JP7297893B2 - automatic analyzer - Google Patents

automatic analyzer Download PDF

Info

Publication number
JP7297893B2
JP7297893B2 JP2021527350A JP2021527350A JP7297893B2 JP 7297893 B2 JP7297893 B2 JP 7297893B2 JP 2021527350 A JP2021527350 A JP 2021527350A JP 2021527350 A JP2021527350 A JP 2021527350A JP 7297893 B2 JP7297893 B2 JP 7297893B2
Authority
JP
Japan
Prior art keywords
reagent
automatic analyzer
pipe
wall
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021527350A
Other languages
Japanese (ja)
Other versions
JPWO2020255488A1 (en
JPWO2020255488A5 (en
Inventor
将也 福田
和広 野田
敬道 坂下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Tech Corp filed Critical Hitachi High Tech Corp
Publication of JPWO2020255488A1 publication Critical patent/JPWO2020255488A1/ja
Publication of JPWO2020255488A5 publication Critical patent/JPWO2020255488A5/ja
Application granted granted Critical
Publication of JP7297893B2 publication Critical patent/JP7297893B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1002Reagent dispensers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/16Reagents, handling or storing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/04Closures and closing means
    • B01L2300/046Function or devices integrated in the closure
    • B01L2300/048Function or devices integrated in the closure enabling gas exchange, e.g. vents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0681Filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/14Means for pressure control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1894Cooling means; Cryo cooling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00346Heating or cooling arrangements
    • G01N2035/00435Refrigerated reagent storage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00346Heating or cooling arrangements
    • G01N2035/00445Other cooling arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00346Heating or cooling arrangements
    • G01N2035/00455Controlling humidity in analyser
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0439Rotary sample carriers, i.e. carousels
    • G01N2035/0443Rotary sample carriers, i.e. carousels for reagents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Description

本発明は、自動分析装置に関する。 The present invention relates to automated analyzers.

従来、各種の試薬と検体を混合させて分析を行う自動分析装置は、これら各種の試薬を保持する試薬保冷庫を備える。この試薬保冷庫は、保持する試薬を容易に吸引できるように、蓋部材の一部に試薬吸引用の孔を有し、この試薬吸引用の孔は、常時開いている。 2. Description of the Related Art Conventionally, an automatic analyzer that performs analysis by mixing various reagents and specimens has a reagent cooler that holds these various reagents. This reagent cooler has a reagent aspirating hole in a part of the lid member so that the retained reagent can be easily aspirated, and the reagent aspirating hole is always open.

試薬保冷庫内は、一般に室温より低めの温度に保たれているが、上述した試薬吸引用の孔は常時開いているため、この孔から外気が流入することにより試薬保冷庫内に結露が発生する。または、流入した外気によって、試薬吸引用の孔付近の温度が上昇し、保冷庫内の温度分布が不均一になる。そこで、特許文献1では、試薬保冷庫外から冷却した空気を送り込むことによって外気の流入を防ぎ、結露を防止する技術が開示されている。 The inside of the reagent cooler is generally kept at a temperature lower than room temperature, but since the above-mentioned reagent aspirating hole is always open, outside air flows in through this hole and condensation occurs inside the reagent cooler. do. Alternatively, the temperature in the vicinity of the holes for reagent suction rises due to the inflow of outside air, and the temperature distribution in the cold storage becomes uneven. Therefore, Patent Literature 1 discloses a technique for preventing the inflow of outside air and preventing dew condensation by sending cooled air from outside the reagent cooler.

特開2009-270857号公報JP 2009-270857 A

従来技術においては、試薬保冷庫の冷却と、試薬保冷庫内に送り込む空気の冷却と、試薬保冷庫内の温度を均一化させるための空気攪拌手段が別々の機器を用いて行われていた。このように別々の機器を用いることは、自動分析装置の消費電力が大きい問題、さらにその構成が複雑になる問題があった。 In the prior art, cooling of the reagent cooler, cooling of the air sent into the reagent cooler, and air stirring means for equalizing the temperature in the reagent cooler were performed using separate devices. Using separate devices in this manner has the problem that the power consumption of the autoanalyzer is large and the configuration thereof is complicated.

本発明の目的は、上記の課題を解決し、低消費電力かつ簡易な構成で、試薬保冷庫の結露防止と、温度の均一化を可能にする自動分析装置を提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide an automatic analyzer capable of preventing dew condensation in a reagent cool storage and uniformizing temperature with low power consumption and a simple configuration.

上記目的を達成するため、本発明においては、試薬と検体を混合させて分析を行う自動分析装置であって、試薬容器を格納する試薬保冷庫と、試薬保冷庫の外壁の内部に設置され、外壁の内部に冷媒を流通させる冷媒配管と、外壁の内部に冷媒配管に接触して設置され、試薬保冷庫の外部に存在する外気を試薬保冷庫の内部に導く送風管と、送風管に設置され、送風管を通して外気を試薬保冷庫の内部に拡散させる送風手段と、を備え、送風管に、試薬保冷庫の外に終端を持つ配管が接続され、配管は、送風管に接続された小さな径の配管と、試薬保冷庫の底部に設けられ、試薬保冷庫の内部に発生した結露を排出するものであって、小さな径の配管と接続され、小さな径より大きな径の配管とからなり、大きな径の配管が試薬保冷庫の外に終端を持つ、自動分析装置を提供する。
In order to achieve the above object, the present invention provides an automatic analyzer for performing analysis by mixing reagents and specimens, comprising a reagent cool box for storing reagent containers, and a reagent cool box installed inside the outer wall of the reagent cool box, Refrigerant piping that circulates the refrigerant inside the outer wall, an air pipe that is installed inside the outer wall in contact with the refrigerant pipe and guides the outside air existing outside the reagent cold storage to the inside of the reagent cold storage, and installed in the air duct and a blowing means for diffusing the outside air into the interior of the reagent cool storage through the blow pipe, a pipe having an end outside the reagent cool storage is connected to the blow pipe, and the pipe is a small unit connected to the blow pipe. and a pipe with a diameter larger than the small diameter pipe, which is provided at the bottom of the reagent cooler and discharges dew condensation generated inside the reagent cooler, and is connected to the small diameter pipe, To provide an automatic analyzer in which a large-diameter pipe terminates outside a reagent cooler.

本発明によれば、試薬保冷庫に外気を取り込み、その過程で試薬保冷庫自身の冷気によって冷却し、試薬保冷庫内に送風することで保冷庫内を陽圧化して吸引孔からの外気の流入を防ぐことで結露の発生を防止し、さらに外気の送風によって保冷庫内の温度を均一化できる試薬保冷庫を、低消費電力かつ簡易な構造で実現できる。 According to the present invention, outside air is taken into the reagent cooler, and in the process, it is cooled by the cold air of the reagent cooler itself, and air is blown into the reagent cooler so that the inside of the cooler is positively pressurized and the outside air is drawn from the suction hole. It is possible to realize a reagent cool box with low power consumption and a simple structure that can prevent the occurrence of dew condensation by preventing the inflow and can equalize the temperature inside the cool box by blowing outside air.

自動分析装置の概要を示す平面図。The top view which shows the outline|summary of an automatic analyzer. 自動分析装置のA-A断面を示す構成概要図。FIG. 2 is a schematic configuration diagram showing the AA cross section of the automatic analyzer. 構成概要のB-B断面を示す図。The figure which shows the BB cross section of a structural outline.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一部には原則として同一の符号を付し、その繰り返しの説明は省略する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In principle, the same parts are denoted by the same reference numerals throughout the drawings for describing the embodiments, and repeated descriptions thereof will be omitted.

実施例1は、試薬と検体を混合させて分析を行う自動分析装置であって、試薬容器を格納する試薬保冷庫と、試薬保冷庫の外壁の内部に設置され、外壁の内部に冷媒を流通させる冷媒配管と、外壁の内部に設置され、試薬保冷庫の外部に存在する外気を試薬保冷庫の内部に導く送風管と、送風管に設置され、送風管を通して外気を試薬保冷庫の内部に拡散させる送風手段と、を備える自動分析装置の実施例である。 Example 1 is an automatic analyzer that performs analysis by mixing reagents and specimens. a refrigerant pipe installed inside the outer wall to guide outside air existing outside the reagent cool storage to the inside of the reagent cool storage; and air blowing means for diffusion.

図1は、自動分析装置101の概略を示す平面図である。自動分析装置101は、試料と試薬とを混合し、混合した測定試料の分析を自動で行う。図1に示されるように、自動分析装置101は、搬送ライン1と、試料を吸引する試料プローブ2と、反応容器供給庫3と、反応容器供給機構4と、反応容器テーブル5(インキュベータ)と、反応測定装置6と、試薬撹拌棒7と、試薬ディスク8と、試薬プローブ102と、試薬保冷庫103と、更に吸気口112と、フィルター113と、送風手段114を有する。 FIG. 1 is a plan view showing an outline of an automatic analyzer 101. FIG. The automatic analyzer 101 mixes a sample and a reagent and automatically analyzes the mixed measurement sample. As shown in FIG. 1, an automatic analyzer 101 includes a transport line 1, a sample probe 2 for aspirating a sample, a reaction container supply chamber 3, a reaction container supply mechanism 4, and a reaction container table 5 (incubator). , a reaction measuring device 6 , a reagent stirring rod 7 , a reagent disk 8 , a reagent probe 102 , a reagent cooler 103 , an air inlet 112 , a filter 113 , and an air blower 114 .

反応容器供給庫3は、複数の反応容器9を保持する。反応容器供給機構4は、反応容器供給庫3が保持する反応容器9を反応容器テーブル5へ供給する。反応容器テーブル5は、供給された反応容器9を、自らを回転させることで試料プローブ2から試料が吐出される試料吐出位置まで移動させる。 The reaction vessel supply warehouse 3 holds a plurality of reaction vessels 9 . The reaction container supply mechanism 4 supplies the reaction container 9 held by the reaction container supply warehouse 3 to the reaction container table 5 . The reaction vessel table 5 rotates itself to move the supplied reaction vessel 9 to a sample ejection position where the sample is ejected from the sample probe 2 .

試薬保冷庫103は試薬が入った試薬容器107を収容する。試薬保冷庫103は、側壁は外壁と内壁を有する円筒状の形状であり、その上部は蓋部を形成する。図1において、蓋部の一部を削除して、試薬保冷庫103の内部を示した。同図に示すように、試薬保冷庫103の上部の蓋部には、吸引孔104が形成されている。このように、試薬保冷庫103は、外壁の内部に内壁を有する。 The reagent cooler 103 accommodates reagent containers 107 containing reagents. The reagent cooler 103 has a cylindrical side wall with an outer wall and an inner wall, and the upper part forms a lid. In FIG. 1, the inside of the reagent cooler 103 is shown with a part of the lid removed. As shown in the figure, a suction hole 104 is formed in the upper lid portion of the reagent cooler 103 . Thus, the reagent cold storage 103 has an inner wall inside the outer wall.

試薬容器107の上端は開放されている。試薬撹拌棒7は、試薬容器107に入った試薬を撹拌する試薬撹拌位置まで移動される。そして、試薬撹拌棒7は、吸引孔104と試薬容器107の上端とを介して試薬容器107へ挿入される。そして、試薬撹拌棒7は、挿入された状態で回転されることで、試薬容器に入った試薬を撹拌する。試薬を撹拌した試薬撹拌棒7は、試薬容器107から引き抜かれる。 The upper end of reagent container 107 is open. Reagent stirring rod 7 is moved to the reagent stirring position where the reagent contained in reagent container 107 is stirred. Reagent stirring rod 7 is then inserted into reagent container 107 through suction hole 104 and the upper end of reagent container 107 . Then, the reagent stirring rod 7 is rotated in the inserted state to stir the reagent contained in the reagent container. The reagent stirring rod 7 that has stirred the reagent is pulled out from the reagent container 107 .

その後、試薬プローブ102は、試薬容器107から試薬を吸引する試薬吸引位置まで移動される。そして、試薬プローブ102は、吸引孔104と試薬容器107の上端とを介して試薬容器107へ挿入される。そして、試薬プローブ102は、挿入された状態で試薬容器107から試薬を吸引する。 After that, the reagent probe 102 is moved to the reagent aspirating position where the reagent is aspirated from the reagent container 107 . Then, the reagent probe 102 is inserted into the reagent container 107 through the suction hole 104 and the upper end of the reagent container 107 . Then, the reagent probe 102 aspirates the reagent from the reagent container 107 while being inserted.

試薬を吸引した試薬プローブ102は、試薬容器107から引き抜かれる。その後、試薬プローブ102は、試薬吐出位置まで移動され、反応容器9内に試薬を吐出する。試薬が吐出された後、反応容器テーブル5は、自らを回転させることで、反応容器9を、試料プローブ2から試料が吐出される試料吐出位置まで移動させる。 The reagent probe 102 that has sucked the reagent is withdrawn from the reagent container 107 . After that, the reagent probe 102 is moved to the reagent ejection position and ejects the reagent into the reaction container 9 . After the reagent is discharged, the reaction container table 5 rotates itself to move the reaction container 9 to the sample discharge position where the sample is discharged from the sample probe 2 .

搬送ライン1は、試験管ラック10に保持された試料容器11を試料プローブ2から試料が吸引される試料吸引位置まで搬送する。試料容器11には、試料が入っている。また、試料容器11は、上端が開放されている。試料容器11が、試料吸引位置まで搬送された後、試料プローブ2は、試料容器11の上端から挿入される。そして、試料プローブ2は、挿入された状態で試料容器11から試料を吸引する。 The transport line 1 transports the sample container 11 held by the test tube rack 10 to a sample aspirating position where the sample is aspirated from the sample probe 2 . A sample container 11 contains a sample. Also, the sample container 11 has an open top end. After the sample container 11 is transported to the sample aspirating position, the sample probe 2 is inserted from the upper end of the sample container 11 . The sample probe 2 aspirates the sample from the sample container 11 while being inserted.

試料を吸引した後、試料プローブ2は、試料容器11から引き抜かれる。その後、試料プローブ2は、試料吐出位置まで移動される。試料吐出位置まで移動された後、試料プローブ2は、吸引した試料を反応容器9へ吐出する。 After aspirating the sample, the sample probe 2 is withdrawn from the sample container 11 . After that, the sample probe 2 is moved to the sample ejection position. After being moved to the sample ejection position, the sample probe 2 ejects the sucked sample into the reaction container 9 .

図示しない撹拌機構は、反応容器9に吐出された試薬と試料とを撹拌する。撹拌された試薬と試料とは所定時間放置される。放置された後、反応容器9は、反応測定装置6まで移動される。そして、反応測定装置6は、移動された反応容器9に入った試薬と試料との反応状態を測定する。 A stirring mechanism (not shown) stirs the reagent and sample discharged into the reaction vessel 9 . The stirred reagent and sample are left for a predetermined time. After being left alone, the reaction container 9 is moved to the reaction measurement device 6 . Then, the reaction measuring device 6 measures the reaction state between the reagent and the sample that have entered the moved reaction container 9 .

試薬容器107は試薬ディスク8上に1個以上、例えば4個設置されており試薬ディスク8が回転することによって、試薬攪拌棒7および試薬プローブ102で攪拌、吸引する試薬を入れ替えることが出来る。 One or more, for example, four reagent containers 107 are placed on the reagent disk 8, and by rotating the reagent disk 8, the reagents to be stirred and aspirated by the reagent stirring rod 7 and the reagent probe 102 can be replaced.

図2は、自動分析装置のA-A断面の構成概要を示す。同図に示すように、試薬保冷庫103の側壁、蓋部、底部の内壁と外壁の間に、冷媒配管105が試薬保冷庫103の内壁に接触して備わっている。この冷媒配管105は熱伝導率の高い素材で構成されている。この冷媒配管105は冷却装置110と接続しており、冷媒配管105の中には冷却装置110にて冷却された冷媒が循環している。この冷媒の循環によって冷媒配管105は冷却され、冷媒配管105と接触している試薬保冷庫103の内壁が冷却される。この内壁の冷気が試薬保冷庫103の内部へ伝わることで、試薬保冷庫103の内部は一定の温度に冷却される。 FIG. 2 shows a schematic configuration of the AA section of the automatic analyzer. As shown in the figure, a refrigerant pipe 105 is provided between the inner wall and the outer wall of the side wall, lid, and bottom of the reagent cooler 103 so as to be in contact with the inner wall of the reagent cooler 103 . This refrigerant pipe 105 is made of a material with high thermal conductivity. This refrigerant pipe 105 is connected to a cooling device 110 , and the refrigerant cooled by the cooling device 110 circulates in the refrigerant pipe 105 . The refrigerant pipe 105 is cooled by this circulation of the refrigerant, and the inner wall of the reagent cooler 103 that is in contact with the refrigerant pipe 105 is cooled. The cold air on the inner wall is transmitted to the interior of the reagent cooler 103, thereby cooling the interior of the reagent cooler 103 to a constant temperature.

一例として、ここでの冷却温度は6.5℃程度を想定している。また、試薬保冷庫103の外壁と内壁の間(図2で斜線が引かれた部分)には熱伝導率の低い材料が充填されており、外気温の影響を受けない形状としている。 As an example, the cooling temperature here is assumed to be about 6.5°C. A material with low thermal conductivity is filled between the outer wall and the inner wall of the reagent cool box 103 (the hatched portion in FIG. 2), so that the shape is not affected by the outside air temperature.

図2に示すように、試薬保冷庫103の底部には、配管である大ドレン管111が備えられており、試薬保冷庫103の内部に結露が発生した場合は、この大ドレン管111を通って、結露が同図の下方向の試薬保冷庫103外へ排出される。 As shown in FIG. 2, a large drain pipe 111, which is a pipe, is provided at the bottom of the reagent cooler 103. When condensation occurs inside the reagent cooler 103, the large drain pipe 111 can be drained. As a result, the dew condensation is discharged out of the reagent cooler 103 downward in the figure.

図3は、図2の構成概要のB-B断面を示す図である。送風管109は試薬保冷庫103の外側の空気を吸気口112から試薬保冷庫103の内部に取り入れる配管であり、この送風管109は試薬保冷庫103の内壁と外壁の間(図3で斜線が引かれた部分)を通り、かつ図2に示したように冷媒配管105に接触している。また、送風管109は熱伝導率の高い素材で構成されており、冷媒配管105と接触していることで冷却される。この冷却により、送風管109の内部を通過する気体も冷却される。 FIG. 3 is a diagram showing a BB cross section of the schematic configuration of FIG. The air pipe 109 is a pipe for taking air from the outside of the reagent cold storage 103 into the inside of the reagent cold storage 103 from the intake port 112, and this air pipe 109 is located between the inner wall and the outer wall of the reagent cold storage 103 (shaded in FIG. 3). drawn portion) and contacts the refrigerant pipe 105 as shown in FIG. Also, the blower pipe 109 is made of a material having a high thermal conductivity, and is cooled by being in contact with the refrigerant pipe 105 . This cooling also cools the gas passing through the blower pipe 109 .

送風管109の始端、終端にはそれぞれ吸気口112、送風口108が取り付けられている。吸気口112は試薬保冷庫103の外壁よりも外側に配置され、送風口108は試薬保冷庫103の内壁よりも内側で、内壁に沿って配置される。送風管109には送風手段114と、送風手段114の吸気側に異物侵入を防ぐフィルター113が備えられている。送風手段114の一例としてはファンが挙げられる。送風手段114の位置は吸気口112と送風口108の間である。なお、図3では実施例1の一具体例として吸気口112に隣接する形状としたが、送風口108に隣接する形状でもよい。なお、115は吸気口112への空気の流れを示している。 A suction port 112 and a blowing port 108 are attached to the beginning and end of the blowing pipe 109, respectively. The intake port 112 is arranged outside the outer wall of the reagent cooler 103 , and the blower port 108 is arranged inside the inner wall of the reagent cooler 103 along the inner wall. The blower pipe 109 is provided with a blower means 114 and a filter 113 on the suction side of the blower means 114 to prevent foreign matter from entering. An example of the air blower 114 is a fan. The position of the blower means 114 is between the inlet 112 and the blower 108 . In FIG. 3, the shape adjacent to the air intake port 112 is used as a specific example of the first embodiment, but the shape adjacent to the blower port 108 may also be used. Note that 115 indicates the flow of air to the intake port 112 .

送風管109の長さは、吸気口112から取り込んだ外気が送風口108から吹き出す際の温度が、試薬保冷庫103内の温度に対して5℃以内となるような長さである。一例をあげると、試薬保冷庫103内の温度が6.5℃であるならば、11.5°から1.5°の範囲になるような長さである。すなわち、送風管109の側壁の外壁の内部に存在する部位の長さは、外気が送風手段114に取り込まれる際の外気の温度と試薬保冷庫103内の温度との差が5度以内となるよう設定される。図3においては、試薬保冷庫103の側壁の全周360°中の約半分の側壁中に配置した場合を図示したが、最低45°の側壁中に配置すると良い。すなわち、送風管109の試薬保冷庫103の外壁の内部に存在する部位は、円筒状の試薬保冷庫103の側壁の45°以上に配置されると好適である。 The length of the blower tube 109 is such that the temperature of the outside air taken in through the inlet port 112 and blown out through the blower port 108 is within 5° C. of the temperature inside the reagent cooler 103 . For example, if the temperature in the reagent cooler 103 is 6.5° C., the length is in the range of 11.5° to 1.5°. That is, the length of the part existing inside the outer wall of the side wall of the blower tube 109 is such that the difference between the temperature of the outside air when the outside air is taken into the blowing means 114 and the temperature inside the reagent cooler 103 is within 5 degrees. is set as In FIG. 3, the case of arranging in about half of the 360° circumference of the side wall of the reagent cooler 103 is shown, but it is preferable to arrange it in the side wall of at least 45°. That is, it is preferable that the part of the air pipe 109 that exists inside the outer wall of the reagent cooler 103 is arranged at an angle of 45° or more to the side wall of the cylindrical reagent cooler 103 .

図2、図3に示すように、吸気口112と送風口108の間の送風管109には小配管である小ドレン管106が備わっている。小ドレン管106を設ける位置は、図3に示すように、送風管109の半分より送風口108側が好適である。すなわち、送風管の始端と終端にそれぞれ吸気口、送風口が取り付けられ、小さな径の小ドレン管は、送風管の半分よりも送風口側に設けられる。 As shown in FIGS. 2 and 3, the blower pipe 109 between the intake port 112 and the blower port 108 is provided with a small drain pipe 106 which is a small pipe. As shown in FIG. 3, the position where the small drain pipe 106 is provided is preferably on the air blowing port 108 side of the half of the air blowing pipe 109 . That is, an intake port and a blower port are attached to the beginning and end of the blower pipe, respectively, and a small drain pipe with a small diameter is provided on the blower port side of the half of the blower pipe.

また、小ドレン管106の終端は、大ドレン管111へ接続されている。これにより、吸気口112から送風管109が取り込んだ外気が送風管109内で冷却されることにより送風管109内で発生する結露水は、この小ドレン管106から大ドレン管111を通って、図2に示すように試薬保冷庫103外へ排出される。言い換えるなら、送風管109に、試薬保冷庫103の外に終端を持つ配管が接続されている構成を備える。この配管は、送風管109に接続された小さな径の配管である小ドレン管と、試薬保冷庫の底部に設けられ、小さな径の配管と接続され、小さな径より大きな径の配管である大ドレン管とからなり、大きな径の配管である大ドレン管が試薬保冷庫の外に終端を持つ構成を備える。 Also, the end of the small drain pipe 106 is connected to the large drain pipe 111 . As a result, the outside air taken in by the blower pipe 109 from the intake port 112 is cooled in the blower pipe 109, and the dew condensation water generated inside the blower pipe 109 passes from the small drain pipe 106 through the large drain pipe 111, As shown in FIG. 2, the reagent is discharged out of the cold storage compartment 103 . In other words, the air pipe 109 is connected to a pipe having an end outside the reagent cooler 103 . This pipe includes a small drain pipe, which is a pipe with a small diameter connected to the blower pipe 109, and a large drain pipe, which is a pipe with a diameter larger than the small diameter, which is provided at the bottom of the reagent cooler and is connected to the pipe with a small diameter. A large drain pipe, which is a pipe with a large diameter, has an end outside the reagent cooler.

上述の通り本実施例の自動分析装置の試薬保冷庫103に、送風管109を通して冷却した外気を導入する。これにより試薬保冷庫103を陽圧化し、蓋部の吸引孔104からの外気の流入を防ぐことで結露の発生を防止する。さらに送風口108から冷却した外気を試薬保冷庫103の内部に吹き出すことにより、試薬保冷庫103内部の空気を攪拌し、内部温度を均一化する。この空気の撹拌の効率を上げるため、図3に示すように、送風管109の送風口108を、試薬保冷庫103の内壁より内側で、内壁に沿った位置に配置すると好適である。 As described above, cooled outside air is introduced through the air pipe 109 into the reagent cooler 103 of the automatic analyzer of this embodiment. As a result, the reagent cooler 103 is pressurized positively, preventing the inflow of outside air from the suction hole 104 of the lid, thereby preventing dew condensation. Furthermore, by blowing the cooled outside air from the blower port 108 into the inside of the reagent cooler 103, the air inside the reagent cooler 103 is agitated and the inner temperature is made uniform. In order to increase the efficiency of this air agitation, as shown in FIG. 3, it is preferable to arrange the blower port 108 of the blower pipe 109 inside the inner wall of the reagent cooler 103 and along the inner wall.

本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明のより良い理解のために詳細に説明したのであり、必ずしも説明の全ての構成を備えるものに限定されるものではない。 The present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above embodiments have been described in detail for better understanding of the present invention, and are not necessarily limited to those having all the configurations described.

1 搬送ライン
2 試料プローブ
3 反応容器供給庫
4 反応容器供給機構
5 反応容器テーブル
6 反応測定装置
7 試薬撹拌棒
8 試薬ディスク
9 反応容器
10 試験管ラック
11 試料容器
101 自動分析装置
102 試薬プローブ
103 試薬保冷庫
104 吸引孔
105 冷媒配管
106 小ドレン管
107 試薬容器
108 送風口
109 送風管
110 冷却装置
111 大ドレン管
112 吸気口
113 フィルター
114 送風手段
115 空気の流れ
1 Transfer line 2 Sample probe 3 Reaction container supply box 4 Reaction container supply mechanism 5 Reaction container table 6 Reaction measuring device 7 Reagent stirring rod 8 Reagent disk 9 Reaction container 10 Test tube rack 11 Sample container 101 Automatic analyzer 102 Reagent probe 103 Reagent Refrigerator 104 Suction hole 105 Refrigerant pipe 106 Small drain pipe 107 Reagent container 108 Blower port 109 Blower pipe 110 Cooling device 111 Large drain pipe 112 Suction port 113 Filter 114 Blower means 115 Air flow

Claims (10)

試薬と検体を混合させて分析を行う自動分析装置であって、
試薬容器を格納する試薬保冷庫と、
前記試薬保冷庫の外壁の内部に設置され、前記外壁の内部に冷媒を流通させる冷媒配管と、
前記外壁の内部に前記冷媒配管に接触して設置され、前記試薬保冷庫の外部に存在する外気を前記試薬保冷庫の内部に導く送風管と、
前記送風管に設置され、前記送風管を通して前記外気を前記試薬保冷庫の内部に拡散させる送風手段と、を備え、
前記送風管に、前記試薬保冷庫の外に終端を持つ配管が接続され、
前記配管は、前記送風管に接続された小さな径の配管と、前記試薬保冷庫の底部に設けられ、前記試薬保冷庫の内部に発生した結露を排出するものであって、前記小さな径の配管と接続され、前記小さな径より大きな径の配管とからなり、
前記大きな径の配管が前記試薬保冷庫の外に終端を持つ、
ことを特徴とする自動分析装置。
An automatic analyzer that performs analysis by mixing reagents and specimens,
a reagent cooler storing reagent containers;
a refrigerant pipe that is installed inside the outer wall of the reagent cold storage and circulates the refrigerant inside the outer wall;
a blowing pipe installed inside the outer wall in contact with the refrigerant pipe and guiding outside air existing outside the reagent cool storage to the inside of the reagent cool storage;
a blower installed in the blower pipe for diffusing the outside air into the reagent cold storage through the blower pipe,
A pipe having a terminal end outside the reagent cooler is connected to the air pipe,
The piping includes a small-diameter pipe connected to the blower tube and a pipe provided at the bottom of the reagent cool-box for discharging dew condensation generated inside the reagent cool-box. and a pipe having a diameter larger than the small diameter,
the large-diameter pipe terminates outside the reagent cooler;
An automatic analyzer characterized by:
請求項1記載の自動分析装置であって、
前記送風管の前記外壁の内部に存在する部位の長さは、前記外気が前記送風手段に取り込まれる際の前記外気の温度と前記試薬保冷庫内の温度との差が5度(5℃)以内となるよう設定される、
ことを特徴とする自動分析装置。
The automatic analyzer according to claim 1,
The length of the portion of the blower tube that exists inside the outer wall is such that the difference between the temperature of the outside air when the outside air is taken into the blowing means and the temperature in the reagent cooler is 5 degrees (5°C). is set to be within
An automatic analyzer characterized by:
請求項1記載の自動分析装置であって、
前記試薬保冷庫の側壁は円筒状であり、
前記送風管の前記外壁の内部に存在する部位は、円筒状の前記側壁の45°以上に配置される、
ことを特徴とする自動分析装置。
The automatic analyzer according to claim 1,
The side wall of the reagent cooler is cylindrical,
The portion of the blower pipe that exists inside the outer wall is arranged at 45° or more of the cylindrical side wall,
An automatic analyzer characterized by:
請求項1記載の自動分析装置であって、
前記送風管の始端と終端にそれぞれ吸気口、送風口が取り付けられ、
前記小さな径の配管は、前記送風管の半分よりも前記送風口側に設けられる、ことを特徴とする自動分析装置。
The automatic analyzer according to claim 1,
An air intake port and an air blow port are attached to the beginning and end of the air duct, respectively,
The automatic analyzer, wherein the small-diameter pipe is provided closer to the blow port than a half of the blow pipe.
請求項1記載の自動分析装置であって、
前記送風手段の吸気側に、異物混入防止用のフィルターを備える、
ことを特徴とする自動分析装置。
The automatic analyzer according to claim 1,
A filter for preventing contamination with foreign matter is provided on the intake side of the air blowing means,
An automatic analyzer characterized by:
請求項1記載の自動分析装置であって、
前記試薬保冷庫は、その一部に吸引孔を有する蓋部を備え、
前記送風手段により前記試薬保冷庫を陽圧化し、前記吸引孔からの外気の流入を防ぐ、
ことを特徴とする自動分析装置。
The automatic analyzer according to claim 1,
The reagent cooler has a lid part having a suction hole in a part thereof,
Positive pressure is applied to the reagent cooler by the air blower to prevent inflow of outside air from the suction hole;
An automatic analyzer characterized by:
請求項1記載の自動分析装置であって、
前記試薬保冷庫は、前記外壁の内部に内壁を有する、
ことを特徴とする自動分析装置。
The automatic analyzer according to claim 1,
The reagent cooler has an inner wall inside the outer wall,
An automatic analyzer characterized by:
請求項7記載の自動分析装置であって、
前記送風管の始端と終端にそれぞれ吸気口、送風口が取り付けられ、
前記送風口は、前記試薬保冷庫の前記内壁よりも内側で、前記内壁に沿って配置される、
ことを特徴とする自動分析装置。
The automatic analyzer according to claim 7,
An air intake port and an air blow port are attached to the beginning and end of the air duct, respectively,
The air outlet is arranged along the inner wall inside the inner wall of the reagent cold storage,
An automatic analyzer characterized by:
請求項7記載の自動分析装置であって、
前記冷媒配管と前記送風管は、前記外壁と前記内壁との間に配置される、
ことを特徴とする自動分析装置。
The automatic analyzer according to claim 7,
The refrigerant pipe and the blower pipe are arranged between the outer wall and the inner wall,
An automatic analyzer characterized by:
請求項9記載の自動分析装置であって、
前記冷媒配管は、前記内壁に接している、
ことを特徴とする自動分析装置。
The automatic analyzer according to claim 9,
The refrigerant pipe is in contact with the inner wall,
An automatic analyzer characterized by:
JP2021527350A 2019-06-17 2020-02-25 automatic analyzer Active JP7297893B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019111810 2019-06-17
JP2019111810 2019-06-17
PCT/JP2020/007336 WO2020255488A1 (en) 2019-06-17 2020-02-25 Automatic analysis device

Publications (3)

Publication Number Publication Date
JPWO2020255488A1 JPWO2020255488A1 (en) 2020-12-24
JPWO2020255488A5 JPWO2020255488A5 (en) 2022-04-19
JP7297893B2 true JP7297893B2 (en) 2023-06-26

Family

ID=74040004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021527350A Active JP7297893B2 (en) 2019-06-17 2020-02-25 automatic analyzer

Country Status (5)

Country Link
US (1) US20220317140A1 (en)
EP (1) EP3985399A4 (en)
JP (1) JP7297893B2 (en)
CN (1) CN113892033A (en)
WO (1) WO2020255488A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116420079A (en) * 2020-11-05 2023-07-11 株式会社日立高新技术 Automatic analysis device
WO2022254478A1 (en) * 2021-05-31 2022-12-08 株式会社日立ハイテク Reagent cooling box and automatic analysis device comprising same
WO2024080011A1 (en) * 2022-10-11 2024-04-18 株式会社日立ハイテク Automatic analysis device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009092297A (en) 2007-10-05 2009-04-30 Olympus Corp Storage of reagent
JP2010237021A (en) 2009-03-31 2010-10-21 Sysmex Corp Analyzer
JP2013185980A (en) 2012-03-08 2013-09-19 Hitachi High-Technologies Corp Automatic analyzer
JP6496230B2 (en) 2015-10-15 2019-04-03 株式会社クボタケミックス Backflow prevention device and rice field dam system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5714796A (en) * 1980-07-01 1982-01-26 Tokyo Shibaura Electric Co Atmosphere conditioning device in nuclear reactor container
JP2009270857A (en) 2008-05-01 2009-11-19 Olympus Corp Automatic analyzer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009092297A (en) 2007-10-05 2009-04-30 Olympus Corp Storage of reagent
JP2010237021A (en) 2009-03-31 2010-10-21 Sysmex Corp Analyzer
JP2013185980A (en) 2012-03-08 2013-09-19 Hitachi High-Technologies Corp Automatic analyzer
JP6496230B2 (en) 2015-10-15 2019-04-03 株式会社クボタケミックス Backflow prevention device and rice field dam system

Also Published As

Publication number Publication date
EP3985399A1 (en) 2022-04-20
JPWO2020255488A1 (en) 2020-12-24
EP3985399A4 (en) 2023-07-19
WO2020255488A1 (en) 2020-12-24
US20220317140A1 (en) 2022-10-06
CN113892033A (en) 2022-01-04

Similar Documents

Publication Publication Date Title
JP7297893B2 (en) automatic analyzer
JP5836850B2 (en) Automatic analyzer
JP6214301B2 (en) Automatic analyzer
JP2009270857A (en) Automatic analyzer
JP2009139269A (en) Autoanalyzer
US11231433B2 (en) Automatic analyzer and cleaning method
CN113711052B (en) Automatic analysis device
JP2009092297A (en) Storage of reagent
US20220315449A1 (en) Automatic Analyzer
JP2023181437A (en) automatic analyzer
JP5986436B2 (en) Automatic analyzer
WO2023282130A1 (en) Drying method for reagent cooling box
JP6416673B2 (en) Automatic analyzer
WO2022097346A1 (en) Automatic analysis device
WO2024080011A1 (en) Automatic analysis device
JPWO2022097346A5 (en)
JP2005283529A (en) Cold insulation device for reagent, and automatic analysis apparatus using the same
JP2019027891A (en) Container storing unit and automatic analyzer
JP7286511B2 (en) automatic analyzer
WO2024014286A1 (en) Automatic analysis device
JP2010286357A (en) Automatic analyzer
CN215953641U (en) Reagent library and automatic analyzer
TWI807795B (en) Reagent cold storage and automatic analysis device including it
JP2007285760A (en) Analyzer
JP2021067694A (en) Reagent storage and automatic analyzer

Legal Events

Date Code Title Description
A529 Written submission of copy of amendment under article 34 pct

Free format text: JAPANESE INTERMEDIATE CODE: A5211

Effective date: 20211207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230614

R150 Certificate of patent or registration of utility model

Ref document number: 7297893

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150