom range that satisfies the following conditional expression,
(N*Δθ)/θ<0.90
5. The lens device according to claim 1, wherein the following conditional expression is satisfied.
前記操作部材は、前記ユーザによりマニュアル操作可能なズームリングであることを特徴とする請求項1乃至5のいずれか一項に記載のレンズ装置。 6. The lens apparatus according to claim 1, wherein the operation member is a zoom ring that can be manually operated by the user. 撮像素子と、
請求項1乃至6のいずれか一項に記載のレンズ装置と、を有することを特徴とする撮像装置。
an imaging device;
An imaging device comprising: the lens device according to claim 1 .
JP2019124649A 2019-07-03 2019-07-03 Lens device and imaging device Active JP7309482B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019124649A JP7309482B2 (en) 2019-07-03 2019-07-03 Lens device and imaging device
US16/906,258 US11563896B2 (en) 2019-07-03 2020-06-19 Lens apparatus and image pickup apparatus
US18/067,936 US20230120733A1 (en) 2019-07-03 2022-12-19 Lens apparatus and image pickup apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019124649A JP7309482B2 (en) 2019-07-03 2019-07-03 Lens device and imaging device

Publications (2)

Publication Number Publication Date
JP2021012234A JP2021012234A (en) 2021-02-04
JP7309482B2 true JP7309482B2 (en) 2023-07-18

Family

ID=74066557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019124649A Active JP7309482B2 (en) 2019-07-03 2019-07-03 Lens device and imaging device

Country Status (2)

Country Link
US (2) US11563896B2 (en)
JP (1) JP7309482B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000329991A (en) 1999-05-20 2000-11-30 Canon Inc Variable power lens system
JP2008295097A (en) 2008-08-25 2008-12-04 Sony Corp Image processor, image processing system, imaging apparatus, and image processing method
JP2013242356A (en) 2012-05-18 2013-12-05 Canon Inc Lens barrel and camera system
JP2019095728A (en) 2017-11-28 2019-06-20 キヤノン株式会社 Lens device and imaging device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0777282B2 (en) * 1993-02-10 1995-08-16 日本電気株式会社 Semiconductor laser
JPH06237404A (en) * 1993-10-15 1994-08-23 Olympus Optical Co Ltd Video processing unit
US6963366B2 (en) * 1996-06-19 2005-11-08 Canon Kabushiki Kaisha Image pickup apparatus
JP2013123121A (en) 2011-12-09 2013-06-20 Tamron Co Ltd Lens exchangeable camera system and image data correction method of the same
JP7289733B2 (en) * 2019-06-20 2023-06-12 キヤノン株式会社 Position detector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000329991A (en) 1999-05-20 2000-11-30 Canon Inc Variable power lens system
JP2008295097A (en) 2008-08-25 2008-12-04 Sony Corp Image processor, image processing system, imaging apparatus, and image processing method
JP2013242356A (en) 2012-05-18 2013-12-05 Canon Inc Lens barrel and camera system
JP2019095728A (en) 2017-11-28 2019-06-20 キヤノン株式会社 Lens device and imaging device

Also Published As

Publication number Publication date
JP2021012234A (en) 2021-02-04
US20230120733A1 (en) 2023-04-20
US20210006724A1 (en) 2021-01-07
US11563896B2 (en) 2023-01-24

Similar Documents

Publication Publication Date Title
US11516393B2 (en) Imaging apparatus to which an interchangeable lens apparatus is attached that utilize image circle information of an imaging optical system in the interchangeable lens apparatus
JP4717748B2 (en) Camera body and camera system having the same
JP6214379B2 (en) Optical equipment
JP2016114946A (en) Camera module
US8320755B2 (en) Autofocusing zoom lens
EP2993506A1 (en) Interchangeable lens apparatus, image capturing apparatus and focusing program
US10802380B2 (en) Imaging device, imaging control method, and program
JP4850692B2 (en) Optical apparatus and imaging system
JP2019211661A (en) Zoom lens and image capturing device
JP2016218439A (en) Attachment optical system and imaging system including the same
US11037277B2 (en) Image processing apparatus, imaging apparatus, lens apparatus, and image processing method
US8855477B2 (en) Zoom lens barrel capable of changing photographing magnification and image pickup apparatus having the same
JP2011097131A (en) Imaging apparatus and interchangeable lens, and camera body
JP7309482B2 (en) Lens device and imaging device
JP6558902B2 (en) Compound eye imaging apparatus, compound eye imaging apparatus control method, compound eye imaging control program, and storage medium
JP2009239460A (en) Focus control method, distance measuring equipment, imaging device
JP2016048283A (en) Lens barrel and image pickup apparatus
JP2017116738A (en) Image correction device, method for controlling image correction device, and program
JP6598490B2 (en) Lens apparatus and imaging apparatus having the same
JP2015118131A (en) Imaging apparatus
JP6088343B2 (en) Optical system and imaging apparatus
JP5665402B2 (en) Imaging system and control method thereof
JP7242318B2 (en) Lens device and imaging device
JP2005326494A5 (en)
JP2022059763A (en) Aberration correction method, program, and image capturing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230705

R151 Written notification of patent or utility model registration

Ref document number: 7309482

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151