JP7304177B2 - WATER FACILITY STATUS MONITORING SYSTEM AND WATER FACILITY STATUS MONITORING METHOD - Google Patents

WATER FACILITY STATUS MONITORING SYSTEM AND WATER FACILITY STATUS MONITORING METHOD Download PDF

Info

Publication number
JP7304177B2
JP7304177B2 JP2019049507A JP2019049507A JP7304177B2 JP 7304177 B2 JP7304177 B2 JP 7304177B2 JP 2019049507 A JP2019049507 A JP 2019049507A JP 2019049507 A JP2019049507 A JP 2019049507A JP 7304177 B2 JP7304177 B2 JP 7304177B2
Authority
JP
Japan
Prior art keywords
disinfection
equipment
disinfection equipment
facility
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019049507A
Other languages
Japanese (ja)
Other versions
JP2020154372A (en
Inventor
浩人 横井
豊 三宮
晃治 陰山
晴茂 斉藤
信幸 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2019049507A priority Critical patent/JP7304177B2/en
Publication of JP2020154372A publication Critical patent/JP2020154372A/en
Application granted granted Critical
Publication of JP7304177B2 publication Critical patent/JP7304177B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、水道施設の状態監視システム及び水道施設の状態監視方法に関する。 The present invention relates to a condition monitoring system for water supply facilities and a condition monitoring method for water supply facilities.

例えば水道事業では、河川水や地下水等を原水とし、浄水処理や消毒処理を行った後に、最終的には配管を経由して上水を需要家に供給している。世界各国では塩素等の薬剤、オゾン、紫外線等の様々な手段で上水を消毒している。日本では消毒に用いる消毒剤として、塩素や次亜塩素酸ナトリウムが使用されている。水道事業体等では、浄水処理した後または原水に消毒設備から直接消毒剤を注入し、給水栓における残留塩素濃度が法令を満足する濃度となるように管理している。 For example, in the water supply business, river water, groundwater, or the like is used as raw water, and clean water is finally supplied to consumers through pipes after being subjected to water purification treatment and disinfection treatment. In countries around the world, water is disinfected by various means such as chemicals such as chlorine, ozone, and ultraviolet rays. In Japan, chlorine and sodium hypochlorite are used as disinfectants for disinfection. In water utilities, etc., after water treatment or raw water, a disinfectant is injected directly from a disinfection facility, and the concentration of residual chlorine at water taps is managed so that it satisfies the law.

近年、日本は人口減少社会に突入し、長引く景気の低迷や節水型水使用機器の普及、ライフスタイルの変化などにより、水需要が減少傾向である。また、水道施設は高度成長期に建設されたものが多いため、最近になって更新時期を迎えるものが増加する傾向にある。一方、人口減少に伴って水道事業体の財政状況が逼迫する傾向にあり、財政状況によっては水道施設が継続して使用されることも考えられる。このような状況下では、水道施設の不具合の増加やノウハウの減少等により、結果的に、水道サービスの質が低下するリスクが高まってしまうことが予想される。 In recent years, Japan has entered a society with a declining population, and the demand for water is on the decline due to the prolonged economic stagnation, the spread of water-saving water-using equipment, and changes in lifestyle. Moreover, since many of the water supply facilities were built during the high-growth period, there is a tendency for the number of facilities to be renewed recently to increase. On the other hand, as the population declines, the financial situation of water supply utilities tends to be tight, and depending on the financial situation, it is conceivable that the water supply facilities will continue to be used. Under such circumstances, it is expected that the risk of deterioration in the quality of water supply services will increase due to an increase in problems with water supply facilities and a decrease in know-how.

さらに、上水道事業や下水道事業は今後、維持管理の広域化が進むと予想される。従って、サービスレベルを維持しながらより効率良く複数の施設を維持管理するには、今以上のコスト低減が望まれる。 Furthermore, it is expected that the maintenance and management of water supply and sewerage projects will expand over a wider area in the future. Therefore, in order to maintain and manage a plurality of facilities more efficiently while maintaining the service level, further cost reduction is desired.

一般的に、水道施設の消毒設備は、作業者が消毒設備を巡回点検することにより監視されている。巡回点検では、消毒設備に設置された電気設備や消毒剤注入設備に付帯する計器の指示値を目視して読み取ることに加え、作業者が五感により状況確認を行っている。五感の中で特に嗅覚は、消毒設備の劣化や消毒剤の漏洩を判定する上で重要である。 In general, the disinfection equipment of water utilities is monitored by workers making rounds of the disinfection equipment. In patrol inspections, in addition to visually reading the indicated values of the electrical equipment installed in the disinfection equipment and the gauges attached to the disinfectant injection equipment, workers check the situation with their five senses. Of the five senses, the sense of smell is particularly important in determining deterioration of disinfection equipment and leakage of disinfectant.

特許文献1には、プラント内に配置されたそれぞれの設備の動作状態を計測し、計測した結果を表す計測情報を出力する計測部と、計測情報が表す設備の動作状態を、予め定められた第1の診断ルールに従って診断し、該診断した結果をさらに、予め定められた第2の診断ルールに従って診断し、該第2の診断ルールに従って診断した結果を、設備の動作状態を診断した結果として表す診断結果情報を出力する診断部とを備えるフィールド機器が開示されている。 In Patent Document 1, a measurement unit that measures the operating state of each facility placed in a plant and outputs measurement information representing the measurement result, and the operating state of the facility represented by the measurement information are determined in advance. Diagnosis is made according to a first diagnosis rule, the result of the diagnosis is further diagnosed according to a predetermined second diagnosis rule, and the result of diagnosis according to the second diagnosis rule is used as the result of diagnosing the operating state of the facility. A field device is disclosed that includes a diagnostic unit that outputs representative diagnostic result information.

特開2018-139152号公報JP 2018-139152 A

上述したように、一般的な水道施設の消毒設備の監視は、作業者の巡回点検によるものであった。従って、水道施設の維持管理コストの中で大きな割合を占める人件費を削減する必要がある。 As described above, monitoring of disinfection equipment in general water supply facilities was based on round inspections by workers. Therefore, it is necessary to reduce labor costs, which account for a large proportion of the maintenance costs of water supply facilities.

本発明は上記の課題に鑑みてなされたもので、水道施設の消毒設備の監視の省人化を図ることで維持管理コストの低減を図ることが可能な水道施設の状態監視システム及び水道施設の状態監視方法を提供することにある。 The present invention has been made in view of the above problems, and is capable of reducing maintenance and management costs by reducing manpower for monitoring the disinfection equipment of water supply facilities. An object of the present invention is to provide a state monitoring method.

上記課題を解決すべく、本発明の一つの観点に従う水道施設の状態監視システムは、水道施設に設けられた消毒設備内の雰囲気における特定物質の濃度を検出するセンサと、センサにより検出された濃度と消毒設備の運転データとに基づいて、消毒設備の不具合の有無を判定する不具合判定装置とを有する。 In order to solve the above problems, a condition monitoring system for water supply facilities according to one aspect of the present invention includes a sensor for detecting the concentration of a specific substance in the atmosphere within a disinfection facility provided in the water supply facility, and the concentration detected by the sensor. and a malfunction determination device that determines whether or not there is a malfunction in the disinfection equipment based on the operation data of the disinfection equipment.

本発明によれば、水道施設の消毒設備の監視の省人化を図ることで維持管理コストの低減を図ることが可能となる。 ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to aim at reduction of maintenance management cost by aiming at manpower saving of the monitoring of the disinfection equipment of a water supply facility.

実施形態である水道施設の状態監視システムを示す概略構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic block diagram which shows the condition-monitoring system of the water supply facility which is embodiment. 実施形態の水道施設の状態監視システムの動作を説明するためのフローチャートである。It is a flow chart for explaining the operation of the condition monitoring system for water supply facilities of the embodiment. 運転データと濃度変化パターンとの関係を示す図である。FIG. 5 is a diagram showing the relationship between operating data and density change patterns;

以下、本発明の実施形態について、図面を参照して説明する。なお、以下に説明する実施形態は特許請求の範囲に係る発明を限定するものではなく、また実施形態の中で説明されている諸要素及びその組み合わせの全てが発明の解決手段に必須であるとは限らない。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that the embodiments described below do not limit the invention according to the scope of claims, and that all of the elements described in the embodiments and their combinations are essential to the solution of the invention. is not limited.

本発明の実施形態である水道施設の状態監視システム(以下、単に「状態監視システム」と称する)は、例えば、以下に示す管理基準に基づいて水道施設が運用されているかを監視するシステムである。状態監視システムが監視する管理基準の項目としては、例えば、着水井での濁度やpH、凝集剤の注入率の上下限値、沈殿処理水濁度、ろ過池出口での濁度や残留塩素濃度、浄水池出口での残留塩素濃度やpH等がある。 A water supply facility condition monitoring system (hereinafter simply referred to as a "condition monitoring system"), which is an embodiment of the present invention, is a system that monitors whether a water supply facility is being operated based on, for example, the management criteria shown below. . The items of management standards monitored by the condition monitoring system include, for example, turbidity and pH at the receiving well, upper and lower limits of the injection rate of the coagulant, turbidity of the sedimentation treatment water, turbidity and residual chlorine at the outlet of the filter basin concentration, residual chlorine concentration and pH at the clean water reservoir outlet.

ここで、本明細書において、「水道施設」とは、例えば、河川等の水源より取水される被処理水を飲料水へと処理する上水道設備、海水を原水として取水し脱塩処理等を行う海水淡水化設備、また、再生水製造設備等、さらには、生活廃水或いは工業用排水等の被処理水を処理する下水道設備を含む。 Here, in the present specification, the term "water supply facility" refers to, for example, a water supply facility that treats water to be treated that is taken from a water source such as a river into drinking water; It includes seawater desalination equipment, reclaimed water production equipment, etc., and sewage equipment for treating water to be treated such as domestic wastewater or industrial wastewater.

図1は、実施形態である水道施設の状態監視システムを示す概略構成図である。図1に示すように、実施形態である状態監視システム1は、水道施設2及び状態監視部(監視装置)7を有する。 FIG. 1 is a schematic configuration diagram showing a condition monitoring system for water supply facilities, which is an embodiment. As shown in FIG. 1 , a condition monitoring system 1 according to the embodiment has a water supply facility 2 and a condition monitoring unit (monitoring device) 7 .

水道施設2は、取水施設3、浄水処理施設4及び配水池5を有する。浄水処理施設4は、原水を受ける着水井10、凝集剤を添加し急速攪拌する混和池11、緩速攪拌してフロックを成長させるフロック形成池12、成長したフロックを重力沈降により沈降分離する沈殿池13、ろ過池14、及び浄水処理した水を蓄える浄水池15を有する。 The water supply facility 2 has a water intake facility 3 , a water treatment facility 4 and a distribution reservoir 5 . The water purification facility 4 includes a receiving well 10 for receiving raw water, a mixing pond 11 for adding a flocculating agent and rapidly stirring, a floc forming pond 12 for slowly stirring to grow flocs, and sedimentation for sedimentation and separation of the grown flocs by gravity settling. It has a pond 13, a filter pond 14, and a purified water pond 15 for storing purified water.

本実施形態では、図示は省略するが、状態監視部7による水道施設2の状態監視を行うために、処理流量や水質を計測する流量計及び水質計が浄水処理施設4に設けられている。流量計は着水井10に設置され、浄水処理する水量(流量)を測定する。水質計は、水温、pHのセンサ、有機物量、塩素消費量、遊離残留塩素及び結合残留塩素等を計測する。水質計は着水井10、沈殿池13の出口、ろ過池14の出口及び浄水池15に設置されている。流量計や水質計の計測情報は、図略の通信ネットワークを介して状態監視部7へ送信される。状態監視部7からの出力は同様に通信ネットワークを介して水道施設2の各設備機器へ送信され、取水量や薬注量が制御される。 In this embodiment, although not shown, the water purification facility 4 is provided with a flow meter and a water quality meter for measuring the treatment flow rate and water quality in order to monitor the state of the water supply facility 2 by the state monitoring unit 7 . A flow meter is installed in the receiving well 10 to measure the amount of water (flow rate) to be treated. The water quality meter measures water temperature, pH sensor, amount of organic matter, chlorine consumption, free residual chlorine, combined residual chlorine, and the like. Water quality meters are installed at the receiving well 10 , the outlet of the sedimentation basin 13 , the outlet of the filtration basin 14 and the clean water basin 15 . Measurement information of the flow meter and the water quality meter is transmitted to the state monitoring unit 7 via a communication network (not shown). The output from the state monitoring unit 7 is similarly transmitted to each facility device of the water supply facility 2 via the communication network, and the water intake amount and chemical feeding amount are controlled.

水道施設2は消毒設備16を有する。消毒設備16は、浄水池15に蓄えられている、浄水処理された水に消毒剤を注入し、塩素による消毒を行う。消毒設備16は、浄水池15に消毒剤を注入する消毒剤注入設備17、及び消毒剤を貯蔵する消毒剤貯蔵設備18を有する。これら消毒剤注入設備17及び消毒剤貯蔵設備18は、消毒設備16の建屋19内に設置されている。 The water supply facility 2 has a disinfection facility 16 . The disinfection facility 16 injects a disinfectant into the purified water stored in the purified water pond 15 and disinfects the water with chlorine. The disinfection facility 16 has a disinfectant injection facility 17 that injects a disinfectant into the purified water reservoir 15 and a disinfectant storage facility 18 that stores the disinfectant. These disinfectant injection equipment 17 and disinfectant storage equipment 18 are installed in the building 19 of the disinfection equipment 16 .

また、消毒設備16は、建屋19内の空調を行う空調設備20を有する。空調設備20は、建屋19内の空気を吸気する吸気ダクト20aと、空調が行われた空気を建屋19内に給気する給気ダクト20bとを有する。この空調設備20は、消毒設備16内にある消毒剤の温度管理を行うためのものである。 In addition, the disinfection equipment 16 has an air conditioning equipment 20 for air conditioning inside the building 19 . The air conditioner 20 has an air intake duct 20a that draws in the air inside the building 19 and an air supply duct 20b that supplies air that has been conditioned into the building 19 . This air conditioning facility 20 is for controlling the temperature of the disinfectant in the disinfecting facility 16 .

空調設備20の吸気ダクト20aには臭気センサ21が設けられている。臭気センサ21は、消毒剤である次亜塩素酸ナトリウムを水に注入した結果生じる塩素の濃度を検知する。吸気ダクト20aに臭気センサ21が設けられていることにより、この臭気センサ21は消毒設備16の建屋19内の空気中(雰囲気)の塩素濃度を検知する。 An odor sensor 21 is provided in the intake duct 20 a of the air conditioner 20 . The odor sensor 21 detects the concentration of chlorine produced as a result of injecting sodium hypochlorite, which is a disinfectant, into water. The odor sensor 21 is provided in the intake duct 20 a to detect the chlorine concentration in the air (atmosphere) inside the building 19 of the disinfection equipment 16 .

状態監視部(監視装置)7は、例えばコンピュータ等の情報処理装置から構成される。既に説明したように、状態監視部7は、流量計や水質計の計測情報を受け入れ、所定の管理基準に基づいて水道施設2が運用されているかを監視する。また、状態監視部7は、消毒設備16を含む水道施設2の各設備機器の運転条件を収集してこれら設備機器の運転データを生成する。さらに、状態監視部7は、監視結果に基づいて水道施設2の各設備機器による取水量や薬注量を制御する。 The state monitoring unit (monitoring device) 7 is composed of an information processing device such as a computer, for example. As already explained, the state monitoring unit 7 receives measurement information from flowmeters and water quality meters, and monitors whether the water supply facility 2 is being operated based on predetermined management standards. In addition, the state monitoring unit 7 collects the operating conditions of each equipment of the water supply facility 2 including the disinfection equipment 16 and generates the operation data of these equipment. Furthermore, the state monitoring unit 7 controls the amount of water intake and the amount of chemical injection by each facility equipment of the water supply facility 2 based on the monitoring result.

状態監視部7は、消毒設備16の不具合の有無を判定する不具合診断部(不具合判定装置)30を有する。不具合診断部30は、例えばCPU(Central Processing Unit)等の演算素子を有する制御部31と、例えば、フラッシュメモリデバイス、ハードディスクドライブ(HDD)等の記憶媒体を有する記憶部32と、臭気センサ21から出力される塩素濃度の計測データ、及び状態監視部7から出力される消毒設備16の運転データを受け入れる入出力I/O(インタフェース)装置と、不具合診断部30が消毒設備16の不具合があると判定したらその判定結果を報知する報知部(報知装置)33とを有する。 The state monitoring unit 7 has a malfunction diagnosis unit (malfunction determination device) 30 that determines whether or not the disinfection equipment 16 has a malfunction. The defect diagnosis unit 30 includes a control unit 31 having an arithmetic element such as a CPU (Central Processing Unit), a storage unit 32 having a storage medium such as a flash memory device or a hard disk drive (HDD), and an odor sensor 21. An input/output I/O (interface) device that receives measurement data of the chlorine concentration output and operation data of the disinfection equipment 16 that is output from the state monitoring unit 7, and a fault diagnosis unit 30 detects that there is a problem with the disinfection equipment 16. It also has a notification unit (notification device) 33 for notifying the result of the determination once it has been determined.

状態監視部7の電源が投入されると、制御部31は記憶部32に格納されたファームウェア等のプログラムを読み出して実行することにより、消毒設備16の不具合の有無を判定する諸動作を実行するとともに、後述する各機能手段としての機能を実現する。 When the state monitoring unit 7 is powered on, the control unit 31 reads out and executes a program such as firmware stored in the storage unit 32, thereby executing various operations for determining whether or not the disinfection equipment 16 is faulty. Together with this, it realizes the function of each functional means to be described later.

制御部31は、濃度取得部34、運転データ取得部35、及び不具合判定部36を有する。 The control unit 31 has a concentration acquisition unit 34 , an operation data acquisition unit 35 and a malfunction determination unit 36 .

濃度取得部34は、入出力I/O装置が受け入れた、臭気センサ21から出力される塩素濃度の計測データを定期的または連続的に取得し、取得した計測データを記憶部32に格納する。運転データ取得部35は、入出力I/O装置が受け入れた、状態監視部7から出力される消毒設備16の運転データを定期的に取得し、取得した運転データを記憶部32に格納する。 The concentration acquisition unit 34 periodically or continuously acquires chlorine concentration measurement data received by the input/output I/O device and output from the odor sensor 21 , and stores the acquired measurement data in the storage unit 32 . The operation data acquisition unit 35 periodically acquires the operation data of the disinfection equipment 16 output from the state monitoring unit 7 received by the input/output I/O device, and stores the acquired operation data in the storage unit 32 .

不具合判定部36は、濃度取得部34が取得した塩素濃度の計測データと、運転データ取得部35が取得した消毒設備16の運転データとに基づいて、消毒設備16の不具合の有無を判定する。ここにいう消毒設備16の不具合とは、例えば消毒設備16の劣化、据え付けの不良や塩素の漏洩である。消毒設備16、例えば消毒剤注入設備17のシール部分が劣化するとこの消毒剤注入設備17から塩素が漏洩する可能性がある。また、それ以外の原因、例えば作業員の操作ミスにより消毒設備16の建屋19内に塩素が漏洩することもあり得る。 The defect determination unit 36 determines whether there is a defect in the disinfection equipment 16 based on the chlorine concentration measurement data acquired by the concentration acquisition unit 34 and the operation data of the disinfection equipment 16 acquired by the operation data acquisition unit 35 . The malfunction of the disinfection equipment 16 here means, for example, deterioration of the disinfection equipment 16, improper installation, and leakage of chlorine. Chlorine may leak from the disinfectant injection equipment 17 when the sealing portion of the disinfectant equipment 16 , for example, the disinfectant injection equipment 17 deteriorates. Chlorine may also leak into the building 19 of the disinfecting equipment 16 due to other causes, for example, operator error.

ここで、不具合判定部36は、予め設定した塩素濃度の閾値に基づいて消毒設備16の不具合の有無を判定する。加えて、不具合判定部36は、状態監視部7から取得した消毒設備16の運転データに基づいて塩素の濃度変化パターンを生成し、臭気センサ21により検出された塩素濃度とこの濃度変化パターンとに基づいて消毒設備16の不具合の有無を判定する。この際、不具合判定部36は、生成した濃度変化パターンを記憶部32に格納する。 Here, the defect determination unit 36 determines whether or not there is a defect in the disinfection equipment 16 based on a preset chlorine concentration threshold. In addition, the defect determination unit 36 generates a chlorine concentration change pattern based on the operation data of the disinfection equipment 16 acquired from the state monitoring unit 7, and compares the chlorine concentration detected by the odor sensor 21 with this concentration change pattern. Based on this, it is determined whether or not there is a problem with the disinfection equipment 16 . At this time, the defect determination unit 36 stores the generated density change pattern in the storage unit 32 .

消毒設備16の建屋19内の空気の塩素濃度が閾値以上、または閾値を超えたら消毒設備16に不具合が生じたことが判定できる。一方、建屋19内の空気の塩素濃度が閾値に至らない場合であっても、例えば消毒設備16が運転されていると漸次塩素濃度が上昇し、このままでは閾値を超える可能性があると予想されるならば、消毒設備16の不具合が生じたと判定することも可能である。当然、消毒設備16が運転されていないときに塩素濃度が下降していて、塩素濃度の上昇及び下降を繰り返しても閾値を超える可能性が低いと予想されるならば、消毒設備16に不具合が生じていないと判定することも可能である。 If the chlorine concentration of the air in the building 19 of the disinfection equipment 16 is equal to or above the threshold value, or exceeds the threshold value, it can be determined that the disinfection equipment 16 has malfunctioned. On the other hand, even if the chlorine concentration of the air in the building 19 does not reach the threshold, for example, if the disinfection equipment 16 is operated, the chlorine concentration will gradually increase, and it is expected that the threshold may be exceeded if this situation continues. If so, it can be determined that the disinfection equipment 16 has failed. Naturally, if the chlorine concentration is decreasing when the disinfection equipment 16 is not in operation and it is expected that the possibility of exceeding the threshold value is low even if the chlorine concentration is repeatedly increased and decreased, there is a problem with the disinfection equipment 16. It is also possible to determine that it has not occurred.

そこで、不具合判定部36は、臭気センサ21により検出された塩素濃度とこの濃度変化パターンとに基づいて消毒設備16の不具合の有無を判定することで、消毒設備16の不具合をより確実にかつ早期に発見することができる。 Therefore, the defect determination unit 36 determines whether or not there is a defect in the disinfection equipment 16 based on the chlorine concentration detected by the odor sensor 21 and this concentration change pattern, so that the defect in the disinfection equipment 16 can be detected more reliably and early. can be found in

当然、塩素濃度の閾値と塩素濃度変化パターンとの大小関係は任意であり、いずれが大である必要はない。運転データ、または濃度変化パターンに基づく不具合判定部36の判定動作の詳細については後述する。 Naturally, the magnitude relationship between the chlorine concentration threshold value and the chlorine concentration change pattern is arbitrary, and it is not necessary for either to be larger. The details of the determination operation of the defect determination unit 36 based on the operating data or density change pattern will be described later.

報知部33は、不具合判定部36により判定された消毒設備16の不具合を警告として報知する。報知部33は、例えばブザー、サイレン、警告灯など、作業者に五感を通じて不具合を報知しうる手段であれば公知の手段が採用可能である。 The notification unit 33 notifies the malfunction of the disinfection equipment 16 determined by the malfunction determination unit 36 as a warning. The notification unit 33 can employ known means such as a buzzer, a siren, a warning light, etc., as long as they can notify the operator of a problem through the five senses.

次に、図2のフローチャート及び図3を参照して、本実施形態の状態監視システム1の動作について説明する。 Next, the operation of the condition monitoring system 1 of this embodiment will be described with reference to the flowchart of FIG. 2 and FIG.

図2は、本実施形態の状態監視システム1の動作を説明するためのフローチャートである。図2のフローチャートに示す動作は、状態監視部7の電源投入により開始し、あるいは、所定の時間間隔を置いて定期的に開始する。 FIG. 2 is a flow chart for explaining the operation of the condition monitoring system 1 of this embodiment. The operation shown in the flowchart of FIG. 2 is started when the state monitoring unit 7 is powered on, or is started periodically at predetermined time intervals.

まず、運転データ取得部35は、状態監視部7から消毒設備16の運転データを取得する(ステップS1)。そして、不具合判定部36は、ステップS1で取得した消毒設備16の運転データに基づいて、塩素の濃度変化パターンを生成する(ステップS2)。 First, the operating data acquiring unit 35 acquires operating data of the disinfection equipment 16 from the state monitoring unit 7 (step S1). Then, the malfunction determination unit 36 generates a chlorine concentration change pattern based on the operation data of the disinfection equipment 16 acquired in step S1 (step S2).

次いで、濃度取得部34は、臭気センサ21から塩素濃度の計測データを取得する(ステップS3)。そして、不具合判定部36は、ステップS3で取得した塩素濃度の計測データの値が、予め定められている塩素濃度の閾値を上回るか否かの判定をする(ステップS4)。そして、塩素濃度の計測データの値が閾値を上回ると判定したら(ステップS4においてYES)、報知部33は消毒設備16の不具合を警告する(ステップS6)。 Next, the concentration acquisition unit 34 acquires chlorine concentration measurement data from the odor sensor 21 (step S3). Then, the defect determination unit 36 determines whether or not the value of the chlorine concentration measurement data acquired in step S3 exceeds a predetermined chlorine concentration threshold (step S4). Then, if it is determined that the value of the measurement data of the chlorine concentration exceeds the threshold value (YES in step S4), the notification unit 33 warns of the malfunction of the disinfection equipment 16 (step S6).

一方、塩素濃度の計測データの値が閾値以下であると判定したら(ステップS4においてNO)、次に、不具合判定部36は、ステップS2で生成した塩素の濃度変化パターンと塩素濃度の計測データの値とを比較し、濃度変化パターンと比較して塩素濃度の計測データの値の変化が異常であるか否かを判定する(ステップS5)。そして、塩素濃度の計測データの値の変化が異常であると判定したら(ステップS5においてYES)、報知部33は消毒設備16の不具合を警告する(ステップS6)。一方、塩素濃度の計測データの値の変化に異常はないと判定したら(ステップS5においてNO)、ステップS3に戻る。 On the other hand, if it is determined that the value of the chlorine concentration measurement data is equal to or less than the threshold value (NO in step S4), then the defect determination unit 36 determines the chlorine concentration change pattern generated in step S2 and the chlorine concentration measurement data. It is determined whether or not the change in the chlorine concentration measurement data value is abnormal by comparing with the concentration change pattern (step S5). Then, if it is determined that the change in the chlorine concentration measurement data is abnormal (YES in step S5), the notification unit 33 warns of the malfunction of the disinfection equipment 16 (step S6). On the other hand, if it is determined that there is no abnormality in the change in the chlorine concentration measurement data (NO in step S5), the process returns to step S3.

ステップS5における不具合判定部36の判定手順の一例について、図3を参照して説明する。 An example of the determination procedure of the defect determination unit 36 in step S5 will be described with reference to FIG.

図3は運転データと濃度変化パターンとの関係を示す図である。ここに、図3の横軸は時間軸である。図3において、(a)の実線Bは濃度取得部34により取得された塩素濃度の計測データの値を示し、破線D1は不具合判定部36により作成された濃度変化パターンを示す。また、別の破線D2は塩素濃度の閾値を示す。 FIG. 3 is a diagram showing the relationship between operating data and density change patterns. Here, the horizontal axis in FIG. 3 is the time axis. In FIG. 3 , a solid line B in (a) indicates the value of chlorine concentration measurement data obtained by the concentration obtaining unit 34 , and a broken line D<b>1 indicates the concentration change pattern created by the defect determination unit 36 . Another dashed line D2 indicates the chlorine concentration threshold.

また、図3(b)は消毒設備16の運転データを示す。具体的には、図3(b)は消毒設備16の消毒剤注入設備17の運転データであり、区間A1が消毒剤注入設備17が稼働して消毒剤が浄水池15に注入されている状態を示し、区間A2が消毒剤注入設備17の稼働が中断されて消毒剤が浄水池15に注入されていない状態を示す。図3(b)は瞬時値を示し、時間を長くとれば消毒剤注入設備17は連続運転をしているとも考えられる。 Moreover, FIG. 3(b) shows the operation data of the disinfection equipment 16. As shown in FIG. Specifically, FIG. 3(b) shows operation data of the disinfectant injection equipment 17 of the disinfection equipment 16, and section A1 is a state in which the disinfectant injection equipment 17 is in operation and the disinfectant is being injected into the clean water reservoir 15. , and section A2 indicates a state in which the operation of the disinfectant injection facility 17 is interrupted and the disinfectant is not injected into the clean water pond 15 . FIG. 3(b) shows instantaneous values, and if the time is long, the disinfectant injection equipment 17 can be considered to be in continuous operation.

消毒剤注入設備17が稼働していれば濃度取得部34により取得された塩素濃度の計測データの値は上昇し、消毒剤注入設備17の稼働が中断されていれば塩素濃度の計測データの値は下降すると考えられる。従って、不具合判定部36は、図3(a)の破線D1に示すような濃度変化パターンを生成する。 If the disinfectant injection facility 17 is in operation, the value of the chlorine concentration measurement data acquired by the concentration acquisition unit 34 increases, and if the operation of the disinfectant injection facility 17 is interrupted, the value of the chlorine concentration measurement data. is expected to decline. Accordingly, the defect determination unit 36 generates a density change pattern as indicated by the dashed line D1 in FIG. 3(a).

不具合判定部36は、実線Bに示す塩素濃度の計測データの値の時間変化を観察し、計測データの値が破線D1に示す濃度変化パターンを超えた時点で消毒設備16に不具合があると判定してもよい。また、不具合判定部36は、塩素濃度の計測データの値の時間変化の傾きを算出し、この傾きが所定の正の値を上回る(つまり計測データの値の上昇率が所定値以上である)ときに、消毒設備16に不具合があると判定してもよい。さらに、不具合判定部36は、消毒剤注入設備17が稼働した際の塩素濃度の計測データの値の上昇率に注目し、この上昇率が濃度変化パターンの上昇率を上回ったら消毒設備16に不具合があると判定してもよい。加えて、不具合判定部36は、消毒剤注入設備17が暫く稼働しない期間があれば、その期間に至るまでに計測データの値が閾値(破線D2)を超えないであろうことが予測できると判定したら、消毒設備16に不具合はないと判定してもよい。 The defect determination unit 36 observes the change over time in the chlorine concentration measurement data value indicated by the solid line B, and determines that there is a defect in the disinfection equipment 16 when the value of the measurement data exceeds the concentration change pattern indicated by the dashed line D1. You may In addition, the defect determination unit 36 calculates the slope of the time change of the measured data value of the chlorine concentration, and the slope exceeds a predetermined positive value (that is, the rate of increase of the measured data value is a predetermined value or more). At times, it may be determined that the disinfection facility 16 is defective. Furthermore, the malfunction determination unit 36 pays attention to the increase rate of the chlorine concentration measurement data when the disinfectant injection equipment 17 is operated, and if this increase rate exceeds the increase rate of the concentration change pattern, the disinfection equipment 16 is malfunctioning. It may be determined that there is In addition, if there is a period in which the disinfectant injection facility 17 does not operate for a while, the defect determination unit 36 can predict that the value of the measurement data will not exceed the threshold value (broken line D2) until that period. Once determined, it may be determined that there is no problem with the disinfection equipment 16 .

いずれにしても、不具合判定部36は、塩素濃度の計測データの値(実線B)が閾値(破線D2)を超える手前で消毒設備16の不具合の有無を判定することができ、予防的管理を行うことができて好ましい。 In any case, the defect determination unit 36 can determine whether there is a defect in the disinfection equipment 16 before the value of the chlorine concentration measurement data (solid line B) exceeds the threshold value (dashed line D2), and preventive management can be performed. It is possible and preferable.

このように構成される本実施形態によれば、臭気センサ21が水道施設2に設けられた消毒設備16内の雰囲気における特定物質の濃度を検出し、不具合判定部36が臭気センサ21により検出された濃度と消毒設備16の運転データとに基づいて、消毒設備16の不具合の有無を判定している。 According to this embodiment configured in this way, the odor sensor 21 detects the concentration of the specific substance in the atmosphere inside the disinfection equipment 16 provided in the water supply facility 2, and the defect determination unit 36 detects the Based on the concentration obtained and the operation data of the disinfection equipment 16, it is determined whether or not the disinfection equipment 16 is faulty.

従って、本実施形態によれば、水道施設の消毒設備の監視の省人化を図ることで維持管理コストの低減を図ることが可能となる。 Therefore, according to this embodiment, it is possible to reduce the maintenance and management cost by reducing the manpower required for monitoring the disinfection equipment of the water supply facility.

特に、本実施形態の状態監視システム1では、塩素濃度の閾値及び塩素の濃度変化パターンの双方に基づいて消毒設備16の不具合を判定している。水道施設2において、消毒剤は浄水池15及び/または配管に間欠的にあるいは連続的に投入されうる。消毒剤が連続的にのみ投入されるのであれば、塩素濃度の閾値のみで消毒設備16の不具合を的確に判定することができる。一方、消毒剤が間欠的に投入される場合、一過的に消毒設備16の建屋19内における塩素濃度が上昇しても、その後消毒設備16の稼働が中断される時間があれば塩素濃度が下降するので消毒設備16に不具合が生じたと判定する必要がない場合がある。本実施形態の状態監視システム1では、消毒設備16の運転データに基づいて消毒設備16の不具合を判定しているので、より的確な判定が行いうる。 In particular, in the state monitoring system 1 of the present embodiment, the malfunction of the disinfection facility 16 is determined based on both the chlorine concentration threshold and the chlorine concentration change pattern. In the water supply facility 2, the disinfectant can be intermittently or continuously injected into the clean water pond 15 and/or pipes. If the disinfectant is supplied only continuously, the malfunction of the disinfection equipment 16 can be accurately determined only by the chlorine concentration threshold. On the other hand, when the disinfectant is intermittently introduced, even if the chlorine concentration in the building 19 of the disinfection equipment 16 rises temporarily, the chlorine concentration will increase if the operation of the disinfection equipment 16 is interrupted after that. Since it descends, it may not be necessary to determine that the disinfection equipment 16 has malfunctioned. In the state monitoring system 1 of this embodiment, since the malfunction of the disinfection equipment 16 is determined based on the operation data of the disinfection equipment 16, more accurate determination can be made.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, the present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations. In addition, it is possible to replace part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Moreover, it is possible to add, delete, or replace a part of the configuration of each embodiment with another configuration.

一例として、上述した実施形態では消毒剤である塩素濃度を臭気センサ21により検出して消毒設備16の不具合を判定していたが、臭気センサ21により検出する物質は塩素に限定されず、消毒設備16の不具合を判定しうる揮発性の物質であればこれに対応した臭気やガスのセンサ等を設けて消毒設備16の不具合を判定することができる。 As an example, in the above-described embodiment, the concentration of chlorine, which is a disinfectant, is detected by the odor sensor 21 to determine the malfunction of the disinfection equipment 16, but the substance detected by the odor sensor 21 is not limited to chlorine, and the disinfection equipment If it is a volatile substance that can determine the malfunction of the disinfection equipment 16, it is possible to determine the malfunction of the disinfection equipment 16 by providing an odor or gas sensor or the like corresponding thereto.

例えば、消毒設備16内には、消毒剤注入設備17を稼働させるための電気設備(受電盤、操作盤)が設けられることが多い。電気設備には電解コンデンサが設けられることが多く、この電解コンデンサは経年変化等により電解液の漏洩、揮発が生じて電気設備自体の不具合を招くことがある。 For example, the disinfection equipment 16 is often provided with electrical equipment (power receiving panel, operation panel) for operating the disinfectant injection equipment 17 . Electrolytic capacitors are often provided in electrical equipment, and these electrolytic capacitors may leak or volatilize electrolyte due to aging, etc., causing problems in the electrical equipment itself.

そこで、電解液に用いられるグリセリンやγ-ブチロラクトンの消毒設備16の建屋19内での濃度を検出する臭気センサを建屋19内に設け、この臭気センサの計測データに基づいて消毒設備16の電気設備の不具合の有無を判定してもよい。加えて、電気設備に強制排気設備を設け、この強制排気設備の排気ダクトを空調設備20に接続し、排気ダクトに臭気センサを設けてもよい。この場合、上述の臭気センサ21と併設することもできる。 Therefore, an odor sensor for detecting the concentration of glycerin and γ-butyrolactone used in the electrolytic solution in the building 19 of the disinfection equipment 16 is provided in the building 19, and the electrical equipment of the disinfection equipment 16 is measured based on the measurement data of this odor sensor. It may be determined whether or not there is a defect in In addition, a forced exhaust facility may be provided in the electrical equipment, an exhaust duct of this forced exhaust facility may be connected to the air conditioner 20, and an odor sensor may be provided in the exhaust duct. In this case, the odor sensor 21 described above can be installed side by side.

さらに、臭気センサ21にかえて、あるいは臭気センサ21とともに、消毒設備16の建屋19内の煙を感知する煙センサを設け、消毒設備16内の各種設備からの発煙に起因する不具合の有無を判定してもよい。 Furthermore, instead of the odor sensor 21, or in addition to the odor sensor 21, a smoke sensor that detects smoke in the building 19 of the disinfection equipment 16 is provided to determine the presence or absence of defects caused by smoke emitted from various equipment in the disinfection equipment 16. You may

さらに、水道施設2に複数の消毒設備16が設けられている場合、巡回点検の実施対象やスケジュールに従って臭気センサ21を設ける消毒設備16を変更してもよい。これにより、より少ない臭気センサ21により多くの消毒設備16の不具合を判定することができる。あるいは、各々の消毒設備16に臭気センサ21を設け、不具合診断部30による判定動作を時間単位で切り替えてもよい。これにより、個々の消毒設備16の稼働時間が異なる場合などに能率的な不具合判定を行うことができる。 Furthermore, when a plurality of disinfection facilities 16 are provided in the water supply facility 2, the disinfection facilities 16 provided with the odor sensors 21 may be changed according to the target of the patrol inspection and the schedule. As a result, malfunctions of many disinfection facilities 16 can be determined with fewer odor sensors 21 . Alternatively, each disinfection equipment 16 may be provided with an odor sensor 21 and the determination operation by the defect diagnosis unit 30 may be switched on a time basis. As a result, it is possible to perform an efficient fault determination when the operation time of each disinfection equipment 16 is different.

そして、消毒設備16に建屋19内を監視できる可動式または広角の監視カメラを設置し、不具合診断部30により不具合があると判定された消毒設備16について、実際に不具合が生じている機器、設備を特定することができる。そして、不具合が生じている機器等に関する情報を、巡回点検に先立って作業者に提供することで、作業者による不具合対応に必要な時間を短縮でき、また、巡回点検の回数そのものを削減することもできる。 Then, a movable or wide-angle monitoring camera that can monitor the inside of the building 19 is installed in the disinfection equipment 16, and the equipment and equipment that are actually malfunctioning for the disinfection equipment 16 that has been determined to be defective by the defect diagnosis unit 30 can be specified. In addition, by providing workers with information on malfunctioning devices prior to patrol inspections, the time required for workers to respond to malfunctions can be shortened, and the number of patrol inspections themselves can be reduced. can also

また、上記の各構成、機能、処理部、処理手段等は、それらの一部または全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。 Further, each of the above configurations, functions, processing units, processing means, and the like may be realized by hardware, for example, by designing them in an integrated circuit. Moreover, each of the above configurations, functions, etc. may be realized by software by a processor interpreting and executing a program for realizing each function. Information such as programs, tables, and files that implement each function can be stored in a recording device such as a memory, a hard disk, or an SSD, or a recording medium such as an IC card, an SD card, or a DVD.

また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。 Further, the control lines and information lines indicate those considered necessary for explanation, and not all control lines and information lines are necessarily indicated on the product. In practice, it may be considered that almost all configurations are interconnected.

1…状態監視システム 2…水道施設 7…状態監視部(監視装置) 15…浄水池 16…消毒設備 17…消毒剤注入設備 18…消毒剤貯蔵設備 19…建屋 20…空調設備 20a…吸気ダクト 21…臭気センサ(センサ) 30…不具合診断部(不具合判定装置) 33…報知部(報知装置) 34…濃度取得部 35…運転データ取得部 36…不具合判定部

REFERENCE SIGNS LIST 1 Condition monitoring system 2 Water supply facility 7 Condition monitoring unit (monitoring device) 15 Purified water reservoir 16 Disinfection equipment 17 Disinfectant injection equipment 18 Disinfectant storage equipment 19 Building 20 Air conditioning equipment 20a Intake duct 21 ... Odor sensor (sensor) 30 ... Malfunction diagnosis unit (malfunction determination device) 33 ... Notification unit (report device) 34 ... Concentration acquisition unit 35 ... Operation data acquisition unit 36 ... Malfunction determination unit

Claims (6)

水道施設に設けられた消毒設備の運転条件を収集して運転データを生成する監視装置と、
前記消毒設備内の雰囲気における特定物質の濃度を検出するセンサと、
前記監視装置から前記運転データの提供を受け、前記運転データに基づいて前記特定物質の濃度変化パターンを生成し、生成した当該濃度変化パターンと比較して前記センサにより検出された前記濃度の変化が異常である場合、前記消毒設備不具合があると判定する不具合判定装置と
を有することを特徴とする水道施設の状態監視システム。
A monitoring device that collects operating conditions of disinfection equipment installed in water supply facilities and generates operating data;
a sensor that detects the concentration of a specific substance in the atmosphere within the disinfection facility;
receiving the operation data from the monitoring device , generating a concentration change pattern of the specific substance based on the operation data, and comparing the generated concentration change pattern with the concentration change detected by the sensor; A condition monitoring system for a water supply facility, comprising: a failure determination device that determines that the disinfection equipment has a failure when there is an abnormality .
前記特定物質は消毒剤または前記消毒剤を水に注入することにより発生する物質であることを特徴とする請求項1に記載の状態監視システム。 2. The condition monitoring system according to claim 1, wherein said specific substance is a disinfectant or a substance generated by injecting said disinfectant into water. 前記不具合判定装置は、予め設定された前記特定物質の前記濃度の閾値にも基づいて判定することを特徴とする請求項に記載の状態監視システム。 2. The condition monitoring system according to claim 1 , wherein the malfunction determination device also determines based on a preset threshold value of the concentration of the specific substance. 前記消毒設備内に設けられた空調設備を有し、
前記センサは前記空調設備の吸気ダクトに設けられている
ことを特徴とする請求項1に記載の状態監視システム。
Having air conditioning equipment provided in the disinfection equipment,
2. The condition monitoring system according to claim 1, wherein said sensor is provided in an intake duct of said air conditioner.
前記不具合判定装置が前記消毒設備不具合があると判定したら、前記不具合判定装置の判定結果を報知する報知装置を有することを特徴とする請求項1に記載の状態監視システム。 2. The condition monitoring system according to claim 1, further comprising a notification device for notifying the result of determination by said defect determination device when said defect determination device determines that said disinfection equipment has a defect. 水道施設に設けられた消毒設備の運転条件を収集して運転データを生成する監視装置と、前記消毒設備内の雰囲気における特定物質の濃度を検出するセンサとを有する状態監視システムにより実行される状態監視方法であって、
前記監視装置から前記運転データの提供を受け、前記運転データに基づいて前記特定物質の濃度変化パターンを生成し、生成した当該濃度変化パターンと比較して前記センサにより検出された前記濃度の変化が異常である場合、前記消毒設備不具合があると判定する
ことを特徴とする水道施設の状態監視方法。
A state executed by a state monitoring system having a monitoring device that collects operating conditions of a disinfection facility installed in a water supply facility and generates operating data, and a sensor that detects the concentration of a specific substance in the atmosphere within the disinfection facility. A monitoring method comprising:
receiving the operation data from the monitoring device , generating a concentration change pattern of the specific substance based on the operation data, and comparing the generated concentration change pattern with the concentration change detected by the sensor; A method for monitoring the condition of a water supply facility, characterized by determining that the disinfection equipment has a problem if there is an abnormality .
JP2019049507A 2019-03-18 2019-03-18 WATER FACILITY STATUS MONITORING SYSTEM AND WATER FACILITY STATUS MONITORING METHOD Active JP7304177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019049507A JP7304177B2 (en) 2019-03-18 2019-03-18 WATER FACILITY STATUS MONITORING SYSTEM AND WATER FACILITY STATUS MONITORING METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019049507A JP7304177B2 (en) 2019-03-18 2019-03-18 WATER FACILITY STATUS MONITORING SYSTEM AND WATER FACILITY STATUS MONITORING METHOD

Publications (2)

Publication Number Publication Date
JP2020154372A JP2020154372A (en) 2020-09-24
JP7304177B2 true JP7304177B2 (en) 2023-07-06

Family

ID=72558996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019049507A Active JP7304177B2 (en) 2019-03-18 2019-03-18 WATER FACILITY STATUS MONITORING SYSTEM AND WATER FACILITY STATUS MONITORING METHOD

Country Status (1)

Country Link
JP (1) JP7304177B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006059148A (en) 2004-08-20 2006-03-02 Nikken System Kk Air-introduction type abnormality monitoring device and air-introduction type abnormality monitoring system for communication network
JP2015202446A (en) 2014-04-14 2015-11-16 株式会社日立製作所 Control system for injecting disinfectant in water service
JP2017091258A (en) 2015-11-11 2017-05-25 横河電機株式会社 Field instrument, field instrument system, and diagnosis method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006059148A (en) 2004-08-20 2006-03-02 Nikken System Kk Air-introduction type abnormality monitoring device and air-introduction type abnormality monitoring system for communication network
JP2015202446A (en) 2014-04-14 2015-11-16 株式会社日立製作所 Control system for injecting disinfectant in water service
JP2017091258A (en) 2015-11-11 2017-05-25 横河電機株式会社 Field instrument, field instrument system, and diagnosis method

Also Published As

Publication number Publication date
JP2020154372A (en) 2020-09-24

Similar Documents

Publication Publication Date Title
JP4347864B2 (en) Water treatment facility management system
JP6189835B2 (en) How to maintain process stream water quality
JP4964273B2 (en) Water treatment facility management system
ES2949337T3 (en) Device for monitoring the measurement of total chlorine in a water treatment plant
JP2007245084A (en) Membrane filtration control device
EP2900605A1 (en) Individualized intelligent control of lamps in an ultraviolet fluid disinfection system
KR102458172B1 (en) Automatic drain system according to water quality of water pipe
JP2009082774A (en) Ultraviolet water treatment system, and ultraviolet water treatment device and remote monitoring device used for this system
JP4010514B2 (en) Water quality management method and water quality management system for tap water
JP7304177B2 (en) WATER FACILITY STATUS MONITORING SYSTEM AND WATER FACILITY STATUS MONITORING METHOD
WO2015198898A1 (en) Plant abnormality predicting device, abnormality predicting device, display device and display method
JP5253327B2 (en) Water treatment equipment monitoring system
JP5193884B2 (en) Monitoring and control system for water supply facilities
JP6801842B2 (en) Water quality management system and water quality management method
KR20040056596A (en) A water purifier having water analysis function and management method thereof
JP3862005B2 (en) Membrane filtration device and membrane filtration method
JP3235585U (en) Maintenance and inspection system for septic tank blowers, pumps and water quality sensors
Pecson et al. Mechanical reliability in potable reuse: Evaluation of an advanced water purification facility
JP2005074418A (en) Monitoring and controlling net work system for cleaned water supply facility
CN112631221A (en) Sewage treatment remote monitoring system and method thereof
JP2006026572A (en) Well water plant monitoring system
KR101156592B1 (en) Apparatus for water treatment filtration facility operation and method thereof
JP2009154060A (en) Water quality monitoring system
JP2006125930A (en) Water quality measuring instrument and method
JP2018004551A (en) Water supply equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221031

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230405

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230405

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230412

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20230418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230626

R150 Certificate of patent or registration of utility model

Ref document number: 7304177

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150