JP7304066B2 - Fuel cell electrode member and fuel cell - Google Patents
Fuel cell electrode member and fuel cell Download PDFInfo
- Publication number
- JP7304066B2 JP7304066B2 JP2019153502A JP2019153502A JP7304066B2 JP 7304066 B2 JP7304066 B2 JP 7304066B2 JP 2019153502 A JP2019153502 A JP 2019153502A JP 2019153502 A JP2019153502 A JP 2019153502A JP 7304066 B2 JP7304066 B2 JP 7304066B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- metal
- fuel cell
- electrode member
- cell electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Description
特許法第30条第2項適用 発行者名:日本金属学会、刊行物名:第5回 日本金属学会 水素化物に関わる次世代学術・応用展開研究会、発行年月日:平成30年11月21日 集会名:第5回 公益社団法人日本金属学会研究会 水素化物に関わる次世代学術・応用展開研究会、開催日:平成30年11月21日 掲載年月日:2018年12月1日、掲載アドレス:https://unit.aist.go.jp/rief/results/prize.htmlArticle 30, Paragraph 2 of the Patent Law applies Publisher name: The Japan Institute of Metals, Publication name: The 5th Japan Institute of Metals Next Generation Academic and Application Development Study Group on Hydrides, Publication date: November 2018 21st Name of meeting: 5th Next-Generation Academic and Application Development Study Group on Hydrides, Japan Institute of Metals Study Group, Date: November 21, 2018 Posted: December 1, 2018 , Posting address: https://unit. aist. go. jp/rief/results/prize. html
本願は、300℃付近の温度で使用するのに適した燃料電池用電極部材と、この燃料電池用電極部材を用いた燃料電池に関する。 The present application relates to a fuel cell electrode member suitable for use at temperatures around 300° C. and a fuel cell using this fuel cell electrode member.
燃料電池の300℃付近での中温作動化により、燃料電池システムの低コスト化が期待されている。近年、中温作動型燃料電池(Intermediate Temperature Fuel Cell:ITFC)に利用可能な電解質が開発されている。ITFCの普及のためには、この電解質に適する電極材料が必要である。従来の低温作動型燃料電池(PEFC)では、電極材料として、PtとCの複合体が用いられている。しかしながら、PtとCの複合体から構成されるPt/C電極は、300℃付近の温度でPt粒子の凝集が生じてしまうため、ITFCでの利用が困難である。 It is expected that the cost of the fuel cell system will be reduced due to the medium temperature operation of the fuel cell around 300°C. In recent years, electrolytes that can be used for intermediate temperature fuel cells (ITFCs) have been developed. Electrode materials suitable for this electrolyte are necessary for the spread of ITFC. A conventional low temperature fuel cell (PEFC) uses a composite of Pt and C as an electrode material. However, a Pt/C electrode composed of a composite of Pt and C causes aggregation of Pt particles at temperatures around 300° C., making it difficult to use in ITFC.
一方、高温型燃料電池である固体酸化物燃料電池(Solid Oxide Fuel Cell:SOFC)では、電極として酸化物が主に用いられている。しかしながら、SOFC用の酸化物電極は、中温域で電極活性が不足するため、ITFCに利用できない。また、SOFCの電極としてPdが用いられた報告例もある。しかしながら、Pd電極は、中温域で電気抵抗が増加する。このため、300℃付近の中温作動用の電極材料としては、Pdを含む電極のさらなる高性能化が必要である。 On the other hand, in a solid oxide fuel cell (SOFC), which is a high-temperature fuel cell, oxides are mainly used as electrodes. However, oxide electrodes for SOFC cannot be used for ITFC because of insufficient electrode activity in the medium temperature range. There is also a reported example of using Pd as an electrode for SOFC. However, the Pd electrode has an increased electrical resistance in the middle temperature range. Therefore, as an electrode material for medium-temperature operation around 300° C., it is necessary to further improve the performance of electrodes containing Pd.
電極中の貴金属の使用量を低減できれば、燃料電池の低コスト化が図れる。また、電極の電気抵抗を低減できれば、燃料電池の高出力化が図れる。本願は、低コストかつ高出力の燃料電池と、この燃料電池の使用方法と、この燃料電池に使用する燃料電池用電極部材を提供することを課題とする。 If the amount of noble metal used in the electrode can be reduced, the cost of the fuel cell can be reduced. Also, if the electrical resistance of the electrodes can be reduced, the output of the fuel cell can be increased. An object of the present application is to provide a low-cost, high-output fuel cell, a method of using this fuel cell, and a fuel cell electrode member used in this fuel cell.
本願の燃料電池用電極部材は、第一金属の層と、第二金属の層と、第一金属の層と第二金属の層の間にあり、第一金属および第二金属と異なる第三金属の層とを有し、第一金属の300℃での水素透過速度および第二金属の300℃での水素透過速度が、Pdの300℃での水素透過速度以上であり、第三金属の最大水素吸蔵量が、第一金属および第二金属の最大水素吸蔵量以上である。本願の燃料電池は、本願の燃料電池用電極部材を備える燃料極と、プロトン伝導性を備えるガラス電解質と、空気極とを有する。本願の燃料電池の使用方法は、本願の燃料電池用電極部材の温度を280℃以上300℃以下にした状態で本願の燃料電池を使用する。 The fuel cell electrode member of the present application includes a first metal layer, a second metal layer, and a third metal layer between the first metal layer and the second metal layer, which is different from the first metal and the second metal. and a metal layer, the hydrogen permeation rate of the first metal at 300 ° C. and the hydrogen permeation rate of the second metal at 300 ° C. are higher than the hydrogen permeation rate of Pd at 300 ° C., and the third metal The maximum hydrogen storage capacity is greater than or equal to the maximum hydrogen storage capacity of the first metal and the second metal. The fuel cell of the present application includes a fuel electrode including the fuel cell electrode member of the present application, a glass electrolyte having proton conductivity, and an air electrode. In the method of using the fuel cell of the present application, the fuel cell of the present application is used while the temperature of the fuel cell electrode member of the present application is set to 280° C. or more and 300° C. or less.
本願の燃料電池用電極部材は、第一金属の層と第二金属の層の間に第三金属の層が挟まれている。このため、第一金属および第二金属としてPdのような高価な金属を、第三金属としてMgのような安価な金属をそれぞれ用いた燃料電池用電極部材は、Pdのみを用いた燃料電池用電極部材と比べて、低コスト化が図れる。また、本願の燃料電池用電極部材は、水素吸蔵特性を有する第三金属の層を備えている。このため、本願の燃料電池用電極部材の電気抵抗が低減でき、この燃料電池用電極部材を用いる燃料電池の高出力化が図れる。 In the fuel cell electrode member of the present application, the third metal layer is sandwiched between the first metal layer and the second metal layer. Therefore, fuel cell electrode members using an expensive metal such as Pd as the first and second metals and an inexpensive metal such as Mg as the third metal are used for fuel cells using only Pd. Cost reduction can be achieved compared with the electrode member. Further, the fuel cell electrode member of the present application includes a third metal layer having hydrogen storage properties. Therefore, the electric resistance of the fuel cell electrode member of the present application can be reduced, and the output of the fuel cell using this fuel cell electrode member can be increased.
本願の燃料電池用電極部材は、第一金属の層と、第二金属の層と、第三金属の層を備えている。第三金属は、第一金属および第二金属と異なる。第一金属と第二金属は、同じでもよいし、異なっていてもよい。第三金属の層は、第一金属の層と第二金属の層の間にある。すなわち、第三金属の層は、第一金属の層と第二金属の層の間に挟まれている。第一金属の300℃での水素透過速度および第二金属の300℃での水素透過速度は、Pdの300℃での水素透過速度以上である。このため、本願の燃料電池用電極部材の電気抵抗は、Pdのみから構成される燃料電池用電極部材の電気抵抗より低い。 The fuel cell electrode member of the present application comprises a first metal layer, a second metal layer, and a third metal layer. The third metal is different from the first and second metals. The first metal and second metal may be the same or different. The layer of third metal is between the layer of first metal and the layer of second metal. That is, a layer of the third metal is sandwiched between a layer of the first metal and a layer of the second metal. The hydrogen permeation rate at 300° C. of the first metal and the hydrogen permeation rate of the second metal at 300° C. are higher than the hydrogen permeation rate at 300° C. of Pd. Therefore, the electrical resistance of the fuel cell electrode member of the present application is lower than that of a fuel cell electrode member composed only of Pd.
Pdの300℃での水素透過速度は7.5×10-9molH2・m-1s-1Pa-0.5である。第一金属および第二金属としては、Pdのほか、Pd:Agが77:23(物質量比(いわゆるモル比))の合金である77Pd-23Agなどが挙げられる。77Pd-23Agの300℃での水素透過速度は2.0×10-8molH2・m-1s-1Pa-0.5である。また、第三金属の最大水素吸蔵量は、第一金属および第二金属の最大水素吸蔵量以上である The hydrogen permeation rate of Pd at 300° C. is 7.5×10 −9 molH 2 ·m −1 s −1 Pa −0.5 . Examples of the first metal and the second metal include Pd and 77Pd-23Ag, which is an alloy of Pd:Ag of 77:23 (substance ratio (so-called molar ratio)). The hydrogen permeation rate of 77Pd-23Ag at 300° C. is 2.0×10 −8 molH 2 ·m −1 s −1 Pa −0.5 . Also, the maximum hydrogen storage capacity of the third metal is greater than or equal to the maximum hydrogen storage capacity of the first and second metals.
本願の第一実施形態の燃料電池用電極部材では、第一金属および第二金属がPdである。Pdの最大水素吸蔵量は0.6wt%である。第一金属および第二金属がPdのとき、第三金属としては、Mgおよび66Mg-33Ni(Mg2Ni)などが挙げられる。Mgの最大水素吸蔵量は7.6wt%である。66Mg-33Ni(Mg2Ni)の最大水素吸蔵量は3.6wt%である。第一実施形態の燃料電池用電極部材では、第三金属がMgである。 In the fuel cell electrode member of the first embodiment of the present application, the first metal and the second metal are Pd. The maximum hydrogen storage capacity of Pd is 0.6 wt%. When the first metal and second metal are Pd, the third metal includes Mg and 66Mg-33Ni (Mg 2 Ni). The maximum hydrogen storage capacity of Mg is 7.6 wt%. The maximum hydrogen storage capacity of 66Mg-33Ni (Mg 2 Ni) is 3.6 wt%. In the fuel cell electrode member of the first embodiment, the third metal is Mg.
すなわち、第一実施形態の燃料電池用電極部材は、高価なPd層から構成される燃料電池用電極部材の中間部分を、安価なMg層で置換した構造である。このため、第一実施形態の燃料電池用電極部材の低コスト化が図れる。燃料電池用電極部材の低コスト化は、この燃料電池用電極部材を用いる燃料電池の低コスト化につながる。しかも、Mgの最大水素吸蔵量がPdの最大水素吸蔵量より大きいため、第一実施形態の燃料電池用電極部材の電気抵抗は、Pd層から構成される燃料電池用電極部材の電気抵抗より低い。このため、第一実施形態の燃料電池用電極部材を用いる燃料電池の高出力化が図れる。 That is, the fuel cell electrode member of the first embodiment has a structure in which the intermediate portion of the fuel cell electrode member composed of an expensive Pd layer is replaced with an inexpensive Mg layer. Therefore, the cost of the fuel cell electrode member of the first embodiment can be reduced. Cost reduction of the fuel cell electrode member leads to cost reduction of the fuel cell using this fuel cell electrode member. Moreover, since the maximum hydrogen storage capacity of Mg is larger than the maximum hydrogen storage capacity of Pd, the electrical resistance of the fuel cell electrode member of the first embodiment is lower than that of the fuel cell electrode member composed of the Pd layer. . Therefore, it is possible to increase the output of the fuel cell using the fuel cell electrode member of the first embodiment.
Mg層は、第一金属の層である第一のPd層および第二金属の層である第二のPd層よりも厚いことが好ましい。燃料電池用電極部材としての機能をあまり低下させずに、燃料電池用電極部材の低コスト化がより図れるからである。第一実施形態の燃料電池用電極部材では、第一のPd層、Mg層、および第二のPd層が直接積層されている。本願の燃料電池用電極部材は、第一金属の層と第三金属の層の間に第一金属と第三金属の合金化を抑える第四金属の層が設けられていてもよい。また、第三金属の層と第二金属の層の間に、第三金属と第二金属の合金化を抑える第五金属の層が設けられていてもよい。 The Mg layer is preferably thicker than the first Pd layer, which is the layer of the first metal, and the second Pd layer, which is the layer of the second metal. This is because the cost of the fuel cell electrode member can be further reduced without significantly deteriorating the function of the fuel cell electrode member. In the fuel cell electrode member of the first embodiment, the first Pd layer, the Mg layer and the second Pd layer are directly laminated. In the fuel cell electrode member of the present application, a fourth metal layer that suppresses alloying of the first metal and the third metal may be provided between the first metal layer and the third metal layer. A fifth metal layer may be provided between the third metal layer and the second metal layer to suppress the alloying of the third metal and the second metal.
第四金属の層と第五金属の層が設けられている燃料電池用電極部材をガラス電解質上に設けたときに、第一金属と第三金属および第三金属と第二金属が合金化してガラス電解質を浸食するのを抑えられるからである。第一金属と第二金属がPdで、第三金属がMgの場合、第四金属および第五金属としてはTiが好ましい。Tiは、MgとPdの合金化を抑制するとともに、水素吸蔵特性を備えているからである。Tiの最大水素吸蔵量は4wt%であり、Pdの最大水素吸蔵量より大きい。 When the fuel cell electrode member provided with the fourth metal layer and the fifth metal layer is provided on the glass electrolyte, the first metal and the third metal and the third metal and the second metal are alloyed. This is because erosion of the glass electrolyte can be suppressed. When the first and second metals are Pd and the third metal is Mg, Ti is preferred as the fourth and fifth metals. This is because Ti suppresses the alloying of Mg and Pd and has hydrogen storage properties. The maximum hydrogen storage capacity of Ti is 4 wt %, which is larger than the maximum hydrogen storage capacity of Pd.
すなわち、本願の第二実施形態の燃料電池用電極部材は、第一実施形態の燃料電池用電極部材に加えて、第一のTi層と第二のTi層を備えている。そして、第一のTi層が第一のPd層とMg層の間にあり、第二のTi層がMg層と第二のPd層の間にある。なお、第二実施形態の燃料電池用電極部材に代えて、本願の燃料電池用電極部材では、Ti層が、第一のPd層とMg層の間にのみあってもよいし、Mg層と第二のPd層の間にのみあってもよい。 That is, the fuel cell electrode member of the second embodiment of the present application includes a first Ti layer and a second Ti layer in addition to the fuel cell electrode member of the first embodiment. A first Ti layer is between the first Pd layer and the Mg layer, and a second Ti layer is between the Mg layer and the second Pd layer. In place of the fuel cell electrode member of the second embodiment, in the fuel cell electrode member of the present application, the Ti layer may be present only between the first Pd layer and the Mg layer. It may be only between the second Pd layers.
第二実施形態の燃料電池用電極部材では、第一のTi層および第二のTi層は、第一のPd層および第二のPd層よりも薄いことが好ましい。Ti層の追加によって燃料電池用電極部材の電気抵抗がやや増加するので、Mg層とPd層の合金化が抑えられる厚さのTi層があれば十分だからである。第二実施形態の燃料電池用電極部材では、第一のPd層、第一のTi層、Mg層、第二のTi層、および第二のPd層が直接積層されている。 In the fuel cell electrode member of the second embodiment, the first Ti layer and the second Ti layer are preferably thinner than the first Pd layer and the second Pd layer. This is because the addition of the Ti layer slightly increases the electric resistance of the fuel cell electrode member, and therefore the Ti layer having a thickness that suppresses the alloying of the Mg layer and the Pd layer is sufficient. In the fuel cell electrode member of the second embodiment, the first Pd layer, the first Ti layer, the Mg layer, the second Ti layer and the second Pd layer are directly laminated.
各実施形態の燃料電池用電極部材は、プロトン伝導性を備えるガラス電解質上に設けられることが好ましい。ガラス電解質と燃料電池用電極部材との界面で、燃料電池反応である水素およびプロトンの授受を促進できるからである。すなわち、本願の実施形態の燃料電池は、各実施形態の燃料電池用電極部材を備える燃料極と、プロトン伝導性を備えるガラス電解質と、空気極とを有する。本実施形態の燃料電池は、燃料電池用電極部材の温度を280℃以上300℃以下にした状態で使用するのに適している。温度が280℃以上300℃以下であっても、燃料電池用電極部材の電気抵抗が低いからである。 The fuel cell electrode member of each embodiment is preferably provided on a glass electrolyte having proton conductivity. This is because the interface between the glass electrolyte and the fuel cell electrode member can promote the transfer of hydrogen and protons, which is the fuel cell reaction. That is, the fuel cell of the embodiments of the present application has a fuel electrode including the fuel cell electrode member of each embodiment, a glass electrolyte having proton conductivity, and an air electrode. The fuel cell of this embodiment is suitable for use in a state where the temperature of the fuel cell electrode member is 280° C. or higher and 300° C. or lower. This is because the electric resistance of the fuel cell electrode member is low even when the temperature is 280° C. or higher and 300° C. or lower.
1.電解質と燃料電池用電極部材を含む積層体の作製
(実施例1)
NaO1/2:NbO5/2:BaO:LaO3/2:GeO2:BO3/2:PO5/2が36:4:2:4:4:1:49(物質量比)の組成であるガラス36NaO1/2-4NbO5/2-2BaO-4LaO3/2-4GeO2-1BO3/2-49PO5/2を、アルカリ-プロトン置換法でプロトン注入処理して、プロトン伝導性を備えるリン酸塩ガラス36HO1/2-4NbO5/2-2BaO-4LaO3/2-4GeO2-1BO3/2-49PO5/2のガラス電解質を作製した。
1. Fabrication of laminate containing electrolyte and electrode member for fuel cell (Example 1)
Composition of NaO 1/2 :NbO 5/2 :BaO:LaO 3/2 :GeO 2 :BO 3/2 :PO 5/2 is 36:4:2:4:4:1:49 (mass ratio) A glass 36NaO 1/2 -4NbO 5/2 -2BaO-4LaO 3/2 -4GeO 2 -1BO 3/2 -49PO 5/2 was subjected to proton injection treatment by an alkali-proton substitution method to improve the proton conductivity. A glass electrolyte of phosphate glass 36HO 1/2 -4NbO 5/2 -2BaO-4LaO 3/2 -4GeO 2 -1BO 3/2 -49PO 5/2 was prepared.
このガラス電解質の基板(縦10mm×横10mm×高さ0.5mm)上に、スパッタリング法により、厚さ50nmの第一のPd層、厚さ100nmのMg層、および厚さ50nmの第二のPd層を順次成膜した。スパッタリングは、多元スパッタリング装置(株式会社アールデック社、ASE-4SA)の反応容器内に、直径2インチのPdおよびMgの純金属のターゲットを設置し、Arを0.8Paで導入し、40~50Wの電力を供給して行った。なお、Pd成膜前に、ガラス電解質の基板表面を逆スパッタリングしてクリーニングした。 A first Pd layer with a thickness of 50 nm, an Mg layer with a thickness of 100 nm, and a second Pd layer with a thickness of 50 nm were formed on the glass electrolyte substrate (length 10 mm x width 10 mm x height 0.5 mm) by a sputtering method. Pd layers were deposited sequentially. Sputtering was carried out by setting a Pd and Mg pure metal target with a diameter of 2 inches in a reaction vessel of a multi-source sputtering apparatus (ASE-4SA, RDEC Co., Ltd.), introducing Ar at 0.8 Pa, and A power of 50 W was supplied. Before the Pd deposition, the substrate surface of the glass electrolyte was cleaned by reverse sputtering.
そして、断面観察試料作製時に生じるダメージから燃料電池用電極部材を保護するため、第二のPd層上に厚さ1.5μmのPt層を反応性ガス堆積法によって形成して、ガラス電解質と燃料電池用電極部材とPt層から構成される積層体を得た。その後、イオンビーム法でこの積層体を薄片試料へと加工し、図1に示すこの積層体の断面のSTEM観察像を得た。この積層体は、ガラス電解質、Pd層、およびMg層が相互に浸食されることなく積層された構造であった。 Then, in order to protect the fuel cell electrode member from damage caused during cross-sectional observation sample preparation, a Pt layer having a thickness of 1.5 μm was formed on the second Pd layer by a reactive gas deposition method to form a glass electrolyte and a fuel. A laminate composed of the battery electrode member and the Pt layer was obtained. Thereafter, this laminate was processed into a thin piece sample by the ion beam method, and the STEM image of the cross section of this laminate shown in FIG. 1 was obtained. This laminate had a structure in which the glass electrolyte, the Pd layer, and the Mg layer were laminated without corroding each other.
(実施例2)
実施例1と同じガラス電解質基板および多元スパッタリング装置を用いて、実施例1と同様の方法で、ガラス電解質基板上に、厚さ45nmの第一のPd層、厚さ5nmの第一のTi層、厚さ100nmのMg層、厚さ5nmの第二のTi層、および厚さ45nmの第二のPd層を順次成膜した。さらに、実施例1と同様の方法でPt層を形成してから薄片化した積層体を得た。図2は、この積層体の断面のSTEM観察像である。図3(a)は、図2の積層体断面のPdのEDXマッピング像である。図3(b)は、図2の積層体断面のMgのEDXマッピング像である。図3(c)は、図2の積層体断面のTiのEDXマッピング像である。この積層体は、実施例1と同様に、ガラス電解質、Pd層、Mg層、およびTi層が相互に浸食されることなく積層された構造であった。
(Example 2)
A first Pd layer with a thickness of 45 nm and a first Ti layer with a thickness of 5 nm were formed on the glass electrolyte substrate in the same manner as in Example 1 using the same glass electrolyte substrate and multi-source sputtering apparatus as in Example 1. , a Mg layer with a thickness of 100 nm, a second Ti layer with a thickness of 5 nm, and a second Pd layer with a thickness of 45 nm were sequentially deposited. Further, a Pt layer was formed in the same manner as in Example 1, and then a laminated body was obtained by thinning. FIG. 2 is an STEM observation image of the cross section of this laminate. FIG. 3(a) is an EDX mapping image of Pd in the cross section of the laminate in FIG. FIG. 3(b) is an EDX mapping image of Mg in the cross section of the laminate in FIG. FIG. 3(c) is an EDX mapping image of Ti in the cross section of the laminate in FIG. As in Example 1, this laminate had a structure in which the glass electrolyte, Pd layer, Mg layer, and Ti layer were laminated without corroding each other.
(比較例)
実施例1と同じガラス電解質基板および多元スパッタリング装置を用いて、実施例1と同様の方法で、ガラス電解質基板上に、厚さ200nmのPd層を成膜した。さらに、実施例1と同様の方法でPt層を形成して積層体を得た。図4は、この積層体の断面のSTEM観察像である。図5は、図4の積層体断面のPdのEDXマッピング像である。この積層体は、ガラス電解質およびPd層が、相互に浸食されることなく積層された構造であった。
(Comparative example)
A Pd layer having a thickness of 200 nm was formed on the glass electrolyte substrate in the same manner as in Example 1 using the same glass electrolyte substrate and multi-source sputtering apparatus as in Example 1. Furthermore, a Pt layer was formed in the same manner as in Example 1 to obtain a laminate. FIG. 4 is an STEM observation image of the cross section of this laminate. FIG. 5 is an EDX mapping image of Pd in the cross section of the laminate in FIG. This laminate had a structure in which the glass electrolyte and the Pd layer were laminated without corroding each other.
2.燃料電池用電極部材の評価
参照電極を用いた燃料電池試験で、各実施例および比較例の積層体について、温度280℃以上300℃以下の水素雰囲気でのインピーダンススペクトルおよび電流-電圧特性を測定(Biologic社、SP-150)し、燃料電池用電極部材を評価した(発電試験)。温度300℃、100%水素雰囲気で、表面抵抗率を測定した。なお、表面抵抗率は、発電試験から測定されたセル抵抗値よりガラス電解質の抵抗値を差し引いた値とした。
2. Evaluation of fuel cell electrode members In a fuel cell test using a reference electrode, the impedance spectrum and current-voltage characteristics of the laminates of each example and comparative example in a hydrogen atmosphere at a temperature of 280 ° C. or higher and 300 ° C. or lower were measured. It was measured (SP-150 by Biologic), and the fuel cell electrode member was evaluated (power generation test). Surface resistivity was measured at a temperature of 300° C. in a 100% hydrogen atmosphere. The surface resistivity was obtained by subtracting the resistance value of the glass electrolyte from the cell resistance value measured in the power generation test.
実施例1、実施例2、および比較例のそれぞれの燃料電池用電極部材の表面抵抗率は、5.5Ωcm2、8.6Ωcm2、および21.1Ωcm2であった。なお、実施例2の燃料電池用電極部材のMg層の代わりに、66Mg-33Ni層を用いた燃料電池用電極部材の表面抵抗率は10.6Ωcm2であった。Mgは66Mg-33Niに置き換えられることがわかった。また、77Pd-23Agから構成される燃料電池用電極部材の表面抵抗率は15.5Ωcm2であった。このように、本願の燃料電池用電極部材の電気抵抗は、Pdから構成される燃料電池用電極部材の電気抵抗より小さいので、本願の燃料電池用電極部材を用いる燃料電池の高出力化が図れる。 The surface resistivities of the fuel cell electrode members of Example 1, Example 2, and Comparative Example were 5.5 Ωcm 2 , 8.6 Ωcm 2 , and 21.1 Ωcm 2 , respectively. The surface resistivity of the fuel cell electrode member using a 66Mg-33Ni layer instead of the Mg layer of the fuel cell electrode member of Example 2 was 10.6 Ωcm 2 . Mg was found to be replaced by 66Mg-33Ni. The surface resistivity of the fuel cell electrode member made of 77Pd-23Ag was 15.5 Ωcm 2 . As described above, the electrical resistance of the fuel cell electrode member of the present application is smaller than that of the fuel cell electrode member made of Pd, so that the output of the fuel cell using the fuel cell electrode member of the present application can be increased. .
図6は、発電試験後の実施例1の積層体の断面のSTEM観察像である。図7(a)は、図6の積層体断面のPdのEDXマッピング像である。図7(b)は、図6の積層体断面のMgのEDXマッピング像である。図7(c)は、図2の積層体断面のGeのEDXマッピング像である。図6および図7より、発電試験後の実施例1の積層体は、PdとMg成分の反応により初期構造が維持されておらず、また、Pd層とMg層がガラス電解質と反応して、ガラス電解質中に燃料電池用電極部材の成分の浸食が生じていた。すなわち、実施例1の積層体は、構造安定性が少しだけ不足していることがわかった。 FIG. 6 is a STEM observation image of the cross section of the laminate of Example 1 after the power generation test. FIG. 7(a) is an EDX mapping image of Pd in the cross section of the laminate in FIG. FIG. 7(b) is an EDX mapping image of Mg in the cross section of the laminate of FIG. FIG. 7(c) is an EDX mapping image of Ge in the cross section of the laminate in FIG. 6 and 7, in the laminate of Example 1 after the power generation test, the initial structure was not maintained due to the reaction between the Pd and Mg components, and the Pd layer and the Mg layer reacted with the glass electrolyte. Erosion of the components of the fuel cell electrode member had occurred in the glass electrolyte. That is, it was found that the laminate of Example 1 was slightly lacking in structural stability.
図8は、発電試験後の実施例2の積層体の断面のSTEM観察像である。図9(a)は、図8の積層体断面のPdのEDXマッピング像である。図9(b)は、図8の積層体断面のMgのEDXマッピング像である。図9(c)は、図8の積層体断面のGeのEDXマッピング像である。図8および図9より、発電試験後の実施例2の積層体では、Ti層によって、Pd層とMg層が合金化してガラス電解質を浸食するのが抑制されていた。 FIG. 8 is a STEM observation image of the cross section of the laminate of Example 2 after the power generation test. FIG. 9(a) is an EDX mapping image of Pd in the cross section of the laminate in FIG. FIG. 9(b) is an EDX mapping image of Mg in the cross section of the laminate in FIG. FIG. 9(c) is an EDX mapping image of Ge in the cross section of the laminate in FIG. 8 and 9, in the laminate of Example 2 after the power generation test, the Ti layer inhibited the alloying of the Pd layer and the Mg layer and erosion of the glass electrolyte.
図10は、発電試験後の比較例の積層体の断面のSTEM観察像である。図11は、図10の積層体断面のPdのEDXマッピング像である。発電試験後の比較例の積層体では、ガラス電解質へのPd層の浸食は発生せず、Pd層は維持されていた。 FIG. 10 is a STEM observation image of the cross section of the laminate of the comparative example after the power generation test. FIG. 11 is an EDX mapping image of Pd in the cross section of the laminate in FIG. In the laminate of the comparative example after the power generation test, the Pd layer was maintained without erosion of the glass electrolyte.
Claims (10)
前記第一金属の300℃での水素透過速度および前記第二金属の300℃での水素透過速度が、Pdの300℃での水素透過速度以上であり、
前記第一金属および前記第二金属の最大水素吸蔵量が、Mgの最大水素吸蔵量以下である燃料電池用電極部材。 a layer of a first metal different from Mg ; a layer of a second metal different from Mg ; and a layer of Mg between the layer of the first metal and the layer of the second metal;
The hydrogen permeation rate of the first metal at 300°C and the hydrogen permeation rate of the second metal at 300°C are equal to or higher than the hydrogen permeation rate of Pd at 300°C,
An electrode member for a fuel cell, wherein the maximum hydrogen storage capacity of the first metal and the second metal is equal to or less than the maximum hydrogen storage capacity of Mg .
前記Mgの層は、前記第一金属の層および前記第二金属の層よりも厚い燃料電池用電極部材。 In claim 1,
The Mg layer is thicker than the first metal layer and the second metal layer.
前記第一金属の層、前記Mgの層、および前記第二金属の層が直接積層されている燃料電池用電極部材。 In claim 1 or 2,
A fuel cell electrode member in which the first metal layer, the Mg layer, and the second metal layer are directly laminated.
前記第一金属とMgの合金化を抑える第四金属の層と、前記第二金属とMgの合金化を抑える第五金属の層をさらに有し、
前記第四金属の層が、前記第一金属の層と前記Mgの層の間にあり、
前記第五金属の層が、前記Mgの層と前記第二金属の層の間にある燃料電池用電極部材。 In claim 1 or 2,
further comprising a fourth metal layer that suppresses alloying of the first metal and Mg , and a fifth metal layer that suppresses alloying of the second metal and Mg ,
the layer of the fourth metal is between the layer of the first metal and the layer of Mg ;
The fuel cell electrode member, wherein the fifth metal layer is between the Mg layer and the second metal layer.
前記第四金属の層および前記第五金属の層が、前記第一金属の層および前記第二金属の層よりも薄い燃料電池用電極部材。 In claim 4,
The fuel cell electrode member, wherein the fourth metal layer and the fifth metal layer are thinner than the first metal layer and the second metal layer.
前記第一金属の層、前記第四金属の層、前記Mgの層、前記第五金属の層、および前記第二金属の層が直接積層されている燃料電池用電極部材。 In claim 4 or 5,
A fuel cell electrode member in which the first metal layer, the fourth metal layer, the Mg layer, the fifth metal layer, and the second metal layer are directly laminated.
前記第四金属および前記第五金属の少なくとも一方がTiである燃料電池用電極部材。 In any one of claims 4 to 6,
An electrode member for a fuel cell, wherein at least one of the fourth metal and the fifth metal is Ti.
前記第一金属および前記第二金属の少なくとも一方がPdである燃料電池用電極部材。 In any one of claims 1 to 7,
An electrode member for a fuel cell, wherein at least one of the first metal and the second metal is Pd.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019153502A JP7304066B2 (en) | 2019-08-26 | 2019-08-26 | Fuel cell electrode member and fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019153502A JP7304066B2 (en) | 2019-08-26 | 2019-08-26 | Fuel cell electrode member and fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021034240A JP2021034240A (en) | 2021-03-01 |
JP7304066B2 true JP7304066B2 (en) | 2023-07-06 |
Family
ID=74676203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019153502A Active JP7304066B2 (en) | 2019-08-26 | 2019-08-26 | Fuel cell electrode member and fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7304066B2 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005251550A (en) | 2004-03-04 | 2005-09-15 | Toyota Motor Corp | Fuel cell |
JP2006318870A (en) | 2005-05-16 | 2006-11-24 | Toyota Motor Corp | Fuel cell system and fuel cell |
JP2008004392A (en) | 2006-06-22 | 2008-01-10 | Toyota Motor Corp | Hydrogen transmission metal layer/electrolyte composite, and fuel cell |
JP2011148664A (en) | 2010-01-25 | 2011-08-04 | Konica Minolta Holdings Inc | Hydrogen generation material, fuel cell, and method for producing the hydrogen generation material |
WO2012056557A1 (en) | 2010-10-29 | 2012-05-03 | 株式会社日立製作所 | Non-aqueous secondary battery |
JP2021501736A (en) | 2017-11-14 | 2021-01-21 | シャンハイ・コヴェイパー・エナジー・テクノロジー・カンパニー・リミテッド | Energy system that utilizes the hydrolysis of magnesium hydride |
-
2019
- 2019-08-26 JP JP2019153502A patent/JP7304066B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005251550A (en) | 2004-03-04 | 2005-09-15 | Toyota Motor Corp | Fuel cell |
JP2006318870A (en) | 2005-05-16 | 2006-11-24 | Toyota Motor Corp | Fuel cell system and fuel cell |
JP2008004392A (en) | 2006-06-22 | 2008-01-10 | Toyota Motor Corp | Hydrogen transmission metal layer/electrolyte composite, and fuel cell |
JP2011148664A (en) | 2010-01-25 | 2011-08-04 | Konica Minolta Holdings Inc | Hydrogen generation material, fuel cell, and method for producing the hydrogen generation material |
WO2012056557A1 (en) | 2010-10-29 | 2012-05-03 | 株式会社日立製作所 | Non-aqueous secondary battery |
JP2021501736A (en) | 2017-11-14 | 2021-01-21 | シャンハイ・コヴェイパー・エナジー・テクノロジー・カンパニー・リミテッド | Energy system that utilizes the hydrolysis of magnesium hydride |
Also Published As
Publication number | Publication date |
---|---|
JP2021034240A (en) | 2021-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5288099B2 (en) | Metal member for solid oxide fuel cell | |
JP5115920B2 (en) | All solid battery | |
US20140234725A1 (en) | Method for producing nonaqueous-electrolyte battery and nonaqueous-electrolyte battery | |
JP5512553B2 (en) | Electrode with coating, method for its production and use of materials | |
US7914932B2 (en) | All-solid-state battery | |
JP5316809B2 (en) | Lithium battery and manufacturing method thereof | |
CN110085910B (en) | All-solid-state lithium battery, garnet solid electrolyte and preparation method thereof | |
EP2157645B1 (en) | Metallic separator for fuel cell and process for producing the metallic separator | |
JP4702365B2 (en) | Fuel cell separator and method for producing the same | |
KR101117417B1 (en) | Corrosion resistant film for fuel cell separator and fuel cell separator | |
CN101388470A (en) | Lithium battery | |
JP2003115294A (en) | Anode thin film for lithium secondary battery and its manufacturing method | |
CN210628419U (en) | Metal bipolar plate coating of fuel cell | |
JP5192908B2 (en) | Titanium substrate for fuel cell separator, fuel cell separator, and fuel cell separator manufacturing method | |
CN104992988A (en) | Crystalline silicon solar cell surface passivation layer having good conductive performance and passivation method | |
JP5217455B2 (en) | Lithium battery and method for producing lithium battery | |
JP2010238577A (en) | Separator material for fuel cell and fuel cell stack using the same | |
JPWO2013077445A1 (en) | Composite, current collecting member, fuel cell device, and fuel cell device | |
JP2023038086A (en) | Interconnector with protective layer, cell stack including the same, and hydrogen energy system | |
JP7304066B2 (en) | Fuel cell electrode member and fuel cell | |
JP2011086555A (en) | Nonaqueous electrolyte battery, and manufacturing method thereof | |
JP2003123773A (en) | Air electrode for solid electrolyte fuel cell and fuel cell using the same | |
Zheng et al. | Long‐term oxidation and electrical behavior of Nb‐doped Ti3SiC2 as solid oxide fuel cell interconnects | |
JP2013069616A (en) | Interconnector for solid oxide fuel cell | |
WO2007037167A1 (en) | Hydrogen permeable film, and fuel battery using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A80 | Written request to apply exceptions to lack of novelty of invention |
Free format text: JAPANESE INTERMEDIATE CODE: A80 Effective date: 20190917 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220513 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230111 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230117 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230308 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230613 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230619 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7304066 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |