JP7293962B2 - 成形品の品質異常予測システム - Google Patents

成形品の品質異常予測システム Download PDF

Info

Publication number
JP7293962B2
JP7293962B2 JP2019145940A JP2019145940A JP7293962B2 JP 7293962 B2 JP7293962 B2 JP 7293962B2 JP 2019145940 A JP2019145940 A JP 2019145940A JP 2019145940 A JP2019145940 A JP 2019145940A JP 7293962 B2 JP7293962 B2 JP 7293962B2
Authority
JP
Japan
Prior art keywords
molded product
pressure
molding
quality
filling time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019145940A
Other languages
English (en)
Other versions
JP2021024230A (ja
Inventor
智也 足立
紀行 馬場
幸治 木村
勇佐 大久保
正晴 蓮池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2019145940A priority Critical patent/JP7293962B2/ja
Publication of JP2021024230A publication Critical patent/JP2021024230A/ja
Application granted granted Critical
Publication of JP7293962B2 publication Critical patent/JP7293962B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、成形品の品質異常予測システムに関する。
成形機の型に加熱溶融した成形材料(溶融材料)を供給し、成形品を成形する技術が知られている。溶融材料は、型のキャビティに射出され且つ充填された状態で保圧及び冷却されることにより固化し、キャビティの形状に応じた形状に成形される。ここで、成形品の品質は、溶融材料の流動性を考慮して成形品を成形する際の成形条件を変更することにより確保される。このとき、溶融材料の流動性は種々の条件に依存して必ずしも一定ではなく、成形品の品質異常を予測するには、豊富な知識や経験が必要とされる。
例えば、下記特許文献1には、成形品の品質要素の1つである質量が溶融材料の流動性に起因して変化することを防止するために機械学習を用いた技術が開示されている。特許文献1に開示された技術では、溶融材料の射出中においてスクリュ側への溶融材料の逆流を防ぐ逆流防止弁の摩耗量を機械学習を利用して高精度に推定するようになっている。
特開2017-202632号公報
発明者は、キャビティに供給された溶融材料から型が受ける圧力を把握することで、溶融材料の流動性に関連する成形品の品質要素の異常を予測できることを見出した。又、機械学習を用いることで成形品の品質要素の異常の予測精度が向上することを見出した。
本発明は、機械学習を用いて、品質要素の異常を予測する品質異常予測システムを提供することを目的とする。
本発明に係る成形品の品質異常予測システムは、成形機の型のキャビティに成形材料を溶融した溶融材料を供給することにより成形品を成形する成形方法に適用され、型に配置され、キャビティにおいて供給された溶融材料から受ける圧力を検出する第一圧力センサと、少なくとも第一圧力センサによって検出された圧力データを用いて取得される時間であってキャビティ内に溶融材料の充填が開始されてから完了するまでに要する充填時間を訓練データセットとする機械学習により生成された学習済みモデルであって、充填時間と成形材料の吸水に起因する成形品の品質要素とに関する学習済みモデルを記憶する学習済みモデル記憶部と、新たに第一圧力センサにより検出された圧力データを用いて取得された充填時間と学習済みモデルとに基づいて、新たに成形した成形品の品質要素の異常を予測する異常予測部と、を備える。
これによれば、キャビティに溶融樹脂を充填する際の充填時間及び成形品の品質要素を訓練データセットとする機械学習を行うことにより生成された学習済みモデルを用いて、品質要素の異常を精度よく予測することができる。ここで、生成された学習済みモデルは、少なくとも、溶融材料の流動性に関連する充填時間と成形品の品質要素との関係を定義するモデルとなる。従って、製造途中において、成形品の成形時における充填時間と生成された学習済みモデルとに基づくことによって、成形品の品質要素を予測することができる。
品質異常予測システムの構成を示す図である。 成形機(射出成形機)を示す図である。 図2に示す型を拡大した図である。 図3のIV-IV線における型の断面図である。 品質異常予測システムを示すブロック図である。 充填時間を説明するための図である。 充填時間を説明するための図である。 充填時間を説明するための図である。 ポリアミド66のPVT(Pressure-Volume-Temperature)線図である。 成形温度を変化させた場合の時間と圧力との関係を示すグラフである。 粘度を変化させた場合の時間と圧力との関係を示すグラフである。 成形材料が吸水した水分量の増加に伴う充填時間の短縮を説明するための図である。 品質異常予測システムとしての成形不良予測システムを示すブロック図である。 充填時間の良否判定を説明するための図である。 低温域における充填時間の良否判定を説明するための図である。 中温域における充填時間の良否判定を説明するための図である。 高温域における充填時間の良否判定を説明するための図である。
(1.品質異常予測システムの適用対象)
品質異常予測システムは、成形機の型のキャビティに溶融材料を供給することにより成形品を成形する成形方法に適用される。本例では、成形機1が成形材料である樹脂又はゴム等の射出成形を行う射出成形機である場合を例に挙げて説明するが、成形機1は、射出成形機以外の成形機、例えば、ブロー成形機や圧縮成形機であっても良い。尚、成形材料である樹脂については、単体のポリアミド等の熱可塑性樹脂や、熱可塑性樹脂の基材に充填剤を添加した強化樹脂を例示することができる。充填剤としては、ミクロンサイズ又はナノサイズのフィラーを挙げることができる。フィラーとしては、例えば、ガラス繊維や炭素繊維等を挙げることができる。
(2.品質異常予測システム100の構成)
品質異常予測システム100は、1又は複数の成形機1と、機械学習装置110とを備えて構成される。機械学習装置110は、少なくとも成形機1において検出された成形時データである圧力データに基づいて得られる充填時間を訓練データセットとして機械学習を行うことにより、充填時間と成形品の品質要素とに関する学習済みモデルを生成する。そして、機械学習装置110は、学習済みモデルと、新たな充填時間とに基づいて、新たに成形された成形品の品質要素を予測する。
品質異常予測システム100は、図1に示すように、複数の成形機1と、機械学習装置110とを備える。機械学習装置110は、第一サーバ111と、第二サーバ112とを備える。但し、第一サーバ111と第二サーバ112とは、別装置として説明するが、同一装置によって構成することも可能である。
第一サーバ111は、機械学習における学習フェーズとして機能する。第一サーバ111は、取得した訓練データセットを用いた機械学習により学習済みモデルを生成する。第一サーバ111は、複数の成形機1と通信可能に設けられ、複数の成形機1の各々が成形品を成形した際に得られた成形時データを、訓練データセットの一部として取得する。成形時データには、例えば、圧力データ、成形条件に関するデータ等が含まれる。圧力データは、型に供給された溶融材料から型が受ける圧力を示すデータである。
第一サーバ111は、更に、複数の成形機1の各々が成形した成形品の品質要素に関するデータ(以下、「品質要素データ」と称呼する。)を、訓練データセットにおける教師データとして取得する。そして、第一サーバ111は、教師あり学習を行うことにより、成形時データと成形品の品質要素とに関する学習済みモデルを生成する。尚、第一サーバ111における機械学習は、教師あり学習の場合を例に挙げて説明するが、他の機械学習アルゴリズムを適用することも可能である。
第一サーバ111は、計測器(図示省略)により計測された品質要素データを作業者が入力することによって取得するようにしても良い。又、第一サーバ111は、計測器によって計測された品質要素データを、計測器から直接取得するようにしても良い。品質要素データは、対応する成形品に紐付けされたデータである。品質要素データは、例えば、成形品の各種寸法、質量、ボイド体積等が例示される。
このように、品質異常予測システム100において、第一サーバ111は、複数の成形機1の各々が成形品を成形した際に得られる成形時データ及び品質要素データを取得する。これにより、第一サーバ111は、多量の成形時データ及び品質要素データを訓練データセットとする機械学習により、学習済みモデルを生成する。従って、第一サーバ111は、学習済みモデルの学習精度を向上させることができ、学習済みモデルの高精度化を図ることができる。
第二サーバ112は、機械学習における推論フェーズとして機能する。第二サーバ112は、第一サーバ111により生成された学習済みモデルを取得する。更に、第二サーバ112は、複数の成形機1の各々に通信可能に設けられる。そして、第二サーバ112は、第一サーバ111により生成された学習済みモデルを用い、且つ、複数の成形機1の各々が新たに成形品を成形した際の成形時データを入力データとし、新たに成形した成形品の品質要素を予測して出力データとして出力する。
第二サーバ112によって予測された成形品の品質要素は、成形機1に送信し、成形機1の成形条件を調整することに用いても良い。又、予測された成形品の品質要素が不良であると判断された場合には、成形機が不良であると判断された成形品の廃棄処理又は選別処理を行うようにしても良い。
ここで、図示を省略するが、複数の成形機1の各々に対して、第二サーバ112と同様の処理を行う品質予測装置を配置することもできる。即ち、品質予測装置は、第二サーバ112と同様に、機械学習における推論フェーズを実行する。そして、品質予測装置は、対応する成形機1における成形時データと、第一サーバ111により生成された学習済みモデルとに基づいて、対応する成形機1により成形された成形品の品質要素を予測する。
又、品質異常予測システムは、単体の成形機1と、機械学習装置とにより構成されるようにしても良い。機械学習装置は、第一サーバ111に相当する機械学習の学習フェーズを実行可能であると共に、第二サーバ112又は品質予測装置に相当する機械学習の推論フェーズを実行可能である。
(3.成形機1の例)
(3-1.成形機1の構成)
次に、図2を参照して、成形機1の一例である射出成形機について説明する。射出成形機としての成形機1は、ベッド2と、射出装置3と、型4と、型締装置5と、動作指令部6と、制御装置7とを主に備える。
射出装置3は、ベッド2上に配置される。射出装置3は、ホッパ31と、加熱シリンダ32と、スクリュ33と、ノズル34と、ヒータ35と、駆動装置36と、射出装置用センサ37とを主に備える。
ホッパ31は、成形材料であるペレット(粒状の成形材料)の投入口である。加熱シリンダ32は、ホッパ31に投入されたペレットを加熱溶融してできた溶融材料を加圧する。又、加熱シリンダ32は、ベッド2に対して軸方向に移動可能に設けられる。スクリュ33は、加熱シリンダ32の内部に配置され、回転可能且つ軸方向への移動可能に設けられる。ノズル34は、加熱シリンダ32の先端に設けられた射出口であり、スクリュ33の軸方向移動によって、加熱シリンダ32の内部の溶融材料を型4に供給する。
ヒータ35は、例えば、加熱シリンダ32の外側に設けられ、加熱シリンダ32の内部のペレットを加熱する。駆動装置36は、加熱シリンダ32の軸方向への移動、スクリュ33の回転及び軸方向移動等を行う。射出装置用センサ37は、溶融材料の貯留量、保圧力、保圧時間、射出速度、駆動装置36の状態等を取得するセンサを総称する。但し、射出装置用センサ37は、上記に限られず、種々の情報を取得するようにしても良い。
型4は、固定側である第一型41と、可動側である第二型42とを備えた金型である。型4は、第一型41と第二型42とを型締めすることで、第一型41と第二型42との間にキャビティCを形成する。第一型41は、ノズル34から供給された溶融材料をキャビティCまで導く供給路43(スプルー、ランナー、ゲート)を備える。更に、第一型41又は第二型42は、第一圧力センサ44及び第二圧力センサ45を備える。第一圧力センサ44及び第二圧力センサ45は、溶融材料から受ける圧力を検出する。
型締装置5は、ベッド2上において射出装置3に対向配置される。型締装置5は、装着された型4の開閉動作を行うと共に、型4を締め付けた状態において、キャビティCに射出された溶融材料の圧力により型4が開かないようにする。
型締装置5は、固定盤51、可動盤52、ダイバー53、駆動装置54、型締装置用センサ55を備える。固定盤51には、第一型41が固定される。固定盤51は、射出装置3のノズル34に当接可能であり、ノズル34から射出される溶融材料を型4へ導く。可動盤52には、第二型42が固定される。可動盤52は、固定盤51に対して接近及び離間可能である。ダイバー53は、可動盤52の移動を支持する。駆動装置54は、例えば、シリンダ装置によって構成されており、可動盤52を移動させる。型締装置用センサ55は、型締力、金型温度、駆動装置54の状態等を取得するセンサを総称する。
動作指令部6は、成形条件に関する動作指令データを制御装置7に与える。又、成形機1は、第二サーバ112による品質要素の予測結果に基づき、動作指令部6に記憶された動作指令データの調整を行う動作指令データ調整部8を備える。動作指令部6は、動作指令データ調整部8により調整された動作指令データを制御装置7に与えるので、成形機1は、成形する成形品の品質を高めることができる。
制御装置7は、動作指令部6からの動作指令データに基づいて、射出装置3の駆動装置36及び型締装置5の駆動装置54を制御する。例えば、制御装置7は、射出装置用センサ37及び型締装置用センサ55から各種情報を取得して、動作指令データに応じた動作を行うように、射出装置3の駆動装置36及び型締装置5の駆動装置54を制御する。
(3-2.成形機1による成形品の成形方法)
続いて、射出成形機としての成形機1による成形品の成形方法について説明する。成形機1による成形方法では、計量工程、型締工程、射出充填工程、保圧工程、冷却工程、離型取出工程が順次実行される。計量工程において、ヒータ35の加熱及びスクリュ33の回転に伴うせん断摩擦熱によってペレットが溶融されながら、溶融材料が加熱シリンダ32の先端とノズル34との間に貯留される。溶融材料の貯留量の増加に伴ってスクリュ33が後退するため、スクリュ33の後退位置から溶融材料の貯留量の計量が行われる。
計量工程に続く型締工程では、可動盤52を移動させて、第一型41に第二型42を合わせ、型締めを行う。更に、加熱シリンダ32を軸方向に移動させて型締装置5に近づけ、ノズル34を型締装置5の固定盤51に接続する。続いて、射出充填工程において、スクリュ33の回転を停止した状態において、スクリュ33をノズル34に向けて所定の押し込み力で移動させることにより、溶融材料を高い圧力で型4に射出充填する。キャビティCに溶融材料が充填されると、引き続き、保圧工程に移行する。
保圧工程では、キャビティCに溶融材料が充填された状態で更に溶融材料をキャビティCに押し込み、キャビティC内の溶融材料に所定の圧力(保圧力)を所定時間加える保圧処理を行う。具体的には、スクリュ33に一定の押し込み力を付与することにより、溶融材料に所定の保圧力を付与する。
そして、所定の保圧力により所定時間の保圧処理を行った後、冷却工程へ移行する。冷却工程では、溶融材料の押し込みを停止して保圧力を減少させる処理(保圧減少処理)を行い、型4を冷却する。型4を冷却することにより、型4に供給された溶融材料が固化する。最後に、離型取出工程において、第一型41から第二型42を離間させて、成形品を取り出す。
(4.型4の詳細構成)
ここで、図3及び図4を参照しながら、型4の詳細な構成を説明する。尚、型4は、所謂、多数個取り金型であり、型4には複数のキャビティCが形成されているが、図面を簡素化するため、図3及び図4には、1つのキャビティCをのみ図示している。又、本例において、成形機1が成形する成形品は、等速ジョイントに用いられる保持器である。従って、成形品は環状特に円環状であり、キャビティCは保持器の形状に倣った環状特に円環状に形成される。尚、成形品及びキャビティCの形状は、環状以外の形状、例えば、C形状や矩形枠状等であっても良いことは言うまでもない。
供給路43は、スプルー43aと、ランナー43bと、ゲート43cとを備える。スプルー43aは、ノズル34から溶融材料が供給される通路である。ランナー43bは、スプルー43aから分岐する通路であり、スプルー43aに供給された溶融材料は、ランナー43bに流入する。ゲート43cは、ランナー43bに流入した溶融材料をキャビティCに導く通路であり、ゲート43cの流路断面積は、ランナー43bの流路断面積よりも小さい。型4には、キャビティCと同数のランナー43b及びゲート43cが形成され、スプルー43aに供給された溶融材料は、ランナー43b及びゲート43cを介して各々のキャビティCに供給される。
尚、キャビティCが環状である場合であって、第一型41が1つのゲート43cを備える場合、キャビティC内における溶融材料の流入経路は、ゲート43cからキャビティCの環状の周方向に流動する経路となる。即ち、キャビティCにおいて、溶融材料は、最初にゲート43cの近傍に流入し、最後にゲート43cからの最遠距離に流入する。
又、型4には、キャビティCにおいて、供給された溶融材料から受ける圧力を時間的に連続して検出する第一圧力センサ44が設けられる。第一圧力センサ44は、第一型41又は第二型42の何れか一方又は双方に設けられる。又、第一圧力センサ44は、接触式のセンサであっても良く、非接触式のセンサであっても良い。
具体的に、型4は、第一圧力センサ44として、6つの第一圧力センサ44a-44fを備える。尚、本例においては、6つの第一圧力センサ44a-44fは、何れも第一型41に設けられる。そして、6つの第一圧力センサ44a-44fのうちの一部(第一圧力センサ44a-44c)は、流入経路における中間位置に対し、ゲート43cよりもゲート43cからの最遠位置寄りに配置される。一方、6つの第一圧力センサ44a-44fのうちの他の一部(第一圧力センサ44d-44f)は、流入経路における中間位置に対し、ゲート43cからの最遠位置よりもゲート43c寄りの位置に配置される。
6つの第一圧力センサ44a-44fのうち、第一圧力センサ44aは、流入経路において最もゲート43cから離れた位置に配置される。又、第一圧力センサ44bは、次にゲート43cから離れた位置に配置され、順次、第一圧力センサ44c-44eが、ゲート43cから離れた位置に配置される。そして、第一圧力センサ44fは、最もゲート43cから近い位置に配置される。
具体的に、第一圧力センサ44aは、ゲート43cからキャビティCに流入した溶融材料が最後に到達する領域に配置される。一方、第一圧力センサ44fは、ゲート43cの延長線上の領域であって、キャビティC内において溶融材料が最初に流入する領域に配置される。
更に、型4には、供給路43において、溶融材料から受ける圧力を検出する第二圧力センサ45が設けられる。尚、第二圧力センサ45は、第一型41又は第二型42の何れか一方に対し、少なくとも1つ配置される。又、第二圧力センサ45は、接触式のセンサであっても良く、非接触式のセンサであっても良い。具体的に、本例において、型4は、1つの第二圧力センサ45を備える。第二圧力センサ45は、第一型41に配置され、ランナー43bにおいて、溶融材料から受ける圧力を時間的に連続して検出する。
型4は、更に、温度センサ46を備えるようにしても良い。温度センサ46は、第一圧力センサ44a-44fと同様に、例えば、第一型41に設けられる。温度センサ46は、型4内における溶融材料の温度Tを検出する。但し、温度センサ46は、型4の所定位置の温度を検出することにより、溶融材料の温度を間接的に検出することもできる。又、型4には、複数の第一圧力センサ44a-44fと同様に、複数の温度センサ46を配置しても良い。即ち、複数の温度センサ46の各々は、ゲート43cからの距離が異なる複数の位置に配置される。
(5.機械学習装置110の構成)
次に、図5を参照しながら、機械学習装置110(図1を参照)の構成を説明する。図5に示すように、機械学習装置110は、学習フェーズを実行可能な学習処理装置210と、推論フェーズを実行可能な品質予測装置220とを備える。ここで、学習処理装置210は、上述した品質異常予測システム100における第一サーバ111に相当する。又、品質予測装置220は、上述した品質異常予測システム100における第二サーバ112に相当する。
学習処理装置210は、品質要素データ入力部211と、訓練データセット取得部212と、訓練データセット記憶部213と、学習済みモデル生成部214とを備える。品質要素データ入力部211は、対応する成形品に紐付けられた品質要素データを入力する。品質要素データは、例えば、成形品の形状(各種寸法)や質量、引け等の外観不良の有無等に加え、成形品の成形に影響を及ぼす成形材料(より詳しくは、溶融材料)の加水分解状態が例示される。
訓練データセット取得部212は、成形機1から圧力データ、温度データ等の成形時データ、並びに、品質要素データ入力部211に入力された品質要素データを主な訓練データセットとして取得する。尚、訓練データセットにおいては、成形時データとして、成形材料であるペレットの製造ロットごとに生じるバラつき要素である水分量や粘度等を表すデータや、射出装置用センサ37及び型締装置用センサ55によって検出された各種データを加えることができる。取得された訓練データセットは、訓練データセット記憶部213に記憶される。
学習済みモデル生成部214は、訓練データセット記憶部213に記憶された成形時データ及び品質要素データに基づき、紐付けされた成形時データと品質要素データとを訓練データセットとする機械学習を行う。これにより、学習済みモデル生成部214は、成形時データと成形品の品質要素とに関する学習済みモデルを生成する。
品質予測装置220は、学習済みモデル記憶部221と、成形時データ取得部222と、異常予測部223と、出力部224とを主に備える。学習済みモデル記憶部221は、学習済みモデル生成部214が生成した学習済みモデルを記憶する。成形時データ取得部222は、成形機1が新たに成形品を成形した際に、第一圧力センサ44、第二圧力センサ45及び温度センサ46等が検出した成形時データを取得する。
尚、本例では、成形時データ取得部222は、6つの第一圧力センサ44a-44f及び第二圧力センサ45が検出した全ての圧力データを取得しているが、必ずしもこれに限られるものではない。即ち、成形時データ取得部222は、6つの第一圧力センサ44a-44f及び第二圧力センサ45が検出した圧力データの一部のみを取得しても良い。つまり、成形時データ取得部222は、品質予測装置220による品質予測において必要とされる圧力データのみを選択して取得することができる。
異常予測部223は、成形時データ取得部222が取得した成形時データと、学習済みモデル記憶部221に記憶された学習済みモデルとに基づいて、新たに成形した成形品の品質要素の異常を予測する。尚、異常予測部223が異常を予測する品質要素は、品質要素データとして品質要素データ入力部211に入力される品質要素に含まれる。従って、異常予測部223が異常を予測する品質要素としては、例えば、成形品の形状(各種寸法)や質量、引け等の外観不良の有無等に加え、成形品の成形に影響を及ぼす成形材料(より詳しくは、溶融材料)の加水分解状態が例示される。
又、異常予測部223は、予測した品質要素、或いは、成形時データ取得部222によって取得された成形時データと、予め設定された許容値とに基づいて、成形品の良否判定を行うこともできる。この場合、異常予測部223は、成形機1による成形品の成形後であって成形機1による成形工程の次工程の実行前に、成形品の品質要素についての良否判定を行うと良い。
出力部224は、異常予測部223による予測結果を出力する。出力部224は、例えば、表示装置(図示省略)への表示による案内、音声による案内、表示灯による案内等を行う。この場合、出力部224は、品質予測装置220に設けられた表示装置等に案内を行うようにしても良いし、複数の成形機1の各々に設けられた表示装置等に案内を行うようにしても良い。又、出力部224は、管理装置に設けられた表示装置等に案内を行うようにしても良い。又、出力部224は、作業者又は管理者が所有する携帯端末に案内を行うこともできる。
更に、出力部224は、異常予測部223が良否判定を行う場合には、良否判定結果を成形機1に出力して、成形機1に対して良否判定結果に応じた処理を実行させることも可能である。例えば、成形品の品質要素の良否判定結果において不良であると判定された場合には、出力部224は、成形機1に対して、不良であると判定された成形品の廃棄処理又は選別処理を実行することが可能である。
尚、本例では、成形機1による成形品の成形時に得られるデータとして、第一圧力センサ44と第二圧力センサ45とが時間的に連続して検出した圧力データ、及び、温度センサ46が検出した温度データ等を用いて生成した学習済みモデルに基づいて、成形品の品質要素を予測しているが、これに限られるものではない。即ち、温度データを用いずに生成した学習済みモデルを用いて、成形品の品質要素を予測しても良い。
このように、学習処理装置210において、学習済みモデル生成部214は、成形時データと品質要素データとを訓練データセットとする機械学習により、少なくとも圧力データと成形品の品質要素とに関する学習済みモデルを生成する。又、品質予測装置220において、学習済みモデル記憶部221は、学習済みモデル生成部214が生成した学習済みモデルを記憶する。そして、異常予測部223が、新たな成形品を成形した際に得られた少なくとも圧力データに基づいて得られる充填時間Jと、学習済みモデル記憶部221に記憶された学習済みモデルとに基づき、新たに成形した成形品の品質要素を予測する。従って、機械学習装置110は、成形品の品質要素を高精度に予測することができる。以下に、機械学習装置110を用いた品質要素の予測方法について、具体例を挙げながら説明する。
(6.品質異常予測システム100の具体例)
次に、品質異常予測システム100の具体例である成形不良予測システム100a(図8を参照)について説明する。成形不良予測システム100aは、ポリアミド66に所定量の充填剤としてのフィラー(ガラス繊維)を含有させた成形材料を用い、成形機1が成形した成形品の品質要素の良否を予測する品質異常予測システムである。
ここで、成形不良予測システム100aが、キャビティCに溶融材料を充填する充填時間Jに基づいて、射出成形において成形品の成形不良を生じさせる溶融材料の加水分解状態を予測する場合を例に挙げて説明する。尚、充填時間Jは、少なくとも第一圧力センサ44により検出された圧力データの変化に基づいて計測又は算出される(取得される)時間である。又、溶融材料の加水分解状態は、後に詳述するように、成形品の成形不良即ち品質要素に影響を与える。
射出成形によって成形品を成形する場合には、上述したように、射出充填工程において溶融材料がキャビティCに充填される。従って、溶融樹脂のキャビティC内への充填が十分である場合には成形される成形品の品質要素は良好になり、溶融樹脂のキャビティC内への充填が不十分である場合には成形される成形品の品質要素は悪化する。即ち、キャビティC内に溶融樹脂が充填された充填状態は、成形品の品質要素に影響を及ぼす。充填状態の良否を判断する1つの指標として、キャビティC内に溶融樹脂を充填する際の充填時間Jを挙げることができる。
(6-1.充填時間Jについて)
図6A、図6B及び図6Cを参照して、射出充填工程における溶融材料の充填時間Jについて説明する。充填時間Jは、キャビティC内に溶融材料の充填が開始されてから完了するまでに要する時間である。充填時間Jは、第一圧力センサ44が時間的に連続して検出する圧力データにおいて、溶融材料から受ける圧力の上昇開始即ち立ち上がりが生じた時点を終点として決定される。本例においては、充填時間Jは、図6Aに示すように、第二圧力センサ45がランナー43b内の圧力の上昇開始即ち立ち上がりを検知した時点が始点であり、ゲート43cから最遠位置となる第一圧力センサ44aがキャビティC内の圧力の立ち上がりを検知した時点が終点である時間とする。ここで、複数の第一圧力センサ44b-44fが圧力の立ち上がりを検知した各々の時点うち、第一圧力センサ44aが圧力の立ち上がりを検知した時点は最も遅くなる(図6Cを参照)。
尚、充填時間Jは、第二圧力センサ45によって検出された圧力データを用いることなく、6つの第一圧力センサ44a-44fのうちの少なくとも2つによって検出された圧力データを用いて取得することも可能である。この場合、充填時間Jは、図6Bに示すように、例えば、ゲート43cに最近位置となる第一圧力センサ44fがキャビティC内の圧力の立ち上がりを検知した時点を始点とし、第一圧力センサ44aが圧力の立ち上がりを検知した時点を終点とする時間となる。
又、充填時間Jの終点については、最遠位置の第一圧力センサ44aに限定されることはなく、6つの第一圧力センサ44a-44fのうちの何れかによって圧力の立ち上がりを検知した時点を終点とすることができる。例えば、図6Cに示すように、第二圧力センサ45が圧力の立ち上がりを検知した時点を始点とし、第一圧力センサ44aよりもゲート43c寄りの第一圧力センサ44dが圧力の立ち上がりを検知した時点を充填時間Jの終点とすることもできる。
(6-2.充填時間Jと成形品の品質要素との関係について)
充填時間Jは、図7Aに示すように、溶融材料の比容積が増加する程、短縮される。又、充填時間Jは、図7Bに示すように、溶融材料の温度である成形温度が増加するほど、短縮される。更に、充填時間Jは、図7Cに示すように、成形材料であるペレットの材料物性の製造ロットごとのバラつき要素であるペレットの粘度数が小さくなる程、短縮される。そして、このような充填時間Jの短縮は、図8に示すように、ペレットが吸水している水分量に依存して発生するものと考えられる。
即ち、比容積の増加については、加熱シリンダ32内で成形材料を加熱して溶融材料にする際に、ペレットが吸水している水分によって溶融材料に加水分解が生じることに起因する。ここで、加水分解は、成形材料が吸水している水分量が多い程生じやすくなる傾向を有し、水分量が少なくなる程生じにくくなる傾向を有する。溶融材料に加水分解が生じると、溶融材料の粘度が低下し、その結果、溶融材料の流動性が高まる。
粘度の低下した溶融材料においては、スクリュ33の回転に対するせん断抵抗が低下し、その結果、ノズル34から溶融材料を射出する際に射出圧力が低下する。射出圧力が低下した状態で射出されてキャビティCに到達した溶融材料は、射出圧力の低下に伴いキャビティC内で圧縮されないために比容積が増大する。従って、比容積が増大する状態では、成形材料の水分量が多いことによって溶融材料に加水分解が生じており、溶融材料の粘度が小さくなる。その結果、図8に示すように、溶融材料が射出された後に第一圧力センサ44aが圧力上昇を検出するまでの充填時間Jは短くなる。
又、加熱シリンダ32内で加熱される溶融材料の温度即ち成形温度が増加する程、ペレットが吸水している水分によって溶融材料の加水分解が促進される。更に、ペレットが吸水している水分量が多い程、溶融材料の加水分解が促進される。その結果、溶融材料の粘度は低下する。従って、成形温度が高い程、且つ、水分量が多い程、溶融材料の粘度は低下するため、キャビティC内において溶融材料は流動性が高まる。その結果、図8に示すように、第一圧力センサ44aが圧力上昇を早期に検出する。即ち、成形温度が高い程、充填時間Jは短縮される。
又、製造ロットごとにばらつきが生じる材料物性、特に、ペレットの粘度数は、例えば、ペレットが吸水している水分量によって異なる。即ち、水分量が増える程、ペレットの粘度数は減少し、水分量が少なくなる程、ペレットの粘度数は増加する。従って、ペレットの水分量が多くなると粘度数が減少するため、キャビティC内において溶融材料は流動性が高まり、その結果、図8に示すように、第一圧力センサ44aが圧力上昇を早期に検出する。即ち、粘度数が小さい程、換言すれば、ペレットの水分量が多い程、充填時間Jは短縮される。
このように、充填時間Jが短縮される状況においては、成形品の品質要素が悪化し、その結果、射出成形される成形品に成形不良が生じる虞がある。即ち、充填時間Jが短縮される場合には、キャビティC内に溶融材料が十分に充填されない可能性があると共に成形品が加水分解の進んだ溶融材料から成形される可能性がある。この場合、成形品には、例えば、機械強度の悪化や外観不良が生じる可能性が高くなる。従って、射出成形においては、充填時間Jを管理することにより、成形品の品質要素である溶融材料の加水分解状態(或いは、ペレットの水分量)を把握することが可能になると共に、成形品の品質を良好に維持することが可能となる。
(6-3.成形不良予測システム100aの構成)
次に、図9を参照しながら、成形不良予測システム100aの構成を説明する。図9に示すように、成形不良予測システム100aは、複数の成形機1(図1を参照)と、学習処理装置210aと、成形不良予測装置220aとを備える。
学習処理装置210aは、加水分解状態データ入力部211aと、訓練データセット取得部212aと、訓練データセット記憶部213aと、学習済みモデル生成部214aとを備える。加水分解状態データ入力部211aは、品質要素データ入力部211の一例である。そして、加水分解状態データ入力部211aは、成形機1が成形した成形品における加水分解の有無や加水分解の進行具合を表す加水分解状態データが、品質要素データとして入力される。尚、加水分解の有無については、成形品の機械特性の低下や、成形品の寸法変化、外観不良に発生によって確認することができる。
又、加水分解の進行具体については、ペレットの水分量によって確認することができる。上述したように、ペレットの水分量が少ない程、加水分解の進行具合は小さくなり、ペレットの水分量が多い程、加水分解の進行具合は大きくなる。従って、加水分解状態データ入力部211aは、加水分解状態データとして、ペレットの水分量を入力することもできる。ここで、ペレットの水分量は、ペレットを乾燥させる前の重量とペレットを乾燥させた後の重量との重量差を測定することによって取得することができる。
更に、加水分解状態データには、溶融材料の加水分解に関連し得る要素である加熱シリンダ32内における溶融材料の温度(射出温度)を含むことができる。又、加水分解状態データには、溶融材料に加水分解が生じた際の粘度に影響を及ぼすペレットの製造ロットごとのバラつき要素としての粘度数や充填剤であるガラス繊維の充填量を含むことができる。更に、加水分解状態データに加えて、品質要素である成形品の形状(各種寸法)や質量、引け等の外観不良の有無等を表す品質要素データを入力することも可能である。
訓練データセット取得部212aは、品質要素データとして加水分解状態データ入力部211aに入力された加水分解状態データを取得する。又、訓練データセット取得部212aは、複数の成形機1の各々から、射出充填工程において第一圧力センサ44及び第二圧力センサ45が時間的に連続して検出した圧力データを取得する。ここで、訓練データセット取得部212aは、第一圧力センサ44、特に、第一圧力センサ44aが時間的に連続して検出した圧力データと第二圧力センサ45が時間的に連続して検出した圧力データとを用いて時間差を算出することによって充填時間Jを取得する。取得された訓練データセット、即ち、充填時間J及び加水分解状態データは、訓練データセット記憶部213aに記憶される。
学習済みモデル生成部214aは、訓練データセット記憶部213aに記憶された充填時間J及び加水分解状態データに基づき、紐付けされた充填時間Jと加水分解状態データとを訓練データセットとする機械学習を行う。これにより、学習済みモデル生成部214aは、充填時間Jと加水分解の有無(進行具合)とに関する学習済みモデルを生成する。
特に、加水分解状態データに対してバラつき要素を加えた場合、溶融材料に加水分解が生じた状態における粘度のバラつきを訓練データセットに反映することができる。これにより、学習済みモデル生成部214aは、例えば、製造ロットごとに生じ得る成形材料の材料物性のバラつきを考慮した訓練データセットを用いて学習することができる。従って、加水分解状態データに対してバラつき要素を加えた場合には、学習済みモデル生成部214aによる学習の精度をより向上させることができる。
成形不良予測装置220aは、品質予測装置220の一例である。成形不良予測装置220aは、学習済みモデル記憶部221aと、成形時データ取得部222aと、成形不良予測部223aと、出力部224aとを備える。学習済みモデル記憶部221aは、学習済みモデル生成部214aが生成した学習済みモデルを記憶する。成形時データ取得部222aは、成形機1が新たに成形品を成形した際に6つの第一圧力センサ44a-44fの各々が時間的に連続して検出した圧力データと、第二圧力センサ45が時間的に連続して検出した圧力データとを成形時データとして取得する。
異常予測部223の一例である成形不良予測部223aは、成形時データ取得部222aが取得した成形時データと、学習済みモデル記憶部221aに記憶された学習済みモデルとを取得する。そして、成形不良予測部223aは、成形時データと学習済みモデルとに基づいて、溶融材料の加水分解状態を予測する、ひいては、新たに成形した成形品の加水分解に起因して発生する成形不良(品質)を予測する。
出力部224aは、成形不良予測部223aによる予測結果を出力する。この場合、出力部224aは、予測結果を図示省略の表示装置やランプ等を用いて作業者に案内したり、或いは、成形機1の動作指令部6に予測結果を表す信号として出力したりすることが可能である。成形機1の動作指令部6に信号を出力した場合には、動作指令部6は動作指令データ調整部8によって予測結果を反映するように調整された動作指令データを制御装置7に与える。制御装置7は動作指令データに基づき、良品である場合には成形品の成形を継続し、不良品である場合には成形品の成形を止めたり不良品をライン外に排出したりする。
ここで、本例の成形不良予測システム100aにおいて、成形時データは、射出充填工程において6つの第一圧力センサ44a-44fにより時間的に連続して検出された圧力データと、第二圧力センサ45が時間的に連続して検出した圧力データとを含む。しかし、成形時データは、第二圧力センサ45が検出した圧力データを省略しても良い。又、成形時データは、6つの第一圧力センサ44a-44fをのうちの一部のみにより時間的に連続して検出した圧力データとすることも可能である。
具体的に、訓練データセット取得部212a及び成形時データ取得部222aは、成形時データとして、6つの第一圧力センサ44a-44fのうちの少なくとも2つから時間的に連続した圧力データを取得すれば良い。これにより、学習済みモデル生成部214aは、キャビティC内に充填される溶融材料の充填時間Jと加水分解の有無や進行具体(加水分解状態データ)との相関を持たせた学習済みモデルを生成できる。
そして、成形不良予測部223aは、充填時間Jに基づいて、溶融材料の加水分解の有無(進行具合)や成形材料の水分量即ち成形品の品質要素を予測するので、予測精度を高めることができる。尚、この場合における充填時間Jは、第一圧力センサ44b-44fのうちの2つにおいて、ゲート43c寄りの一方により時間的に連続して検出された圧力データにおいて立ち上がりを開始した時点を始点とし、ゲート43cから最遠位置寄りの他方により時間的に連続して検出された圧力データにおいて立ち上がりを開始した時点を終点として決定される。
又、訓練データセット取得部212a及び成形時データ取得部222aは、流入経路における中間位置よりもゲート43c寄りの位置に配置された第一圧力センサ44d-44fのうちの少なくとも1つが時間的に連続して検出した圧力データと、流入経路における中間位置よりもゲート43cから最遠位置寄りの位置に配置された第一圧力センサ44a-44cのうちの少なくとも1つが時間的に連続して検出した圧力データとを取得することが好ましい。
これにより、学習済みモデル生成部214aは、キャビティC内に充填される溶融材料の充填時間Jと加水分解の有無や進行具体(加水分解状態データ)との相関性がより高い学習済みモデルを生成できる。そして、成形不良予測部223aは、成形品の成形不良の予測精度を更に向上させることができる。尚、この場合における充填時間Jは、第一圧力センサ44d-44fのうちの1つにより時間的に連続して検出された圧力データにおいて立ち上がりを開始した時点を始点とし、第一圧力センサ44a-44cのうちの1つにより時間的に連続して検出された圧力データにおいて立ち上がりを開始した時点を終点として決定される。
更に、この場合、訓練データセット取得部212a及び成形時データ取得部222aは、6つの第一圧力センサ44a-44fの中で、ゲート43cから最遠位置に配置される第一圧力センサ44a、及び、最もゲート43c寄りに配置される第一圧力センサ44fの2つから圧力データを取得することが好ましい。
つまり、これら2つの第一圧力センサ44a,44fは、6つの第一圧力センサ44a-44fのうち、流入経路において互いに最も離れた位置に配置される。そして、キャビティCに流入する溶融材料は、第一圧力センサ44fが配置された領域から比較的に離間している第一圧力センサ44aが配置された領域に向けて順に充填される。
従って、充填時間Jは、第一圧力センサ44fが溶融材料から圧力を受けることによって圧力が立ち上がりを開始した時点を始点とし、第一圧力センサ44aが溶融材料から圧力を受けることによって圧力が立ち上がりを開始した時点を終点として決定される。従って、第二圧力センサ45を省略し、且つ、6つの第一圧力センサ44a-44fのうちの一部から取得した圧力データを成形時データとする場合には、2つの第一圧力センサ44a,44fの圧力データを含めると良い。そして、この場合には、学習済みモデル生成部214aは、精度の高い学習済みモデルを生成でき、成形不良予測部223aは、溶融材料の加水分解の予測精度、ひいては、加水分解が影響した成形不良の予測精度を高めることができる。
特に、成形機1において、型4には、1つのキャビティCに対してゲート43cが一箇所だけ設けられ、キャビティCに流入した溶融材料は、ゲート43cからキャビティCの環状の周方向に流動する。このような場合において、充填時間Jは、溶融材料の流動性に依存して変化する。溶融材料の流動性は、溶融材料における加水分解の状態、換言すれば、ペレットが吸水している水分量の影響を受ける。そして、水分量が多く、加水分解の進行具体が大きい程、即ち、溶融材料の流動性が高い程、成形品における機械特性が低下すると共に、寸法変化が大きく又外観不良を生じさせる。
この点に関し、学習済みモデル生成部214aは、少なくともゲート43cから最遠位置に配置された第一圧力センサ44aにより検出された圧力データに基づく充填時間Jを訓練データセットとする学習済みモデルを生成する。そして、成形不良予測部223aは、少なくとも第一圧力センサ44aにより検出された圧力データに基づく充填時間Jと学習済みモデルとに基づき、成形品の成形不良を予測する。よって、成形不良予測システム100aは、成形品の成形不良の予測精度を高めることができる。
(6-4.成形不良予測部223aによる予測の第一例)
次に、成形不良予測部223aによる予測の第一例を説明する。第一例においては、成形不良予測部223aは、成形時データ取得部222aを介して、第一圧力センサ44aから時間的に連続して検出された圧力データと第二圧力センサ45から時間的に連続して検出された圧力データとを入力する。そして、成形不良予測部223aは、入力した圧力データに基づき、新たに成形品を成形した際の充填時間Jを算出する。続いて、成形不良予測部223aは、図10に示すように、加水分解の進行具合が成形不良を生じさせない充填時間の上限側の許容値である上限充填時間JM及び下限側の許容値である下限充填時間JLと、充填時間Jとを比較する。
この比較により、図10にて実線により示すように、充填時間Jが上限充填時間JM及び下限充填時間JLによって規定される許容範囲内にあれば、成形不良予測部223aは、成形材料(ペレット)の水分量や加水分解の進行具合即ち予測値が適切であると予測する。つまり、成形不良予測部223aは、充填時間Jが許容範囲内である場合には、キャビティC内に溶融材料が十分に充填されており、新たに成形した成形品が良品であると予測することができる。
一方、充填時間Jが上限充填時間JMよりも長い、或いは、充填時間Jが下限充填時間JLよりも短い、即ち、図10にて一点鎖線により示すように充填時間Jが許容範囲外にあれば、成形不良予測部223aは、成形材料(ペレット)の水分量や加水分解の進行具合即ち予測値が不適切であると予測する。つまり、成形不良予測部223aは、キャビティC内に溶融材料が適切に充填されておらず、新たに成形した成形品が成形不良品であると予測することができる。
ここで、成形不良予測部223aが用いる上限充填時間JM及び下限充填時間JLは、経験的に又は実験的に予め設定しておくことが可能である。しかし、上述したように、成形材料の材料物性については製造ロットごとのバラつきが生じやすい。このため、学習済みモデル生成部214aが生成する学習済みモデルに基づいて、上限充填時間JM及び下限充填時間JLを適宜更新して用いることも可能である。
学習済みモデル生成部214aは、加水分解状態データと充填時間Jとを訓練データセットとして学習する。この場合、例えば、加水分解状態データのうち、成形不良を生じさせない上限の加水分解の進行具合を表す加水分解状態データと、そのときの充填時間J即ち上限充填時間JMとの相関を学習することができる。又、例えば、加水分解状態データのうち、成形不良を生じさせない下限の加水分解の進行具合を表す加水分解状態データと、そのときの充填時間J即ち下限充填時間JLとの相関を学習することができる。
このように、学習済みモデル生成部214aが上限充填時間JM又は下限充填時間JLと加水分解の有無(進行具合)とに関する学習済みモデルを生成すると、成形不良予測部223aはこの学習済みモデルを用いることができる。即ち、成形不良予測部223aは、学習された上限充填時間JM及び下限充填時間JLによって規定される許容範囲に充填時間Jが含まれるか否かを判定することができる。従って、溶融材料の加水分解の有無(進行具合)や成形材料の水分量、換言すれば、成形品の成形不良を高い精度で予測することができる。
(6-5.成形不良予測部223aによる予測の第二例)
次に、成形不良予測部223aによる予測の第二例を説明する。上述した第一例においては、成形不良予測部223aは、成形時データとして第一圧力センサ44aにより時間的に連続して検出された圧力データ及び第二圧力センサ45により時間的に連続して検出された圧力データを入力するようにした。
ところで、図7Bに示したように、成形材料を溶融した溶融材料においては、成形温度が高くなる程、粘度が低下し、その結果、充填時間Jが短縮される傾向を有する。即ち、充填時間Jは、成形温度に依存して変化する。そこで、第二例においては、成形不良予測部223aが、成形時データとして上記圧力データに加え、温度センサ46により検出された温度Tを入力して、品質要素を予測する。
この第二例においては、学習済みモデル生成部214aは、第一圧力センサ44a及び第二圧力センサ45により時間的に連続して検出された圧力データに加え、温度センサ46によって検出された温度Tを訓練データセットとする。そして、学習済みモデル生成部214aは、訓練データセットを用いて機械学習を行い、学習済みモデルを生成する。
この場合、学習済みモデル生成部214aは、成形材料の溶融開始温度Tk以上に設定された第一温度T1と、成形上限温度Tt未満に設定され且つ第一温度T1よりも高温の第二温度T2とによって分割される温度域ごとに学習済みモデルを生成する。即ち、学習済みモデル生成部214aは、溶融開始温度Tk以上且つ第一温度T1未満の低温域、第一温度T1以上且つ第二温度T2未満の中温域、及び、第二温度T2以上且つ成形上限温度Tt未満の高温域について学習済みモデルを生成する。
具体的に、学習済みモデル生成部214aは、充填時間J、加水分解状態データ及び温度Tに基づき、上記温度域の各々において紐付けされた充填時間Jと加水分解状態データとを訓練データセットとする機械学習を行う。これにより、学習済みモデル生成部214aは、低温域、中温域及び高温域の各々について、充填時間Jと加水分解の有無(進行具合)とに関する学習済みモデルを生成する。尚、学習済みモデル生成部214aは、温度域ごとに学習済みモデルを生成することに代えて、温度センサ46によって検出された温度Tごとに学習済みモデルを生成するようにしても良い。
成形不良予測部223aは、成形時データ取得部222aから第一圧力センサ44a及び第二圧力センサ45によって時間的に連続して検出された圧力データと温度センサ46によって検出された温度Tとを入力する。そして、成形不良予測部223aは、入力した圧力データに基づき、新たに成形した成形品の充填時間Jを算出する。
続いて、成形不良予測部223aは、入力した温度Tに対応し、図11A、図11B及び図11Cに示すように、低温域、中温域及び高温域の各々において設定された上限充填時間JM及び下限充填時間JLと、充填時間Jとを比較する。ここで、上述したように、溶融材料は、温度Tが高温になる程、加水分解が促進されて流動性が高くなり、その結果、キャビティC内への充填時間Jが短くなる傾向を有する。従って、図11A、図11B及び図11Cの順で、上限充填時間JM及び下限充填時間JLは短くなるように決定される。
この比較により、温度Tの対応する温度域において、充填時間Jが上限充填時間JM及び下限充填時間JLによって規定される許容範囲内にあれば、成形不良予測部223aは、成形材料(ペレット)の水分量や加水分解の進行具合が適切であると予測する。つまり、成形不良予測部223aは、充填時間Jが許容範囲内である場合には、新たに成形した成形品が良品であると予測することができる。
一方、温度Tの対応する温度域において、充填時間Jが上限充填時間JMよりも長い、或いは、充填時間Jが下限充填時間JLよりも短い、即ち、充填時間Jが許容範囲外にあれば、成形不良予測部223aは、成形材料(ペレット)の水分量や加水分解の進行具合が不適切であると予測する。つまり、成形不良予測部223aは、新たに成形した成形品が成形不良品であると予測することができる。
(6-6.成形不良予測部223aによる予測の第三例)
次に、成形不良予測部223aによる予測の第三例を説明する。上述したように、学習済みモデル生成部214aは、加水分解状態データ(水分量)と充填時間Jとを訓練データセットとする機械学習を行い、学習済みモデルを生成する。このため、学習済みモデルは、加水分解状態データ(加水分解の有無、加水分解の進行具合、或いは、水分量)と充填時間Jとの相関を定義するものである。従って、成形不良予測部223aは、学習済みモデルを用いることにより、充填時間Jを入力とした場合には加水分解状態データを出力することが可能となる。
一方、成形不良予測部223aは、学習済みモデルを用いることにより、加水分解状態データを入力とし場合には充填時間Jを出力することも可能となる。即ち、上述した第一例及び第二例における入力と出力とを逆にすることが可能である。そこで、第三例においては、成形不良予測部223aは、加水分解状態データとして入力し、加水分解状態データに対応する充填時間Jを出力する。
この第三例においては、成形不良予測部223aは、図9(図5)にて破線により示すように、成形時データ取得部222aを介して、加水分解状態データ入力部211aから加水分解状態データを入力する。尚、加水分解状態データの入力に際しては、例えば、成形機1の成形条件を設定する作業者や管理者が入力することが可能である。そして、成形不良予測部223aは、学習済みモデルに基づき、入力した加水分解状態データに対応する充填時間Jを出力する。
そして、成形不良予測部223aは、充填時間Jが許容範囲内であれば、例えば、現在の成形材料(溶融材料)を用いて良品となる成形品を成形可能であると予測する。一方、成形不良予測部223aは、充填時間Jが許容範囲外であれば、例えば、現在の成形材料(溶融材料)は加水分解が進行し、成形不良となる成形品が成形されると予測する。尚、このように、出力される充填時間Jは、例えば、成形機1の動作を管理する作業者が成形機1の成形条件を設定する場合に、有益な情報となる。
(7.品質異常予測システムの効果)
以上説明したように、学習済みモデル生成部214は、少なくとも第一圧力センサ44の圧力データに基づいて計測又は算出して取得可能な充填時間Jと品質要素データとを訓練データセットとする機械学習を行い、学習済みモデルを生成する。よって、学習済みモデル生成部214は、成形材料の吸水に伴う水分量によって変動し得る流動性に関連する充填時間J、及び、品質要素データとして成形材料の吸水に伴う水分量に応じて発生する溶融樹脂の加水分解状態データとの相関性が高い学習済みモデルを生成できる。
又、学習済みモデル生成部214は、第一圧力センサ44の圧力データと、第二圧力センサ45の圧力データと、温度データとに加え、バラつき要素をも加えた訓練データセットとする機械学習を行い、学習済みモデルを生成することができる。これにより、学習済みモデル生成部214は、充填時間J及び品質要素データとの相関性が明確化した学習済みモデルを生成できるので、学習済みモデルを高精度化できる。
(8.その他)
上記した品質異常予測システム100としての成形不良予測システム100aの成形機1において、型4には6つの第一圧力センサ44a-44fが配置される場合を例に挙げて説明したが、必ずしもこれに限られるものではない。つまり、型4には複数の第一圧力センサ44が配置されていればよく、第一圧力センサ44の数が5つ以下又は7つ以上としてもよい。
この場合、複数の第一圧力センサ44は、流入経路においてゲート43cの距離が異なる複数の位置に配置されていればよい。例えば、成形不良予測システム100aにおいて、6つの第一圧力センサ44a-44fは、何れも図4に示す右側半分に配置されているが第一圧力センサ44は、環状のキャビティCの周方向における何れの位置に配置してもよい。
上記した品質異常予測システム100の成形機1において、型4には1つのキャビティCに対してゲート43cが1つのみであるが、1つのキャビティCに対して2つ以上のゲート43cを設けてもよい。
1…成形機、4…型、41…第一型、42…第二型、43…供給路、43b…ランナー、43c…ゲート、44a-44f…第一圧力センサ、45…第二圧力センサ、46…温度センサ、100…品質異常予測システム、100a…成形不良予測システム(品質異常予測システム)、110…機械学習装置、111…第一サーバ、112…第二サーバ、210,210a…学習処理装置、211…品質要素データ入力部、211a…加水分解状態データ入力部、212,212a…訓練データセット取得部、213,213a…訓練データセット記憶部、214,214a…学習済みモデル生成部、220…品質予測装置、220a…成形不良予測装置、221,221a…学習済みモデル記憶部、222,222a…成形時データ取得部、223…異常予測部、223a…成形不良予測部(異常予測部)、224,224a…出力部

Claims (15)

  1. 成形機の型のキャビティに成形材料を溶融した溶融材料を供給することにより成形品を成形する成形方法に適用され、
    前記型に配置され、前記キャビティにおいて供給された前記溶融材料から受ける圧力を検出する第一圧力センサと、
    少なくとも前記第一圧力センサによって検出された圧力データを用いて取得される時間であって前記キャビティ内に前記溶融材料の充填が開始されてから完了するまでに要する充填時間を訓練データセットとする機械学習により生成された学習済みモデルであって、前記充填時間と前記成形材料の吸水に起因する前記成形品の品質要素とに関する前記学習済みモデルを記憶する学習済みモデル記憶部と、
    新たに前記第一圧力センサにより検出された圧力データを用いて取得された前記充填時間と前記学習済みモデルとに基づいて、新たに成形した前記成形品の前記品質要素の異常を予測する異常予測部と、
    を備えた、成形品の品質異常予測システム。
  2. 前記成形品の品質異常予測システムは、前記キャビティにおいて異なる複数の位置で、前記溶融材料から受ける圧力を各々検出する複数の前記第一圧力センサを備え、
    前記学習済みモデル記憶部は、複数の前記第一圧力センサにより検出された複数の前記圧力データを用いて取得された前記充填時間と前記成形品の前記品質要素とに関する前記学習済みモデルを記憶する、請求項1に記載の成形品の品質異常予測システム。
  3. 前記充填時間の始点は、複数の前記第一圧力センサのうちの1つの前記第一圧力センサが圧力の立ち上がりを検知した時点であり、
    前記充填時間の終点は、複数の前記第一圧力センサのうちの他の前記第一圧力センサが圧力の立ち上がりを検知した時点である、請求項2に記載の成形品の品質異常予測システム。
  4. 前記充填時間の終点は、複数の前記第一圧力センサが圧力の立ち上がりを検知した各々の時点のうち最も遅い時点である、請求項2に記載の成形品の品質異常予測システム。
  5. 複数の前記第一圧力センサは、前記キャビティ内において前記型のゲートから前記溶融材料が流入する流入経路において、前記ゲートからの距離が異なる複数の位置に配置される、請求項2-4の何れか一項に記載の成形品の品質異常予測システム。
  6. 複数の前記第一圧力センサは、前記流入経路における前記ゲート寄りの位置と、前記流入経路において前記ゲートからの最遠位置寄りの位置との2箇所に少なくとも配置される、請求項5に記載の成形品の品質異常予測システム。
  7. 前記成形品及び前記キャビティは、環状であり、
    前記型は、1箇所の前記ゲートを有し、
    前記流入経路は、前記ゲートから前記キャビティの環状の周方向に流動する経路である、請求項5又は6に記載の成形品の品質異常予測システム。
  8. 前記品質異常予測システムは、更に、前記型のランナーに配置される第二圧力センサを備え、
    前記学習済みモデル記憶部は、前記第一圧力センサにより検出された前記圧力データ及び前記第二圧力センサにより検出された前記圧力データを用いて取得された前記充填時間と前記成形品の前記品質要素とに関する前記学習済みモデルを記憶し、
    前記異常予測部は、新たに前記第一圧力センサにより検出された前記圧力データ及び前記第二圧力センサにより検出された前記圧力データを用いて取得された前記充填時間と、前記学習済みモデルとに基づいて、新たに成形した前記成形品の前記品質要素を予測する、請求項1-7の何れか一項に記載の成形品の品質異常予測システム。
  9. 前記充填時間の始点は、前記第二圧力センサが圧力の立ち上がりを検知した時点であり、
    前記充填時間の終点は、前記第一圧力センサが圧力の立ち上がりを検知した時点である、請求項8に記載の成形品の品質異常予測システム。
  10. 前記成形品の品質異常予測システムは、更に、前記型に配置され、前記キャビティにおける前記溶融材料の温度を検出する温度センサを備え、
    前記学習済みモデル記憶部は、少なくとも前記第一圧力センサにより検出された前記圧力データにより検出された前記圧力データを用いて取得された前記充填時間、前記温度センサにより検出された温度データ、及び、前記成形品の前記品質要素に関する前記学習済みモデルを記憶し、
    前記異常予測部は、新たに前記第一圧力センサにより検出された前記圧力データを用いて取得された前記充填時間、新たに前記温度センサにより検出された前記温度データ、及び、前記学習済みモデルに基づいて、新たに成形した前記成形品の前記品質要素を予測する、請求項1-9の何れか一項に記載の成形品の品質異常予測システム。
  11. 前記異常予測部は、前記品質要素の予測値と許容値とに基づいて前記成形品の良否判定を行う、請求項1-10の何れか一項に記載の成形品の品質異常予測システム。
  12. 前記異常予測部は、前記成形品の成形後であって次工程の実行前に、前記成形品の良否判定を行う、請求項11に記載の成形品の品質異常予測システム。
  13. 前記成形品の品質異常予測システムは、前記成形品の良否判定において不良と判定された前記成形品の廃棄処理又は選別処理を実行する、請求項11又は12に記載の成形品の品質異常予測システム。
  14. 前記成形品の品質異常予測システムは、更に、
    少なくとも前記第一圧力センサにより検出された前記圧力データを用いて取得された前記充填時間を前記訓練データセットとする機械学習により前記学習済みモデルを生成し、生成した前記学習済みモデルを前記学習済みモデル記憶部に記憶する学習済みモデル生成部を備える、請求項1-13の何れか一項に記載の成形品の品質異常予測システム。
  15. 前記品質要素は、前記成形材料の吸水に起因して前記溶融材料に発生する加水分解の状態を表すものである、請求項1-14の何れか一項に記載の成形品の品質異常予測システム。
JP2019145940A 2019-08-08 2019-08-08 成形品の品質異常予測システム Active JP7293962B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019145940A JP7293962B2 (ja) 2019-08-08 2019-08-08 成形品の品質異常予測システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019145940A JP7293962B2 (ja) 2019-08-08 2019-08-08 成形品の品質異常予測システム

Publications (2)

Publication Number Publication Date
JP2021024230A JP2021024230A (ja) 2021-02-22
JP7293962B2 true JP7293962B2 (ja) 2023-06-20

Family

ID=74662171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019145940A Active JP7293962B2 (ja) 2019-08-08 2019-08-08 成形品の品質異常予測システム

Country Status (1)

Country Link
JP (1) JP7293962B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102500376B1 (ko) * 2021-09-17 2023-02-17 아주대학교산학협력단 사출 금형 내 센서 신호를 이용한 모니터링 장치 및 그 방법

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000000892A (ja) 1998-06-16 2000-01-07 Achilles Corp 成形品の抵抗測定払出し装置
JP3138123B2 (ja) 1993-10-26 2001-02-26 株式会社名機製作所 ディスク成形装置におけるノズルタッチ機構
JP2002086500A (ja) 2000-09-12 2002-03-26 Futaba Corp 不良品の検出方法及び装置並びに成形装置。
JP5065516B2 (ja) 2010-08-04 2012-11-07 エフ イー アイ カンパニ 薄い電子検出器における後方散乱の減少
JP2017202632A (ja) 2016-05-12 2017-11-16 ファナック株式会社 射出成形機の逆流防止弁の摩耗量推定装置および摩耗量推定方法
JP2018015938A (ja) 2016-07-26 2018-02-01 双葉電子工業株式会社 計測装置、計測方法、プログラム
JP2018040557A (ja) 2016-09-10 2018-03-15 株式会社カワタ 乾燥樹脂のオンデマンド供給システム
JP2019119172A (ja) 2018-01-10 2019-07-22 池上金型工業株式会社 プログラム及び情報処理装置
JP7186230B2 (ja) 2017-12-28 2022-12-08 エーエスエムエル ネザーランズ ビー.ブイ. 装置の構成要素から汚染粒子を除去する装置および方法
JP7232344B2 (ja) 2019-09-17 2023-03-02 トリニティ工業株式会社 バルブモジュール、バルブ装置、バルブシステム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03138123A (ja) * 1989-10-24 1991-06-12 Sekisui Chem Co Ltd 射出成形における充填時間の設定方法
JP2598687Y2 (ja) * 1992-02-20 1999-08-16 エヌオーケー株式会社 射出成形機の製品良否判定装置
JP2970374B2 (ja) * 1993-12-24 1999-11-02 理化工業株式会社 射出成形制御装置
JP3288872B2 (ja) * 1993-12-28 2002-06-04 キヤノン株式会社 プラスチック成形方法とその成形金型及びその成形品

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3138123B2 (ja) 1993-10-26 2001-02-26 株式会社名機製作所 ディスク成形装置におけるノズルタッチ機構
JP2000000892A (ja) 1998-06-16 2000-01-07 Achilles Corp 成形品の抵抗測定払出し装置
JP2002086500A (ja) 2000-09-12 2002-03-26 Futaba Corp 不良品の検出方法及び装置並びに成形装置。
JP5065516B2 (ja) 2010-08-04 2012-11-07 エフ イー アイ カンパニ 薄い電子検出器における後方散乱の減少
JP2017202632A (ja) 2016-05-12 2017-11-16 ファナック株式会社 射出成形機の逆流防止弁の摩耗量推定装置および摩耗量推定方法
JP2018015938A (ja) 2016-07-26 2018-02-01 双葉電子工業株式会社 計測装置、計測方法、プログラム
JP2018040557A (ja) 2016-09-10 2018-03-15 株式会社カワタ 乾燥樹脂のオンデマンド供給システム
JP7186230B2 (ja) 2017-12-28 2022-12-08 エーエスエムエル ネザーランズ ビー.ブイ. 装置の構成要素から汚染粒子を除去する装置および方法
JP2019119172A (ja) 2018-01-10 2019-07-22 池上金型工業株式会社 プログラム及び情報処理装置
JP7232344B2 (ja) 2019-09-17 2023-03-02 トリニティ工業株式会社 バルブモジュール、バルブ装置、バルブシステム

Also Published As

Publication number Publication date
JP2021024230A (ja) 2021-02-22

Similar Documents

Publication Publication Date Title
JP7047073B2 (ja) 射出成形機のpid制御を自動チューニングするためのシステムおよび方法
US9724863B2 (en) Injection molding machine
KR101645378B1 (ko) 사출 성형기의 공정 능력 있는 기본 설정을 반자동 생성하기 위한 설정 방법
US11213986B2 (en) Method for determining an actual volume of an injection moldable compound in an injection molding process
JP7205225B2 (ja) 成形条件決定支援装置および射出成形機
EP3168027B1 (en) Injection molding information management device and injection molding machine
JP7159758B2 (ja) 成形条件決定支援装置および射出成形機
JP7342450B2 (ja) 品質予測システム及び成形機
EP3168028B1 (en) Injection molding information management device and injection molding machine
JP2021535855A (ja) 実際のプラスチック溶融圧力または空洞圧力に基づいて射出成形プロセスを制御するための方法
TW202126463A (zh) 射出成型之熔體壓力控制
JP7293962B2 (ja) 成形品の品質異常予測システム
US20200206998A1 (en) Quality prediction system and molding machine
CN111497163B (zh) 品质预测系统以及成型机
US20200285998A1 (en) Machine learning device and machine learning method
US20220242022A1 (en) Injection molding machine and method of controlling the same
US20200094461A1 (en) Device for assisting molding condition determination and injection molding apparatus
JP2021191619A (ja) 成形条件決定支援装置
JP7283138B2 (ja) 成形品の品質予測システム及び成形機
CN105666781A (zh) 注射成型机
JP3293425B2 (ja) 射出低圧成形方法および装置
JP2023176960A (ja) 射出成形装置
JP2598687Y2 (ja) 射出成形機の製品良否判定装置
JPH08300428A (ja) 射出成形装置
JP3232550B2 (ja) 射出圧縮成形における型締圧力の制御方法

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210301

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220714

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230522

R150 Certificate of patent or registration of utility model

Ref document number: 7293962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150