JP7302519B2 - motor drive - Google Patents

motor drive Download PDF

Info

Publication number
JP7302519B2
JP7302519B2 JP2020072962A JP2020072962A JP7302519B2 JP 7302519 B2 JP7302519 B2 JP 7302519B2 JP 2020072962 A JP2020072962 A JP 2020072962A JP 2020072962 A JP2020072962 A JP 2020072962A JP 7302519 B2 JP7302519 B2 JP 7302519B2
Authority
JP
Japan
Prior art keywords
motor
control
switch
freewheeling
driving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020072962A
Other languages
Japanese (ja)
Other versions
JP2021170873A (en
Inventor
隼人 木村
一輝 小宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2020072962A priority Critical patent/JP7302519B2/en
Priority to DE102021108778.3A priority patent/DE102021108778A1/en
Publication of JP2021170873A publication Critical patent/JP2021170873A/en
Application granted granted Critical
Publication of JP7302519B2 publication Critical patent/JP7302519B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/08Reluctance motors
    • H02P25/092Converters specially adapted for controlling reluctance motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Ac Motors In General (AREA)

Description

本発明は、多相モータを駆動する装置に関する。 The present invention relates to a device for driving a polyphase motor.

車両のシフト機構の制御をモータ駆動装置で行うものとして、シフトバイワイヤ(Shift By Wire :以下、SBWと称する)制御を行うものがある。SBW制御では、モータ制御部に含まれるモータ駆動回路によって三相モータであるSRM(スイッチト・リラクタンス・モータ)を駆動制御し、ギアを介してモータ回転をシャフトへ伝達することで、シフトレンジ切替機構を特定の角度だけ駆動させる。これによって、パーキング(P)、リバース(R)、ニュートラル(N)、ドライブ(D)等のシフト位置を切り替える構成である。 2. Description of the Related Art Shift By Wire (hereinafter referred to as SBW) control is used as a motor driving device for controlling a shift mechanism of a vehicle. In the SBW control, the motor drive circuit included in the motor control unit drives and controls the SRM (switched reluctance motor), which is a three-phase motor. Drive the mechanism by a specific angle. Thereby, the shift positions such as parking (P), reverse (R), neutral (N), and drive (D) are switched.

このような駆動制御を行うモータ駆動装置は、例えば、駆動電流の立ち上げ時に通電相のコイルの通電路にあるスイッチをオン状態に維持することで上記電流の立ち上り時間を短縮し、通電開始時に素早く十分なトルクを確保することで、高速なモータ駆動を実現している。また、上記駆動電流の立ち下げ時には、通電相のスイッチをオフ状態に維持することで、迅速に電流が消失しトルクがゼロになる。 A motor drive device that performs such drive control shortens the rise time of the current by, for example, maintaining the ON state of a switch in the energization path of the coil of the energized phase when the drive current rises, and High-speed motor drive is achieved by ensuring sufficient torque quickly. Further, when the drive current falls, by keeping the switch of the energized phase in the OFF state, the current disappears quickly and the torque becomes zero.

この場合、モータへの通電回路としてHブリッジ回路を使用したものでは、モータ駆動電流の還流に対応して還流用のダイオードを用いている。これにより、モータコイルに通電している間の還流時にもダイオードの順方向電圧Vfが生じ、駆動電流×順方向電圧で示される電力の時間積分に依る発熱がダイオードに継続的に発生する。このため、還流用のダイオードは、耐熱性の高いものを使用する必要があった。 In this case, when an H-bridge circuit is used as a current-carrying circuit for the motor, a freewheeling diode is used in correspondence with the freewheeling of the motor drive current. As a result, the forward voltage Vf of the diode is generated even during freewheeling while the motor coil is energized, and heat is continuously generated in the diode due to the time integration of the power indicated by the drive current×forward voltage. For this reason, it is necessary to use a freewheeling diode with high heat resistance.

これに対して出願人は、特願2019-138795号において、還流用のダイオードを、例えばMOSFETのような還流用スイッチに置き換えて、還流電流が流れるタイミングで還流用スイッチをONすることで、発熱による損失を低減する構成を提案している。 On the other hand, in Japanese Patent Application No. 2019-138795, the applicant replaces the freewheeling diode with a freewheeling switch such as a MOSFET, and turns on the freewheeling switch at the timing when the return current flows, thereby generating heat. We have proposed a configuration that reduces the loss due to

特開2012-125096号公報JP 2012-125096 A

上記の構成では、還流電流が還流用スイッチの還流用ダイオードに流れて過熱状態になることを防止するため、各還流用スイッチの近傍にそれぞれ温度検出素子を配置し、検出される温度が所定温度以上になると還流用スイッチをオン状態にしている。したがって、温度検出素子を用いる分だけ素子数が増加するという問題が生じる。 In the above configuration, in order to prevent the return current from flowing through the freewheeling diode of the freewheeling switch and causing overheating, a temperature detection element is arranged near each of the freewheeling switches, and the detected temperature is a predetermined temperature. When it becomes above, the return switch is turned on. Therefore, there arises a problem that the number of elements is increased by the number of temperature detection elements.

本発明は、上記事情を考慮してなされたもので、その目的は、温度検出素子を用いずとも、還流用スイッチが過熱状態になることを未然に防止できるモータ駆動装置を提供することにある。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a motor driving apparatus which can prevent the freewheeling switch from overheating without using a temperature detecting element. .

請求項1記載のモータ駆動装置によれば、多相モータを駆動する駆動回路として、それぞれ還流用ダイオードを有する還流用スイッチ及び駆動用スイッチの直列回路を各相に対応して駆動用電源とグランドとの間に接続し、直列回路の共通接続点を多相モータの各相コイルにそれぞれ接続する。制御回路は、各相のコイルに流れる駆動電流の制御を駆動用スイッチ及び還流用スイッチのPWM制御によって行い、多相モータの減速制御を開始した後は、駆動用スイッチのPWM制御を停止させてから還流用スイッチをオンにする還流用スイッチオン制御を行う。 According to the motor drive device of claim 1, as a drive circuit for driving a multiphase motor, a series circuit of a freewheeling switch and a driving switch, each having a freewheeling diode, is connected to a driving power supply and a ground for each phase. and the common connection point of the series circuit is connected to each phase coil of the multiphase motor. The control circuit controls the drive current flowing through the coils of each phase by PWM control of the drive switch and the freewheel switch, and after starting deceleration control of the multiphase motor, stops the PWM control of the drive switch. Then, control is performed to turn on the return switch.

すなわち、多相モータを、ある速度で回転している状態から減速させる際にPWM制御を停止させると、コイルにて発生した電力に応じた比較的大きな電流が還流電流として流れる。その期間に還流用スイッチをオンにすれば、還流電流は還流用スイッチを介して流れるので、還流用ダイオードが過熱状態になることを未然に防止できる。 That is, when the PWM control is stopped when the polyphase motor is decelerated from rotating at a certain speed, a relatively large current corresponding to the electric power generated in the coil flows as a return current. If the free-wheeling switch is turned on during that period, the free-wheeling diode will be prevented from overheating because the free-wheeling current will flow through the free-wheeling switch.

請求項3記載のモータ駆動装置によれば、制御回路は、多相モータの加速制御に続いて行われる減速制御を開始した後に還流用スイッチオン制御を行う。すなわち、加速制御によりモータの速度が上昇した段階から減速に転じた際には、コイルに発生する電力がより大きくなるので、流れる還流電流の値も大きくなる。この期間に還流用スイッチオン制御を行うことにより、還流用ダイオードが過熱状態になることを防止できる。 According to the motor drive device of claim 3, the control circuit performs the return switch-on control after starting the deceleration control that follows the acceleration control of the polyphase motor. That is, when the speed of the motor changes from a stage in which it has increased due to acceleration control to a deceleration, the electric power generated in the coil increases, so the value of the return current that flows also increases. The freewheeling diode can be prevented from being overheated by performing the freewheeling switch-on control during this period.

請求項4記載のモータ駆動装置によれば、制御回路は、多相モータの速度保持制御に続いて行われる減速制御を開始した後に還流用スイッチオン制御を行うので、この期間においても、還流用ダイオードが過熱状態になることを防止できる。 According to the motor drive device of claim 4, the control circuit performs the return switch-on control after starting the deceleration control that follows the speed holding control of the multiphase motor. It can prevent the diode from overheating.

請求項5記載のモータ駆動装置によれば、制御回路は、電流検出部により検出される還流経路に流れる電流の値が所定値以下になると、還流用スイッチオン制御を停止し、還流用ダイオードにてコイルのエネルギーの消弧を行う。これにより、還流用スイッチオン制御を行う区間を必要最低限にできるため、還流用ダイオードの発熱抑制を行いつつ応答性への影響を小さくできる。 According to the motor drive device of claim 5, when the value of the current flowing through the return path detected by the current detection unit becomes equal to or less than a predetermined value, the control circuit stops the return switch-on control, and the return diode is turned on. to extinguish the energy in the coil. This makes it possible to minimize the interval in which the freewheeling switch-on control is performed, so that the heat generation of the freewheeling diode can be suppressed and the influence on the responsiveness can be reduced.

請求項6記載のモータ駆動装置によれば、制御回路は、駆動用スイッチが次にターンオンする際に還流用スイッチオン制御を停止する。これにより、還流用スイッチオン制御を行うタイミングを駆動用スイッチのPWM制御のタイミングと同期させることで、制御を簡略化できる。 According to the motor drive device of claim 6, the control circuit stops the freewheeling switch-on control when the drive switch is next turned on. As a result, the control can be simplified by synchronizing the timing of the freewheeling switch-on control with the timing of the PWM control of the drive switch.

第1実施形態であり、モータ駆動装置の電気的構成を示す図1 is a diagram showing an electrical configuration of a motor drive device according to a first embodiment; FIG. SBWシステムの概略構成図Schematic diagram of SBW system 制御回路の処理内容を示すフローチャートFlowchart showing the processing content of the control circuit ステップS5のサブルーチンを示すフローチャートFlowchart showing a subroutine of step S5 モータの回転速度の変化を示す図Diagram showing changes in motor rotation speed 図5における減速制御(1)の期間を拡大して、各電流及び電圧の波形並びに消費電力量を示す図A diagram showing waveforms of currents and voltages and power consumption by enlarging the period of deceleration control (1) in FIG. 第2実施形態であり、制御回路の処理内容を示すフローチャートFlowchart showing the processing contents of the control circuit, which is the second embodiment モータの回転速度の変化を示す図Diagram showing changes in motor rotation speed 図8における減速制御(1)の期間を拡大して、各電流及び電圧の波形並びに消費電力量を示す図A diagram showing waveforms of currents and voltages and power consumption by enlarging the period of deceleration control (1) in FIG. 第3実施形態であり、モータ駆動装置の電気的構成を示す図A diagram showing the electrical configuration of the motor drive device according to the third embodiment. 制御回路の処理内容を示すフローチャートFlowchart showing the processing content of the control circuit ステップS33のサブルーチンを示すフローチャートFlowchart showing a subroutine of step S33 図5における減速制御(1)に相当する期間を拡大して、減速制御(2)を行う場合の各電流及び電圧の波形並びに消費電力量を示す図A diagram showing current and voltage waveforms and power consumption when deceleration control (2) is performed by enlarging the period corresponding to deceleration control (1) in FIG. 第4実施形態であり、制御回路の処理内容を示すフローチャート4 is a flowchart showing the processing contents of the control circuit according to the fourth embodiment; 図8における減速制御(1)に相当する期間を拡大して、減速制御(2)を行う場合の各電流及び電圧の波形並びに消費電力量を示す図A diagram showing current and voltage waveforms and power consumption when deceleration control (2) is performed by enlarging the period corresponding to deceleration control (1) in FIG.

(第1実施形態)
以下、第1実施形態について、図1から図4を参照して説明する。図1において、モータ駆動装置100は、モータ部20及びモータ制御部30を備え、車両電源1から電源線L1,L2を介し給電を受けてモータ部20のモータ21を駆動制御し、駆動力伝達部2を介してSBWシステムを駆動制御している。駆動力伝達部2は、モータ21から出力軸であるシャフト3を介してシフトレンジ切替機構4に伝えられた駆動力,つまり回転力が伝達される。以下、単に「切替機構4」と称する。モータ21は、多相モータの一例である。
(First embodiment)
The first embodiment will be described below with reference to FIGS. 1 to 4. FIG. In FIG. 1, a motor drive device 100 includes a motor section 20 and a motor control section 30, receives power from a vehicle power supply 1 via power lines L1 and L2, and drives and controls a motor 21 of the motor section 20 to transmit driving force. The SBW system is driven and controlled via the section 2. The driving force transmission unit 2 transmits the driving force, that is, the rotational force transmitted from the motor 21 to the shift range switching mechanism 4 via the shaft 3 that is the output shaft. Hereinafter, it is simply referred to as "switching mechanism 4". Motor 21 is an example of a polyphase motor.

モータ部20は、モータ21、エンコーダセンサ22を備え、モータ21の回転力は、ギアを組み合わせた減速機構23により減速されてシャフト3に伝達される。モータ21は三相SRMであり、ロータは所定個数の突極部を有する磁性体から構成される。モータ21には、ステータとしてU相、V相、W相の三相に対応したコイル21a、21b、21cが設けられ、これらコイル21a~21cへの直流通電により発生した吸引力でロータが回転する。コイル21a~21cの一端側は共通に電源線L1に接続されている。コイル21a~21cの他端側には、モータ制御部30によりそれぞれ選択的に通電が行われる。
エンコーダセンサ22は、モータ21のロータの回転位置を検出するもので、当該センサ22が出力する回転位置信号はモータ制御部30により読込まれる。
The motor unit 20 includes a motor 21 and an encoder sensor 22 , and the rotational force of the motor 21 is reduced by a speed reduction mechanism 23 combined with gears and transmitted to the shaft 3 . The motor 21 is a three-phase SRM, and the rotor is composed of a magnetic material having a predetermined number of salient pole portions. The motor 21 is provided with coils 21a, 21b, and 21c corresponding to three phases of U-phase, V-phase, and W-phase as a stator. . One ends of the coils 21a to 21c are commonly connected to the power line L1. The other ends of the coils 21a to 21c are selectively energized by the motor control unit 30, respectively.
The encoder sensor 22 detects the rotational position of the rotor of the motor 21 , and the rotational position signal output by the sensor 22 is read by the motor controller 30 .

モータ制御部30は、nチャンネル型のMOSトランジスタからなる6個のスイッチ31~36を備えると共に制御回路40を備える。6個のスイッチ31~36は、それぞれボディダイオード31a~36aを有する。以下、これらを単にダイオード31a~36aと称する。また、スイッチ31~36は、電源線L2側のローサイドに接続される駆動用スイッチ31~33、及び電源線L1側のハイサイドに接続される還流用スイッチ34~36からなる。駆動用スイッチ31及び還流用スイッチ34、駆動用スイッチ32及び還流用スイッチ35、駆動用スイッチ33及び還流用スイッチ36は、それぞれ直列に接続されている。すなわち、6個のスイッチ31~36は三相ブリッジ接続されており、これらが駆動回路30Dを構成している。 The motor control unit 30 includes six switches 31 to 36 made up of n-channel MOS transistors and a control circuit 40 . The six switches 31-36 have body diodes 31a-36a, respectively. Hereinafter, these are simply referred to as diodes 31a to 36a. The switches 31 to 36 are composed of drive switches 31 to 33 connected to the low side of the power line L2, and return switches 34 to 36 connected to the high side of the power line L1. The drive switch 31 and the return switch 34, the drive switch 32 and the return switch 35, and the drive switch 33 and the return switch 36 are connected in series. That is, the six switches 31 to 36 are three-phase bridge-connected, and these constitute the driving circuit 30D.

電源線L1には、モータ電源リレー38を介して車両電源1の正側端子が接続され、電源線L2は電流検出抵抗37を介して、車両電源1の負側端子と共通にグランドに接続されている。これにより、モータ制御部30に、駆動用電源に相当する車両電源1の直流電圧が給電される。電源線L1は、モータ21のコイル21a~21cで共通の一端側に接続される。還流用スイッチ34~36と駆動用スイッチ31~33とのそれぞれの共通接続点は、コイル21a~21cの他端側に接続される。 The positive terminal of the vehicle power supply 1 is connected to the power supply line L1 through the motor power supply relay 38, and the power supply line L2 is connected to the ground in common with the negative terminal of the vehicle power supply 1 through the current detection resistor 37. ing. As a result, the DC voltage of the vehicle power source 1 corresponding to the driving power source is supplied to the motor control unit 30 . The power line L1 is connected to one end side common to the coils 21a to 21c of the motor 21. As shown in FIG. Common connection points of the return switches 34 to 36 and the drive switches 31 to 33 are connected to the other ends of the coils 21a to 21c.

制御回路40は、マイクロコンピュータ41と制御IC42とを備える。以下、マイコン41と称す。スイッチ31~36の各ゲートには、制御IC42からゲート駆動信号が与えられる。マイコン41は、制御IC42を介して駆動用スイッチ31~33及び還流用スイッチ34~36を駆動制御すると共に、電流検出抵抗37の端子電圧を取り込んでモータ駆動電流Imを検出する。電流検出抵抗37は電流検出部の一例である。 The control circuit 40 has a microcomputer 41 and a control IC 42 . Hereinafter, the microcomputer 41 is called. A gate drive signal is applied from the control IC 42 to each gate of the switches 31 to 36 . The microcomputer 41 drives and controls the driving switches 31 to 33 and the freewheeling switches 34 to 36 through the control IC 42, and takes in the terminal voltage of the current detection resistor 37 to detect the motor driving current Im. The current detection resistor 37 is an example of a current detection section.

また、車両電源1の正側端子は、イグニッションリレー39を介して制御IC42の電源端子に接続されている。イグニッションリレー39のON/OFFは、車両のイグニッションスイッチのON/OFFに応じて、上位ECU50により制御される。また、モータ電源リレー38のON/OFFは、マイコン41が制御IC42を介して行う。 A positive terminal of the vehicle power supply 1 is connected to the power supply terminal of the control IC 42 via the ignition relay 39 . ON/OFF of the ignition relay 39 is controlled by the host ECU 50 according to ON/OFF of the ignition switch of the vehicle. Also, the ON/OFF of the motor power supply relay 38 is performed by the microcomputer 41 via the control IC 42 .

図2に示すように、モータ部20はモータ制御部30により駆動制御され、切替機構4の駆動源として機能する。切替機構4は、シャフト3に固定されたディテントプレート5及びディテントスプリング6などを備え、減速機構23から出力されたシャフト3の回転駆動力を、駆動力伝達部2のマニュアルバルブ7及びパーキングロック部8へ伝達する。ディテントプレート5には、シャフト3の方向に突出するピン5aが設けられ、マニュアルバルブ7の先端部の溝部で係合されている。 As shown in FIG. 2 , the motor section 20 is driven and controlled by a motor control section 30 and functions as a drive source for the switching mechanism 4 . The switching mechanism 4 includes a detent plate 5 fixed to the shaft 3, a detent spring 6, and the like. 8. The detent plate 5 is provided with a pin 5a projecting in the direction of the shaft 3 and engaged with a groove at the tip of the manual valve 7. As shown in FIG.

マニュアルバルブ7は、ディテントプレート5がモータ部20により回転駆動されることでピン5aが回転移動し、マニュアルバルブ7のピン5aに係合する部分を介して伝わる駆動力により軸方向に往復移動される。マニュアルバルブ7は、バルブボディ9に設けられ、マニュアルバルブ7が軸方向に往復移動することでシフトレンジが変更される。 In the manual valve 7, the detent plate 5 is rotationally driven by the motor portion 20 so that the pin 5a is rotationally moved, and the manual valve 7 is reciprocated in the axial direction by the driving force transmitted through the portion of the manual valve 7 that engages with the pin 5a. be. The manual valve 7 is provided in the valve body 9, and the shift range is changed by reciprocating the manual valve 7 in the axial direction.

ディテントプレート5の外周側のディテントスプリング6と接触する位置には、マニュアルバルブ7を各レンジに対応する位置に保持するための4つの凹部5bが設けられる。ディテントプレート5の回動位置は、ディテントスプリング6の付勢力によりいずれかの凹部5bの位置に保持される。 Four recesses 5b for holding the manual valve 7 at positions corresponding to the respective ranges are provided at positions on the outer peripheral side of the detent plate 5 in contact with the detent springs 6 . The rotational position of the detent plate 5 is held at the position of one of the concave portions 5 b by the biasing force of the detent spring 6 .

凹部5bは、ディテントスプリング6の基部側から、D(ドライブ)、N(ニュートラル)、R(リア)、P(パーキング)の各レンジに対応している。すなわち、ディテントプレート5が最も正回転方向に回転した位置がD位置であり、最も逆回転方向に回転した位置がP位置である。 The recesses 5b correspond to ranges D (drive), N (neutral), R (rear), and P (parking) from the base side of the detent spring 6 . That is, the position where the detent plate 5 rotates most in the forward rotation direction is the D position, and the position where it rotates most in the reverse rotation direction is the P position.

パーキングロック部8は、パーキングロッド10、円錐体11、パーキングロックポール12、軸部13及びパーキングギア14を有する。パーキングロッド10は、ディテントプレート5が逆回転方向,すなわち図中の「正回転方向」と逆の回転方向に揺動すると、円錐体11を矢印Pの方向に移動させる。これにより、パーキングロックポール12が矢印L方向に押し上げられ、凸部12aとパーキングギア14とが噛み合う状態となってパーキングギア14をロック状態にする。 The parking lock portion 8 has a parking rod 10 , a cone 11 , a parking lock pole 12 , a shaft portion 13 and a parking gear 14 . The parking rod 10 moves the cone 11 in the direction of arrow P when the detent plate 5 swings in the reverse rotation direction, that is, in the rotation direction opposite to the "forward rotation direction" in the figure. As a result, the parking lock pole 12 is pushed up in the direction of the arrow L, and the convex portion 12a and the parking gear 14 are engaged with each other, thereby locking the parking gear 14. As shown in FIG.

次に、本実施形態の作用について説明する。図3は、制御回路40の処理内容を、要旨に係る部分について示すフローチャートである。また、図5は、図3に示す処理に対応したモータ21の速度変化を示すタイミングチャートである。制御回路40は、先ず、回転位置信号としてエンコーダセンサ22が出力するパルス信号と、モータ21の駆動電流Imとのモニタを開始する(S1)。そして、パルス信号の出力間隔に基づきモータ21の回転速度の算出を開始する(S2)。次に、モータ21の加速制御を開始すると(S3)、モータ21の回転速度が目標速度以上になったか否かを判断する(S4)。ステップS3の加速制御では、駆動回路30Dにおける各スイッチ31~36のスイッチングはPWM(Pulse Width Modulation)制御となる。 Next, the operation of this embodiment will be described. FIG. 3 is a flow chart showing the contents of the processing of the control circuit 40 with respect to the gist. FIG. 5 is a timing chart showing speed changes of the motor 21 corresponding to the processing shown in FIG. The control circuit 40 first starts monitoring the pulse signal output by the encoder sensor 22 as the rotational position signal and the driving current Im of the motor 21 (S1). Then, calculation of the rotation speed of the motor 21 is started based on the output interval of the pulse signal (S2). Next, when the acceleration control of the motor 21 is started (S3), it is determined whether or not the rotational speed of the motor 21 has reached or exceeded the target speed (S4). In the acceleration control in step S3, switching of the switches 31 to 36 in the drive circuit 30D is PWM (Pulse Width Modulation) control.

回転速度が目標速度以上になると(YES)、マイコン41は還流スイッチのオン制御を伴う減速制御(1)を行う(S5)。その制御内容の詳細については後述する。図5に示すように、本実施形態の減速制御(1)は、モータ21を起動した直後に行われる加速制御に続いて実行される。次に、モータ21の回転速度を目標速度に保持するように制御すると(S6)、モータ21の回転量が制御目標値以上となったか否かを判断する(S7)。回転量が目標値以上になると(YES)モータ21の減速制御を行い(S8)、モータ21の回転速度が目標速度未満になったか否かを判断する(S9)。回転速度が目標速度未満になると(YES)、モータ21の回転を停止して(S10)処理を終了する。 When the rotation speed becomes equal to or higher than the target speed (YES), the microcomputer 41 performs deceleration control (1) accompanied by ON control of the reflux switch (S5). The details of the control contents will be described later. As shown in FIG. 5, the deceleration control (1) of the present embodiment is executed immediately after the motor 21 is started, followed by the acceleration control. Next, control is performed to maintain the rotation speed of the motor 21 at the target speed (S6), and it is determined whether or not the amount of rotation of the motor 21 has reached or exceeded the control target value (S7). If the amount of rotation becomes equal to or greater than the target value (YES), deceleration control of the motor 21 is performed (S8), and it is determined whether or not the rotation speed of the motor 21 has become less than the target speed (S9). When the rotation speed becomes less than the target speed (YES), the rotation of the motor 21 is stopped (S10) and the process ends.

図4は、ステップS5における減速制御(1)のサブルーチンを示すフローチャートである。また、図6は、図5に示す減速制御(1)の期間を、時間軸を延ばして示した電圧,電流等の波形を示している。図4において、制御回路40は、任意の相の駆動用スイッチ,例えばU相の駆動用スイッチ31をオンに維持すると(S11)、U相の電流量が目標値以上となったか否かを判断する(S12)。 FIG. 4 is a flow chart showing a subroutine of deceleration control (1) in step S5. FIG. 6 shows waveforms of voltage, current, etc., with the time axis extended during the period of deceleration control (1) shown in FIG. In FIG. 4, when the control circuit 40 keeps the driving switch of any phase, for example, the U-phase driving switch 31 on (S11), it determines whether or not the current amount of the U-phase has become equal to or greater than the target value. (S12).

前記電流量が目標値以上になると(YES)、駆動用スイッチ31と還流用スイッチ34とを交互にオン/オフすることで前記電流量を維持する(S13)。次に、エンコーダセンサ22が出力するパルス信号の状態が切替わったか否かを判断し(S14)、状態が切替わると(YES)モータ21の回転速度が目標速度以下になったか否かを判断する(S15)。回転速度が目標速度未満であれば(NO)、この減速制御において前記パルス信号の出力状態が切替わった回数が規定回数に達したか否かを判断する(S17)。 When the current amount exceeds the target value (YES), the current amount is maintained by alternately turning on/off the driving switch 31 and the freewheeling switch 34 (S13). Next, it is determined whether or not the state of the pulse signal output by the encoder sensor 22 has changed (S14). If the state has changed (YES), it is determined whether or not the rotation speed of the motor 21 has become equal to or less than the target speed. (S15). If the rotational speed is less than the target speed (NO), it is determined whether or not the number of times the output state of the pulse signal has been switched in this deceleration control has reached a specified number of times (S17).

ここで規定回数に達していれば(YES)、ステップS11でオンした例えばU相の駆動用スイッチ31をオフに維持する(S22)。一方、規定回数に達していなければ(NO)、前記U相の駆動用スイッチ31をオフに維持すると共に、還流用スイッチ34をオンに維持する(S18)。それから、次に駆動用スイッチをオンにする相を確認し(S19)、確認した相,例えばV相の還流用スイッチ35がオンしているか否かを判断し(S20)、オンしていれば(YES)当該還流用スイッチ35をオフにしてから(S21)ステップS11に戻る。これらのステップS18~S21における処理が「還流用スイッチオン制御」に相当する。一方、還流用スイッチがオンしていなければ(NO)、ステップS11に戻る。 If the specified number of times has been reached (YES), for example, the U-phase drive switch 31 that was turned on in step S11 is kept off (S22). On the other hand, if the specified number of times has not been reached (NO), the U-phase drive switch 31 is kept off and the reflux switch 34 is kept on (S18). Then, the phase for which the driving switch is to be turned on next is confirmed (S19), and it is determined whether or not the circulating switch 35 of the confirmed phase, for example, the V phase, is turned on (S20). (YES) After turning off the circulation switch 35 (S21), the process returns to step S11. The processing in these steps S18 to S21 corresponds to "recirculation switch-on control". On the other hand, if the reflux switch is not turned on (NO), the process returns to step S11.

以上に示すステップS16を除いたステップS11~S22の処理を繰り返すことで、モータ21の回転速度が目標速度以下になると(S15;YES)、その時点にステップS11でオンにしている相の駆動用スイッチ31をオフに維持してから(S16)メインルーチンにリターンする。尚、コイル21a~21cに通電を行う相順は、例えばU→V→W→U→…といったように一定である場合、例えばステップS11でオンした駆動用スイッチがU相であり、その駆動用スイッチをステップS16でオフした後にステップS11に移行すると、オンする駆動用スイッチはV相となる。 By repeating the processing of steps S11 to S22 except step S16 shown above, when the rotation speed of the motor 21 becomes equal to or lower than the target speed (S15; YES), the driving phase of the phase turned on in step S11 at that time is turned on. After keeping the switch 31 off (S16), the process returns to the main routine. If the order of the phases in which the coils 21a to 21c are energized is constant, for example U→V→W→U→ . After the switch is turned off in step S16, when the process proceeds to step S11, the driving switch to be turned on is the V phase.

図6に示すように、ステップS3の加速制御におけるPWM制御が終了する際には、例えばU相の駆動用スイッチ31及び還流用スイッチ34が共にオフになり、この期間に還流電流は、還流用スイッチ34のダイオード34aに流れる。すると、還流用スイッチ34のドレイン・ソース間に発生する電圧によって電力が消費される。 As shown in FIG. 6, when the PWM control in the acceleration control in step S3 ends, for example, both the U-phase driving switch 31 and the freewheeling switch 34 are turned off, and during this period, the return current is It flows through the diode 34a of the switch 34. Then, power is consumed by the voltage generated between the drain and source of the freewheeling switch 34 .

それに続いて、ステップS5で減速制御(1)が開始されると、PWM制御が終了する際には、例えばU相の還流用スイッチ34がオンに維持される。これにより、還流電流は還流用スイッチ34を介して流れるので、ドレイン・ソース間の電圧がより低くなり消費される電力が低減される。この時の還流用スイッチ34のオン状態は、次にPWM制御が開始されて駆動用スイッチ31がオンするまで維持される。 Subsequently, when deceleration control (1) is started in step S5, the U-phase reflux switch 34, for example, is kept on when the PWM control ends. As a result, the freewheeling current flows through the freewheeling switch 34, so that the voltage between the drain and the source becomes lower and the power consumption is reduced. The ON state of the return switch 34 at this time is maintained until the next PWM control is started and the drive switch 31 is turned ON.

以上のように本実施形態によれば、それぞれ還流用ダイオード34a~36a,31a~33aを有する還流用スイッチ34~36及び駆動用スイッチ31~33の直列回路を、各相に対応して車両電源1とグランドとの間に接続してモータ21を駆動する駆動回路30Dを構成し、前記直列回路の共通接続点をモータ21の各相コイル21a~21cにそれぞれ接続する。制御回路40は、各相のコイル21a~21cに通電する駆動電流をPWM制御し、モータ21の減速制御を開始した後は、駆動用スイッチ31~33のPWM制御を停止させてから還流用スイッチ31~33をオンにする還流用スイッチオン制御を行う。 As described above, according to the present embodiment, the series circuits of the freewheeling switches 34 to 36 and the driving switches 31 to 33 having the freewheeling diodes 34a to 36a and 31a to 33a, respectively, are connected to the vehicle power source for each phase. 1 and the ground to form a drive circuit 30D for driving the motor 21, and the common connection point of the series circuit is connected to each phase coil 21a to 21c of the motor 21, respectively. The control circuit 40 PWM-controls the driving currents to be supplied to the coils 21a to 21c of each phase, and after starting the deceleration control of the motor 21, stops the PWM control of the driving switches 31 to 33, and then switches the freewheeling switches. Circulation switch-on control is performed to turn on 31 to 33 .

すなわち、多相モータを、ある速度で回転している状態から減速させるためにPWM制御を停止させると、コイルにて発生した電力に応じた比較的大きな電流が還流電流として流れる。その期間に還流用スイッチをオンにすれば、還流電流は還流用スイッチを介して流れるので、還流用ダイオードが過熱状態になることを未然に防止できる。 That is, when the PWM control is stopped in order to decelerate the polyphase motor from a state of rotation at a certain speed, a relatively large current corresponding to the electric power generated in the coil flows as a return current. If the free-wheeling switch is turned on during that period, the free-wheeling diode will be prevented from overheating because the free-wheeling current will flow through the free-wheeling switch.

そして、制御回路40は、モータ21の加速制御に続いて行われる減速制御を開始した後に還流用スイッチオン制御を複数回行う。すなわち、加速制御によりモータ21の速度が上昇した段階から減速に転じた際には、コイル21a~21cに発生する電力がより大きくなるので、流れる還流電流の値も大きくなる。この期間に還流用スイッチオン制御を行うことにより、還流用ダイオード34a~36aが過熱状態になることを防止できる。また、当該期間に還流用スイッチオン制御を複数回行うことで、過熱状態になることをより確実に防止できる。 After starting the deceleration control that follows the acceleration control of the motor 21, the control circuit 40 performs the return switch-on control a plurality of times. That is, when the speed of the motor 21 is increased by acceleration control and then decelerates, the electric power generated in the coils 21a to 21c is increased, and the value of the return current flowing is also increased. By turning on the freewheeling switch during this period, it is possible to prevent the freewheeling diodes 34a to 36a from being overheated. In addition, by performing the switch-on control for free circulation a plurality of times during the period, overheating can be prevented more reliably.

(第2実施形態)
以下、第1実施形態と同一部分には同一符号を付して説明を省略し、異なる部分について説明する。図7に示すように、第2実施形態では、ステップS1~S4を実行すると、ステップS5に替えてモータ21の減速制御を行う(S31)。そして、モータ21の回転速度が減速制御における目標速度以下になると(S32;YES)、ステップS6,S7,S5,S10を実行する。
(Second embodiment)
Hereinafter, the same parts as those in the first embodiment are denoted by the same reference numerals, and descriptions thereof are omitted, and different parts will be described. As shown in FIG. 7, in the second embodiment, when steps S1 to S4 are executed, deceleration control of the motor 21 is performed instead of step S5 (S31). Then, when the rotational speed of the motor 21 becomes equal to or lower than the target speed in deceleration control (S32; YES), steps S6, S7, S5, and S10 are executed.

これにより第2実施形態では、図8に示すように、加速制御(S3)→減速制御(S31)→速度保持制御(S6)に続いて、ステップS5の「還流用スイッチオン制御」を伴う減速制御(1)を行う。 As a result, in the second embodiment, as shown in FIG. 8, following the acceleration control (S3)→deceleration control (S31)→speed holding control (S6), deceleration accompanied by "recirculation switch-on control" in step S5 is performed. Control (1) is performed.

以上のように第2実施形態によれば、制御回路40は、モータ21の速度保持制御に続いて行われる減速制御を開始した後に還流用スイッチオン制御を行うので、この期間においても、還流用ダイオード34a~36aが過熱状態になることを防止できる。 As described above, according to the second embodiment, the control circuit 40 performs the return switch-on control after starting the deceleration control performed subsequent to the speed holding control of the motor 21. Overheating of the diodes 34a to 36a can be prevented.

(第3実施形態)
図10に示す第3実施形態のモータ制御部30Aでは、電源線L2に挿入されていた単一の電流検出抵抗37に替えて、3つの電流検出抵抗37U,37V,37Wが、駆動用スイッチ31~33及び還流用スイッチ34~36の共通接続点と、各相コイル21a~21cとの間に配置されている点が相違している。
(Third embodiment)
In the motor control unit 30A of the third embodiment shown in FIG. 10, three current detection resistors 37U, 37V, and 37W replace the single current detection resistor 37 inserted in the power line L2. .

次に、第3実施形態の作用について説明する。第3実施形態では、図11に示すように、第1実施形態のステップS5に替わるステップS33において、還流用スイッチオン制御を伴う減速制御(2)を実行する。この減速制御(2)では、図12に示すように、ステップS11~S17を実行し、ステップS17で「NO」と判断すると、ステップS11でオンした相の駆動用スイッチをオフに維持すると共に、前記相の還流用スイッチをオンに維持する(S22)。 Next, operation of the third embodiment will be described. In the third embodiment, as shown in FIG. 11, in step S33 replacing step S5 in the first embodiment, deceleration control (2) accompanied by switch-on control for circulation is executed. In this deceleration control (2), as shown in FIG. 12, steps S11 to S17 are executed. The reflux switch of the phase is kept on (S22).

続いて、前記相の電流量が閾値以下になったか否かを判断する(S23)。前記電流量が閾値以下になると(YES)、前記相の還流用スイッチをオフにし(S24)、同駆動用スイッチをオフに維持してから(S25)ステップS11に戻る。これにより、図13に示すように、ステップS22でオンした還流用スイッチは、対応する相の電流量が閾値以下になった時点でオフに転じる。これらのステップS22~S25での制御が「還流用スイッチオン制御」に相当する。 Subsequently, it is determined whether or not the current amount of the phase has become equal to or less than the threshold value (S23). When the amount of current becomes equal to or less than the threshold value (YES), the freewheeling switch of the phase is turned off (S24), the drive switch is kept off (S25), and then the process returns to step S11. As a result, as shown in FIG. 13, the return switch that was turned on in step S22 is turned off when the current amount of the corresponding phase becomes equal to or less than the threshold value. The control in these steps S22 to S25 corresponds to "recirculation switch-on control".

以上のように第3実施形態によれば、制御回路40は、電流検出抵抗37により検出される還流経路に流れる電流の値が閾値以下になると、還流用スイッチオン制御を停止し、還流用ダイオードにてコイルのエネルギーの消弧を行う。これにより、還流用スイッチオン制御を行う区間を必要最低限にできるため、還流用ダイオードの発熱抑制を行いつつ応答性への影響を小さくできる。 As described above, according to the third embodiment, when the value of the current flowing in the return path detected by the current detection resistor 37 becomes equal to or less than the threshold value, the control circuit 40 stops the switch-on control for the return, and the return diode The energy of the coil is extinguished with . This makes it possible to minimize the interval in which the freewheeling switch-on control is performed, so that the heat generation of the freewheeling diode can be suppressed and the influence on the responsiveness can be reduced.

(第4実施形態)
図14に示すように、第4実施形態では、第2実施形態におけるステップS5に替えて、第3実施形態のステップS33を実行する。つまり、図15に示すように、制御回路40は、モータ21の速度保持制御に続いて行われる減速制御を開始した後に還流用スイッチオン制御を行うが、電流検出抵抗37により検出される還流経路に流れる電流量が閾値以下になると、還流用スイッチオン制御を停止する。
(Fourth embodiment)
As shown in FIG. 14, in the fourth embodiment, step S33 of the third embodiment is executed instead of step S5 in the second embodiment. That is, as shown in FIG. 15, the control circuit 40 performs the switch-on control for the return circuit after starting the deceleration control that is performed following the speed holding control of the motor 21, but the return path detected by the current detection resistor 37 When the amount of current that flows through is equal to or less than the threshold value, the freewheeling switch-on control is stopped.

(その他の実施形態)
三相のモータ21を用いたが、4相以上の多相モータにも適用できる。
駆動用スイッチをハイサイド、還流用スイッチをローサイドに配置することもできる。この場合には、コイル21a~21cは、共通に接続した一端側をグランド側に接続すれば良い。
駆動用スイッチ及び還流用スイッチには、MOSトランジスタ以外に例えばIGBTなどのスイッチング素子を用いることができる。
(Other embodiments)
Although the three-phase motor 21 is used, it can also be applied to a multi-phase motor having four or more phases.
It is also possible to arrange the drive switch on the high side and the return switch on the low side. In this case, the coils 21a to 21c may be connected to the ground at one end of the commonly connected ends.
A switching element such as an IGBT can be used for the driving switch and the freewheeling switch in addition to the MOS transistor.

還流経路を形成するダイオードは、ボディダイオードに替えて外付けのダイオードを用いても良い。
マイコン41及び制御IC42により実現される機能は、ハードウェア,ソフトウェアの何れか又はハードウェアとソフトウェアとの協働により実現しても良い。
SBWシステムに限ることなく、その他のシステム等に適用しても良い。
本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
An external diode may be used instead of the body diode as the diode forming the free-wheeling path.
The functions realized by the microcomputer 41 and the control IC 42 may be realized by either hardware or software, or by cooperation between hardware and software.
The present invention is not limited to the SBW system, and may be applied to other systems.
Although the present disclosure has been described with reference to examples, it is understood that the present disclosure is not limited to such examples or structures. The present disclosure also includes various modifications and modifications within the equivalent range. In addition, various combinations and configurations, as well as other combinations and configurations, including single elements, more, or less, are within the scope and spirit of this disclosure.

図面中、1は車両電源、2は駆動力伝達部、4はシフトレンジ切替機構、5ディテントプレート、7はマニュアルバルブ、20はモータ部、21はモータ、21a~21cはコイル、23は減速機構、30、50、60、70はモータ制御部、31~33は駆動用スイッチ、34~36は還流用スイッチ、41はマイクロコンピュータ、42は制御ICを示す。 In the drawings, 1 is a vehicle power supply, 2 is a driving force transmission unit, 4 is a shift range switching mechanism, 5 is a detent plate, 7 is a manual valve, 20 is a motor unit, 21 is a motor, 21a to 21c are coils, and 23 is a reduction mechanism. , 30, 50, 60 and 70 are motor control units, 31 to 33 are drive switches, 34 to 36 are reflux switches, 41 is a microcomputer, and 42 is a control IC.

Claims (7)

3相以上の多相モータ(21)を駆動するもので、
前記多相モータの各相のコイルへの通電経路に設けられた駆動用スイッチ(31~33)と、
前記各相のコイルの還流経路に設けられた還流用スイッチ(34~36)と、
前記還流用スイッチのそれぞれに並列接続されたダイオード(34a~36a)と、
前記各相のコイルに通電する駆動電流をPWM制御する制御回路(40)とを備え、
前記多相モータの減速制御を開始した後に、前記駆動用スイッチのPWM制御を停止させてから前記還流用スイッチをオンにする還流用スイッチオン制御を行うモータ駆動装置。
It drives a multi-phase motor (21) with three or more phases,
driving switches (31 to 33) provided in the energization path to each phase coil of the multiphase motor;
return switches (34 to 36) provided in return paths of the coils of the respective phases;
diodes (34a to 36a) connected in parallel to each of the freewheeling switches;
A control circuit (40) for PWM-controlling the drive current energized to the coil of each phase,
A motor drive device that performs freewheeling switch-on control to turn on the freewheeling switch after stopping PWM control of the driving switch after starting deceleration control of the polyphase motor.
前記還流用スイッチオン制御を複数回行う請求項1記載のモータ駆動装置。 2. A motor driving device according to claim 1, wherein said return switch-on control is performed a plurality of times. 前記多相モータの加速制御に続いて行われる減速制御を開始した後に、前記還流用スイッチオン制御を行う請求項1又は2記載のモータ駆動装置。 3. The motor driving device according to claim 1, wherein the return switch-on control is performed after starting the deceleration control performed following the acceleration control of the polyphase motor. 前記多相モータの速度保持制御に続いて行われる減速制御を開始した後に、前記還流用スイッチオン制御を行う請求項1から3の何れか一項に記載のモータ駆動装置。 4. The motor drive device according to any one of claims 1 to 3, wherein the freewheeling switch-on control is performed after deceleration control that is performed subsequent to the speed holding control of the polyphase motor is started. 前記還流経路に流れる電流を検出する電流検出部(37,37U,37V,37W)を備え、
前記多相モータの減速制御を開始した後に、前記駆動用スイッチのPWM制御を停止させてから、前記電流検出部により検出される電流値が所定値以下になるまで還流用スイッチをオンに維持する還流用スイッチオン制御を行う請求項1から4の何れか一項に記載のモータ駆動装置。
A current detection unit (37, 37U, 37V, 37W) that detects the current flowing in the return path,
After the deceleration control of the polyphase motor is started, the PWM control of the driving switch is stopped, and then the freewheeling switch is kept on until the current value detected by the current detection unit becomes equal to or less than a predetermined value. 5. The motor driving device according to any one of claims 1 to 4, wherein control is performed to turn on the switch for freewheeling.
前記多相モータの減速制御を開始した後に、前記駆動用スイッチのPWM制御を停止させてから、前記駆動用スイッチが次にターンオンするまで還流用スイッチをオンに維持する還流用スイッチオン制御を行う請求項1から4の何れか一項に記載のモータ駆動装置。 After the deceleration control of the polyphase motor is started, the PWM control of the driving switch is stopped, and then the freewheeling switch is controlled to be turned on until the driving switch is turned on next time. A motor driving device according to any one of claims 1 to 4. 前記多相モータは、スイッチト・リラクタンス・モータ(SRM)であり、全相のコイルの一端側が共通に駆動用電源の正側端子に接続される請求項1から6の何れか一項に記載のモータ駆動装置。 7. The polyphase motor according to any one of claims 1 to 6, wherein the polyphase motor is a switched reluctance motor (SRM), and one end sides of coils of all phases are commonly connected to a positive terminal of a driving power supply. motor drive.
JP2020072962A 2020-04-15 2020-04-15 motor drive Active JP7302519B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020072962A JP7302519B2 (en) 2020-04-15 2020-04-15 motor drive
DE102021108778.3A DE102021108778A1 (en) 2020-04-15 2021-04-08 DEVICE FOR CONTROLLING A MOTOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020072962A JP7302519B2 (en) 2020-04-15 2020-04-15 motor drive

Publications (2)

Publication Number Publication Date
JP2021170873A JP2021170873A (en) 2021-10-28
JP7302519B2 true JP7302519B2 (en) 2023-07-04

Family

ID=77919610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020072962A Active JP7302519B2 (en) 2020-04-15 2020-04-15 motor drive

Country Status (2)

Country Link
JP (1) JP7302519B2 (en)
DE (1) DE102021108778A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000358397A (en) 1999-06-10 2000-12-26 Denso Corp Load driving apparatus
JP2006230074A (en) 2005-02-16 2006-08-31 Nissan Motor Co Ltd Motor drive system
JP2011217567A (en) 2010-04-01 2011-10-27 Denso Corp Motor
JP2012125096A (en) 2010-12-10 2012-06-28 Daihatsu Motor Co Ltd Motor drive controller
JP2013150491A (en) 2012-01-23 2013-08-01 Mitsuba Corp Control device for switched reluctance motor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6973148B2 (en) 2018-02-13 2021-11-24 マツダ株式会社 Gas component adhesion test method for engine intake / exhaust system parts and their equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000358397A (en) 1999-06-10 2000-12-26 Denso Corp Load driving apparatus
JP2006230074A (en) 2005-02-16 2006-08-31 Nissan Motor Co Ltd Motor drive system
JP2011217567A (en) 2010-04-01 2011-10-27 Denso Corp Motor
JP2012125096A (en) 2010-12-10 2012-06-28 Daihatsu Motor Co Ltd Motor drive controller
JP2013150491A (en) 2012-01-23 2013-08-01 Mitsuba Corp Control device for switched reluctance motor

Also Published As

Publication number Publication date
DE102021108778A1 (en) 2021-10-21
JP2021170873A (en) 2021-10-28

Similar Documents

Publication Publication Date Title
CN110337780B (en) Shift gear control device
US8395338B2 (en) Control system for multiphase electric rotating machine
JP5325483B2 (en) Motor drive device
JP6601322B2 (en) Shift range switching device
JP6241453B2 (en) Motor drive device
JP2008193789A (en) Controller of switched reluctance motor
JP7302519B2 (en) motor drive
JP7331724B2 (en) motor drive
JP7331723B2 (en) motor drive
CN110875708A (en) Electric machine
JP7151656B2 (en) motor drive
US11228270B2 (en) Drive apparatus for rotating electric machine
JP5653264B2 (en) Synchronous motor drive device
US11652433B2 (en) Motor actuator for on-vehicle equipment
JP6693178B2 (en) Motor controller
JP5724353B2 (en) Brushless motor control device for electric pump
JP6152309B2 (en) Motor drive device
JP3763510B2 (en) DC brushless motor drive device
JP2005168136A (en) Controller for motor
JP2005312145A (en) Driver of brushless motor
JP2013236431A (en) Control method and control apparatus for brushless motor
JP6528638B2 (en) Electronic control unit
JP2020034013A (en) Shift range control device
CN111095776B (en) Motor control device
JP2023055529A (en) Electric power tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230605

R151 Written notification of patent or utility model registration

Ref document number: 7302519

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151