JP7298403B2 - Plasma spray equipment - Google Patents

Plasma spray equipment Download PDF

Info

Publication number
JP7298403B2
JP7298403B2 JP2019163038A JP2019163038A JP7298403B2 JP 7298403 B2 JP7298403 B2 JP 7298403B2 JP 2019163038 A JP2019163038 A JP 2019163038A JP 2019163038 A JP2019163038 A JP 2019163038A JP 7298403 B2 JP7298403 B2 JP 7298403B2
Authority
JP
Japan
Prior art keywords
substrate
plasma
thermal spray
cooling nozzles
axes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019163038A
Other languages
Japanese (ja)
Other versions
JP2021042406A (en
Inventor
巧 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2019163038A priority Critical patent/JP7298403B2/en
Publication of JP2021042406A publication Critical patent/JP2021042406A/en
Application granted granted Critical
Publication of JP7298403B2 publication Critical patent/JP7298403B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Nozzles (AREA)
  • Coating By Spraying Or Casting (AREA)

Description

本発明は、セラミック製の基材に皮膜を形成するプラズマ溶射装置に関する。 The present invention relates to a plasma spraying apparatus for forming coatings on ceramic substrates.

セラミック基材への皮膜加工には、従来からプラズマ溶射装置が広く使用されている。プラズマ溶射装置は、溶射ノズルへの供給電力を増加させることで、プラズマの発熱量を高めて、皮膜の加工時間を短縮することができる。しかし、回転中のセラミック基材に皮膜を加工する場合、プラズマジェットによる加熱部位が基材の回転に伴って変化するため、熱膨張差によって基材に割れが発生しやすいという課題があった。 Conventionally, a plasma spraying apparatus has been widely used for coating a ceramic substrate. By increasing the power supplied to the thermal spraying nozzle, the plasma thermal spraying apparatus can increase the amount of heat generated by the plasma and shorten the coating processing time. However, when processing a film on a rotating ceramic substrate, the area heated by the plasma jet changes as the substrate rotates, so there is a problem that the substrate tends to crack due to the difference in thermal expansion.

熱対策として、特許文献1には、溶射ブース内の溶射材料を含むガスを外部に排出することで、溶射ブース内の温度を低下させる技術が提案されている。また、特許文献2には、プラズマジェットの周囲に冷却ノズルを配置し、冷却ノズルから冷却ガスを加工領域外側の基材に向けて吹き付け、板状の基材を高温から保護する技術が開示されている。 As a heat countermeasure, Patent Literature 1 proposes a technique of reducing the temperature in the thermal spray booth by discharging gas containing thermal spray material in the thermal spray booth to the outside. Further, Patent Document 2 discloses a technique in which a cooling nozzle is arranged around the plasma jet, and a cooling gas is sprayed from the cooling nozzle toward the substrate outside the processing area to protect the plate-shaped substrate from high temperatures. ing.

特開2017-75353号公報JP 2017-75353 A 特開平6-122956号公報JP-A-6-122956

ところが、特許文献1の熱対策によると、溶射材料を含むガスを溶射ブース外に排出するため、皮膜の膜厚が減少し、所要の膜厚を得るために加工時間が長くかかった。また、特許文献2の熱対策によると、冷却ガスを皮膜加工領域の外側に向けて吹き付けているので、溶射材料の一部が冷却ガスの噴流に誘引されて加工領域の外側に流失し、膜厚が不十分になり、高速加工に適さないという課題があった。 However, according to the heat countermeasure of Patent Document 1, since the gas containing the thermal spraying material is discharged outside the thermal spraying booth, the thickness of the coating is reduced, and it takes a long processing time to obtain the required thickness. In addition, according to the heat countermeasure of Patent Document 2, since the cooling gas is blown toward the outside of the coating processing area, part of the thermal spray material is induced by the cooling gas jet flow to flow outside the processing area, and the coating There was a problem that the thickness became insufficient and it was not suitable for high-speed processing.

本発明は、上記課題に鑑みてなされたものであり、その目的は、セラミック基材の割れを抑えて、皮膜を十分な膜厚で短時間に加工可能なプラズマ溶射装置を提供することにある。 SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and its object is to provide a plasma spraying apparatus capable of suppressing cracking of the ceramic base material and forming a coating having a sufficient thickness in a short time. .

上記課題を解決するために、本発明のプラズマ溶射装置(10)は、セラミック製の基材(21)を回転可能に保持する治具(22)と、基材の回転中に溶射材料(19)を含むプラズマジェット(20)を基材に向けて噴射し、基材の外面に皮膜(23)を形成する溶射ノズル(14)と、溶射ノズルの軸線(141)に関して対称に配置され、基材の回転軸線方向に延びるスリット状のガス吹出口(241)を有し、基材の回転中に冷却ガス(26)をプラズマジェットの周囲から基材に向けて噴射する複数の冷却ノズル(24)と、を備える。また、複数の冷却ノズルの軸線(242)は互いに交差し、複数の冷却ノズルの軸線が交差する位置から基材までの距離と、複数の冷却ノズルの軸線が交差する位置から溶射ノズルまでの距離とを比較した時、複数の冷却ノズルの軸線が交差する位置から基材までの距離の方が小さく、且つ、基材の軸方向の投影図において、複数の冷却ノズルの軸線が交差する位置は、治具の外径の範囲内にある。
In order to solve the above problems, the plasma spraying apparatus (10) of the present invention comprises a jig (22) that rotatably holds a ceramic substrate (21), and a thermal spray material (19) that rotates while the substrate is rotating. ) toward the substrate to form a coating (23) on the outer surface of the substrate ; A plurality of cooling nozzles (24) which have slit-shaped gas outlets (241) extending in the rotation axis direction of the material and inject cooling gas (26) from the periphery of the plasma jet toward the substrate while the substrate is rotating. ) and Further, the axes (242) of the plurality of cooling nozzles intersect with each other, and the distance from the position where the axes of the plurality of cooling nozzles intersect to the substrate and the distance from the position where the axes of the plurality of cooling nozzles intersect to the thermal spray nozzle , the distance from the position where the axes of the cooling nozzles intersect to the substrate is smaller, and the position where the axes of the cooling nozzles intersect in the axial projection of the substrate is , within the outer diameter of the fixture.

上記構成によれば、基材の回転中に溶射材料によって皮膜が形成され、同時にその皮膜が冷却ガスにより冷却される。このため、セラミック基材を各部均一な温度で発熱させ、基材の割れを抑えることができる。また、冷却ガスがプラズマジェットの周囲から基材に向けて噴射されるため、冷却ガスの噴流に乗せて溶射材料を基材外面に寄せ集め、皮膜を十分な膜厚で短時間に加工することも可能である。 According to the above configuration, the coating is formed by the thermal spray material while the base material is rotating, and at the same time, the coating is cooled by the cooling gas. Therefore, each part of the ceramic substrate can be heated at a uniform temperature, and cracking of the substrate can be suppressed. In addition, since the cooling gas is sprayed from the periphery of the plasma jet toward the substrate, the thermal spray material is gathered on the outer surface of the substrate on the cooling gas jet, and the coating is processed in a short time with a sufficient thickness. is also possible.

本発明の好ましい実施形態では、複数の冷却ノズルが溶射ノズルの軸線(141)に関して対称状に配置される。複数の冷却ノズルの軸線(242)は、基材よりも溶射ノズルに近い位置で互いに斜めに交差する。基材は、その外面が円筒面または円錐面を含む。溶射ノズルは、基材との相対位置が可変に設けられる。冷却ノズルは、基材の回転軸線方向に延びるスリット状のガス吹出口(241)を備える。 In a preferred embodiment of the invention, the cooling nozzles are arranged symmetrically with respect to the thermal spray nozzle axis (141). Axes (242) of the plurality of cooling nozzles intersect each other obliquely at a location closer to the spray nozzle than the substrate. The substrate has an outer surface that includes a cylindrical or conical surface. The thermal spray nozzle is provided so that the relative position with respect to the base material is variable. The cooling nozzle has a slit-shaped gas outlet (241) extending in the rotation axis direction of the substrate.

本発明の一実施形態を示すプラズマ溶射装置の立面図である。1 is an elevational view of a plasma spray apparatus showing an embodiment of the present invention; FIG. 図1のプラズマ溶射装置の平面図である。2 is a plan view of the plasma spraying apparatus of FIG. 1; FIG. 基材の一例を示す(a)正面図,(b)横断面図である。It is (a) a front view, (b) a cross-sectional view which shows an example of a base material. 基材の割れおよび皮膜の膜厚を評価するための試験条件を示す(a)ノズル配置図、(b)寸法表である。It is (a) a nozzle layout diagram and (b) a dimension table showing test conditions for evaluating cracks in a base material and film thickness. (a)割れの評価結果を示す表、(b)膜厚の評価結果を示す表である。(a) Table showing evaluation results of cracks, (b) Table showing evaluation results of film thickness. 評価結果の補足説明図である。It is supplementary explanatory drawing of an evaluation result.

(一実施形態)
以下、本発明の一実施形態を図面に基づいて説明する。図1、図2に示すように、この実施形態のプラズマ溶射装置10では、溶射ブース11の内側にフレーム12が設置され、フレーム12にブラケット13を介して溶射ノズル14が上下方向に移動可能に取り付けられている。溶射ノズル14は、ボディ142およびノズルヘッド143を備え、ボディ142に、アルゴン、窒素等の不活性ガスからなるプラズマ作動ガス15を導入するガス入口16と、金属、セラミック等の粉末溶射材料19を導入する材料入口17とが設けられている。
(one embodiment)
An embodiment of the present invention will be described below with reference to the drawings. As shown in FIGS. 1 and 2, in the plasma spraying apparatus 10 of this embodiment, a frame 12 is installed inside a thermal spraying booth 11, and a thermal spraying nozzle 14 is vertically movable via a bracket 13 on the frame 12. installed. The thermal spray nozzle 14 has a body 142 and a nozzle head 143. The body 142 is provided with a gas inlet 16 for introducing a plasma working gas 15 made of an inert gas such as argon or nitrogen, and a powder thermal spray material 19 such as metal or ceramic. A material inlet 17 is provided for introduction.

ノズルヘッド143は、内部でアーク放電によりプラズマを発生させ、プラズマの熱で粉末溶射材料19を溶かし、この溶射材料19を含むプラズマジェット20をセラミック製の基材21に向けて噴射する。基材21は、例えば、排ガス中の酸素量を測定するO2センサであって、治具22によって垂直な軸線213の周りで回転可能に保持されている。図3(a)に示すように、基材21の基部211は治具22に把持され、本体部212の外面が基材21の回転軸線213に沿って延びる緩やかな円錐面または円筒面となっている。そして、図3(b)に示すように、基材21の回転中に、溶射ノズル14が基材21に対する位置を上下に変化させつつ、プラズマジェット20中の溶射材料19を本体部212の外面に吹き付けて皮膜23を積層状に形成する。 The nozzle head 143 internally generates plasma by arc discharge, melts the powder thermal spray material 19 with the heat of the plasma, and injects the plasma jet 20 containing the thermal spray material 19 toward the ceramic substrate 21 . The substrate 21 is, for example, an O 2 sensor that measures the amount of oxygen in the exhaust gas, and is rotatably held around a vertical axis 213 by a jig 22 . As shown in FIG. 3A, the base 211 of the substrate 21 is held by the jig 22, and the outer surface of the main body 212 becomes a gently conical or cylindrical surface extending along the rotation axis 213 of the substrate 21. As shown in FIG. ing. Then, as shown in FIG. 3B, while the substrate 21 is rotating, the thermal spraying nozzle 14 vertically changes its position with respect to the substrate 21 so that the thermal spray material 19 in the plasma jet 20 is applied to the outer surface of the main body 212 . to form the film 23 in a layered manner.

図1に示すように、治具22はモータ222により駆動され、モータ222が溶射ブース11の底壁111の上に設置されている。同じく底壁111には、左右に2本の冷却ノズル24が支持部材25によって支持されている。図2に示すように、2本の冷却ノズル24は、ノズルヘッド143の近傍で溶射ノズル14の軸線141に関して対称に配置されている。冷却ノズル24の先端には、ガス吹出口241が基材21の回転軸線方向に延びるスリット状に形成され(図1参照)、基材21の回転中に、冷却ガスとしてのエア26をプラズマジェット20の周囲からセラミック基材21に向けて噴射する。 As shown in FIG. 1 , the jig 22 is driven by a motor 222 and the motor 222 is installed on the bottom wall 111 of the thermal spray booth 11 . Similarly, on the bottom wall 111 , two cooling nozzles 24 are supported on the left and right by support members 25 . As shown in FIG. 2 , the two cooling nozzles 24 are arranged symmetrically with respect to the axis 141 of the thermal spray nozzle 14 near the nozzle head 143 . At the tip of the cooling nozzle 24, a gas outlet 241 is formed in the shape of a slit extending in the rotation axis direction of the substrate 21 (see FIG. 1). It is jetted toward the ceramic substrate 21 from the periphery of 20 .

また、冷却ノズル24は、エア26の噴流に乗せてプラズマジェット20中の溶射材料19を基材21に寄せ集める。この実施形態では、図4(a)に示すように、2本の冷却ノズル24の軸線242が基材21よりも溶射ノズル14に近い位置(交点P)で互いに斜めに交差する。溶射ノズル14の軸線141と冷却ノズル24の軸線242とがなす角度θは、35°~60°であるのが好ましい。角度θが35°未満になると、エア26がプラズマジェット20の流れを乱し、膜厚を減少させる原因となる。また、角度θが60°を超過すると、基材21に到達するエア量が減少し、冷却効果が低下し、割れの原因となる。 Also, the cooling nozzle 24 gathers the thermal spray material 19 in the plasma jet 20 onto the substrate 21 on the jet of air 26 . In this embodiment, as shown in FIG. 4( a ), the axes 242 of the two cooling nozzles 24 cross each other obliquely at a position (intersection point P) closer to the thermal spray nozzle 14 than the base material 21 . The angle θ between the axis 141 of the thermal spray nozzle 14 and the axis 242 of the cooling nozzle 24 is preferably 35° to 60°. If the angle θ is less than 35°, the air 26 disturbs the flow of the plasma jet 20 and causes the film thickness to decrease. Moreover, if the angle θ exceeds 60°, the amount of air reaching the substrate 21 decreases, the cooling effect decreases, and cracks occur.

図4(b)は、冷却ノズル24の配置と基材21の割れおよび皮膜23の膜厚との関係を評価するための試験条件を示す。この試験では、基材21の中心から交点Pまでの距離A、交点Pから冷却ノズル24のガス吹出口241までの距離B、および角度θを変え、4つの条件「い」~「に」を設定した。そして、図5(a),(b)に示すように、各条件においてエア量を変え、基材21の割れおよび皮膜23の膜厚を評価した。その結果、エア量が20L/min以上であると、すべての条件で基材21に割れが発生しなかった。条件「い」は、エア量が25L/minで割れを発生せず、膜厚も十分であることから、皮膜23の高速加工に適していると云える。条件「ろ」は、条件「い」と比較して距離Bが短いため、図6に示すように、エア26の噴流によって溶射材料19が遮られ、エア量の多寡に関わりなく膜厚が不足する。 FIG. 4B shows test conditions for evaluating the relationship between the arrangement of the cooling nozzles 24 and the cracks in the substrate 21 and the film thickness of the coating 23 . In this test, the distance A from the center of the base material 21 to the intersection point P, the distance B from the intersection point P to the gas outlet 241 of the cooling nozzle 24, and the angle θ were changed, and four conditions "i" to "ni" were applied. set. Then, as shown in FIGS. 5(a) and 5(b), cracking of the substrate 21 and film thickness of the film 23 were evaluated by changing the amount of air under each condition. As a result, when the amount of air was 20 L/min or more, cracks did not occur in the substrate 21 under all conditions. Condition "I" can be said to be suitable for high-speed processing of the film 23 because no cracks occur at an air flow rate of 25 L/min and the film thickness is sufficient. In the condition "lo", the distance B is shorter than in the condition "i", so as shown in FIG. do.

以上詳述したように、この実施形態のプラズマ溶射装置10によれば、図3(b)に示すように、基材21の回転に伴って溶射材料19によって皮膜23が形成されると同時に、その皮膜23がエア26によって冷却される。このため、基材21を各部均一な温度で発熱させ、熱膨張差を少なくして、セラミック基材21の割れを抑えることができる。また、エア26がプラズマジェット20の両側から基材21に向けて斜めに噴射されるので、エア26の噴流に乗せて溶射材料19を基材21側に寄せ集め、皮膜23を十分な膜厚で短時間に加工することができる。なお、プラズマ作動ガス15および冷却エア26を含むガス類は、溶射ブース11内に回収されたのち、排気ダクト27(図2参照)を通して外部に排出される。 As described in detail above, according to the plasma spraying apparatus 10 of this embodiment, as shown in FIG. The coating 23 is cooled by air 26 . Therefore, the base material 21 can be made to generate heat at a uniform temperature in each part, the difference in thermal expansion can be reduced, and cracking of the ceramic base material 21 can be suppressed. In addition, since the air 26 is jetted obliquely from both sides of the plasma jet 20 toward the base material 21, the thermal spray material 19 is collected on the base material 21 side on the jet stream of the air 26, and the film 23 is formed to a sufficient thickness. can be processed in a short time. Gases including the plasma working gas 15 and the cooling air 26 are recovered in the thermal spraying booth 11 and then discharged to the outside through an exhaust duct 27 (see FIG. 2).

(その他の実施形態)
本発明は、上記実施形態に限定されるものではなく、以下に例示するように、発明の趣旨を逸脱しない範囲で各部の形状や構成を適宜に変更して実施することも可能である。
(1)セラミック基材21として、センサ部品以外の各種部品、製品または物品を用いること。
(2)皮膜23を六角柱、八角柱、それ以上の多角柱の外面に形成すること。
(Other embodiments)
The present invention is not limited to the above-described embodiments, and as exemplified below, the shape and configuration of each part can be changed as appropriate without departing from the scope of the invention.
(1) Using various parts, products or articles other than sensor parts as the ceramic base material 21 .
(2) Forming the film 23 on the outer surface of a hexagonal prism, an octagonal prism, or more polygonal prisms.

(3)上記実施形態では、垂直に保持された基材21に向けて溶射ノズル14が横方向からプラズマジェット20を噴射しているが、水平に保持された基材21に向けて溶射ノズル14が上または下からプラズマジェット20を噴射してもよい。
(4)冷却ノズル24は2本に限定されず、溶射ノズル14の周囲に3本、4本またはそれ以上を配置してもよい。
(3) In the above embodiment, the thermal spray nozzle 14 sprays the plasma jet 20 laterally toward the substrate 21 held vertically. may inject the plasma jet 20 from above or below.
(4) The number of cooling nozzles 24 is not limited to two, and three, four or more may be arranged around the thermal spray nozzle 14 .

(5)複数の冷却ノズル24を溶射ノズル14の軸線141に関して上下対称に配置すること。
(6)溶射ノズル14の軸線141に関して対称形状の1つの幅広の冷却ノズルを使用し、その幅方向両端部から相対的に大量のエアを、幅方向中央部から相対的に少量のエアをセラミック基材21に吹き付けること。
(5) The plurality of cooling nozzles 24 should be vertically symmetrically arranged with respect to the axis 141 of the thermal spray nozzle 14 .
(6) A single wide cooling nozzle having a symmetrical shape with respect to the axis 141 of the thermal spray nozzle 14 is used, and a relatively large amount of air is injected from both ends in the width direction, and a relatively small amount of air is injected from the central portion in the width direction. Spraying onto the substrate 21 .

10・・・プラズマ溶射装置、14・・・溶射ノズル、19・・・溶射材料、
20・・・プラズマジェット、21・・・基材、22・・・治具、23・・・皮膜、
24・・・冷却ノズル、26・・・エア。
10... Plasma spraying device, 14... Thermal spraying nozzle, 19... Thermal spraying material,
20... plasma jet, 21... base material, 22... jig, 23... film,
24... cooling nozzle, 26... air.

Claims (3)

セラミック製の基材(21)を回転可能に保持する治具(22)と、
前記基材の回転中に、溶射材料(19)を含むプラズマジェット(20)を前記基材に向けて噴射し、前記基材の外面に皮膜(23)を形成する溶射ノズル(14)と、
前記溶射ノズルの軸線(141)に関して対称に配置され、前記基材の回転軸線方向に延びるスリット状のガス吹出口(241)を有し、前記基材の回転中に、冷却ガス(26)を前記プラズマジェットの周囲から前記基材に向けて噴射する複数の冷却ノズル(24)と、
を備え、
前記複数の冷却ノズルの軸線(242)は互いに交差し、
前記複数の冷却ノズルの軸線が交差する位置から前記基材までの距離と、前記複数の冷却ノズルの軸線が交差する位置から前記溶射ノズルまでの距離とを比較した時、前記複数の冷却ノズルの軸線が交差する位置から前記基材までの距離の方が小さく、且つ、前記基材の軸方向の投影図において、前記複数の冷却ノズルの軸線が交差する位置は、前記治具の外径の範囲内にあるプラズマ溶射装置(10)。
a jig (22) for rotatably holding a ceramic substrate (21);
a thermal spray nozzle (14) that directs a plasma jet (20) containing a thermal spray material (19) toward the substrate while the substrate is rotating to form a coating (23) on the outer surface of the substrate;
It has slit-shaped gas outlets (241) that are arranged symmetrically with respect to the axis (141) of the thermal spray nozzle and extend in the direction of the rotation axis of the base material, so that cooling gas (26) is supplied during rotation of the base material. a plurality of cooling nozzles (24) that inject from the periphery of the plasma jet toward the substrate;
with
axes (242) of the plurality of cooling nozzles intersect each other;
When comparing the distance from the position where the axes of the plurality of cooling nozzles intersect to the substrate and the distance from the position where the axes of the plurality of cooling nozzles intersect to the thermal spray nozzle, the distance between the plurality of cooling nozzles The distance from the position where the axes intersect to the substrate is smaller, and in the projected view of the substrate in the axial direction, the position where the axes of the plurality of cooling nozzles intersect is the outer diameter of the jig. A plasma spray device (10) within range.
前記基材は、その外面が円筒面または円錐面を含む請求項1に記載のプラズマ溶射装置。 2. The plasma spray apparatus of claim 1, wherein the substrate has an outer surface comprising a cylindrical surface or a conical surface. 前記溶射ノズルは、前記基材との相対位置が可変に設けられる請求項1または2の何れか一項に記載のプラズマ溶射装置。 3. The plasma spraying apparatus according to claim 1, wherein the thermal spraying nozzle is provided with a variable position relative to the substrate.
JP2019163038A 2019-09-06 2019-09-06 Plasma spray equipment Active JP7298403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019163038A JP7298403B2 (en) 2019-09-06 2019-09-06 Plasma spray equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019163038A JP7298403B2 (en) 2019-09-06 2019-09-06 Plasma spray equipment

Publications (2)

Publication Number Publication Date
JP2021042406A JP2021042406A (en) 2021-03-18
JP7298403B2 true JP7298403B2 (en) 2023-06-27

Family

ID=74863067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019163038A Active JP7298403B2 (en) 2019-09-06 2019-09-06 Plasma spray equipment

Country Status (1)

Country Link
JP (1) JP7298403B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004359975A (en) 2003-06-02 2004-12-24 Aisan Ind Co Ltd Method for producing composite material in which hard grains are dispersed in matrix metal
JP2008043869A (en) 2006-08-14 2008-02-28 Nakayama Steel Works Ltd Flame spray device for forming supercooled liquid phase metal film
JP2013221167A (en) 2012-04-13 2013-10-28 Nakayama Steel Works Ltd Method and device for plastic-working amorphous alloy

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5588927A (en) * 1978-12-27 1980-07-05 Matsushita Electric Ind Co Ltd Pipe and its manufacture
JPS58204884A (en) * 1982-05-20 1983-11-29 九州耐火煉瓦株式会社 Ceramic roll
JP3005902B2 (en) * 1989-04-19 2000-02-07 松下電器産業株式会社 Plasma spraying equipment
JPH08357Y2 (en) * 1989-11-17 1996-01-10 新日本製鐵株式会社 Ceramic interpolating metal pipe
JPH06103990A (en) * 1992-09-18 1994-04-15 Ngk Insulators Ltd Solid electrolytic type fuel cell and manufacture thereof
JPH06122956A (en) * 1992-10-13 1994-05-06 Matsushita Electric Ind Co Ltd Plasma spraying method and film forming device
JP3241153B2 (en) * 1993-04-02 2001-12-25 株式会社フジクラ Thermal spray equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004359975A (en) 2003-06-02 2004-12-24 Aisan Ind Co Ltd Method for producing composite material in which hard grains are dispersed in matrix metal
JP2008043869A (en) 2006-08-14 2008-02-28 Nakayama Steel Works Ltd Flame spray device for forming supercooled liquid phase metal film
JP2013221167A (en) 2012-04-13 2013-10-28 Nakayama Steel Works Ltd Method and device for plastic-working amorphous alloy

Also Published As

Publication number Publication date
JP2021042406A (en) 2021-03-18

Similar Documents

Publication Publication Date Title
JP5231767B2 (en) Masking system for masking the crank chamber of an internal combustion engine
US3900639A (en) Method for coating surfaces of a workpiece by spraying on a coating substance
US4064295A (en) Spraying atomized particles
JP5851136B2 (en) Cooling device and cooling method for metal tube after heating
KR102318264B1 (en) Depositing apparatus
JPH0655214A (en) Spray device for cooling extrusion molding
JP2018532877A (en) Method and apparatus for uniform non-contact cooling of high temperature non-endless surfaces
KR20100130625A (en) Method and device for blowing gas on a running strip
JP2009233784A (en) Method of reducing waterjet injection sound
TW202113110A (en) Coating device and method for metal-coating of workpieces
JP2017045713A (en) Arc type atmospheric pressure plasma apparatus
JP7298403B2 (en) Plasma spray equipment
JP2008025028A (en) Masking system for cylinder bore
JP2014133232A (en) Rotary sprayer for spraying coating material and device having the same
CN104611665B (en) A kind of method of the thermal spraying prepares coating on large scale bend pipe class workpiece
KR20200132847A (en) Applicator
TW201811478A (en) Laser treatment device and laser scrap removal device
JP5576295B2 (en) Apparatus and method for removing fluid after laser scoring
CN108247052B (en) Method for temperature control of metal additive manufacturing process
JP2012076111A (en) Laser beam welding apparatus
JPH04219161A (en) Device and method for atomizing liquid
JPH0551722A (en) Method and device for plasma spraying and plasma-sprayed film
US20130017338A1 (en) Process for forming a ceramic abrasive air seal with increased strain tolerance
JP2006249490A (en) Aerosol spraying device for film formation apparatus, and film formation apparatus
US20070102537A1 (en) Ultrasonic standing-wave atomizer arrangement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230529

R151 Written notification of patent or utility model registration

Ref document number: 7298403

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151